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Motivation

• Mean-time-between-failures (MTBF) is getting smaller 
as clusters continue to grow in size
– Fault-Tolerance is becoming imperative in modern clusters

– Checkpoint/Restart is becoming increasingly important

• Multi-core architectures are gaining momentum 
– Multiple processes on a same node checkpoint 

simultaneously

• Existing Checkpoint/Restart mechanisms don’t scale 
well with increasing job size
– Multiple streams intersperse their concurrent writes to a 

shared storage media

– A low utilization of the raw throughput of the underlying file 
system
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• Phase 2 involves writing a process’ 
context and memory contents to a 
checkpoint file

• Usually  this phase dominates the total 
time to do a checkpoint

Phase 2 of Checkpointing



Problem Statement

• What’s the checkpoint data writing pattern 

of a typical MPI application using BLCR?

• Can we optimize the data writing path in a 

multicore architecture to improve the 

Checkpoint performance?

• What are the costs of the optimizations?
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• High Performance MPI Library for InfiniBand and 

10GE

– MVAPICH (MPI-1) and MVAPICH2 (MPI-2)

– Used by more than 1000 organizations in 53 countries

– More than 35,000 downloads from OSU site directly

– Empowering many TOP500 clusters

• Tianhe-1:  5th 71,680-cores in China (in Nov. 2009)

• Ranger:    9th 62,976-core  at TACC (in Nov. 2009)

– Available with software stacks of many IB, 10GE and server vendors 

including Open Fabrics Enterprise Distribution (OFED)

– http://mvapich.cse.ohio-state.edu/

MVAPICH/MVAPICH2 Software
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Profiling Configuration

• NAS Parallel Benchmark suite version 3.2.1
– Class C, 64 processes

– Each process on one processor

– Each process writes checkpoint data to a separate file on a 
local ext3 file system

• MVAPICH2 Checkpoint/Restart framework
– BLCR 0.8.0 extended to provide profiling information 

• Intel Clovertown cluster
– Dual-socket Quad core Xeon processors, 2.33GHz

– 8 processor per node, nodes connected by InfiniBand DDR

– Linux 2.6.18



Basic Checkpoint Information

Checkpoint writing information (class C, 64 processes, 8 processes/node)



Checkpointing Profiling (1) (LU.C.64)

•60% of writes < 4KB,    

•contribute 1.5% of total data, 

•consume 0.2% of total write 

time

•0.8% of writes > 512KB

•contribute 79% of all data

•consume 35% of total write time

•38% of all writes

•contribute 20% of all data

•consume 65 % of all time



150+ seeks/s

Avg 38  MB/s

1200+ seeks/s

Checkpointing Profiling 

(BT.C.64)

Disk raw bandwidth 

= 60MB/s

•Multiple write streams 

intersperse  their 

concurrent writes to 

a shared storage media

 A lot of disk head seeks

•Use “blktrace” to collect 

all block layer IO tracing



Checkpointing Profiling(3)

Application execution time 

with/without checkpoints

Decomposition of 

Checkpoint Time
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Basic Design Strategy

Storage

Buffer Pool

Storage



Basic Write-Aggregation (WAG)

• Application process (AP) 
coalesces all writes < threshold 
to a process-specific buffer

• All writes >= threshold is directly 
written to data files

• At end of checkpoint, AP writes 
local buffer to a data file

• Not optimal memory usage

 A separate local buffer for each 
process

• Blocking mode File-writing (>=threshold) 

 AP waits for completion of  large file 
writes

Drawbacks

X. Ouyang, K. Gopalakrishnan and D. K. Panda, “Accelerating 

Checkpoint  Operations by Node-Level Write Aggregation on 

Multicore Systems”, ICPP ’09, Sept. 2009



Write Aggregation with Dynamic Buffer 

Interleaving (WAG-DBI)

Application Processes

IO Processes

Buffer Pool (mapped to kernel space)

•VFS writes from a 

process are aggregated 

into a buffer-chunk

•Data from different 

processes are 

interleaved in the buffer 

pool

•IO processes write each 

buffer-chunk to a chunk file

Kernel  SpaceUser Space



Methodology of WAG-DBI

Aggregate many VFS writes into 

larger chunk writes

•Reduce disk seeks, improve 

bandwidth utilization

Overlaps application progress with 

slow checkpoint file writing

•Improve application execution 

time

•Application-perceived checkpoint 

time = t2 - t1

•(t3 - t2) is overlapping between

Application-Progress and File-Write

•Vulnerable to failures in this window

•Provide an interface to poll for File-

Write completion

t1

Application Processes IO Processes

t2

t3

Phase 1

Phase 2

Phase 3



Restart for WAG-DBI

• The data file for each buffer-chunks has its 

filename encoding

– (ckpt-id, Process-id, logical-offset)

• Reconstruct checkpoint files at restart

– Find all files named as:  ckptX-procY-offset1, ckptX-

procY-offset2, …

– Sort all filenames according to offset in ascending 

order

– Concatenate all files into one large file
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Experiments setup

• System setup
– Intel Clovertown cluster

• Dual-socket Quad core Xeon processors, 2.33GHz

• 8 processor per node, nodes connected by InfiniBand

• Linux 2.6.18

– NAS parallel Benchmark suite version 3.2.1
• LU/BT/CG,  Class C, 64 processes

• Each process on one processor

• 8 nodes are used

• Each process writes checkpoint data to a separate file on a 
local ext3 file system

– MVAPICH2 Checkpoint/Restart framework, with 
BLCR 0.8.0 extended with WAG-DBI



Performance Comparison

Checkpoint Time Decomposition

•WAG:   aggregation threshold = 256 KB

•LU.C.64 uses 78.2 MB memory, BT.C.64 uses 81.2 MB memory

•WAG-DBI:  buffer pool = 64 MB

Application Execution Time 

with 3 Checkpoints

Checkpoint Creation Speedup Checkpoint Overhead



WAG-DBI,  buffer=64MB, BT.C.64 Original BLCR, BT.C.64

20 seeks/s

Avg 50+ MB/s

150+ seeks/s

Avg 38  MB/s

1200+seeks/s



WAG-DBI: Overlapping between 

Application-progress and File-Write

Overlapping between 

application-progress and file-write

(t2 ~ t3)

Application Processes IO threads

Overlapping

t2

t3



WAG-DBI Performance

Application Execution Time 

at Different Buffer Pool SizesDecomposition of Checkpoint Time

Phase 2 time = 

(buffer allocation) +

(memory copy) +

(synchronization, etc)

Checkpoint Overhead

•Original BLCR:  20.77%

•WAG-DBI(64MB buffer pool): 6.86%



WAG Performance

Memory Usage per Node(MB) at different threshold values

Application Execution Time 

at different threshold valuesDecomposition of checkpoint time

Checkpoint Overhead

•Original BLCR:  20.77%

•WAG(threshold=512KB): 9.21%
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Conclusions

• WAG-DBI can improve Checkpoint efficiency in 

multi-core systems 

– Write Aggregation improves write bandwidth

– Reduce application execution time by overlapping 

application progress with checkpoint file write

• WAG-DBI outperforms WAG with less memory 

usage

– Aggregate all checkpoint data into a buffer pool

– Overlap application progress with file IO



Software Distribution

• Current  MVAPICH2 1.4 supports basic 

Checkpoint-Restart

– Downloadable from http://mvapich.cse.ohio-state.edu/

• The proposed aggregation design will be 

available in MVAPICH2 1.5

http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/


Future Work

• Include the WAG-DBI into a stackable filesystem

• Save checkpoint data to remote data servers

• Usage of emerging Solid State Drive (SSD) to 

accelerate Checkpoint-Restart
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