

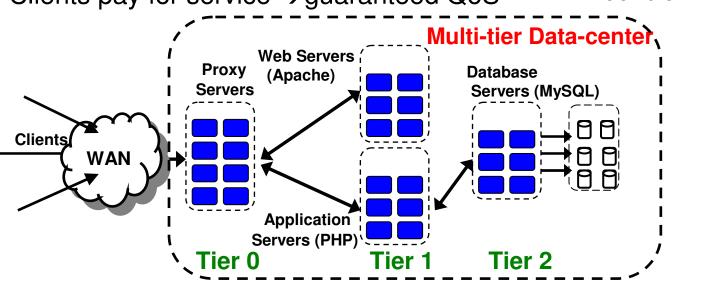
Advanced RDMA-based Admission Control for Modern Data-Centers

Ping Lai Sundeep Narravula Karthikeyan Vaidyanathan Dhabaleswar. K. Panda

Computer Science & Engineering Department Ohio State University

Outline

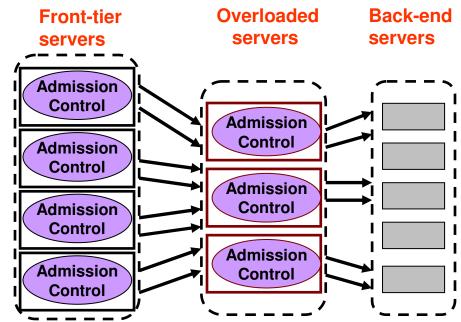
- Introduction & Motivation
- Proposed Design
- Experimental Results
- Conclusions & Future Work



Efficient admission

control needed!

Introduction


- Internet grows
 - Number of users, various type of services, huge amount of data
 - Typical apps: e-commerce, bio-informatics, online banking etc.
- Web-based multi-tier data-centers
 - Huge bursts of requests \rightarrow server overloaded
 - Clients pay for service →guaranteed QoS

General Admission Control

- What is admission control?
 - determine whether to accept/drop the incoming requests while guaranteeing the performance (or QoS requirements) of some already existing connections in the overloaded situation
- Typical approaches
 - Internal approach: on the overloaded servers
 - External approach: on the fronttier nodes. Main advantages are:
 - Make global decisions
 - More transparent to the overloaded servers
 - Easily applicable to any tier

Motivation

- External approach
 - Front-tier proxy servers need to get load information from back-end servers
- Problems with the existing designs
 - Use TCP/IP coarse-grained and high overhead; responsiveness depends on load
 - Workload is divergent and unpredictable require finegrained and low overhead

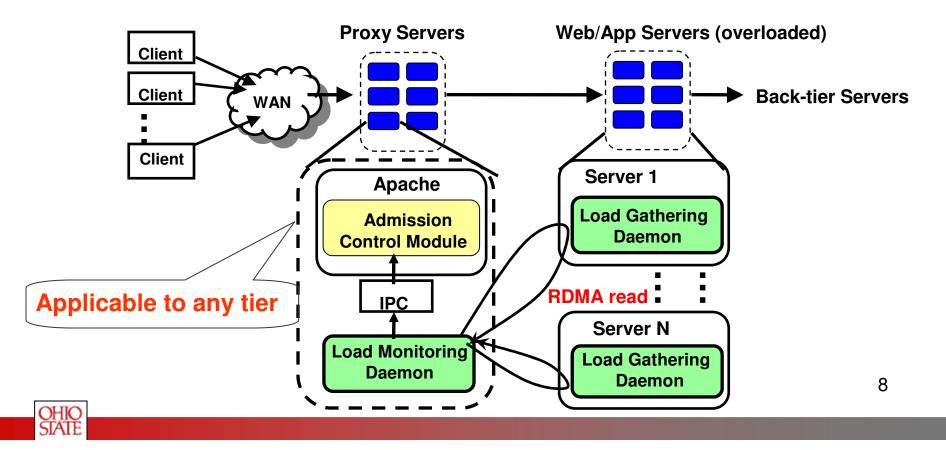
Opportunity & Objective

- Opportunity: modern high-speed interconnects
 - iWARP/10-Gigabit Ethernet, InfiniBand, Quadrics etc.
 - High performance: low latency & high bandiwidth
 - Novel features: atomic operation, protocol offloading, RDMA operations etc.
 - RDMA: low latency & no communication overhead on the remote node

Objective

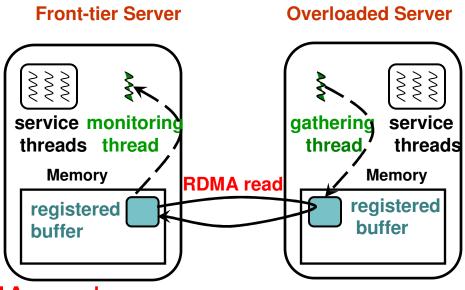
 Leverage the advanced features (RDMA operation) to design more efficient, lower overhead and better QoS guaranteed admission control

Outline


- Introduction & Motivation
- Proposed Design
- Experimental Results
- Conclusions & Future Work

System Architecture

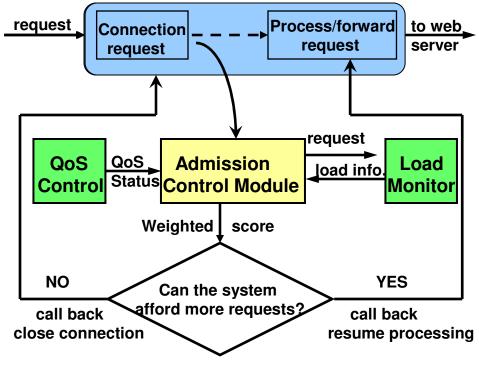
- Load gathering daemon running on overloaded web servers
- Load monitoring daemon running on front-tier proxy servers
- Admission control module running on front-tier proxy servers



Load Gathering and Monitoring Daemon

- Load gathering daemon
 - Running on each of the overloaded servers in background low overhead
 - Gather instantaneous load information
- Load monitoring daemon
 - Running on each of the front-tier proxy servers
 - Retrieve load information from all the load gathering daemons
- Communication is important!
 - TCP/IP is not good, so?

Gathering and Monitoring Daemon Cont.


- Use RDMA read
 - Monitoring daemon issues RDMA read to gathering daemon
 - · Buffer must be registered and pinned down before the operation
 - Monitoring daemon has to know the memory address of the remote buffer
 - Retrieve load information at high granularity under overload better decisions
 - No CPU involvement on the loaded servers low overhead

Admission Control Module

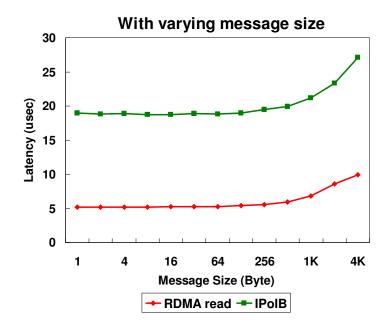
- Use shared memory to communicate with load monitoring daemon
- Attach to Apache: dynamically loadable; trap into Apache request processing
- New processing procedure
 - Apache main thread call the admission control module after TCP connection is established
 - Admission control module uses weighted score to make decisions
 - If all of the back-end servers are overloaded, call back to Apache thread to close the new connections; otherwise, call back to resume the processing

Outline

- Introduction & Motivation
- Proposed Design
- Experimental Results
- Conclusions & Future Work

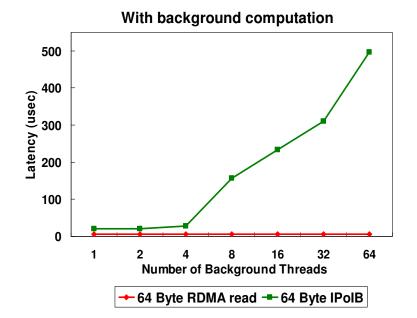
Experimental Platforms

- 32 Compute nodes
 - Dual Intel 64-bit Xeon 3.6 GHz CPU, 2 GB memory
 - Mellanox MT25208 InfiniBand HCA, OFED 1.2 driver
 - Linux 2.6
- Two-tier data-center including proxy servers and web servers; web servers are potentially overloaded
- Apache 2.2.4 for proxy servers and web servers



Experiment Results Outline

- Micro-benchmarks: basic IBA performance
- Data-center level evaluation
 - Single file trace
 - Average response time and aggregate TPS
 - Instant performance analysis
 - QoS analysis
 - Worldcup trace and Zipf trace
 - Worldcup trace: real data from world cup 1998
 - Zipf trace: workloads follow Zipf-like distribution (probability of i'th most popular file $\propto 1/i^{\alpha}$)


Performance of RDMA read and IPoIB (TCP/IP over IBA)

• 1 Byte message

OHIO STATE

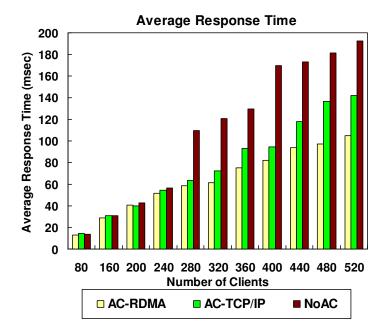
- RDMA read: 5.2 us
- IPoIB: 18.9 us
- Improvement using RDMA increases when message size increases

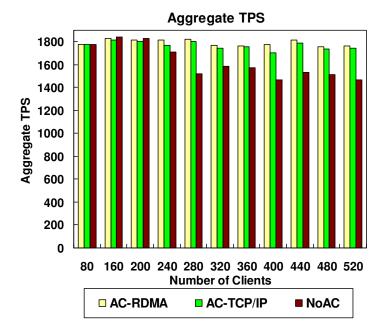
NETWORK-BASED

15

- IPoIB significantly degrades
- RDMA read keeps constant latency

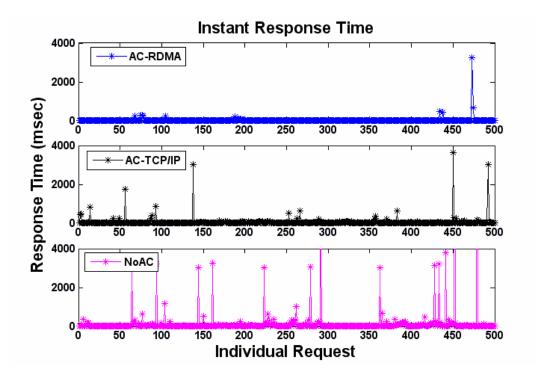
Performance of IPoIB depends on load, while RDMA NOT!


Data-Center level Evaluation


- Configuration
 - 4 nodes used as proxy servers
 - 1 node used as web server
 - Remaining nodes are clients
- Load information updated every 1 ms
- Measured average client-perceived response time (for successful request) and aggregate system TPS
- Comparing performance of three systems
 - AC-RDMA: system with admission control based on RDMA read (the proposed approach)
 - AC-TCP/IP: system with admission control based on TCP/IP
 - **NoAC**: system without any admission control

Performance with Single File Trace (16 KB)

- With 520 clients
 - NoAC: 192.31ms
 - AC-TCP/IP: 142.29ms -26% improvement
 - AC-RDMA: 105.03ms 26%
 improvement over AC-TCP/IP (45%
 improvement over NoAC)
- AC-RDMA and AC-TCP/IP are comparable
- System with admission control has higher TPS than the original system

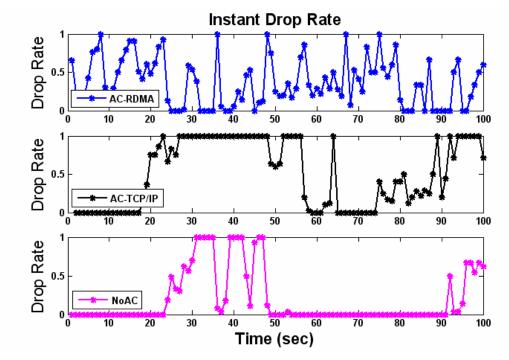


Instant Performance

- Workload: 400 clients
- Instant response time

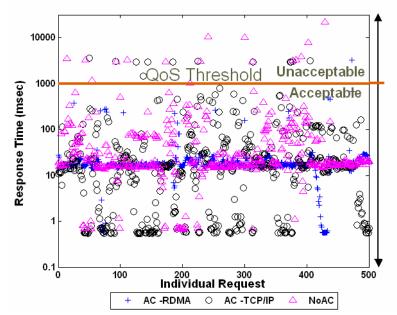
OHIC

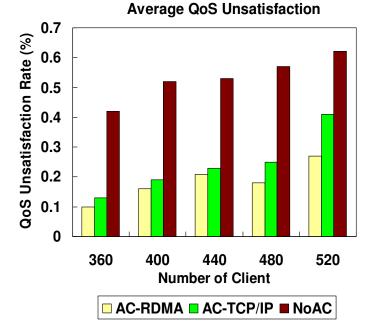
- NoAC: many requests served with very long time
- AC-RDMA: almost no such requests
- AC-TCP/IP: some requests with long response time


Instant performance is consistent with the trend of average response time

Instant Performance Cont.

- Instant drop rate
 - AC-RDMA: closely reflects the instantaneous changing load on web servers
 - AC-TCP/IP: longer streak of continuous drops or acceptance
 - NoAC: a lot of acceptance; some drops because of timeout

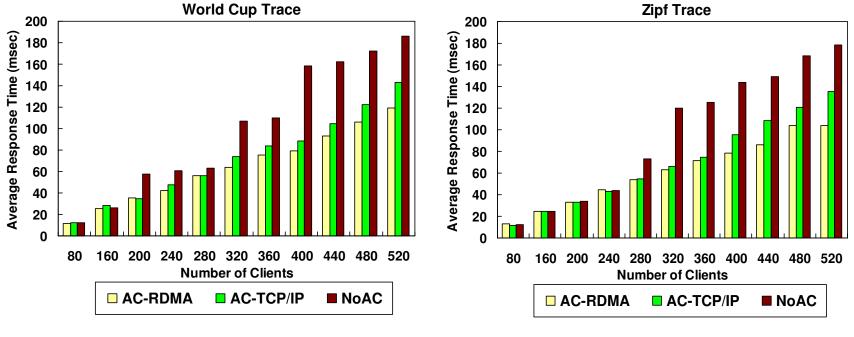

AC-RDMA gets the load information timely, while AC-TCP/IP sometimes reads the stale information due to the slow response from overloaded servers in TCP/IP communication



QoS Analysis

Instant QoS status

- Instant QoS status
 - AC-RDMA has much better capability of satisfying the QoS requirement


- Average QoS unsatisfaction
 - AC-RDMA is the best

With the same requirement of QoS (e.g., response time), AC-RDMA can serve more clients than the other two systems

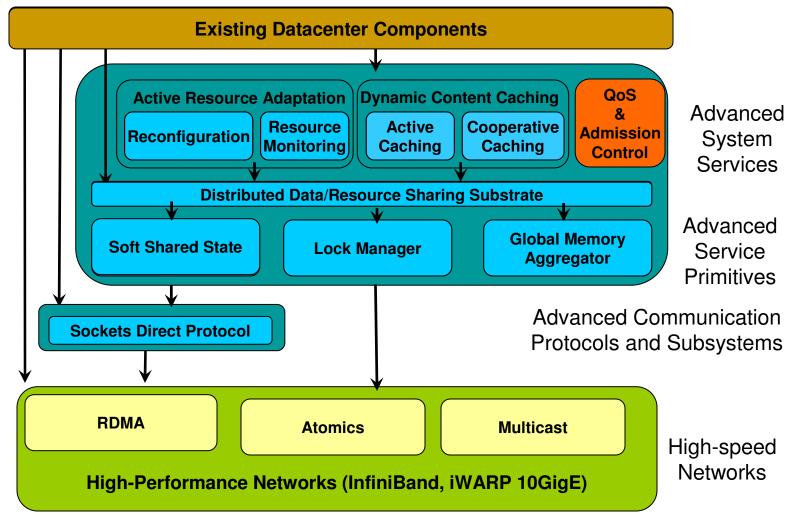
Performance with Worldcup and Zipf Trace

- AC-RDMA is better
 - Compared to AC-TCP/IP: 17%
 - Compared to NoAC: 36%

- AC-RDMA is better
 - Compared to AC-TCP/IP: 23%
 - Compared to NoAC: 42%

Outline

- Introduction & Motivation
- Proposed Design
- Experimental Results
- Conclusions & Future Work


Conclusions & Future Work

- Leveraged RDMA read in designing efficient admission control mechanism used in multi-tier data-centers
- Implemented the design in a two-tier data-center over InfiniBand
- Evaluated with single file, worldcup trace and Zipf trace
 - AC-RDMA outperforms AC-TCP/IP up to 28%, outperforms NoAC up to 51%
 - AC-RDMA can provide better QoS satisfaction
 - Main reasons
 - Update load information timely
 - No extra overhead on the already overloaded servers
- Future work: study the scalability performance, incorporate other earlier work for integrated resource management service etc.

Overall Datacenter Framework

Thank you

{laipi, narravul, vaidyana, panda}@cse.ohio-state.edu

Network-Based Computing Laboratory http://nowlab.cse.ohio-state.edu/

Data-Center Web Page

http://nowlab.cse.ohio-state.edu/projects/data-centers/index.html

