
Enabling Efficient Use of UPC and OpenSHMEM
PGAS models on GPU Clusters

Dhabaleswar K. (DK) Panda
The Ohio State University

E-mail: panda@cse.ohio-state.edu
http://www.cse.ohio-state.edu/~panda

Presentation at GTC 2014

by

http://www.cse.ohio-state.edu/%7Epanda

Accelerator Era

• Accelerators are becoming common in high-end system architectures

• Increasing number of workloads are being ported to take advantage of GPUs

• As they scale to large GPU clusters with high compute density – higher the
synchronization and communication overheads – higher the penalty

• Critical to minimize these overheads to achieve maximum performance

72%

Top 100 – Nov 2013
(25% use Accelerators)

25%

72% use GPUs

OSU-GTC-2014 2

3

Parallel Programming Models Overview

P1 P2 P3

Shared Memory

P1 P2 P3

Memory Memory Memory

P1 P2 P3

Memory Memory Memory

Logical shared memory

Shared Memory Model

DSM
Distributed Memory Model

MPI (Message Passing Interface)

Partitioned Global Address Space (PGAS)

Global Arrays, UPC, Chapel, X10, CAF, …

• Programming models provide abstract machine models

• Models can be mapped on different types of systems
– e.g. Distributed Shared Memory (DSM), MPI within a node, etc.

• Each model has strengths and drawbacks - suite different problems or
applications

OSU-GTC-2014

• Overview of PGAS models (UPC and OpenSHMEM)

• Limitations in PGAS models for GPU computing

• Proposed Designs and Alternatives

• Performance Evaluation

• Exploiting GPUDirect RDMA

OSU-GTC-2014 4

Outline

Partitioned Global Address Space (PGAS) Models

• PGAS models, an attractive alternative to traditional message
passing

– Simple shared memory abstractions

– Lightweight one-sided communication

– Flexible synchronization

• Different approaches to PGAS

- Libraries
• OpenSHMEM
• Global Arrays
• Chapel

- Languages
• Unified Parallel C (UPC)
• Co-Array Fortran (CAF)
• X10

5 OSU-GTC-2014

OpenSHMEM Memory Model

• Defines symmetric data objects that are globally addressable

– Allocated using a collective shmalloc routine

– Same type, size and offset address at all processes/processing elements (PEs)

– Address of a remote object can be calculated based on info of local object

Symmetric
Object

b

b

 PE 0 PE 1

int main (int c, char *v[]) {
 int *b;

 start_pes();
 b = (int *) shmalloc (sizeof(int));

 shmem_int_get (b, b, 1 , 1);
} (dst, src, count, pe)

int main (int c, char *v[]) {
 int *b;

 start_pes();
 b = (int *) shmalloc (sizeof(int));

}

6 OSU-GTC-2014

• Global Shared Space: can be accessed by all the threads
• Private Space: holds all the normal variables; can only be accessed by the

local thread
• Example:

7

UPC Memory Model

Global
Shared Space

Private

Space

Thread 0 Thread 1 Thread 2 Thread 3

y y y y

OSU-GTC-2014

A1[0] A1[1] A1[2] A1[3]

shared int A1[THREADS]; //shared variable
int main() {
 int y; //private variable
 A1[0] = 0; //local access
 A1[1] = 1; //remote access
}

• Gaining attention in efforts towards Exascale computing

• Hierarchical architectures with multiple address spaces

• (MPI + PGAS) Model
– MPI across address spaces

– PGAS within an address space

• MPI is good at moving data between address spaces

• Within an address space, MPI can interoperate with other shared
memory programming models

• Re-writing complete applications can be a huge effort

• Port critical kernels to the desired model instead

8

MPI+PGAS for Exascale Architectures and Applications

OSU-GTC-2014

Hybrid (MPI+PGAS) Programming

• Application sub-kernels can be re-written in MPI/PGAS based
on communication characteristics

• Benefits:
– Best of Distributed Computing Model

– Best of Shared Memory Computing Model

• Exascale Roadmap*:
– “Hybrid Programming is a practical way to

 program exascale systems”

 * The International Exascale Software Roadmap, Dongarra, J., Beckman, P. et al., Volume 25, Number 1, 2011,
International Journal of High Performance Computer Applications, ISSN 1094-3420

Kernel 1
MPI

Kernel 2
MPI

Kernel 3
MPI

Kernel N
MPI

HPC Application

Kernel 2
PGAS

Kernel N
PGAS

9 OSU-GTC-2014

MVAPICH2-X for Hybrid MPI + PGAS Applications

10

MPI Applications, OpenSHMEM Applications, UPC
Applications, Hybrid (MPI + PGAS) Applications

Unified MVAPICH2-X Runtime

InfiniBand, RoCE, iWARP

OpenSHMEM Calls MPI Class UPC Calls

• Unified communication runtime for MPI, UPC, OpenSHMEM available with
MVAPICH2-X 1.9 (2012) onwards! : http://mvapich.cse.ohio-state.edu

• Feature Highlights
– Supports MPI(+OpenMP), OpenSHMEM, UPC, MPI(+OpenMP) + OpenSHMEM,

MPI(+OpenMP) + UPC
– MPI-3 compliant, OpenSHMEM v1.0 standard compliant, UPC v1.2 standard

compliant
– Scalable Inter-node and intra-node communication – point-to-point and collectives

• Effort underway for support on NVIDIA GPU clusters
OSU-GTC-2014

http://mvapich.cse.ohio-state.edu/overview/mvapich2x

• Overview of PGAS models (UPC and OpenSHMEM)

• Limitations in PGAS models for GPU computing

• Proposed Designs and Alternatives

• Performance Evaluation

• Exploiting GPUDirect RDMA

OSU-GTC-2014 11

Outline

Limitations of PGAS models for GPU Computing
• PGAS memory models does not support disjoint memory address spaces -

case with GPU clusters

PE 0

Existing OpenSHMEM Model with CUDA

• Copies severely limit the performance

PE 1

GPU-to-GPU
Data Movement

PE 0

cudaMemcpy (host_buf, dev_buf, . . .)
shmem_putmem (host_buf, host_buf, size, pe)
shmem_barrier (…)

host_buf = shmalloc (…)

PE 1

shmem_barrier (. . .)
cudaMemcpy (dev_buf, host_buf, size, . . .)

host_buf = shmalloc (…)

• Synchronization negates the benefits of one-sided communication

• OpenSHMEM case

12 OSU-GTC-2014

• Similar limitations in UPC

• Overview of PGAS models (UPC and OpenSHMEM)

• Limitations in PGAS models for GPU computing

• Proposed Designs and Alternatives

• Performance Evaluation

• Exploiting GPUDirect RDMA

OSU-GTC-2014 13

Outline

Global Address Space with Host and Device Memory

Host Memory

Private

Shared

Host Memory

Device Memory Device Memory

Private

Shared

Private

Shared

Private

Shared

shared space
on host memory

shared space
on device memory

N N

N N

• Extended APIs:

– heap_on_device/heap_on_host

– a way to indicate location on heap

• Can be similar for dynamically allocated
memory in UPC

14 OSU-GTC-2014

heap_on_device();
/*allocated on device*/
dev_buf = shmalloc (sizeof(int));

heap_on_host();
/*allocated on host*/
host_buf = shmalloc (sizeof(int));

CUDA-aware OpenSHMEM and UPC runtimes

• After device memory becomes part of the global shared space:
– Accessible through standard UPC/OpenSHMEM communication APIs

– Data movement transparently handled by the runtime

– Preserves one-sided semantics at the application level

• Efficient designs to handle communication
– Inter-node transfers use host-staged transfers with pipelining

– Intra-node transfers use CUDA IPC

• Service-thread for asynchronous and one-sided progress in

• Goal: Enabling High performance one-sided communications
with GPU devices

15 OSU-GTC-2014

• Overview of PGAS models (UPC and OpenSHMEM)

• Limitations in PGAS models for GPU computing

• Proposed Designs and Alternatives

• Performance Evaluation

• Exploiting GPUDirect RDMA

OSU-GTC-2014 16

Outline

Shmem_putmem Inter-node Communication

Small Messages Large Messages

One-sided Progress

• Small messages benefit from selective CUDA
registration – 22% for 4Byte messages

• Large messages benefit from pipelined overlap –
28% for 4MByte messages

• Service thread enables one-sided communication

0
200
400
600
800

1000
1200

0 200 400 600 800 1000

L
at

en
cy

 (u
se

c)

Remote Compute Skew (usec)

17 OSU-GTC-2014

S. Potluri, D. Bureddy, H. Wang, H. Subramoni and D. K.
Panda, Extending OpenSHMEM for GPU Computing, Int'l
Parallel and Distributed Processing Symposium (IPDPS '13)

0
5

10
15
20
25
30
35

1 4 16 64 256 1K 4K

L
at

en
cy

 (u
se

c)

Message Size (Bytes)

0
500

1000
1500
2000
2500
3000

16K 64K 256K 1M 4M

L
at

en
cy

 (u
se

c)

Message Size (Bytes)

22%
28%

Shmem_putmem Intra-node Communication

Small Messages Large Messages

• Using IPC for intra-node communication

• Small messages – 73% improvement for 4Byte messages

• Large messages – 85% for 4MByte messages

18 OSU-GTC-2014

0
5

10
15
20
25
30

1 4 16 64 256 1K 4K

L
at

en
cy

 (u
se

c)

Message Size (Bytes)

0
500

1000
1500
2000
2500
3000

16K 64K 256K 1M 4M

L
at

en
cy

 (u
se

c)

Message Size (Bytes)

Based on MVAPICH2X-2.0b + Extensions
Intel WestmereEP node with 8 cores

2 NVIDIA Tesla K20c GPUs, Mellanox QDR HCA
CUDA 6.0RC1

85% 73%

Application Kernel Evaluation: Stencil2D

• Modified SHOC Stencil2D kernelto use OpenSHMEM for cluster level parallelism

• The enhanced version shows 65% improvement on 192 GPUs with 4Kx4K problem size/GPU

• Using OpenSHMEM for GPU-GPU communication allows runtime to optimize non-contiguous
transfers

0
5000

10000
15000
20000
25000
30000

512x512 1Kx1K 2Kx2K 4Kx4K 8Kx8K

To
ta

l E
xe

cu
tio

n
Ti

m
e

(m
se

c)

Problem Size/GPU
(192 GPUs)

0
2
4
6
8

10
12
14

48 96 192

 T
ot

al
 E

xe
cu

tio
n

Ti
m

e
(m

se
c)

Number of GPUs
(4Kx4K problem/GPU)

65%

19 OSU-GTC-2014

Application Kernel Evaluation: BFS

• Extended SHOC BFS kernel to run on a GPU cluster using a level-synchronized algorithm and
OpenSHMEM

• The enhanced version shows upto 12% improvement on 96 GPUs, a consistent improvement in
performance as we scale from 24 to 96 GPUs.

0
200
400
600
800

1000
1200
1400
1600

24 48 96To
ta

l E
xe

cu
tio

n
Ti

m
e

(m
se

c)

Number of GPUs
(1 million vertices/GPU with degree 32)

12%

20 OSU-GTC-2014

• Overview of PGAS models (UPC and OpenSHMEM)

• Limitations in PGAS models for GPU computing

• Proposed Designs and Alternatives

• Performance Evaluation

• Exploiting GPUDirect RDMA

OSU-GTC-2014 21

Outline

• In OpenSHMEM (Preliminary results)
– GDR for small message sizes

– Host-staging for large message to avoid PCIe bottlenecks

– Hybrid design brings best of both

– 3.3us latency for 4 bytes

22

Exploiting GPUDirect RDMA

OSU-GTC-2014

3.3

16.2

0
5

10
15
20
25

1 4 16 64 256 1K 4K

L
at

en
cy

 (u
se

c)

Message Size (Bytes)

Naive Enhanced GDR Hybrid

0
1000
2000
3000
4000
5000
6000
7000

16K 64K 256K 1M 4M
L

at
en

cy
 (u

se
c)

Message Size (Bytes)

Naive Enhanced GDR Hybrid

Based on MVAPICH2X-2.0b + Extensions
Intel Sandy Bridge (E5-2670) node with 16 cores

NVIDIA Tesla K40c GPU, Mellanox Connect-IB Dual-FDR HCA
CUDA 5.5, Mellanox OFED 2.1 with GPU-Direct-RDMA Plugin

GPU features will be available in future releases of MVAPICH2-X!!

Come know and discuss how we make it easier to use MPI and PGAS
models on NVIDIA GPU clusters

S4951 – Hangout: GTC Speakers

Tuesday – 03/25

13:00 – 14:00 (Now)

Concourse Pod B

OSU-GTC-2014 23

Hangout with the Speaker

1) S4517 - Latest Advances in MVAPICH2 MPI Library for NVIDIA GPU Clusters
with InfiniBand

Tuesday, 03/25 (Today)

15:00 – 15:25

Room LL21A

2) S4535 - Accelerating HPL on Heterogeneous Clusters with NVIDIA GPUs

Tuesday, 03/25 (today)

17:00 – 17:25

Room LL21A

OSU-GTC-2014 24

Talk on advances in CUDA-aware MPI and Hybrid HPL

 Thank You!

panda@cse.ohio-state.edu

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

MVAPICH Web Page
http://mvapich.cse.ohio-state.edu/

25 OSU-GTC-2014

mailto:panda@cse.ohio-state.edu
http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/

	Enabling Efficient Use of UPC and OpenSHMEM �PGAS models on GPU Clusters
	Accelerator Era
	Parallel Programming Models Overview
	Outline
	Partitioned Global Address Space (PGAS) Models
	OpenSHMEM Memory Model
	UPC Memory Model
	MPI+PGAS for Exascale Architectures and Applications
	Hybrid (MPI+PGAS) Programming
	MVAPICH2-X for Hybrid MPI + PGAS Applications
	Outline
	Limitations of PGAS models for GPU Computing
	Outline
	Global Address Space with Host and Device Memory
	CUDA-aware OpenSHMEM and UPC runtimes
	Outline
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Outline
	Exploiting GPUDirect RDMA
	Hangout with the Speaker
	Talk on advances in CUDA-aware MPI and Hybrid HPL
	 Thank You!

