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Motivation 
• Advances in processor and memory architecture

– NUMA systems
– Multi-core systems

• Good scalability
– Large SMP systems available
– E.g Sun’s Niagara 2 System has 8 cores on the same 

chip and can run 64 threads simultaneously
• MPI intra-node communication more critical!
• Goals:

– To improve MPI intra-node communication 
performance

– To reduce memory usage
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MPI Intra-node Communication
• Existing approaches

– NIC based loop back
– Kernel assisted memory mapping
– User space memory copy

• Advantages of user space memory copy
– Good performance
– Portability

• User space memory copy is deployed by many 
MPI implementations
– MVAPICH
– MPICH-MX
– Nemesis



MVAPICH

• MVAPICH: High performance MPI on InfiniBand
clusters developed by OSU
– Based on MPICH 
– MVAPICH and MVAPICH2 are currently being used 

by more than 405 organizations worldwide
– Latest release: MVAPICH-0.9.8 & MVAPICH2-0.9.5
– http://nowlab.cse.ohio-state.edu/projects/mpi-

iba/index.html



Intra-node Communication Design 
in MVAPICH
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• RBxy: Receive Buffers
– Buffers shared between processes
– x: sender, y: receiver



Analysis of the Current Design

• Advantages
– Lock-free
– Messages in-order

• Flaws
– Large memory usage

• Not scalable
– Inefficient in cache utilization

• Need to walk through the receive buffer
• Performance is not optimized
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Data Structures
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- SBP: Shared Buffer Pool
- SQxy: Send Queue

- x: sender, y: receiver
-RBxy: Receive Buffer

- x: sender, y: receiver



Small Message Transfer
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Large Message Transfer
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Analysis of the New Design
• Lock free
• Messages in-order

– Control messages are going through receive buffers

• Efficient in cache utilization
– Small messages: small receive buffer, likely in the cache
– Large messages: chances of buffer reuse improved

• Efficient memory usage 
– Receive buffers become smaller
– Large message buffers are shared among all the connections
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Experimental System Setup
• NUMA Cluster

– Two nodes connected by InfiniBand
– Each node has four AMD Opteron processors, 2.0GHz
– 1MB L2 cache
– Linux 2.6.16

• Multi-core Cluster
– Two nodes connected by InfiniBand
– Each node has four dual-core AMD Opteron processors, 2.0GHz

• Two cores per chip, two chips in total
– Each core has 1MB L2 cache
– Linux 2.6.16 



Latency on NUMA Cluster
Small Message Latency
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• Latency for small and medium messages is improved 
by up to 15%

• Latency for large messages is improved by up to 35%

Large Message Latency

0

200

400

600

800

1000

1200

16
K

32
K

64
K

12
8K

25
6K

51
2K 1M

Message Size (Bytes)

Medium Message Latency

0
1
2
3
4
5
6
7
8
9

10

256 512 1K 2K 4K 8K

Message Size (Bytes)



Bandwidth on NUMA Cluster

• Bandwidth is improved by up to 50%

Bandwidth
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L2 Cache Miss Rate

• Tool: Valgrind
• The improvement in latency and bandwidth comes from 

better L2 cache utilization

L2 Cache Miss Rate
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Collectives on NUMA Cluster
MPI_Barrier Latency
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• MPI_Barrier latency is improved by 
up to 19%

• MPI_Alltoall latency is improved by 
10%



Latency on Multi-core Cluster
Small Message Latency
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• CMP latency is lower than SMP latency for small messages, but 
higher for large messages
– Cache transaction vs. memory contention

• The new design improves SMP latency for all the messages
• The new design improves CMP latency for small messages



Bandwidth on Multi-core Cluster

• The new design improves SMP bandwidth significantly
• The new design also improves CMP bandwidth for small and 

medium messges

Bandwidth
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Collectives on Multi-core Cluster
MPI_Barrier Latency
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• The new design improves collective 
performance on multi-core cluster
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Conclusions

• Designed and implemented high-performance 
and scalable MPI intra-node communication 
support
– Lock free
– Efficient cache utilization
– Efficient memory usage

• Evaluated on NUMA and multi-core systems
– Both point-to-point and collective performance has been 

improved significantly



Future Work

• Application level study
• Evaluation on larger systems
• Further optimizations on multi-core 

systems
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