
NETWORK-BASED
COMPUTING
LABORATORY

Efficient and Truly Passive MPI-3
RMA Synchronization Using

InfiniBand Atomics
 Mingzhe Li Sreeram Potluri Khaled Hamidouche

 Jithin Jose Dhabaleswar K. Panda

Network-Based Computing Laboratory
Department of Computer Science and

Engineering
The Ohio State University

1EuroMPI 2013

NETWORK-BASED
COMPUTING

LABORATORY

2

Outline

• Motivation

• Problem Statement

• Current MPI Passive Synchronization

Implementations

• Efficient and Truly Passive Synchronization

scheme

• Performance Evaluation

• Conclusion and Future Work
EuroMPI 2013

NETWORK-BASED
COMPUTING

LABORATORYMPI Remote Memory Access (RMA)
Model

• Minimizing communication overheads is key as applications
scale to millions of processes/cores

• RMA model offers an alternative to Send/Recv based message
passing model

– Communication Epochs

• Period between 2 synchronizations

• One-sided communication

• Windows area

• Promises better latency hiding, asynchronous progress and
reduced synchronization overheads

• MPI-3 offers several extensions to provide more flexibility

3EuroMPI 2013

NETWORK-BASED
COMPUTING

LABORATORY

MPI-3 RMA Passive Synchronization

4

• RMA offers flexible synchronization alternatives
– Active: Fence and Post-Wait/Start-Complete
– Passive: Lock/Unlock, Lock_all/Unlock_all
– Shared/Exclusive (Lock/Unlock) and (Only Shared)

(Lock_all/Unlock_all)
• Passive synchronization does not require involvement of target

process
– Less synchronization
– Better overlap

• However, current implementations are based on two-sided operations
• Desirable to have a truly one-sided design offering

– Performance (no remote polling)
– Fairness (FIFO)

EuroMPI 2013

NETWORK-BASED
COMPUTING

LABORATORY

InfiniBand

5

• Interconnect of choice in high performance systems
• Offers RDMA

– Read/Write

– Atomics (Fetch-and-Add, Compare-and-Swap)

• Atomics are supported only on 64bit values

• Important to take advantage of these features to design the
Passive synchronization

EuroMPI 2013

NETWORK-BASED
COMPUTING

LABORATORY

6

Outline

• Motivation

• Problem Statement

• Current MPI Passive Synchronization

Implementations

• Efficient and Truly Passive Synchronization

scheme

• Performance Evaluation

• Conclusion and Future Work
EuroMPI 2013

NETWORK-BASED
COMPUTING

LABORATORY

Problem Statement

7EuroMPI 2013

Can a truly passive locking mechanism be designed for InfiniBand Clusters ?

Can the new locking mechanism benefits the performance of applications ?

How can this design provide :
 - Performance (no remote Polling)
 - Fairness (FIFO => no starvation)

NETWORK-BASED
COMPUTING

LABORATORY

8

Outline

• Motivation

• Problem Statement

• Current MPI Passive Synchronization

Implementations

• Efficient and Truly Passive Synchronization

scheme

• Performance Evaluation

• Conclusion and Future Work
EuroMPI 2013

NETWORK-BASED
COMPUTING

LABORATORYExisting Passive Synchronization Semantics
over IB

9EuroMPI 13

Shared Exclusive Limitations

State-of-the art
MPI Libraries

Send/Recv Send/Recv Restrict asynchronous
progress

Jiang et.al
(Compare_and_swap

)

Atomics Atomics High network Traffic due
to remote polling

Jiang et.al
(MCS based)

-- Atomics/Put Shared mode of locking is
not handled

Santhanaraman
et.al

Send/Recv Atomics Restrict asynchronous
progress. High network
Traffic

NETWORK-BASED
COMPUTING

LABORATORY

10

Outline

• Motivation

• Problem Statement

• Current MPI Passive Synchronization

Implementations

• Efficient and Truly Passive Synchronization

scheme

• Performance Evaluation

• Conclusion and Future Work
EuroMPI 2013

NETWORK-BASED
COMPUTING

LABORATORY

Lock Data Structures - 1

11EuroMPI 2013

• Our locking mechanism depends on IB atomics to implement shared
and exclusive mode of locking

• IB requires 64 bits buffer for atomic operations

• This 64 bits region is divided into three parts to handle different
lock request

– Shared Counter: count of the processes that own or have requested a
shared lock

– Exclusive Tail: rank of the process which is tail of the distributed queue

– Exclusive Head: rank of the process which is head of the distributed
queue

NETWORK-BASED
COMPUTING

LABORATORY

Lock Data Structures - 2

12EuroMPI 2013

• In order to handle all possible lock requests, a distributed lock
queue is maintained to ensure FIFO and avoid remote polling

• Data structures to implement the distributed lock queue:

– Wait-for array: used when shared lock comes after exclusive lock. This
exclusive lock knows the list of processes that request shared lock after
it

– Signal-to array: used when shared lock comes after exclusive lock. This
exclusive lock wakes up pending processes that are waiting for the
shared lock

– Exclusive-next: two element integer array. Used by processes requesting
exclusive lock to form a distributed lock queue

– Exclusive-prev: one integer flag. Used by a process unlocking an
exclusive lock to wake up another process waiting for an exclusive lock

NETWORK-BASED
COMPUTING

LABORATORY

Exclusive Locking Only

13EuroMPI 2013

• RDMA operations: compare_and_swap and Put

• Lock requests are ordered in distributed queue

• Exclusive locks are granted in FIFO order

Exclusive Lock
Request

Proc 0 Proc 2Proc 1

Exclusive Unlock
Request

0 0 0

Proc 0 gets lock

Enter Exclusive
Lock
Exclusive Unlock
Request

Enter Exclusive
Lock

Comp(0,0,0)

Swap(0,1,1) 0 1 1
Comp(0,0,0)

Swap(0,3,3)
Comp(0,1,1)

Swap(0,3,1)
0 3 1

Wait for you (Exclusive_next)

Signal (Exclusive_prev flag)

Comp(0,3,1)

Swap(0,0,0)
0 0 0

NETWORK-BASED
COMPUTING

LABORATORY

Shared Locking Only

14EuroMPI 2013

• Atomic operation : Fetch_and_add. To decrement we add the MAX
value

• Each process requires shared lock is able to get it after its atomic
operation completes

• Each process releases shared lock by decrementing shared lock
counter by 1 Shared Lock

Request

Proc 0 Proc 2Proc 1
0 0 0

Shared Lock
Request

Shared Unlock
Request

Shared Unlock
Request

Fetch_add

1 0 0
Fetch_add

2 0 0

Fetch_add

1 0 0 Fetch_add

0 0 0

NETWORK-BASED
COMPUTING

LABORATORY

Interleaved Shared and Exclusive
Locking

15EuroMPI 2013

• Shared followed by exclusive lock: Process gets exclusive lock after
all previously granted shared locks have been releases.

• Exclusive followed by shared lock: Process gets shared lock after
the previous exclusive lock releases its lock

Shared Lock
Request

Proc 0 Proc 2Proc 1

0 0 0

Exclusive Lock
Request

Shared Unlock
Request

Get Exclusive
Unlock

Fetch_add

1 0 0
Comp(0,0,0)

Swap(0,3,3)
Comp(1,0,0)

Swap(1,3,3)
1 3 3

Fetch_add

0 3 3

Signal wait_for of the head

Polls on local
wait_for

NETWORK-BASED
COMPUTING

LABORATORY

Intra-node Locking Design

16EuroMPI 2013

• For intra-node locking, native loopback that needs a number of queue
pairs

 (p+(p*(p-1))/2) is not an efficient implementation (P= number of
process on a node)

• If the lock-unlock 64 bits data structures are allocated in the shared
memory region, the number of queue pairs used is decreased from
(p+(p*(p-1))/2) to p

– Based on the intra-node locking design, if one process wants to acquire a
lock from other process in the same node, it issue atomic operation to itself
(loopback)

– The locking/unlocking mechanisms are the same as discussed earlier

(P+(P*(P-1))/2) QPs P QPs

NETWORK-BASED
COMPUTING

LABORATORY

Lock_All/Unlock_All Implementation

17EuroMPI 2013

• Lock_all and Unlock_all introduced in MPI-3 use only shared lock.

• In our design, they are implemented based on the lock/unlock
mechanism discussed eariler.

• If MPI_ MODE_ NOCHECK is used, then they are implemented as No_Op

• Inside Lock_all function, call win_lock is explicitly called for every
processes in the communicator

• For Unlock_all, the same mechanism is used to call unlock for every
process in the communicator

NETWORK-BASED
COMPUTING

LABORATORY

18

Outline

• Motivation

• Problem Statement

• Current MPI Passive Synchronization

Implementations

• Efficient and Truly Passive Synchronization

scheme

• Performance Evaluation

• Conclusion and Future Work
EuroMPI 2013

NETWORK-BASED
COMPUTING

LABORATORY

• Cluster A

– Xeon Dual quad-core processor (2.67 GHz) with 12GB RAM

– Mellanox QDR ConnectX HCAs (32 Gbps data rate) with PCI_Ex

Gen2 interface

• Software stack

– Implemented on MVAPICH2-1.9 will be in future releases

• http://mvapich.cse.ohio-state.edu Latest releases : MVAPICH2-2.0a

• High Performance open-source MPI Library for InfiniBand, 10Gig/iWARP, and RDMA

over Converged Enhanced Ethernet (RoCE)

– MVAPICH (MPI-1) ,MVAPICH2 (MPI-2.2 and MPI-3.0), Available since 2002

– MVAPICH2-X (MPI + PGAS), Available since 2012

– Used by more than 2,077 organizations (HPC Centers, Industry and Universities) in

70 countries

Experimental Setup

19EuroMPI 2013

http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/

NETWORK-BASED
COMPUTING

LABORATORY

MPI_Get with Lock-Unlock

20EuroMPI 2013

One MPI_Get Latency Eight MPI_Get Latency

Proposed Two Sided Based

Message size (Bytes)

L
at

en
cy

 (
us

)

Proposed Two Sided Based

L
at

en
cy

 (
us

)

Message size (Bytes)

16k 32k 64k 256k 1M 4M
0

200
400
600
800

1000
1200
1400

Proposed Two Sided Based

L
at

en
cy

 (
us

)

L
at

en
cy

 (
us

)

Message size (Bytes)

• For one MPI_Get latency:

 - Small messages: atomic based design incurs an overhead
compared to two-sided based design : two-sided design coalesces the 3
operations in one message

 - Large messages: Amortized the overhead and have similar
performance

• For eight MPI_Get latency, the overhead is amortized and we see
similar performance with both designs

NETWORK-BASED
COMPUTING

LABORATORY

MPI_Get with Lock_all-Unlock_all

21EuroMPI 2013

Small Messages Large Messages

• We see the same trend for small messages

• Our design could benefit large messages by asynchronously
issuing lock/unlock requests from different processes

0
10
20
30
40
50
60
70
80 Proposed Two Sided Based

Message size (Bytes)

L
at

en
cy

 (
us

)

64k 128k 256k 512k 1M 2M 4M
0

1000

2000

3000

4000

5000 Proposed Two Sided Based

L
at

en
cy

 (
us

)

Message size (Bytes)

NETWORK-BASED
COMPUTING

LABORATORY

Overlap Benchmark

22EuroMPI 2013

Number of Processes

Communication Overlap-Lock_all

• Our design achieves almost optimal computation/communication
overlapping

2.0 4.0 8.0 16.0 32.0
0

20

40

60

80

100

120
Two Sided Based Proposed

P
er

ce
nt

ag
e

of
 O

ve
rla

p

2.0 4.0 8.0 16.0 32.0
0

20

40

60

80

100

120
Two Sided Based Proposed

P
er

ce
n

ta
ge

 o
f

O
ve

rla
p

Communication Overlap-Lock

Number of Processes

NETWORK-BASED
COMPUTING

LABORATORY

Splash LU Kernel

23EuroMPI 2013

• This modified version of Splash LU Kernel does dense LU
factorization

• Our design outperforms the two-sided approach by a factor or 49%
and 35% on 4 and 32 processes

2.0 4.0 8.0 16.0 32.0
0

5000

10000

15000

20000

25000

30000

Two Sided Based Proposed

E
xe

cu
tio

n
tim

e
(m

s)

Number of processes

49%

35%

NETWORK-BASED
COMPUTING

LABORATORY

Conclusion and Future Work

24EuroMPI 2013

• Proposed Locking mechanism to implement both shared and

exclusive lock with RDMA InfiniBand Atomics:

 - No remote polling

 - FIFO order.

• Show optimal computation communication overlap

• Demonstrated up to 49% improvement using Splash LU

Kernel

• Evaluate our designs with more applications/systems

• Provide RDMA based-designs for MPI-3 RMA over IB

NETWORK-BASED
COMPUTING

LABORATORY

 Thank You!
{limin, potluri, hamidouc, jose, panda} @cse.ohio-state.edu

Network-Based Computing Laboratory

http://nowlab.cse.ohio-state.edu/

Network Based Computing

Laboratory

MVAPICH Web Page
http://mvapich.cse.ohio-state.edu/

25

http://nowlab.cse.ohio-state.edu/

