

Head-to-TOE Evaluation of High Performance Sockets over Protocol Offload Engines

W. Feng α

Q. Gao¥

R. Noronha¥

W. Yu[¥]

D. K. Panda ¥

*Network Based Computing Lab,
Ohio State University

^αAdvanced Computing Lab, Los Alamos National Lab

Ethernet Trends

- Ethernet is the most widely used network architecture today
- Traditionally Ethernet has been notorious for performance issues
 - Near an order-of-magnitude performance gap compared to InfiniBand, Myrinet
 - Cost conscious architecture
 - Relied on host-based TCP/IP for network and transport layer support
 - Compatibility with existing infrastructure (switch buffering, MTU)
 - Used by 42.4% of the Top500 supercomputers
 - Key: Extremely high performance per unit cost
 - GigE can give about 900Mbps (performance) / 0\$ (cost)
- 10-Gigabit Ethernet (10GigE) recently introduced
 - 10-fold (theoretical) increase in performance while retaining existing features
 - Can 10GigE bridge the performance between Ethernet and InfiniBand/Myrinet?

InfiniBand, Myrinet and 10GigE: Brief Overview

- InfiniBand (IBA)
 - Industry Standard Network Architecture
 - Supports 10Gbps and higher network bandwidths
 - Offloaded Protocol Stack
 - Rich feature set (one-sided, zero-copy communication, multicast, etc.)

Myrinet

- Proprietary network by Myricom
- Supports up to 4Gbps with dual ports (10G adapter announced!)
- Offloaded Protocol Stack and rich feature set like IBA
- 10-Gigabit Ethernet (10GigE)
 - The next step for the Ethernet family
 - Supports up to 10Gbps link bandwidth
 - Offloaded Protocol Stack
 - Promises a richer feature set too with the upcoming iWARP stack

Characterizing the Performance Gap

- Each High Performance Interconnect has its own interface
 - Characterizing the performance gap is no longer straight forward
- Portability in Application Development
 - Portability across various networks is a must
 - Message Passing Interface (MPI)
 - De facto standard for Scientific Applications
 - Sockets Interface
 - Legacy Scientific Applications
 - Grid-based or Heterogeneous computing applications
 - File and Storage Systems
 - Other Commercial Applications
- Sockets and MPI are the right choices to characterize the GAP
 - In this paper we concentrate only on the Sockets interface

Presentation Overview

- Introduction and Motivation
- **Protocol Offload Engines**
- Experimental Evaluation
- Conclusions and Future Work

Interfacing with Protocol Offload Engines

High Performance Sockets

TCP Stack Override

High Performance Sockets

- Pseudo Sockets-like Interface
 - Smooth transition for existing sockets applications
 - Existing applications do not have to rewritten or recompiled!
 - Improved Performance by using the Offloaded Protocol Stack on networks
- High Performance Sockets exist for many networks
 - Initial implementations on VIA [shah98:canpc, kim00:cluster, balaji02:hpdc]
 - Follow-up implementations on Myrinet and Gigabit Ethernet [balaji02:cluster]
 - Sockets Direct Protocol is an industry standard specification for IBA
 - Implementations by Voltaire, Mellanox and OSU exist [balaji03:ispass, mellanox05:hoti]

TCP Stack Override

- Similar to the High Performance Sockets approach, but...
 - Overrides the TCP layer instead of the Sockets layer
- Advantages compared to High Performance Sockets
 - Sockets features do not have to be duplicated
 - E.g., Buffer management, Memory registration
 - Features implemented in the Berkeley sockets implementation can be used
- Disadvantages compared to High Performance Sockets
 - A kernel patch is required
 - Some TCP functionality has to be duplicated
- This approach is used by Chelsio in their 10GigE adapters

Presentation Overview

- Introduction and Motivation
- High Performance Sockets over Protocol Offload Engines
- **©** Experimental Evaluation
- Conclusions and Future Work

Experimental Test-bed and Evaluation

- 4 node cluster: Dual Xeon 3.0GHz; SuperMicro SUPER X5DL8-GG nodes
- 512 KB L2 cache; 2GB of 266MHz DDR SDRAM memory; PCI-X 64-bit 133MHz
- InfiniBand
 - Mellanox MT23108 Dual Port 4x HCAs (10Gbps link bandwidth); MT43132 24-port switch
 - Voltaire IBHost-3.0.0-16 stack
- Myrinet
 - Myrinet-2000 dual port adapters (4Gbps link bandwidth)
 - SDP/Myrinet v1.7.9 over GM v2.1.9
- 10GigE
 - Chelsio T110 adapters (10Gbps link bandwidth); Foundry 16-port SuperX switch
 - Driver v1.2.0 for the adapters; Firmware v2.2.0 for the switch
- Experimental Results:
 - Micro-benchmarks (latency, bandwidth, bi-dir bandwidth, multi-stream, hot-spot, fan-tests)
 - Application-level Evaluation

Ping-Pong Latency Measurements

- SDP/Myrinet achieves the best small message latency at 11.3us
 - 10GigE and IBA achieve latencies of 17.7us and 24.4us respectively
- As message size increases, IBA performs the best → Myrinet cards are 4Gbps links right now!

Unidirectional Throughput Measurements

- 10GigE achieves the highest throughput at 6.4Gbps
 - IBA and Myrinet achieve about 5.3Gbps and 3.8Gbps → Myrinet is only a 4Gbps link

Snapshot Results ("Apples-to-Oranges" comparison)

10GigE: Opteron 2.2GHz IBA: Xeon 3.6GHz Myrinet: Xeon 3.0GHz

Provide a reference point! Only valid for THIS slide!

- SDP/Myrinet with MX allows polling and achieves about 4.6us latency (event-based is better for SDP/GM ~ 11.3us)
- 10GigE achieves the lowest event-based latency of 8.9us on Opteron systems

IBA achieves a 9Gbps throughput with their DDR cards (link speed of 20Gbps)

Bidirectional and Multi-Stream Throughput

Hot-Spot Latency

- 10GigE and IBA demonstrate similar scalability with increasing number of clients
- Myrinet's performance deteriorates faster than the other two

Fan-in and Fan-out Throughput Test

- 10GigE and IBA achieve a similar performance for the fan-in test
- 10GigE performs slightly better for the fan-out test

Data-Cutter Run-time Library

(Software Support for Data Driven Applications)

- Designed by Univ. of Maryland
- Component framework
- User-defined pipeline of components
 - Each component is a filter
 - The collection of components is a filter group
 - Replicated filters as well as filter groups
 - Illusion of a single stream in the filter group
 - Stream based communication
- Flow control between components
 - Unit of Work (UOW) based flow control
 - Each UOW contains about 16 to 64KB of data
- Several applications supported
 - Virtual Microscope
 - ISO Surface Oil Reservoir Simulator

Combined Data/Task Parallelism

http://www.datacutter.org

Data-Cutter Performance Evaluation

- InfiniBand performs the best for both the data-cutter applications (especially Virtual Microscope)
- The filter-based approach makes the environment medium message latency sensitive

Parallel Virtual File System (PVFS)

Designed by ANL and Clemson University

- Relies on Striping of data across different nodes
- Tries to aggregate I/O bandwidth from multiple nodes
- Utilizes the local file system on the I/O Server nodes

PVFS Contiguous I/O

- Performance trends are similar to the throughput test
 - Experiment is throughput intensive

MPI-Tile I/O (PVFS Non-contiguous I/O)

- 10GigE and IBA perform quite equally
- Myrinet is very close behind inspite of being only a 4Gbps network

Ganglia Cluster Management Infrastructure

- Developed by UC Berkeley
- For each transaction, one connection and one medium sized message (~6KB) transfer is required

Ganglia Performance Evaluation

- Performance is dominated by connection time
 - IBA, Myrinet take about a millisecond to establish connections while 10GigE takes about 60us
 - Optimizations for SDP/IBA and SDP/Myrinet such as connection caching are possible (being implemented)

Presentation Overview

- Introduction and Motivation
- High Performance Sockets over Protocol Offload Engines
- Experimental Evaluation
- **©** Conclusions and Future Work

Concluding Remarks

- Ethernet has traditionally been notorious for performance reasons
 - Close to an order-of-magnitude performance gap compared to IBA/Myrinet
- 10GigE: Recently introduced as a successor in the Ethernet family
 - Can 10GigE help bridge the gap for Ethernet with IBA/Myrinet?
- We showed comparisons between Ethernet, IBA and Myrinet
 - Sockets Interface was used for the comparison
 - Micro-benchmark as well as application-level evaluations have been shown
- 10GigE performs quite comparably with the IBA and Myrinet
 - Better in some cases and worse in others; but around the same ballpark
 - Quite ubiquitous in Grid and WAN environments
 - Comparable performance in SAN environments

Continuing and Future Work

- Sockets is only one end of the comparison chart
 - Other middleware are quite widely used too (e.g., MPI)
 - IBA/Myrinet might have an advantage due to RDMA/multicast capabilities
- Network interfaces and software stacks change
 - Myrinet coming out with 10Gig adapters
 - 10GigE might release a PCI-Express based card
 - IBA has a zero-copy sockets interface for improved performance
 - IBM's 12x InfiniBand adapters increase the performance of IBA by 3 fold
 - These results keep changing with time; more snapshots needed for fairness
- Multi-NIC comparison for Sockets/MPI
 - Awful lot of work at the host
 - Scalability might be bound by the host
- iWARP compatibility and features for 10GigE TOE adapters

Acknowledgements

Our research is supported by the following organizations

Funding support by

Equipment donations by

Web Pointers

NBCL

Websites:

http://nowlab.cse.ohio-state.edu

http://public.lanl.gov/radiant/index.html

Emails:

balaji@cse.ohio-state.edu

feng@lanl.gov

panda@cse.ohio-state.edu

