
Fast and Scalable MPI-Level
Broadcast Using InfiniBand’s
Hardware Multicast Support

J. Liu A. Mamidala D. K. Panda

Computer Science and Engineering
The Ohio State University

Presentation Outline

• Introduction and Overview
• Designing MPI_Bcast with InfiniBand

Multicast
• Performance Evaluation
• Conclusions

Introduction
• MPI provides both point-to-point and collective

communication
• Efficient and scalable collective communication is

very important to high performance applications
• Modern interconnects provide certain support in

hardware for collective communication
– Hardware multicast in InfiniBand

• Collective at hardware level usually has different
semantics from the MPI level

Motivation

• Can we exploit InfiniBand hardware
multicast in MPI collective communication?
– Focus on MPI_Bcast

• How can we bridge the semantic gap of
InfiniBand multicast and MPI_Bcast?
– Efficiency
– Scalability

InfiniBand Overview

• Industry standard for high speed
interconnect

• High performance
• Many novel features

– Hardware multicast
– RDMA, atomic operations, QoS, etc

InfiniBand Multicast
• Only one send operation is needed to

initiate the multicast
• Message is delivered to multiple

destinations by hardware
• Available in Unreliable Datagram (UD)

mode
– Unreliable
– Un-ordered
– Cannot exceed MTU

• 2 KB in current hardware

Multicast Performance

• Good latency for small messages
• Very scalable wrt the number of destinations
• Less traffic
• Independent progress

0

5

10

15

20

25

4 8 16 32 64 128 256 512 1024 2048

Size (Bytes)

Ti
m

e
(M

ic
ro

se
c)

2 nodes
4 nodes
8 nodes

MPI_Bcast Overview
• A very commonly used collective operations
• Delivers a message to all process in a

communication group
– Reliable
– Ordered
– Message size can be very large

• Usually implemented on top of MPI point-
to-point communication
– Current approach in MVAPICH

MVAPICH
• MPI implementation of InfiniBand

– Open source
– Used by many organizations world-wide

• Powering the 3rd, 111th, 116th most powerful
supercomputers in the world
– Virginia Tech System X (2200 processor G5

cluster)
• As mentioned in Dr. Varadarajan’s talk yesterday

– Sandia National Lab (256 Processor Xeon
cluster)

– Los Alamos National Lab (512 Processor
Opteron cluster)

0
10
20
30
40
50
60
70
80
90

100

4 8 16 32 64 128 256 512 1024 1799 1836

Size (Bytes)

Ti
m

e
(M

ic
ro

se
c)

2 nodes
4 nodes
8 nodes

• Not scalable wrt the number of destinations
• More traffic
• Progress depends on intermediate nodes

MPI_Bcast Performance in
Current MVAPICH

Presentation Outline

• Introduction and Overview
• Designing MPI_Bcast with InfiniBand

Multicast
• Performance Evaluation
• Conclusions

Design Challenges

• Semantic gap between InfiniBand
multicast and MPI_Bcast
– Reliability
– Message ordering
– Message size

• Need to bridge this gap
– Performance
– Scalability

Design Architecture

• A substrate to bridge the semantic gap with low
overhead

IBA Multicast IBA Point-to-Point

Point-to-Point
Implementation

Collective Implementation
(MPI_Bcast)

Substrate

Outline of Design Issues

• Basic design
• Sliding window based design
• Avoiding ACK implosion
• Reducing ACK traffic
• Dealing with large messages
• Detailed design issues

Basic Design

• Root sends message using multicast
• Receivers send back ACK
• Root blocks until all ACKs come
• Problems

– High overhead at root because it needs
to block

– ACK implosion
– ACK traffic

Sliding Window Based Design

• Use a window of buffers
• Root does not block
• ACKs can be collected in the background
• Root needs to block if running out of

buffers
• Problems

– ACK implosion
– ACK traffic

Avoiding ACK Implosion

• Use a hierarchical structure for ACK
collection

• Tree based approach
– Dependence on intermediate nodes
– Prone to false retransmission
– large retransmission traffic

Co-Root Based Approach
• Two level hierarchy
• Root does multicast
• Root does a broadcast

to all co-roots
– Use point-to-point
– Reliable

• Root and co-roots
responsible for ACK
collective in its
subgroup

Root

Co-root
Leaf

Subgroup

Advantages of Co-Root Based
Approach

• More even load distribution
– Co-roots help with both ACK collection

and retransmission
• Better communication progress

– No intermediate nodes
• Less retransmission traffic

– Co-roots keep track of its subgroup

Reducing ACK Traffic

• Delaying ACKs
– Combining multiple ACKs

• ACK for every M broadcast messages
– Piggybacking

• Attach ACK with other messages

Handling Large Messages

• Divide the message into multiple
chunks

• Use multicast to send each chunk
• Problems

– Copying cost

Detailed Design Issues

• Buffer management
• Handling out-of-order and duplicated

messages
• Timeout and retransmission
• Flow control
• RDMA based ACK collection

Presentation Outline

• Introduction and Overview
• Designing MPI_Bcast with InfiniBand

Multicast
• Performance Evaluation
• Conclusions

Experimental Testbed

• 8 SuperMicro SUPER P4DL6 nodes
(2.4 GHz Xeon, 400MHz FSB, 512K
L2 cache)

• Mellanox InfiniHost MT23108 4X
HCAs (A1 silicon), PCI-X 66bit
133MHz

• Mellanox InfiniScale MT43132 switch

Schemes Used in the
Experiments

• Original
– Original MVAPICH implementation based on point-to-

point communication
• Basic

– Basic design
• Window based schemes

– Window
• Sliding window based design

– Co-root2
• Sliding window + one co-root

– Aggregate 10
• Sliding window + ACK for every ten broadcast

MPI_Bcast Latency on 8
nodes (Small Messages)

0
10
20
30
40
50
60

4 16 64

256
102

4

Size (Bytes)

Ti
m

e
(M

ic
ro

se
c) Basic

Window

Co-root2

Original

Aggregate10

• All new schemes perform comparably
• Up to 58% compared with original implementation

MPI_Bcast Latency on 8
Nodes (Large Messages)

0

50

100

150

200

250

2048 4096 8192 16384 32768
Size (Bytes)

Ti
m

e
(M

ic
ro

se
c) Window

Original

• Up to 210% improvement
• Worse than the original implementation for

messages larger than 32 KB due to extra copies

0
50

100
150
200
250
300

4 8 16 32 64
128 256 512
1024

Size (Bytes)

Th
ro

ug
hp

ut Basic

Window

Aggregate 10

Original

• Measure how fast back-to-back MPI_Bcast can be
issued and finished

• Up to 112% improvement for Aggregate10

MPI_Bcast Throughput

Impact of Process Skew

0

10

20

30

40

50

60

50 100 150 200 250 300 350 400

Avg Delay (Microsec)

A
vg

 T
im

e
in

 M
PI

_B
ca

st

(M
ic

ro
se

c)

Original

Window

• Random skew is added before MPI_Bcast at each receiver
• Measure time spent in MPI_Bcast
• Hardware multicast based scheme performs significantly

better

MPI_Bcast Latency on 1024
Nodes (Based on Analytical Model)

0

50

100

150

200

4 8 16 32 64
128 256 512
102

4
183

6

Size (Bytes)

Ti
m

e
(M

ic
ro

se
c)

Window

Original

• Systems similar to those in our current testbed
• Window based scheme achieves less than 20 us latency for 4

byte messages, less than 40 for 1836 bytes
• Up to 4.86 time improvement

Conclusions
• Designs of MPI_Bcast using InfiniBand multicast

– A substrate to bridge the semantic gap
– Techniques to improve performance and scalability

• Performance evaluation on 8 nodes
– Up to 58% improvement in latency
– Up to 112% improvement in throughput
– Better tolerance of skew

• Analytical model
– Less than 20 us latency on 1024 nodes
– Up to 4.86 times improvement

Future Work

• Integrate into MVAPICH release
• Explore NACK based schemes
• Evaluate using larger testbeds
• Explore zero copy approaches for

large messages using InfiniBand
multicast

• Work on other collectives

Web Pointers

http://www.cis.ohio-state.edu/~panda/
http://nowlab.cis.ohio-state.edu/

http://nowlab.cis.ohio-state.edu/projects/mpi-iba/

NBC home page

MVAPICH home page

