
IMCa: A High-Performance Caching Front-end
for GlusterFS on InfiniBand

Ranjit Noronha and Dhabaleswar K. Panda
Network Based Computing Lab

The Ohio State University
<noronha, panda>@cse.ohio-state.edu

Outline of the Talk

• Background and Motivation

• Architecture and Design of IMCa

• Experimental Evaluation of IMCa

• Conclusions and Future Work

Background

• Large Scale Scientific and
Commercial Workloads

• Petascale Computers have arrived

• High-Performance access to the
I/O data is crucial
– Parallel applications is often limited by
I/O

• Clustered/Parallel File Systems
have evolved to meet this challenge

• File System performance
still dependent on disk
performance

• Single Server Bandwidth
Drop With Multiple Clients

• Parallel I/O Bandwidth
From Multiple Servers

0

500

1000

1 2 3 4 5 6 7 8

RDMA IPoIB GigE

0

500

1000

1 2 3 4 5 6 7 8

R DMA IP oIB G igE

B
a

n
d

w
id

th
 (

M
eg

a
B

y
te

s/
s)

Number of
clients

4GB Server Memory

8GB Server Memory

• Performance for Small Files
– Generally difficult to achieve
– Many environments with a large number of small files
– Storing on the same disk block provides limited benefit
– Striping does not provide benefit
– Store on different servers

• Cache Coherency Problems
– Client side cache provides good performance
– Non-coherent client cache limited when there is sharing
– Limited Scalability of coherent caches

• Server Load Problems
– RDMA reduces overhead from TCP/IP
– RDMA based transport protocols cannot reduce copying costs

within the file system

Problem Statement
• Which file-system operations are potential

targets for caching?
• What are the alternatives to the traditional

client cache/server cache architecture?
• What are the advantages and disadvantages

of alternate cache architectures?
• How do we provide the performance of the

non-coherent client cache without the
scalability problems of the coherent client
cache?

Outline of the Talk

• Background and Motivation

• Architecture and Design of IMCa

• Experimental Evaluation of IMCa

• Conclusions and Future Work

Potential File System Operations
That May Be Cached

• Potential Targets For Caching
– Should be something the client reads
– Should be possible to uniquely identify cache target
– Should be possible to chunk the data element

• Small Operations Stat, Create, Delete, Open
• Stat

– Read by the client
– Used as a form of update by many applications
– Should be used
– Should be updated on read/write operations on the server

• Create/delete
– Not read by the client
– Delete should invalidate previous cache entries

• File Open
– Not a target for caching, but may be used for prefetching

• Data Transfer Operations
– Read and Writes
– Blocks Needed

Intermediate Cache
Architecture (IMCa)

• Easy to maintain coherency
• Extensible
• Can multiple Cache nodes

provide benefit?

FS
Client

SMCache

Underlying FS Cache

Cache1 Cache2 Cachen
Each Cache is a
node (MCD Array)

Hash Function
(CRC32) to
Find the Cache Server

Hash Function
(CRC32) to
Find the Cache
Server

CMCache

ext3

Need for Blocks In IMCa

• Most file system store data on the disk
as blocks

• Parallel file-systems stripe data across
multiple servers

• IMCa uses a fixed block size to store
data across the cache servers
– Block size should provide good performance

for most small files
– Should avoid

• excessive fragmentation

Requested
Data

Data Block
Boundaries

Extra
data File data segmented

by IMCa blocksize

Design-Read Operations
(Hit)
Client

SMCache

Underlying FS Cache

Cache1 Cache2 Cachen

CMCache

ext3

Design-Read Operations
(Miss)
Client

SMCache

Underlying FS Cache

Cache1 Cache2 Cachen

CMCache

ext3

Design-Write Operations

Client

SMCache

Underlying FS Cache

Cache1 Cache2 Cachen

CMCache

ext3

Advantages/Disadvantages of
IMCa

• Fewer Requests Hit the Server
• Latency for requests read from the cache is

lower
• MCDs are self-managing
• Failures in MCDs do not impact correctness
• Additional node elements needed especially

for caching
• Cold Misses are expensive
• Additional Blocks/Data Transfers Needed
• Overhead and delayed updates

Outline of the Talk

• Background and Motivation

• Architecture and Design of IMCa

• Experimental Evaluation of IMCa

• Conclusions and Future Work

GlusterFS File System

• Clustered File System

• Client and Server in userspace

• Use FUSE interface to translate FS calls
from the kernel to the user daemons

• No Stripping data distributed across
servers

• Possible to apply translators at the
server and client to perform different
functions

• WWW.glusterfs.org

Experimental Setup

• 64-node cluster
– 8-core Intel Clovertown
– 8 GB memory

• InfiniBand DDR is the interconnect
• GlusterFS file-system
• The data servers each have 8 RAID highpoint disks
• Communication protocol is IPoIB in Reliable Connected

(RC) mode
• MCDs run on independent nodes and use up to 6GB of

memory
• CMCache and SMCache use a CRC32 hash function for

locating data on the MCDs
• Lustre 1.6.4.3 is used with a socklnd for comparison

Experiment-stat

– Consists of two stages

– First stage (untimed)
• 262144 files created by a single node

– Second stage (timed)
• each node tries to perform a stat on each
of the 262144 files sequentially

Stat performance

• Time to stat 262144 different files
• Benchmark has two phase create (untimed), followed by stat (timed)
• 82% improvement at 64 nodes

0

500

1000

1500

2000

2500

3000

3500

16 32 64

No Cache 1 Cache Server 2

2 Cache Servers 4 Cache Servers

6 Cache Servers Lustre-4DS

Number of Nodes

T
im

e
(s

ec
o

n
d

s)

0

100

200

300

400

500

1 2 4 8

No Cache 1 Cache Server 2

2 Cache Servers 4 Cache Servers

6 Cache Servers Lustre-4DS

Experiment-Write Single
Client

– One Client

– Writes 1,024 records of size r
sequentially to the file

– Measure time for this to complete

Write – Single Client

0
200
400
600
800

1000
1200
1400
1600

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

No Cache IMCa (2K) IMCa (Server Threads)

Write

L
a

te
n

cy
 (

m
ic

ro
se

co
n

d
s)

I/O Record Size (bytes)

• 2KB block size
• Server thread helps performance

Experiments-Read

• Single Client Read
– Follows Write component of the benchmark

– Move file pointer to the beginning of the file

– Read 1,024 records of size r sequentially to the file

– Measure time for this to complete

• Multiple Client Read
– Each client uses a separate file

• Multiple Client Read Shared
– Same file used by every client

• Lustre configurations
– Cold Client Cache Unmount between Write and Read

– Warm Client Cache No unmount between Write and Read

Read Latency (Single
Client)

0

200

400

600

800

1000

1200

1 4 16 64 25
6

10
24

40
96

16
38

4

65
53

6

No Cache Cache (256)

Cache (2K) Cache (8K)

Lustre-1DS (Cold) Lustre-4DS (Cold)

Lustre-4DS (Warm)

0

5000

10000

15000

20000

25000

No Cache Cache (256)

Cache (2K) Cache (8K)

Lustre-1DS (Cold) Lustre-4DS (Cold)

Lustre-4DS (Warm)

L
a

te
n

cy
 (

u
s)

Bytes
•Lustre shows best latency
•Cache provides benefit for small message sizes

Read Multiple Client (32
clients)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

NoCache

IMCa (1)

IMCa (2)

IMCa (4)

Lustre (Cold)

Lustre (Warm)

•51% improvement in latency at 16K
•Multiple MCDs help reduce capacity misses

Bytes

T
im

e
(m

ic
ro

se
co

n
d

s)

Iozone throughput

0

200

400

600

800

1000

No Cache Cache (1) Cache (2) Cache (4) Lustre-1DS
(Cold)

1

2

4

8

T
h

ro
u

g
h

p
u

t
(M

eg
a

B
y

te
s/

se
co

n
d

)

•1, 2, 4, 8 IOzone threads, 1GB files, 2KB block size
•325 MB/s (NoCache) -> 868 MB/s (4 MCDs)

Read-Shared Latency

0

200

400

600

800

1000

1200

1400

1600

2 4 8 16 32

No Cache Lustre-1DS (Cold) MCD (1)

T
im

e
 (

m
ic

ro
se

co
nd

s)

Number of nodes

•IMCa helps improve performance over NoCache case

Outline of the Talk

• Background and Motivation

• Architecture and Design of IMCa

• Experimental Evaluation of IMCa

• Conclusions and Future Work

Conclusions and Future
Work

•Proposed, Designed and Evaluated an Intermediate
Cache for GlusterFS
•Good improvement in stat performance
•Improvement in latency/throughput of read
operations

•Depends on block size
• Would like to evaluate the performance with
RDMA
•Would like to evaluate distribution algorithms

Acknowledgements

Our research is supported by the following organizations

Thank you

{noronha, panda}@cse.ohio-state.edu

Network-Based Computing Laboratory

http://nowlab.cse.ohio-state.edu/

http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/

