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• Minimizing communication overheads is key as applications 
scale to millions of processes/cores

• RMA model offers an alternative to Send/Recv based message 
passing model

– Communication Epochs

•  Period between 2 synchronizations 

• One-sided communication

• Windows area 

• Promises better latency hiding, asynchronous progress and 
reduced synchronization overheads

• MPI-3 offers several extensions to provide more flexibility
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• RMA offers flexible synchronization alternatives
– Active: Fence and Post-Wait/Start-Complete
– Passive: Lock/Unlock, Lock_all/Unlock_all 
– Shared/Exclusive  (Lock/Unlock) and (Only Shared) 

(Lock_all/Unlock_all) 
• Passive synchronization does not require involvement of target 

process 
– Less synchronization 
– Better overlap

• However, current implementations are based on two-sided operations
• Desirable to have a truly one-sided design offering

– Performance (no remote polling)
– Fairness (FIFO)

EuroMPI 2013
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• Interconnect of choice in high performance systems
• Offers RDMA

– Read/Write

– Atomics (Fetch-and-Add, Compare-and-Swap)

• Atomics are supported only on 64bit values 

• Important to take advantage of these features to design the 
Passive synchronization 

EuroMPI 2013
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Can a truly passive locking mechanism be designed for InfiniBand Clusters ?

Can the new locking mechanism benefits the performance of applications ? 

How can this design provide : 
    -  Performance (no remote Polling) 
    -  Fairness (FIFO => no starvation)
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Shared Exclusive Limitations

State-of-the art 
MPI Libraries

Send/Recv Send/Recv Restrict asynchronous 
progress

Jiang et.al
(Compare_and_swap

)

Atomics Atomics High network Traffic due 
to remote polling

Jiang et.al
(MCS based)

-- Atomics/Put Shared mode of locking is 
not handled

Santhanaraman 
et.al

Send/Recv Atomics Restrict asynchronous 
progress. High network 
Traffic 
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• Our locking mechanism depends on IB atomics to implement shared 
and exclusive mode of locking 

• IB requires 64 bits buffer for atomic operations

• This 64 bits region is divided into three parts to handle different 
lock request

– Shared Counter: count of the processes that own or have requested a 
shared lock

– Exclusive Tail: rank of the process which is tail of the distributed queue

– Exclusive Head: rank of the process which is head of the distributed 
queue 



NETWORK-BASED
COMPUTING

LABORATORY

Lock Data Structures - 2

12EuroMPI 2013

• In order to handle all possible lock requests, a distributed lock 
queue is maintained to ensure FIFO and avoid remote polling

• Data structures to implement the distributed lock queue:

–  Wait-for array: used when shared lock comes after exclusive lock. This 
exclusive lock knows the list of processes that request shared lock after 
it

– Signal-to array: used when shared lock comes after exclusive lock. This 
exclusive lock wakes up pending processes that are waiting for the 
shared lock

– Exclusive-next: two element integer array. Used by processes requesting 
exclusive lock to form a distributed lock queue

– Exclusive-prev: one integer flag. Used by a process unlocking an 
exclusive lock to wake up another process waiting for an exclusive lock
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• RDMA operations: compare_and_swap and Put 

• Lock requests are ordered in distributed queue

• Exclusive locks are granted in FIFO order

Exclusive Lock 
Request

Proc 0 Proc 2Proc 1

Exclusive Unlock 
Request

0 0 0

Proc 0 gets lock 

Enter Exclusive 
Lock
Exclusive Unlock 
Request

Enter Exclusive 
Lock

Comp(0,0,0)

Swap(0,1,1) 0 1 1
Comp(0,0,0)

Swap(0,3,3)
Comp(0,1,1)

Swap(0,3,1)
0 3 1

Wait for you (Exclusive_next) 

Signal (Exclusive_prev flag)

Comp(0,3,1)

Swap(0,0,0)
0 0 0
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• Atomic operation : Fetch_and_add. To decrement we add the MAX 
value 

• Each process requires shared lock is able to get it after its atomic 
operation completes

• Each process releases shared lock by decrementing shared lock 
counter by 1 Shared Lock 

Request

Proc 0 Proc 2Proc 1
0 0 0

Shared Lock 
Request

Shared Unlock 
Request

Shared Unlock 
Request

Fetch_add

1 0 0
Fetch_add

2 0 0

Fetch_add

1 0 0 Fetch_add

0 0 0
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• Shared followed by exclusive lock: Process gets exclusive lock after 
all previously granted shared locks have been releases. 

• Exclusive followed by shared lock: Process gets shared lock after 
the previous exclusive lock releases its lock 

Shared Lock 
Request

Proc 0 Proc 2Proc 1

0 0 0

Exclusive Lock 
Request

Shared Unlock 
Request

Get Exclusive 
Unlock 

Fetch_add

1 0 0
Comp(0,0,0)

Swap(0,3,3)
Comp(1,0,0)

Swap(1,3,3)
1 3 3

Fetch_add

0 3 3

Signal wait_for of the head

Polls on local
wait_for
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• For intra-node locking, native loopback that needs a number of queue 
pairs 

    (p+( p*(p-1))/2)  is not an efficient implementation (P= number of 
process on a node)

• If the lock-unlock 64 bits data structures are allocated in the shared 
memory region, the number of queue pairs used is decreased from 
(p+(p*(p-1))/2)  to p 

– Based on the intra-node locking design, if one process wants to acquire a 
lock from other process in the same node, it issue atomic operation to itself 
(loopback)     

– The locking/unlocking mechanisms are the same as discussed earlier

(P+(P*(P-1))/2)  QPs P  QPs
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• Lock_all and Unlock_all introduced in MPI-3  use only shared lock. 

• In our design, they are implemented based on the lock/unlock 
mechanism discussed eariler. 

•  If  MPI_ MODE_ NOCHECK is used, then they are implemented as No_Op

• Inside Lock_all function, call win_lock is explicitly called for every 
processes in the communicator

• For Unlock_all, the same mechanism is used to call unlock for every 
process in the communicator 
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• Cluster A

– Xeon Dual quad-core processor (2.67 GHz) with 12GB RAM

– Mellanox  QDR ConnectX HCAs (32 Gbps data rate) with PCI_Ex 

Gen2 interface 

• Software stack

– Implemented on MVAPICH2-1.9 will be in future releases 

•  http://mvapich.cse.ohio-state.edu Latest releases : MVAPICH2-2.0a 

• High Performance open-source MPI Library for InfiniBand, 10Gig/iWARP, and RDMA 

over Converged Enhanced Ethernet (RoCE)

– MVAPICH (MPI-1) ,MVAPICH2 (MPI-2.2 and MPI-3.0), Available since 2002

– MVAPICH2-X (MPI + PGAS), Available since 2012

– Used by more than  2,077 organizations  (HPC Centers, Industry and Universities) in 

70 countries

Experimental Setup

19EuroMPI 2013

http://mvapich.cse.ohio-state.edu/
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•  For one MPI_Get latency: 

     - Small messages:  atomic based design incurs an overhead 
compared to two-sided based design : two-sided design coalesces the 3 
operations in one message 

     - Large messages: Amortized the overhead and have similar 
performance  

•  For eight MPI_Get latency, the overhead is amortized and we see 
similar performance with both designs 
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Small Messages Large Messages

• We see the same trend for small messages

• Our design could benefit large messages by asynchronously 
issuing lock/unlock requests from different processes
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Number of Processes

Communication Overlap-Lock_all

• Our design achieves almost optimal computation/communication 
overlapping
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• This modified version of Splash LU Kernel does dense LU 
factorization

• Our design outperforms the two-sided approach by a factor or 49% 
and 35% on 4 and 32 processes
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• Proposed Locking mechanism to implement both shared and 

exclusive lock with RDMA InfiniBand Atomics:  

        - No remote polling 

        - FIFO order. 

• Show optimal computation communication overlap

• Demonstrated up to 49% improvement using Splash LU 

Kernel

• Evaluate our designs with more applications/systems 

• Provide RDMA based-designs for MPI-3 RMA over IB 
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{limin, potluri, hamidouc, jose, panda} @cse.ohio-state.edu 

Network-Based Computing Laboratory

http://nowlab.cse.ohio-state.edu/

Network Based Computing

Laboratory

MVAPICH Web Page
http://mvapich.cse.ohio-state.edu/

25

http://nowlab.cse.ohio-state.edu/

