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Introduction 

•  Scientific Applications 
–  Earthquake Simulation, Weather 

prediction, computational fluid 
dynamics etc. 

–  Use HPC systems to push 
boundaries of our understanding of 
nature 

•  Consume millions of hours 
on supercomputers world 
wide 

•  Most applications use MPI 
parallel programming model 
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Shakeout Earthquake Simulation 
Visualization credits: Amit Chourasia,  
Visualization Services, SDSC 
Simulation credits: Kim Olsen et. al. SCEC, 
Yifeng Cui et. al., SDSC 
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Commodity Multi-core Processors 
Single Core Dual Core Quad Core Eight Core Twelve Core Many Core Era 

Year 2000 - 2003 Year 2003 - 2010 Future? 

•  Communications inside the node (intra-node) 
becoming increasingly important 

•  Going forward, we need to deal with several issues: 
–  Communication and computation overlap 
–  Synchronization overheads 
–  Cache misses (dependence on scarce memory bandwidth) 
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The promise of MPI-2 RMA 

•  MPI-2 RMA model holds much promise for multi-core 
•  Communication and computation overlap 

– Non-blocking data moving primitives – Put, Get, Accumulate 
•  Synchronization overheads 

–  Two different synchronization methods – Active, Passive 
–  Active synchronization can use sub-groups 
–  Passive synchronization can help irregular patterns 

•  Cache misses 
– MPI Implementations can strive to reduce message copies 

and to the extent possible reduce cache misses 
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Outline 

•  Introduction  

•  Problem Statement  

•  Proposed Design 

•  Experimental Results & Analysis 

•  Conclusions & Future Work 
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The state of current MPI-2 
implementations and Applications 

•  Scientific applications tend to evolve slowly 
•  Slow to adopt MPI-2 
•  Since not many scientific applications do not use 

RMA, implementers do not focus on it 
– RMA for intra-node implemented on top of two-sided  

•  Portability 
•  Speed of development 

•  Two-sided implementations do not provide promised 
benefits of RMA model 
–  As a result application developers tend not to use it 

•  Deadlock! 
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Intra-node One-sided Communication 

Core 0 Core 1 

Core 2 Core 3 

Core 4 Core 5 

Core 6 Core 7 

Core 0 Core 1 

Core 2 Core 3 

Core 4 Core 5 

Core 6 Core 7 

COPY SRC DST SRC DST 

•  User-level shared memory techniques lead to two copies 
•  One copy methods 

–  Kernel based (LiMIC2, KNEM) 
–  On-board DMA engines, such as Intel I/OAT 
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Problem Statement 

•  Can we design “true” one-sided support for MPI-2 
RMA operations? 
–  Can it improve communication and computation overlap? 

–  Can it reduce synchronization overheads? 

–  Can it reduce cache misses? 

•  Can real applications benefit from this true one-
sided operations? 
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Outline 

•  Introduction  

•  Problem Statement  

•  Proposed Design 

•  Experimental Results & Analysis 

•  Conclusions & Future Work 
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Basic Approaches for Intra-node 
Communication 

•  Shared memory approach 
–  Communicating processes share a buffer 
–  Two copies : sender copy-in; receiver copy-out 

– Good for small messages 

•  Kernel assisted direct-copy approach 
–  Kernel directly copies the data from src to dst 

–  One copy, but has kernel overhead 

–  Publicly available modules 
•  Purely using kernel-assisted copy : LiMIC2 

•  Using both kernel-assisted and I/OAT-assisted copy: KNEM 
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Design Goals 
Origin process Target process 

start 

put 

get 

complete 

post 

wait 

user program user program MPI lib MPI lib 

access  
epoch 

exposure  
epoch 

•  Realize true one-sided synchronization and data transfer 

•  Design using MVAPICH2 code base 
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One-Sided Synchronization Design 

•  Pair-wise shared memory for “post” and “complete” 
–  Bit vectors 

•  Shared memory read and write for communication 

•  No send/recv operations needed 
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One-Sided Data Transfer Design 

•  Step 1: get information about the own window 

•  Step 2: exchange window information among intra-node 
processes 

•  Step 3: direct copy as needed – use kernel or I/OAT 
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Design Issues and Solutions 

•  Lock buffer pages during the copy 
– Use get_user_pages 
–  Both src and dst buffers are locked for I/OAT 

–  Only target window is locked for basic kernel module 

•  Locking cost is high 
–  Enhancement: cache the locked window pages 

•  I/OAT completion notification 
–  I/OAT returns cookie for user to poll completion 

–  Frequent polling is not good 

–  Only poll before origin writes “complete” to target 



MVAPICH2 and MVAPICH2-LiMIC2 
•  MVAPICH2 

–  High-performance, scalable, and fault-tolerant MPI library for InfiniBand/ 
    10GigE/iWARP and other RDMA enabled interconnects 
–  Developed by Network-Based Computing Laboratory, OSU 
–  Being used by more than 1,150 organizations world wide, including many of 

the top 500 supercomputers (Nov’ 09 ranking) 
•  5th ranked NUDT Tianhe –71,680-core system 
•  9th ranked Ranger system at Texas Advanced Computing Center (TACC) 

–  Current release versions use two-sided based approach for intra-node RMA 
communication 

–  Proposed design will be incorporated in MVAPICH2 

•  MVAPICH2-LiMIC2 
–  LiMIC2 is used for two-sided large message intra-node communication 
–  Developed by Hyun-Wook Jin at Konkuk University, Korea 

http://sslab.konkuk.ac.kr/ 
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http://mvapich.cse.ohio-state.edu/ 
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Outline 

•  Introduction  

•  Problem Statement  

•  Proposed Design 

•  Experimental Results & Analysis 

•  Conclusions & Future Work 



17 

Experimental Setup 
•  Multi-core Test bed 

–  Type A 
•  Intel Clovertown, support I/OAT 

•  Dual-socket quad-core Xeon E5345 processors (2.33 GHz) 

•  Each pair of cores share L2 cache 

•  Inter-socket, intra-socket, shared cache intra-node communication 

–  Type B 
•  Intel Nehalem 

•  Dual-socket quad-core Xeon E5530 processors (2.40 GHz) 

•  Exclusive L2 cache 

•  Inter-socket, intra-socket intra-node communication 

–  Type C 
•  AMD Barcelona 

•  Quad-socket quad-core Opteron 8530 processors  

•  Exclusive L2 cache 

•  Inter-socket, intra-socket intra-node communication 
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Experiment Overview 
•  Basic latency & bandwidth performance 

•  More micro benchmarks 
–  Reduced process skew effect 

–  Increased communication/computation overlap 

–  Improved scalability 

–  Decreased cache misses 

•  Application level performance 

•  Legend 
–  Original: current design in MVAPICH2 

–  T1S-kernel: proposed design using basic kernel module 

–  T1S-i/oat: proposed design using I/OAT-assisted module 

–  MPICH2: two-sided based ; shared-memory based send/recv 

–  OpenMPI: two-sided based; KNEM large message send/recv  
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Intra-socket Get Latency on Intel 
Clovertown 

small message latency (usec) medium message latency (usec) large message latency (usec) 

•  T1S-kernel improves small and medium message latency up to 39% 

•  T1S-i/oat design improves latency of very large messages up to 38% 

•  Similar results for put latency 
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Get Bandwidth on Intel Clovertown 
Inter-socket bandwidth (Mbytes/sec) 

•  T1S-kernel design improves 
medium message BW 

•  T1S-i/oat starts gaining 
benefit beyond 256 KB 

•  Put has similar performance 

Intra-socket bandwidth (Mbytes/sec) 

Shared-cache bandwidth (Mbytes/sec) 
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Get Bandwidth on Intel Nehalem 
Inter-socket bandwidth (Mbytes/sec) 

•  T1S-kernel design improves medium message BW 

•  Put has similar performance 

Intra-socket bandwidth (Mbytes/sec) 
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Get Bandwidth on AMD Barcelona 
Inter-socket bandwidth (Mbytes/sec) 

•  T1S-kernel design improves medium message bandwidth 

•  Put has similar performance 

Intra-socket bandwidth (Mbytes/sec) 
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Reduced Process Skew 

•  New designs remove dependency, more robust to process skew 

Matrix size no comp 32x32 64x64 128x128 256x256 

Original 3404 3780 6126 27023 194467 

T1S-kernel 3365 3333 3398 3390 3572 

T1S-i/oat 2291 2298 2310 2331 2389 

Latency (usec) of 16 put with increasing process skew (message size = 256KB) 

Target process 

put 
put 

post 

wait 

Origin process 

start 

put 

complete 

…
 

…
 

16 put 

computation 
(matrix  
multiplication) 

    Measured 
latency (usec) 
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Increased Communication and 
Computation Overlap 

•  Overlap = (Tcomm + Tcomp – Ttotal)/Tcomm 

-  If Tcomp = Ttotal, overlap = 1; fully overlapped 

-  If Tcomp + Tcomm = Ttotal, overlap = 0; no overlap 

•  Experiment design for measuring overlap at origin 

target process 

put 
put 

post 

wait 

origin process 

start 

put 

complete 
…

 

…
 

16 put 

Tcomm 
(including  
start and  
complete) 

computation Tcomp >= Tcomm 

Ttotal 

Tcomm is measured  
in advance 
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Origin Side Overlap 
Overlap with varying message size (Tcomp=1.2 Tcomm) 

•  I/OAT based design provides close to 90% overlap 
-  Offload data movement to DMA engine 

-  Release the CPU for computation 

Overlap with varying computation time (msg size=1MB) 



26 

Target Side Overlap 
Overlap with varying message size (Tcomp=1.2Tcomm) 

•  Similar benchmark as previous benchmark 
- Insert computation at the target 

•  New designs provide up to 100% overlap 
-  Origin does the communication (message copy) 

-  Target does the computation simultaneously 
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Reduced Synchronization Cost 
Synchronization time with multiple origin processes 

•  New designs decouple origin and target 

- Target is more capable of handling more origin processes 

Origin 0 target 

start post 

wait 

Origin 1 

complete 

start 

complete 

sync 
time 
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Decreased Cache Misses 

•  Cache misses during the aggregated bandwidth test 
- Seven origin processes and one target 

•  T1S-i/oat has the least cache misses 

•  T1S-kernel also reduces cache misses a lot 
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Application Performance 
Performance with varying data sets (32 processes) Weak scaling performance (128x128x128 elements per process) 

•  AWM-Olsen: stencil-based earthquake simulation application 
-  Nearest-neighbor communication; performs on 3-dimensional data set 

-  Modified it to use MPI-2 one-sided semantics 
-  S. Potluri, P. Lai, K. Tomko, S. Sur, Y. Cui, M. Tatineni, K. Schulz,W. Barth, A. Majumdar and D. K. Panda, 

“Quantifying Performance Benefits of Overlap using MPI-2 in a Seismic Modeling Application”, International 
Conference on Supercomputing (ICS) 2010, Tsukuba, Japan 

•  New designs show 10% improvement for larger problem sizes 
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Outline 

•  Introduction  

•  Problem Statement  

•  Proposed Design 

•  Experimental Results & Analysis 

•  Conclusions & Future Work 
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Conclusions & Future Work 
•  We designed and implemented truly one-sided intra-node 

communication 
–  one-sided synchronization 

–  one-sided data transfer 
•  Basic kernel-assisted approach 

•  I/OAT-assisted approach 

•  Evaluated the performance on three multi-core systems 
(Intel Clovertown, Intel Nehalem, AMD Barcelona) 
–  New designs offer better performance in terms of latency, 

bandwidth, communication and computation overlap, cache misses 
and application level benefits etc. 

•  Future work 

–   Evaluate on other platforms and do large-scale evaluations 

–  Include in public MVAPICH2 release 
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 Thank You! 
{laipi, surs, panda}@cse.ohio-state.edu 

jinh@konkuk.ac.kr 

Network-Based Computing Laboratory 

http://nowlab.cse.ohio-state.edu/ 
MVAPICH Web Page 

http://mvapich.cse.ohio-state.edu/�
System Software Lab 

http://sslab.konkuk.ac.kr �


