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Introduction

« Computer systems have increased significantly in
processing capability over the last few years in
various ways

— Multi-core architectures are becoming more prevalent

— High-speed 1/O interfaces, such as PCIl-Express have
enabled high-speed interconnects such as InfiniBand
to deliver higher performance

* The area that has improved the least during this
time is the memory controller
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Traditional Memory Design

* Traditional memory controller design has limited the
number of DIMMs per memory channel as signal
rates have increased

* Due to high pin count (240) required for each
channel, adding additional channels is costly

* End result is equal or lesser memory capacity in
recent years
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Fully-Buffered DIMMs (FB-DIMMs)
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Evaluation

« With multi-core systems coming, a scalable memory
subsystem is increasingly important

* Qur goal is to compare FB-DIMM against a traditional
design and evaluate the scalability

 Evaluation Process

— Test memory subsystem on a single node

— Evaluate network-level performance with two InfiniBand
Host Channel Adapters (HCAS)
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Evaluation Testbed

 Intel “Bensley” system
— Two 3.2 GHz dual-core Intel Xeon “Dempsey” processors
— FB-DIMM-based memory subsystem
 Intel Lindenhurst system
— Two 3.4 GHz Intel Xeon processors
— Traditional memory subsystem (2 channels)

* Both contain:
— 2 8x PCI-Express slots
— DDR2 533-based memory
— 2 dual-port Mellanox MT25208 InfiniBand HCAs
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Bensley Memory Configurations
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The standard
allows up to 6
channels with 8
DIMMs/channel for
192GB

Our systems have
4 channels, each
with 4 DIMM slots

To fill 4 DIMM
slots we have 3
combinations

OHIO
.



10524557
COMPUTING

LABORATORY

Subsystem Evaluation Tool

Imbench 3.0-a5: Open-source benchmark suite for

evaluating system-level performance
« Latency

— Memory read latency
* Throughput

— Memory read benchmark

— Memory write benchmark
— Memory copy benchmark

Aggregate performance is obtained by running multiple long-running
processes and reporting the sum of averages
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Bensley Memory Throughput

Read

1 2 4
Number of Processes

Aggregate Throughput
(MB/sec)

4000

3500

3000

2500

2000

1500

1000

500 -

Write

2
Number of Processes

Aggregate Throughput
(MB/sec)

2500

2000

1500

1000

500 +

Copy

2 4
Number of Processes

« To study the impact of additional channels we evaluated using 1, 2,

and 4 channels

« Throughput increases significantly from one to two channels in all

operations
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Access Latency Comparison
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Memory Throughput Comparison
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« Comparison of Lindenhurst and Bensley platforms with increasing
memory size

« Performance increases with two concurrent read or write operations
on the Bensley platform
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OSU MPI over InfiniBand

* Open Source High Performance Implementations
— MPI-1 (MVAPICH)
— MPI-2 (MVAPICH2)
« Has enabled a large number of production IB clusters all over the
world to take advantage of InfiniBand

— Largest being Sandia Thunderbird Cluster (4512 nodes with 9024
processors)

* Have been directly downloaded and used by more than 395
organizations worldwide (in 30 countries)

— Time tested and stable code base with novel features
» Available in software stack distributions of many vendors
 Available in the OpenFabrics(OpeniIB) Gen2 stack and OFED

* More details at
http://nowlab.cse.ohio-state.edu/projects/mpi-iba/
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Experimental Setup

Round Robin Process Binding

4;3% .......... E§ @ ?f]"“-‘-‘g?:
@ C:_:?% ........... E%, .??nnn%c;?:

« Evaluation is with two InfiniBand DDR HCAs, which
uses the “multi-rail” feature of MVAPICH

* Results with one process use both rails in a round-robin
pattern

« 2 and 4 process pair results are done using a process
binding assignment
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Uni-Directional Bandwidth
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« Comparison of Lindenhurst and Bensley with dual DDR HCAs

» Due to higher memory copy bandwidth, Bensley signficantly
outperforms Lindenhurst for the medium-sized messages
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Bi-Directional Bandwidth
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« At 1K improvement:
— Lindenhurst: 1 to 2 processes:15%
— Bensley: 1 to 2 processes: 75%, 2 to 4: 45%

» Lindenhurst peak bi-directional bandwidth is only 100 MB/sec
greater than uni-directional
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« For very small messages, both show similar performance

* At 512 bytes: Lindenhurst 2 process case is only 52% higher than 1
process, Bensley still shows 100% improvement
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Conclusions and Future Work

« Performed detailed analysis of the memory subsystem
scalability of Bensley and Lindenhurst

« Bensley shows significant advantage in scalable
throughput and capacity in all measures tested

 Future work:

— Profile real-world applications on a larger cluster and
observe the effects of contention in multi-core
architectures

— Expand evaluation to include NUMA-based architectures
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Web Pointers

{koop, huanwei, vishnu, panda}@cse.ohio-state.edu
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http://nowlab.cse.ohio-state.edu/

MVAPICH Web Page
http://nowlab.cse.ohio-state.edu/projects/mpi-iba/
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