
Designing High Performance and
Scalable MPI Intra-node Communication

Support for Clusters

Lei Chai Albert Hartono Dhabaleswar. K. Panda

Computer Science & Engineering Department
The Ohio State University

Outline

• Introduction and Motivation
• Background
• Design Description
• Performance Evaluation
• Conclusions and Future Work

SMP Based Cluster
Memory

MemoryMemory

Memory

CPU

CPU

CPU

CPU

Intra-node
Communication

NUMA Node

CPUCPUCPU CPU

Memory

BusIntra-node
Communication

Bus-based SMP Node

CoreCore CoreCore

Memory Memory

CMP Intra-node Communication
Dual Core Chip

Dual Core NUMA Node

Inter-node Communication

Network

SMP Intra-node
Communication

Motivation
• Advances in processor and memory architecture

– NUMA systems
– Multi-core systems

• Good scalability
– Large SMP systems available
– E.g Sun’s Niagara 2 System has 8 cores on the same

chip and can run 64 threads simultaneously
• MPI intra-node communication more critical!
• Goals:

– To improve MPI intra-node communication
performance

– To reduce memory usage

Outline

• Introduction and Motivation
• Background
• Design Description
• Performance Evaluation
• Conclusions and Future Work

MPI Intra-node Communication
• Existing approaches

– NIC based loop back
– Kernel assisted memory mapping
– User space memory copy

• Advantages of user space memory copy
– Good performance
– Portability

• User space memory copy is deployed by many
MPI implementations
– MVAPICH
– MPICH-MX
– Nemesis

MVAPICH

• MVAPICH: High performance MPI on InfiniBand
clusters developed by OSU
– Based on MPICH
– MVAPICH and MVAPICH2 are currently being used

by more than 405 organizations worldwide
– Latest release: MVAPICH-0.9.8 & MVAPICH2-0.9.5
– http://nowlab.cse.ohio-state.edu/projects/mpi-

iba/index.html

Intra-node Communication Design
in MVAPICH

RB10

RB20

RB30Process 0

User buffer

RB 01

RB 21

RB 31 Process 1

User buffer

RB 02

RB 12

RB 32Process 2

RB 03

RB 13

RB 23 Process 3

• RBxy: Receive Buffers
– Buffers shared between processes
– x: sender, y: receiver

Analysis of the Current Design

• Advantages
– Lock-free
– Messages in-order

• Flaws
– Large memory usage

• Not scalable
– Inefficient in cache utilization

• Need to walk through the receive buffer
• Performance is not optimized

Outline

• Introduction and Motivation
• Background
• Design Description
• Performance Evaluation
• Conclusions and Future Work

Data Structures

NULL

NULL

NULL

SQ01

SQ02

SQ03

RB10

RB20

RB30
Process 0

SBP0

NULL

NULL

NULL

SQ10

SQ12

SQ13

RB01

RB21

RB31
Process 1

SBP1

NULL

NULL

NULL

SQ20

SQ21

SQ23

RB02

RB12

RB32
Process 2

SBP2

NULL

NULL

NULL

SQ30

SQ31

SQ32

RB03

RB13

RB23
Process 0

SBP3

- SBP: Shared Buffer Pool
- SQxy: Send Queue

- x: sender, y: receiver
-RBxy: Receive Buffer

- x: sender, y: receiver

Small Message Transfer

NULL

NULL

NULL

SQ01

SQ02

SQ03

RB10

RB20

RB30
Process 0

SBP0

NULL

NULL

NULL

SQ10

SQ12

SQ13

RB01

RB21

RB31
Process 1

SBP1

NULL

NULL

NULL

SQ20

SQ21

SQ23

RB02

RB12

RB32
Process 2

SBP2

NULL

NULL

NULL

SQ30

SQ31

SQ32

RB03

RB13

RB23
Process 0

SBP3

User Buffer User Buffer

Large Message Transfer

NULL

NULL

NULL

SQ01

SQ02

SQ03

RB10

RB20

RB30
Process 0

SBP0

NULL

NULL

NULL

SQ10

SQ12

SQ13

RB01

RB21

RB31
Process 1

SBP1

NULL

NULL

NULL

SQ20

SQ21

SQ23

RB02

RB12

RB32
Process 2

SBP2

NULL

NULL

NULL

SQ30

SQ31

SQ32

RB03

RB13

RB23
Process 0

SBP3

User Buffer User Buffer

Analysis of the New Design
• Lock free
• Messages in-order

– Control messages are going through receive buffers

• Efficient in cache utilization
– Small messages: small receive buffer, likely in the cache
– Large messages: chances of buffer reuse improved

• Efficient memory usage
– Receive buffers become smaller
– Large message buffers are shared among all the connections

Outline

• Introduction and Motivation
• Background
• Design Description
• Performance Evaluation
• Conclusions and Future Work

Experimental System Setup
• NUMA Cluster

– Two nodes connected by InfiniBand
– Each node has four AMD Opteron processors, 2.0GHz
– 1MB L2 cache
– Linux 2.6.16

• Multi-core Cluster
– Two nodes connected by InfiniBand
– Each node has four dual-core AMD Opteron processors, 2.0GHz

• Two cores per chip, two chips in total
– Each core has 1MB L2 cache
– Linux 2.6.16

Latency on NUMA Cluster
Small Message Latency

0

0.2

0.4

0.6

0.8

1

1.2

1 4 16 64

Message Size (Bytes)

La
te

nc
y

(u
s)

Original Design
New Design

• Latency for small and medium messages is improved
by up to 15%

• Latency for large messages is improved by up to 35%

Large Message Latency

0

200

400

600

800

1000

1200

16
K

32
K

64
K

12
8K

25
6K

51
2K 1M

Message Size (Bytes)

Medium Message Latency

0
1
2
3
4
5
6
7
8
9

10

256 512 1K 2K 4K 8K

Message Size (Bytes)

Bandwidth on NUMA Cluster

• Bandwidth is improved by up to 50%

Bandwidth

0
200
400
600
800

1000
1200
1400
1600
1800

1 4 16 64 25
6 1K 4K 16
K

64
K

25
6K 1M

Message Size (Bytes)

B
an

dw
id

th
 (M

B
/s

)

Original Design New Design

L2 Cache Miss Rate

• Tool: Valgrind
• The improvement in latency and bandwidth comes from

better L2 cache utilization

L2 Cache Miss Rate

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

Latency Small Latency
Medium

Latency Large Bandwidth

Benchmarks

M
is

s
R

at
e

Original Sender Original Receiver New Sender New Receiver

Collectives on NUMA Cluster
MPI_Barrier Latency

0

5

10

15

20

25

2 4 8

Number of Processes

La
te

nc
y

(u
s)

Original Design New Design

MPI_Alltoall Latency

0

2

4

6

8

10

12

1 2 4 8 16 32 64 128 256 512 1K

Message Size (Bytes)

La
te

nc
y

(u
s)

Original Design
New Design

MPI_Alltoall Latency

0
2000
4000
6000
8000

2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M

Message Size (Bytes)
La

te
nc

y
(u

s)

• MPI_Barrier latency is improved by
up to 19%

• MPI_Alltoall latency is improved by
10%

Latency on Multi-core Cluster
Small Message Latency

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16 32 64 128

Message Size (Bytes)

La
te

nc
y

(u
s)

Medium Message Latency

0

2

4

6

8

10

12

256 512 1K 2K 4K 8K

Message Size (Bytes)

CMP Original Design
CMP New Design
SMP Original Design
SMP New Design

Large Message Latency

0
100
200
300
400
500
600
700
800
900

1000

16K 32K 64K 128K 256K 512K 1M

Message Size (Bytes)

• CMP latency is lower than SMP latency for small messages, but
higher for large messages
– Cache transaction vs. memory contention

• The new design improves SMP latency for all the messages
• The new design improves CMP latency for small messages

Bandwidth on Multi-core Cluster

• The new design improves SMP bandwidth significantly
• The new design also improves CMP bandwidth for small and

medium messges

Bandwidth

0

500

1000

1500

2000

2500

1 4 16 64 25
6 1K 4K 16
K

64
K

25
6K 1M

Message Size (Bytes)

B
an

dw
id

th
 (M

B
/s

)

CMP Original Design CMP New Design
SMP Original Design SMP New Design

Collectives on Multi-core Cluster
MPI_Barrier Latency

0

5

10

15

20

2 4 8
Number of Processes

La
te

nc
y

(u
s)

Original Design New Design

MPI_Alltoall Latency

0

2

4

6

8

10

1 2 4 8 16 32 64 128 256 512 1K

Message Size (Bytes)

La
te

nc
y

(u
s)

Original Design
New Design

MPI_Alltoall Latency

0
2000
4000
6000
8000

10000

2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M

Message Size (Bytes)
La

te
nc

y
(u

s)

• The new design improves collective
performance on multi-core cluster

Outline

• Introduction and Motivation
• Background
• Design Description
• Performance Evaluation
• Conclusions and Future Work

Conclusions

• Designed and implemented high-performance
and scalable MPI intra-node communication
support
– Lock free
– Efficient cache utilization
– Efficient memory usage

• Evaluated on NUMA and multi-core systems
– Both point-to-point and collective performance has been

improved significantly

Future Work

• Application level study
• Evaluation on larger systems
• Further optimizations on multi-core

systems

27

Acknowledgements

Our research is supported by the following organizations

• Current Funding support by

• Current Equipment support by

Thank you

{chail, hartonoa, panda}@cse.ohio-state.edu

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

