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Accelerator Era 

• Accelerators are becoming common in high-end system architectures 

 

 

 

 
 

 
 

 

• Increasing number of workloads are being ported to take advantage of GPUs 

• As they scale to large GPU clusters with high compute density – higher the  
synchronization and communication overheads – higher the penalty 

• Critical to minimize these overheads to achieve maximum performance 

72% 

Top 100 – Nov 2013  
(25% use Accelerators) 

25% 

72% use GPUs 
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Parallel Programming Models Overview 

P1 P2 P3 

Shared Memory 

P1 P2 P3 

Memory Memory Memory 

P1 P2 P3 

Memory Memory Memory 

Logical shared memory 

Shared Memory Model 

DSM 
Distributed Memory Model  

MPI (Message Passing Interface) 

Partitioned Global Address Space (PGAS) 

Global Arrays, UPC, Chapel, X10, CAF, … 

• Programming models provide abstract machine models 

• Models can be mapped on different types of systems 
– e.g. Distributed Shared Memory (DSM), MPI within a node, etc. 

• Each model has strengths and drawbacks - suite different problems or 
applications 
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• Overview of PGAS models (UPC and OpenSHMEM) 

• Limitations in PGAS models for GPU computing  

• Proposed Designs and Alternatives  

• Performance Evaluation   

• Exploiting GPUDirect RDMA 
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Partitioned Global Address Space (PGAS) Models 

• PGAS models, an attractive alternative to traditional message 
passing 

– Simple shared memory abstractions 

– Lightweight one-sided communication 

– Flexible synchronization 

• Different approaches to PGAS  

 

 

- Libraries 
• OpenSHMEM 
• Global Arrays 
• Chapel 

 

- Languages  
• Unified Parallel C (UPC) 
• Co-Array Fortran (CAF) 
• X10 
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OpenSHMEM Memory Model 

• Defines symmetric data objects that are globally addressable  

– Allocated using a collective shmalloc routine 

– Same type, size and offset address at all processes/processing elements (PEs) 

– Address of a remote object can be calculated based on info of local object 

 

 

 

 

 

 

 

Symmetric 
Object 

b 

b 

  PE 0   PE 1 

int main (int c, char *v[]) { 
    int *b; 
 

    start_pes();  
    b =  (int *) shmalloc (sizeof(int)); 
 
    shmem_int_get (b, b, 1 , 1); 
}                            (dst, src, count, pe)   

int main (int c, char *v[]) { 
    int *b; 
 

    start_pes();  
    b =  (int *) shmalloc (sizeof(int)); 
 
 

} 
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• Global Shared Space: can be accessed by all the threads  
• Private Space: holds all the normal variables; can only be accessed by the 

local thread 
• Example: 
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UPC Memory Model 

Global 
Shared Space 

Private 

Space 

Thread 0 Thread 1 Thread 2 Thread 3 

y y y y 
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A1[0] A1[1] A1[2] A1[3] 

shared int A1[THREADS];   //shared variable 
int main() { 
         int y;               //private variable 
         A1[0] = 0;      //local access 
         A1[1] = 1;      //remote access   
} 

 



• Gaining attention in efforts towards Exascale computing 

 

• Hierarchical architectures with multiple address spaces 

• (MPI + PGAS) Model 
– MPI across address spaces 

– PGAS within an address space 

• MPI is good at moving data between address spaces 

• Within an address space, MPI can interoperate with other shared 
memory programming models  

 

• Re-writing complete applications can be a huge effort 

• Port critical kernels to the desired model instead 
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MPI+PGAS for Exascale Architectures and Applications 
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Hybrid (MPI+PGAS) Programming 

• Application sub-kernels can be re-written in MPI/PGAS based 
on communication characteristics 
 

• Benefits: 
– Best of Distributed Computing Model 

– Best of Shared Memory Computing Model 
 

• Exascale Roadmap*:  
– “Hybrid Programming is a practical way to 

 program exascale systems” 

 

 * The International Exascale Software Roadmap, Dongarra, J., Beckman, P. et al., Volume 25, Number 1, 2011, 
International Journal of High Performance Computer Applications, ISSN 1094-3420 

Kernel 1 
MPI 

Kernel 2 
MPI 

Kernel 3 
MPI 

Kernel N 
MPI 

HPC Application 

Kernel 2 
PGAS 

Kernel N 
PGAS 
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MVAPICH2-X for Hybrid MPI + PGAS Applications 
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MPI Applications, OpenSHMEM Applications, UPC 
Applications, Hybrid (MPI + PGAS) Applications 

Unified MVAPICH2-X Runtime 

InfiniBand, RoCE, iWARP 

OpenSHMEM Calls MPI Class UPC Calls 

• Unified communication runtime for MPI, UPC, OpenSHMEM available with 
MVAPICH2-X 1.9 (2012) onwards! : http://mvapich.cse.ohio-state.edu 

• Feature Highlights 
– Supports MPI(+OpenMP), OpenSHMEM, UPC, MPI(+OpenMP) + OpenSHMEM, 

MPI(+OpenMP) + UPC  
– MPI-3 compliant, OpenSHMEM v1.0 standard compliant, UPC v1.2 standard 

compliant 
– Scalable Inter-node and intra-node communication – point-to-point and collectives 

• Effort underway for support on NVIDIA GPU clusters 
OSU-GTC-2014 

http://mvapich.cse.ohio-state.edu/overview/mvapich2x


• Overview of PGAS models (UPC and OpenSHMEM) 

• Limitations in PGAS models for GPU computing  

• Proposed Designs and Alternatives  

• Performance Evaluation   

• Exploiting GPUDirect RDMA  
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Limitations of PGAS models for GPU Computing 
• PGAS memory models does not support disjoint memory address spaces - 

case with GPU clusters  

 

 

 

 

 

 

 

 

 

 

 

 

 

PE 0 

Existing OpenSHMEM Model with CUDA  

• Copies severely limit the performance  

PE 1 

GPU-to-GPU 
Data Movement 

PE 0 

cudaMemcpy (host_buf, dev_buf,  . . . ) 
shmem_putmem (host_buf, host_buf, size, pe) 
shmem_barrier (…) 

host_buf = shmalloc (…) 

PE 1 

shmem_barrier ( . . . ) 
cudaMemcpy (dev_buf, host_buf, size, . . . ) 

host_buf = shmalloc (…) 

• Synchronization negates the benefits of one-sided communication 

• OpenSHMEM case 
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• Similar limitations in UPC 



• Overview of PGAS models (UPC and OpenSHMEM) 

• Limitations in PGAS models for GPU computing  

• Proposed Designs and Alternatives  

• Performance Evaluation   

• Exploiting GPUDirect RDMA  
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Global Address Space with Host and Device Memory 

Host Memory 

Private  

Shared 

Host Memory 

Device Memory Device Memory 

Private  

Shared 

Private  

Shared 

Private  

Shared 

shared space 
on host memory 

shared space 
on device memory 

N N 

N N 

• Extended APIs: 

– heap_on_device/heap_on_host 

– a way to indicate location on heap 

• Can be similar for dynamically allocated 
memory in UPC 
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heap_on_device(); 
/*allocated on device*/ 
dev_buf  = shmalloc (sizeof(int)); 
 

heap_on_host(); 
/*allocated on host*/ 
host_buf  = shmalloc (sizeof(int)); 



CUDA-aware OpenSHMEM and UPC runtimes 

• After device memory becomes part of the global shared space: 
– Accessible through standard UPC/OpenSHMEM communication APIs 

– Data movement transparently handled by the runtime 

– Preserves one-sided semantics at the application level  

• Efficient designs to handle communication  
– Inter-node transfers use host-staged transfers with pipelining  

– Intra-node transfers use CUDA IPC 

• Service-thread for asynchronous and one-sided progress in 

• Goal: Enabling High performance one-sided communications 
with GPU devices  
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• Overview of PGAS models (UPC and OpenSHMEM) 

• Limitations in PGAS models for GPU computing  

• Proposed Designs and Alternatives  

• Performance Evaluation 

• Exploiting GPUDirect RDMA  
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Shmem_putmem Inter-node Communication  

Small Messages Large Messages 

One-sided Progress 

• Small messages benefit from selective CUDA 
registration – 22% for 4Byte messages 

• Large messages benefit from pipelined overlap – 
28% for 4MByte messages 

• Service thread enables one-sided communication 
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S. Potluri, D. Bureddy, H. Wang, H. Subramoni and D. K. 
Panda, Extending OpenSHMEM for GPU Computing, Int'l 
Parallel and Distributed Processing Symposium (IPDPS '13) 
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Shmem_putmem Intra-node Communication  

Small Messages Large Messages 

• Using IPC for intra-node communication   

• Small messages – 73% improvement for 4Byte messages 

• Large messages – 85% for 4MByte messages 
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Based on MVAPICH2X-2.0b + Extensions 
Intel WestmereEP node with 8 cores 

2 NVIDIA Tesla K20c GPUs, Mellanox QDR HCA 
CUDA 6.0RC1 

85% 73% 



Application Kernel Evaluation: Stencil2D 

• Modified SHOC Stencil2D kernelto use OpenSHMEM for cluster level parallelism 

• The enhanced version shows 65% improvement on 192 GPUs  with 4Kx4K problem size/GPU 

• Using OpenSHMEM for GPU-GPU communication allows runtime to optimize non-contiguous 
transfers   
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Application Kernel Evaluation: BFS  

• Extended SHOC BFS kernel to run on a GPU cluster using a level-synchronized algorithm and 
OpenSHMEM 

• The enhanced version shows upto 12% improvement on 96 GPUs, a consistent improvement in 
performance as we scale from 24 to 96 GPUs.  
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• Overview of PGAS models (UPC and OpenSHMEM) 

• Limitations in PGAS models for GPU computing  

• Proposed Designs and Alternatives  

• Performance Evaluation   

• Exploiting GPUDirect RDMA  
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• In OpenSHMEM (Preliminary results)  
– GDR for small message sizes 

– Host-staging for large message to avoid PCIe bottlenecks 

– Hybrid design brings best of both 

– 3.3us latency for 4 bytes 
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Exploiting GPUDirect RDMA 

OSU-GTC-2014 

3.3 

16.2 

0
5

10
15
20
25

1 4 16 64 256 1K 4K

L
at

en
cy

 (u
se

c)
 

Message Size (Bytes) 

Naive Enhanced GDR Hybrid

0
1000
2000
3000
4000
5000
6000
7000

16K 64K 256K 1M 4M
L

at
en

cy
 (u

se
c)

 
Message Size (Bytes) 

Naive Enhanced GDR Hybrid

Based on MVAPICH2X-2.0b + Extensions 
Intel Sandy Bridge (E5-2670) node with 16 cores 

NVIDIA Tesla K40c GPU, Mellanox Connect-IB Dual-FDR HCA 
CUDA 5.5, Mellanox OFED 2.1 with GPU-Direct-RDMA Plugin 

GPU features will be available in future releases of MVAPICH2-X!! 



 

Come know and discuss how we make it easier to use MPI and PGAS 
models on NVIDIA GPU clusters 

 
S4951 – Hangout: GTC Speakers 

Tuesday – 03/25  

13:00 – 14:00 (Now) 

Concourse Pod B 

OSU-GTC-2014 23 

Hangout with the Speaker 



 
1) S4517 - Latest Advances in MVAPICH2 MPI Library for NVIDIA GPU Clusters 
with InfiniBand 

Tuesday, 03/25 (Today) 

15:00 – 15:25  

Room LL21A 

 

2) S4535 - Accelerating HPL on Heterogeneous Clusters with NVIDIA GPUs 

Tuesday, 03/25 (today) 

17:00 – 17:25 

Room LL21A 
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Talk on advances in CUDA-aware MPI and Hybrid HPL 



 Thank You! 

panda@cse.ohio-state.edu 

 

 
 
 
 

Network-Based Computing Laboratory 
http://nowlab.cse.ohio-state.edu/ 

MVAPICH Web Page 
http://mvapich.cse.ohio-state.edu/ 
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