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Introduction

Fast Internet Growth
2 Number of Users

o Amount of data

o Types of services

Several uses
o E-Commerce, Online Banking, Online Auctions, etc

Types of Content
o Images, documents, audio clips, video clips, etc - Static
Content

o Stock Quotes, Online Stores (Amazon), Online Banking,
etc. - Dynamic Content (Active
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Multi-Tier Data-Centers

Single Powerful Computers

Clusters
o Low ‘Cost to Performance’ Ratio
o Increasingly Popular

Multi-Tier Data-Centers
o Scalability — an important issue
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Tiers of a Typical Multi-Tier Data-Center

Proxy Nodes
o Handle Caching, load balancing, security, etc

Web Servers
o Handle the HTML content

Application Servers
o Handle Dynamic Content, Provide Services

Database Servers
o Handle persistent storage



Data-Center Characteristics

Front-End Tiers

Computation

Back-End Tiers

\4

 The amount of computation required for processing each request
Increases as we go to the inner tiers of the Data-Center
» Caching at the front tiers is an important factor for scalability
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Caching

Can avoid re-fetching of

content
Beneficial if requests ‘ / Front-End
Tiers

repeat Number of
Static content caching  Requests

Il studied in the past Jecease
0 We studied | P N/ Back-End
2 Widely used Tiers



Active Caching

Dynamic Data
o Stock Quotes, Scores, Personalized Content, etc

Simple caching methods not suited
Issues

o Consistency
o Coherency

User Request

Proxy Node Back-End

Cache Data
___________ N Update




Cache Consistency

Non-decreasing views of system state
Updates seen by all or none

Proxy Nodes

Back-End Nodes

User Requests .4 Update




Cache Coherency

Refers to the average staleness of the
document served from cache

Two models of coherence
o Bounded staleness (Weak Coherency)
o Strong or immediate (Strong Coherency)



Strong Cache Coherency

An absolute necessity for certain kinds of
data

o Online shopping, Travel ticket availability, Stock
Quotes, Online auctions
o Example: Online banking

Cannot afford to show different values to different
concurrent requests



Caching policies

Consistency Coherency
No Caching ‘/ ‘/
Client Polling ‘/ ‘/
Invalidation * ‘/ %
TTL/Adaptive
TTL x x

*D. Li, P. Cao, and M. Dahlin. WCIP: Web Cache Invalidation
Protocol. IETF Internet Draft, November 2000.
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InfiniBand

High Performance

o Low latency
o High Bandwidth

Open Industry Standard

Provides rich features
o RDMA, Remote Atomic operations, etc

Targeted for Data-Centers

Transport Layers
o VAP
o IPolB
o SDP
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* Low latencies of less than 5us achieved
 Bandwidth over 840 MB/s

* SDP and IPoIB from Voltaire’s Software Stack



Performance
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* Receiver side CPU utilization is very low
 Leveraging the benefits of One sided communication




Caching policies

Consistency Coherency
No Caching ‘/ ‘/
Client Polling v @
Invalidation ‘/ %
TTL/Adaptive
TTL x X




Objective

To design an architecture that very
efficiently supports strong cache
coherency on InfiniBand
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Basic Architecture

External modules are used

2 Module communication can use any transport
Versioning:

o Application servers version dynamic data

o Version value of data passed to front end with
every request to back-end

o Version maintained by front end along with
cached value of response



Mechanism

Cache Hit:

o Back-end Version Check

a If version current, use cache

o Invalidate data for failed version check

Cache Miss
o Get data to cache
o Initialize local versions



Architecture
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Design

Every server has an associated module that
uses IPolB, SDP or VAPI to communicate

VAPI:

o When a request arrives at proxy, VAPI module is
contacted.

o Module reads latest version of the data from the
back-end using one-sided RDMA Read operation

o If versions do not match, cached value iIs
Invalidated



VAPI Architecture
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Implementation

Socket-based Implementation:

o IPolB and SDP are used

o Back-end version check is done using two-sided
communication from the module

Requests to read and update are mutually
excluded at the back-end module to avoid
simultaneous readers and writers accessing

the same data.
Minimal changes to existing software
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Experimental Test-bed

Eight Dual 2.4GHz Xeon processor nodes

64-bit 133MHz PCI-X interfaces

512KB L2-Cache and 400MHz Front Side Bus
Mellanox InfiniHost MT23108 Dual Port 4x HCAs
MT43132 eight 4x port Switch

SDK version 0.2.0

Firmware version 1.17



Data-Center: Performance

DataCenter: Throughput
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 The VAPI module can sustain performance even with heavy load on the
back-end servers



Data-Center: Performance

Datacenter: Response Time
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back-end servers



Response Time Breakup
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» Worst case Module Overhead less than 10% of the response time
* Minimal overhead for VAPI based version check even for 200 compute

threads




Data-Center: Throughput

Throughput: ZipF distribution ThroughPut: World Cup Trace
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* The drop in the throughput of VAPI in World cup trace is due to
the higher penalty for cache misses under increased load
* VAPI implementation does better for real trace too




Conclusions

An architecture for supporting Strong Cache
Coherence

External module based design

o Freedom in choice of transport

o Minimal changes to existing software

Sockets API inherent limitation

o Two-sided communication

o High performance Sockets not the solution (SDP)
Main benefit

o One sided nature of RDMA calls
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