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Background

• Large Scale Scientific and 
Commercial Workloads

• Petascale Computers have arrived

• High-Performance access to the 
I/O data is crucial 
– Parallel applications is often limited by 
I/O 

• Clustered/Parallel File Systems 
have evolved to meet this challenge



• File System performance 
still dependent on disk 
performance

• Single Server Bandwidth 
Drop With Multiple Clients

• Parallel I/O Bandwidth 
From Multiple Servers
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• Performance for Small Files
– Generally difficult to achieve
– Many environments with a large number of small files
– Storing on the same disk block provides limited benefit
– Striping does not provide benefit
– Store on different servers

• Cache Coherency Problems
– Client side cache provides good performance
– Non-coherent client cache limited when there is sharing
– Limited Scalability of coherent caches

• Server Load Problems
– RDMA reduces overhead from TCP/IP
– RDMA based transport protocols cannot reduce copying costs 

within the file system



Problem Statement
• Which file-system operations are potential 

targets for caching?
• What are the alternatives to the traditional 

client cache/server cache architecture?
• What are the advantages and disadvantages 

of alternate cache architectures?
• How do we provide the performance  of the 

non-coherent client cache without the 
scalability problems of the coherent client 
cache?
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Potential File System Operations 
That May Be Cached

• Potential Targets For Caching
– Should be something the client reads
– Should be possible to uniquely identify cache target
– Should be possible to chunk the data element

• Small Operations  Stat, Create, Delete, Open
• Stat 

– Read by the client 
– Used as a form of update by many applications
– Should be used 
– Should be updated on read/write operations on the server

• Create/delete
– Not read by the client
– Delete should invalidate previous cache entries

• File Open
– Not a target for caching, but may be used for prefetching

• Data Transfer Operations 
– Read and Writes
– Blocks Needed



Intermediate Cache 
Architecture (IMCa)

• Easy to maintain coherency
• Extensible
• Can multiple Cache nodes 

provide benefit?
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Need for Blocks In IMCa

• Most file system store data on the disk 
as blocks

• Parallel file-systems stripe data across 
multiple servers

• IMCa uses a fixed block size to store 
data across the cache servers
– Block size should provide good performance 

for most small files
– Should avoid 

• excessive fragmentation

Requested 
Data

Data Block 
Boundaries

Extra
data File data segmented 

by IMCa blocksize
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Design-Write Operations
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Advantages/Disadvantages of 
IMCa

• Fewer Requests Hit the Server
• Latency for requests read from the cache is 

lower
• MCDs are self-managing
• Failures in MCDs do not impact correctness
• Additional node elements needed especially 

for caching
• Cold Misses are expensive
• Additional Blocks/Data Transfers Needed
• Overhead and delayed updates
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GlusterFS File System

• Clustered File System

• Client and Server in userspace

• Use FUSE interface to translate FS calls 
from the kernel to the user daemons

• No Stripping  data distributed across 
servers

• Possible to apply translators at the 
server and client to perform different 
functions

• WWW.glusterfs.org



Experimental Setup

• 64-node cluster
– 8-core Intel Clovertown
– 8  GB memory

• InfiniBand DDR is the interconnect
• GlusterFS file-system
• The data servers each have 8 RAID highpoint disks
• Communication protocol is IPoIB in Reliable Connected 

(RC) mode
• MCDs run on independent nodes and use up to 6GB of 

memory 
• CMCache and SMCache use a CRC32 hash function for 

locating data on the MCDs
• Lustre 1.6.4.3 is used with a socklnd for comparison



Experiment-stat

– Consists of two stages

– First stage (untimed)
• 262144 files created by a single node

– Second stage (timed)
• each node tries to perform a stat on each 
of the 262144 files sequentially



Stat performance

• Time to stat 262144 different files
• Benchmark has two phase create (untimed), followed by stat (timed)
• 82% improvement at 64 nodes
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Experiment-Write Single 
Client

– One Client

– Writes 1,024 records of size r 
sequentially to the file

– Measure time for this to complete



Write – Single Client
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• 2KB block size
• Server thread helps performance



Experiments-Read

• Single Client Read
– Follows Write component of the benchmark

– Move file pointer to the beginning of the file

– Read 1,024 records of size r sequentially to the file

– Measure time for this to complete

• Multiple Client Read
– Each client uses a separate file

• Multiple Client Read Shared 
– Same file used by every client

• Lustre configurations
– Cold Client Cache  Unmount between Write and Read

– Warm Client Cache  No unmount between Write and Read



Read Latency (Single 
Client)
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Read Multiple Client  (32 
clients)
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Iozone throughput
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•1, 2, 4, 8 IOzone threads, 1GB files, 2KB block size
•325 MB/s  (NoCache) -> 868 MB/s (4 MCDs)



Read-Shared Latency
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Conclusions and Future 
Work

•Proposed, Designed and Evaluated an Intermediate 
Cache for GlusterFS
•Good improvement in stat performance
•Improvement in latency/throughput of read 
operations 

•Depends on block size
• Would like to evaluate the performance with 
RDMA
•Would like to evaluate distribution algorithms



Acknowledgements

Our research is supported by the following organizations



Thank you

{noronha, panda}@cse.ohio-state.edu

Network-Based Computing Laboratory

http://nowlab.cse.ohio-state.edu/

http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/

