Supporting Strong Cache
Coherency for Active Caches in
Multi-Tier Data-Centers over

InfiniBand

S. Narravula, P. Balaji, K. Vaidyanathan,
S. Krishnamoorthy, J. Wu and D. K. Panda

The Ohio State University

Presentation Outline

= Introduction/Motivation
= Design and Implementation
= Experimental Results

= Conclusions

Introduction

Fast Internet Growth
2 Number of Users

o Amount of data

o Types of services

Several uses
o E-Commerce, Online Banking, Online Auctions, etc

Types of Content
o Images, documents, audio clips, video clips, etc - Static
Content

o Stock Quotes, Online Stores (Amazon), Online Banking,
etc. - Dynamic Content (Active

Presentation Outline

Introduction/Motivation
o Multi-Tier Data-Centers
o Active Caches

o InfiniBand

Design and Implementation
Experimental Results
Conclusions

Multi-Tier Data-Centers

Single Powerful Computers

Clusters
o Low ‘Cost to Performance’ Ratio
o Increasingly Popular

Multi-Tier Data-Centers
o Scalability — an important issue

A Typical Multi-Tier Data-Center

Clients
O O
O O
O O
O O

WAN

Tier O

Proxy Nodes

Web
Servers

0000
0000

0000

O

O
O
O

Tier 1

A 4

A 4

Application
Servers

Apache

Tier 2

Database
Servers

\ 4

PHP

O

O
O
O

O

O
O
O

A

0000
0000

Tiers of a Typical Multi-Tier Data-Center

Proxy Nodes
o Handle Caching, load balancing, security, etc

Web Servers
o Handle the HTML content

Application Servers
o Handle Dynamic Content, Provide Services

Database Servers
o Handle persistent storage

Data-Center Characteristics

Front-End Tiers

Computation

Back-End Tiers

\4

 The amount of computation required for processing each request
Increases as we go to the inner tiers of the Data-Center
» Caching at the front tiers is an important factor for scalability

Presentation Outline

Introduction/Motivation

o Introduction

o Multi-Tier Data-Centers
a Active Caches

o InfiniBand

Design and Implementation
Experimental Results
Conclusions

Caching

Can avoid re-fetching of

content
Beneficial if requests ‘ / Front-End
Tiers

repeat Number of
Static content caching Requests

Il studied in the past Jecease
0 We studied | P N/ Back-End
2 Widely used Tiers

Active Caching

Dynamic Data
o Stock Quotes, Scores, Personalized Content, etc

Simple caching methods not suited
Issues

o Consistency
o Coherency

User Request

Proxy Node Back-End

Cache Data
___________ N Update

Cache Consistency

Non-decreasing views of system state
Updates seen by all or none

Proxy Nodes

Back-End Nodes

User Requests .4 Update

Cache Coherency

Refers to the average staleness of the
document served from cache

Two models of coherence
o Bounded staleness (Weak Coherency)
o Strong or immediate (Strong Coherency)

Strong Cache Coherency

An absolute necessity for certain kinds of
data

o Online shopping, Travel ticket availability, Stock
Quotes, Online auctions
o Example: Online banking

Cannot afford to show different values to different
concurrent requests

Caching policies

Consistency Coherency
No Caching ‘/ ‘/
Client Polling ‘/ ‘/
Invalidation * ‘/ %
TTL/Adaptive
TTL x x

*D. Li, P. Cao, and M. Dahlin. WCIP: Web Cache Invalidation
Protocol. IETF Internet Draft, November 2000.

Presentation Outline

Introduction/Motivation
o Introduction

o Multi-Tier Data-Centers
o Active Caches

a InfiniBand

Design and Implementation
Experimental Results
Conclusions

InfiniBand

High Performance

o Low latency
o High Bandwidth

Open Industry Standard

Provides rich features
o RDMA, Remote Atomic operations, etc

Targeted for Data-Centers

Transport Layers
o VAP
o IPolB
o SDP

140

120

100

Latency (us)
£ = g

[\
(=]

(=]

Performance

Throughput
Latency 900 gnp
800
2 @ ——IPoIB
——IPoIB / % 700 —=—SDP
—i— SPDP & 600 —t—VAPI /
—— VAPI *5 500
il /o~
%0 300
o
#‘::-::&’-/./ E 200 / /
K 100 M
O_ T T T T T

2 4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K 4 16 64 256 1K __, 4K 16K 64K
Message Size Message Size

* Low latencies of less than 5us achieved
 Bandwidth over 840 MB/s

* SDP and IPoIB from Voltaire’s Software Stack

Performance

7000

Throughput (RDMA Read)

6000 H T

o o ,kl—l—l—-

5000

N

4000
3000
2000

I/

Throughput (Mbps)

1000 |

’Z _

#!:r\ T T T 1 T T \l_ls \Ds =
64 256 1K 4K 16K 64K 256K
Message Size (bytes)

25

- 20

- 15

- 10

—Send CPU

— RecvCPU

—&— Throughput (Poll) —@— Throughput (Event)

* Receiver side CPU utilization is very low
 Leveraging the benefits of One sided communication

Caching policies

Consistency Coherency
No Caching ‘/ ‘/
Client Polling v @
Invalidation ‘/ %
TTL/Adaptive
TTL x X

Objective

To design an architecture that very
efficiently supports strong cache
coherency on InfiniBand

Presentation Outline

= Introduction/Motivation
= Design and Implementation
= Experimental Results

= Conclusions

Basic Architecture

External modules are used

2 Module communication can use any transport
Versioning:

o Application servers version dynamic data

o Version value of data passed to front end with
every request to back-end

o Version maintained by front end along with
cached value of response

Mechanism

Cache Hit:

o Back-end Version Check

a If version current, use cache

o Invalidate data for failed version check

Cache Miss
o Get data to cache
o Initialize local versions

Architecture

Front-End Back-End

Request

; >l :

Cache Hit : :

> — :
Response
Cache Miss
= <

Design

Every server has an associated module that
uses IPolB, SDP or VAPI to communicate

VAPI:

o When a request arrives at proxy, VAPI module is
contacted.

o Module reads latest version of the data from the
back-end using one-sided RDMA Read operation

o If versions do not match, cached value iIs
Invalidated

VAPI Architecture

Front-End Back-End
Request '
q o
RDMA Read

Cache Hit

4 \
Response

Cache Miss

< —:

Implementation

Socket-based Implementation:

o IPolB and SDP are used

o Back-end version check is done using two-sided
communication from the module

Requests to read and update are mutually
excluded at the back-end module to avoid
simultaneous readers and writers accessing

the same data.
Minimal changes to existing software

Presentation Outline

Introduction/Motivation
Design and Implementation

Experimental Results

o Data-Center Throughput

o Data-Center Response Time

o Data-Center Break-up

o Zipf and WC Trace Throughput

Conclusions

Experimental Test-bed

Eight Dual 2.4GHz Xeon processor nodes

64-bit 133MHz PCI-X interfaces

512KB L2-Cache and 400MHz Front Side Bus
Mellanox InfiniHost MT23108 Dual Port 4x HCAs
MT43132 eight 4x port Switch

SDK version 0.2.0

Firmware version 1.17

Data-Center: Performance

DataCenter: Throughput

2500

- A= - A - A - A =~ A= - A - w4 - A - A= -
< & -A A & A A

2000 -

1500 -

1000

500 -

Transactions per second (TPS)

0) 10 20 30 40 50 60 70 80 90 100 200

Number of Compute Threads

—e— NO Cache —wm— |IP0OIB - -a- = VAP| =¢«—SDP

 The VAPI module can sustain performance even with heavy load on the
back-end servers

Data-Center: Performance

Datacenter: Response Time

= - A - =& = =A- - A= = A

Resporse time (ns)
OFRPNW,AMUTON 0OOO
¢
| K

0) 10 20 30 40 50 60 70 80 90 100 200

Number of Compute Threads

—e— NoCache —wm— IP0OIB - -a- = VAP| =¢—SDP

 The VAPI module responds faster even with heavy load on the
back-end servers

Response Time Breakup

Response Time Splitup - 0 Compute Threads

.| | @IPoiB
£ m SDP
o 47
£ VAPI
=3

o [

Client Proxy Module Backend version
Communication Processing Processing check

Time (Mms)

Response Time Splitup - 200 Compute Threads

@ IPolB

B SDP

VAPI

| [

Client Proxy Module Backend
Communication Processing Processing version check

» Worst case Module Overhead less than 10% of the response time
* Minimal overhead for VAPI based version check even for 200 compute

threads

Data-Center: Throughput

Throughput: ZipF distribution ThroughPut: World Cup Trace

0 10 20 30 40 50 60 70 80 90 100 200

0 10 20 30 40 50 60 70 80 90 100 200

Number of Compute Threads Nurber of Compute Threads

—e— N0 Cache —m— |P0IB - -a- =-VAP| —«—SDP —e—NoCache —m— [POIB - =A= = VAP| —¢—SDP

* The drop in the throughput of VAPI in World cup trace is due to
the higher penalty for cache misses under increased load
* VAPI implementation does better for real trace too

Conclusions

An architecture for supporting Strong Cache
Coherence

External module based design

o Freedom in choice of transport

o Minimal changes to existing software

Sockets API inherent limitation

o Two-sided communication

o High performance Sockets not the solution (SDP)
Main benefit

o One sided nature of RDMA calls

Web Pointers

- home page

http://nowlab.cis.ohio-state.edu/

E-mail: {narravul, balaji, vaidyana, savitha, wuj, panda}
@cis.ohio-state.edu

