
Fast Checkpointing by Write

Aggregation with Dynamic Buffer

Interleaving

Xiangyong Ouyang

Karthik Gopalakrishnan

Tejus Gangadharappa

Dhabaleswar K. (DK) Panda

Department of Computer Science & Engineering

The Ohio State University

Outline

• Motivation and Introduction

• Checkpoint Profiling and Analysis

• Write-Aggregation Design

• Performance Evaluation

• Conclusions and Future Work

Motivation

• Mean-time-between-failures (MTBF) is getting smaller
as clusters continue to grow in size
– Fault-Tolerance is becoming imperative in modern clusters

– Checkpoint/Restart is becoming increasingly important

• Multi-core architectures are gaining momentum
– Multiple processes on a same node checkpoint

simultaneously

• Existing Checkpoint/Restart mechanisms don’t scale
well with increasing job size
– Multiple streams intersperse their concurrent writes to a

shared storage media

– A low utilization of the raw throughput of the underlying file
system

Job Launcher

Ckpt Rqst
Computation

Checkpoint

Computation

Checkpoint

Computation

Computation

Checkpoint

Computation

Checkpoint

Computation

Ckpt Rqst

Compute Node Compute Node
Start application

Phase 1: Suspend

communication between

all processes

Phase 2: Use the
checkpoint library
(BLCR) to checkpoint
the individual processes

Phase 3: Re-establish
connections between the
processes, and continue
execution

• Phase 2 involves writing a process’
context and memory contents to a
checkpoint file

• Usually this phase dominates the total
time to do a checkpoint

Phase 2 of Checkpointing

Problem Statement

• What’s the checkpoint data writing pattern

of a typical MPI application using BLCR?

• Can we optimize the data writing path in a

multicore architecture to improve the

Checkpoint performance?

• What are the costs of the optimizations?

Outline

• Motivation and Introduction

• Checkpoint Profiling and Analysis

• Write-Aggregation Design

• Performance Evaluation

• Conclusions and Future Work

• High Performance MPI Library for InfiniBand and

10GE

– MVAPICH (MPI-1) and MVAPICH2 (MPI-2)

– Used by more than 1000 organizations in 53 countries

– More than 35,000 downloads from OSU site directly

– Empowering many TOP500 clusters

• Tianhe-1: 5th 71,680-cores in China (in Nov. 2009)

• Ranger: 9th 62,976-core at TACC (in Nov. 2009)

– Available with software stacks of many IB, 10GE and server vendors

including Open Fabrics Enterprise Distribution (OFED)

– http://mvapich.cse.ohio-state.edu/

MVAPICH/MVAPICH2 Software

8

Profiling Configuration

• NAS Parallel Benchmark suite version 3.2.1
– Class C, 64 processes

– Each process on one processor

– Each process writes checkpoint data to a separate file on a
local ext3 file system

• MVAPICH2 Checkpoint/Restart framework
– BLCR 0.8.0 extended to provide profiling information

• Intel Clovertown cluster
– Dual-socket Quad core Xeon processors, 2.33GHz

– 8 processor per node, nodes connected by InfiniBand DDR

– Linux 2.6.18

Basic Checkpoint Information

Checkpoint writing information (class C, 64 processes, 8 processes/node)

Checkpointing Profiling (1) (LU.C.64)

•60% of writes < 4KB,

•contribute 1.5% of total data,

•consume 0.2% of total write

time

•0.8% of writes > 512KB

•contribute 79% of all data

•consume 35% of total write time

•38% of all writes

•contribute 20% of all data

•consume 65 % of all time

150+ seeks/s

Avg 38 MB/s

1200+ seeks/s

Checkpointing Profiling

(BT.C.64)

Disk raw bandwidth

= 60MB/s

•Multiple write streams

intersperse their

concurrent writes to

a shared storage media

 A lot of disk head seeks

•Use “blktrace” to collect

all block layer IO tracing

Checkpointing Profiling(3)

Application execution time

with/without checkpoints

Decomposition of

Checkpoint Time

Outline

• Motivation and Introduction

• Checkpoint Profiling and Analysis

• Write-Aggregation Design

• Performance Evaluation

• Conclusions and Future Work

Basic Design Strategy

Storage

Buffer Pool

Storage

Basic Write-Aggregation (WAG)

• Application process (AP)
coalesces all writes < threshold
to a process-specific buffer

• All writes >= threshold is directly
written to data files

• At end of checkpoint, AP writes
local buffer to a data file

• Not optimal memory usage

 A separate local buffer for each
process

• Blocking mode File-writing (>=threshold)

 AP waits for completion of large file
writes

Drawbacks

X. Ouyang, K. Gopalakrishnan and D. K. Panda, “Accelerating

Checkpoint Operations by Node-Level Write Aggregation on

Multicore Systems”, ICPP ’09, Sept. 2009

Write Aggregation with Dynamic Buffer

Interleaving (WAG-DBI)

Application Processes

IO Processes

Buffer Pool (mapped to kernel space)

•VFS writes from a

process are aggregated

into a buffer-chunk

•Data from different

processes are

interleaved in the buffer

pool

•IO processes write each

buffer-chunk to a chunk file

Kernel SpaceUser Space

Methodology of WAG-DBI

Aggregate many VFS writes into

larger chunk writes

•Reduce disk seeks, improve

bandwidth utilization

Overlaps application progress with

slow checkpoint file writing

•Improve application execution

time

•Application-perceived checkpoint

time = t2 - t1

•(t3 - t2) is overlapping between

Application-Progress and File-Write

•Vulnerable to failures in this window

•Provide an interface to poll for File-

Write completion

t1

Application Processes IO Processes

t2

t3

Phase 1

Phase 2

Phase 3

Restart for WAG-DBI

• The data file for each buffer-chunks has its

filename encoding

– (ckpt-id, Process-id, logical-offset)

• Reconstruct checkpoint files at restart

– Find all files named as: ckptX-procY-offset1, ckptX-

procY-offset2, …

– Sort all filenames according to offset in ascending

order

– Concatenate all files into one large file

Outline

• Motivation and Introduction

• Checkpoint Profiling and Analysis

• Write-Aggregation Design

• Performance Evaluation

• Conclusions and Future Work

Experiments setup

• System setup
– Intel Clovertown cluster

• Dual-socket Quad core Xeon processors, 2.33GHz

• 8 processor per node, nodes connected by InfiniBand

• Linux 2.6.18

– NAS parallel Benchmark suite version 3.2.1
• LU/BT/CG, Class C, 64 processes

• Each process on one processor

• 8 nodes are used

• Each process writes checkpoint data to a separate file on a
local ext3 file system

– MVAPICH2 Checkpoint/Restart framework, with
BLCR 0.8.0 extended with WAG-DBI

Performance Comparison

Checkpoint Time Decomposition

•WAG: aggregation threshold = 256 KB

•LU.C.64 uses 78.2 MB memory, BT.C.64 uses 81.2 MB memory

•WAG-DBI: buffer pool = 64 MB

Application Execution Time

with 3 Checkpoints

Checkpoint Creation Speedup Checkpoint Overhead

WAG-DBI, buffer=64MB, BT.C.64 Original BLCR, BT.C.64

20 seeks/s

Avg 50+ MB/s

150+ seeks/s

Avg 38 MB/s

1200+seeks/s

WAG-DBI: Overlapping between

Application-progress and File-Write

Overlapping between

application-progress and file-write

(t2 ~ t3)

Application Processes IO threads

Overlapping

t2

t3

WAG-DBI Performance

Application Execution Time

at Different Buffer Pool SizesDecomposition of Checkpoint Time

Phase 2 time =

(buffer allocation) +

(memory copy) +

(synchronization, etc)

Checkpoint Overhead

•Original BLCR: 20.77%

•WAG-DBI(64MB buffer pool): 6.86%

WAG Performance

Memory Usage per Node(MB) at different threshold values

Application Execution Time

at different threshold valuesDecomposition of checkpoint time

Checkpoint Overhead

•Original BLCR: 20.77%

•WAG(threshold=512KB): 9.21%

Outline

• Motivation and Introduction

• Checkpoint Profiling and Analysis

• Write-Aggregation Design

• Performance Evaluation

• Conclusions and Future Work

Conclusions

• WAG-DBI can improve Checkpoint efficiency in

multi-core systems

– Write Aggregation improves write bandwidth

– Reduce application execution time by overlapping

application progress with checkpoint file write

• WAG-DBI outperforms WAG with less memory

usage

– Aggregate all checkpoint data into a buffer pool

– Overlap application progress with file IO

Software Distribution

• Current MVAPICH2 1.4 supports basic

Checkpoint-Restart

– Downloadable from http://mvapich.cse.ohio-state.edu/

• The proposed aggregation design will be

available in MVAPICH2 1.5

http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/

Future Work

• Include the WAG-DBI into a stackable filesystem

• Save checkpoint data to remote data servers

• Usage of emerging Solid State Drive (SSD) to

accelerate Checkpoint-Restart

Thank you!

{ouyangx, gopalakk, gangadha, panda}

@cse.ohio-state.edu

Network-Based Computing Laboratory

http://mvapich.cse.ohio-state.edu

