ETWORK-BASE
COMPUTING

Efficient and Truly Passive MPIﬁB
RMA Synchronization Usmg
InfiniBand Atomics

Mingzhe Li Sreeram Potluri Khaled Hamidouche

Jithin Jose Dhabaleswar K. Panda

Network-Based Computing Laboratory
Department of Computer Science and
Engineering
The Ohio State University

OHIO
SIATE

ETWORK-BASE
COMPUTING

Outline

* Motivation
* Problem Statement

* Current MPI Passive Synchronization

Implementations

* Efficient and Truly Passive Synchronization

scheme
* Performance Evaluation

* Conclusion and Future Work

OHIO
SIATE

ETWORK-BASE
ONMPUTING

MPl Remote Memory Access (R
Model

* Minimizing communication overheads is key as applications
scale to millions of processes/cores

* RMA model offers an alternative to Send/Recv based message
passing model

— Communication Epochs
Period between 2 synchronizations
* One-sided communication

* Windows area

* Promises better latency hiding, asynchronous progress and
reduced synchronization overheads

* MPI-3 offers several extensions to provide more flexibility

OHIO
T e

—:IETWORK-BASEF
COMPUTING

MPI-3 RMA Passive Synchronization

* RMA offers flexible synchronization alternatives
— Active: Fence and Post-Wait/Start-Complete
— Passive: Lock/Unlock, Lock_all/Unlock all

— Shared/Exclusive (Lock/Unlock) and (Only Shared)
(Lock all/Unlock_all)

* Passive synchronization does not require involvement of target
process

— Less synchronization

— Better overlap
* However, current implementations are based on two-sided operations
* Desirable to have a truly one-sided design offering

— Performance (no remote polling)

— Fairness (FIFO)

OHIO
Ea —EvEOTET s

ETWORK-BASE
COMPUTING

InfiniBand

* Interconnect of choice in high performance systems

* Offers RDMA
— Read/Write
— Atomics (Fetch-and-Add, Compare-and-Swap)

* Atomics are supported only on 64bit values

* Important to take advantage of these features to design the
Passive synchronization

OHIO
Ea —EvEOIET s

ETWORK-BASE
COMPUTING

Outline

* Problem Statement

* Current MPI Passive Synchronization

Implementations

* Efficient and Truly Passive Synchronization

scheme
* Performance Evaluation

* Conclusion and Future Work

OHIO
SIATE

—:IETWORK-BASEF
COMPUTING

Problem Statement

Can a truly passive locking mechanism be designed for InfiniBand Clusters ?

How can this design provide :
- Performance (no remote Polling)
- Fairness (FIFO => no starvation)

Can the new locking mechanism benefits the performance of applications ?

OHIO
SIATE

ETWORK-BASE
COMPUTING

Outline

* Current MPI Passive Synchronization

Implementations

* Efficient and Truly Passive Synchronization

scheme
* Performance Evaluation

* Conclusion and Future Work

OHIO
SIATE

Existing Passive Synchronization Sermaa*n%rg”“""”“ HES

State-of-the art
MPI Libraries

Jiang et.al
(Compare_and_swap

)

Jiang et.al
(MCS based)

Santhanaraman
et.al

over IB
Shared Exclusive
Send/Recv Send/Recv
Atomics Atomics
-- Atomics/Put
Send/Recv Atomics

Limitations

Restrict asynchronous
progress

High network Traffic due
to remote polling

Shared mode of locking is
not handled

Restrict asynchronous
progress. High network
Traffic

OHIO
MRS 9

ETWORK-BASE
COMPUTING

Outline

* Efficient and Truly Passive Synchronization

scheme
* Performance Evaluation

* Conclusion and Future Work
OHIO
SIATE

Lock Data Structures - 1

* Our locking mechanism depends on IB atomics to implement shared
and exclusive mode of locking

* |IB requires 64 bits buffer for atomic operations

* This 64 bits region is divided into three parts to handle different

lock reques*
4— 20 bits —p» — 22 bits —I —— 22 bits —P

Shared
Counter

Exclusive Tail | Exclusive Head

— Shared Counter: count of the processes that own or have requested a
shared lock

— Exclusive Tail: rank of the process which is tail of the distributed queue

— Exclusive Head: rank of the process which is head of the distributed
queue

OHIO
E ——EMEOTST 1T

Lock Data Structures - 2

* In order to handle all possible lock requests, a distributed lock
gueue is maintained to ensure FIFO and avoid remote polling

* Data structures to implement the distributed lock queue:

— Wait-for array: used when shared lock comes after exclusive lock. This
exclusive lock knows the list of processes that request shared lock after
it

— Signal-to array: used when shared lock comes after exclusive lock. This

exclusive lock wakes up pending processes that are waiting for the
shared lock

— Exclusive-next: two element integer array. Used by processes requesting
exclusive lock to form a distributed lock queue

— Exclusive-prev: one integer flag. Used by a process unlocking an
exclusive lock to wake up another process waiting for an exclusive lock

OHIO
E ——EMEOIET 1

ETWORK-BASE
COMPUTING

Exclusive Locking Only

* RDMA operations: compare_and swap and Put
* Lock requests are ordered in distributed queue

* Exclusive locks are granted in FIFO order

Proc 0 Proc 1 Proc 2
Exclusive Lock comp(0.,0,0) 000
Request — > Comp(0,0,0) Enter Exclusive
Swap(0,1,1) 011 W> Lock
___ Comp@::3y— —
Proc 0 gets lock

031 ><>
wap(0,3,1)

K ait for you (Exclusive Jnext)

—————

]éxclusive Unlock> |
equest Signal (Excludive_previlagy———>k Enti Exclusive
oC
Comp(0,3,1) Exclusive Unlock

- <
Request

)

-

OHIO
E —EMEDOIST 13

Shared Locking Only

* Atomic operation : Fetch_and _add. To decrement we add the MAX
value

* Each process requires shared lock is able to get it after its atomic
operation completes

* Each precess releases sharedrindk by decrementingr@hared lock

[j‘, 000
Sharef PYMLEN N 1Fetch_add
Request I ———
1 < Fetch_add Shared Lock

100 — Request
>
2 00
Shared Unlock X Fetch_add
Request
< 10 0 Fetch_add hared Unlock
\ Request
>
000

OHIO
E ——EvEOIET 1

ETWORK-BASE
COMPUTING

Interleaved Shared and Exclusive
Locking

* Shared followed by exclusive lock: Process gets exclusive lock after
all previously granted shared locks have been releases.

* Exclusive followed by shared lock: Process gets shared lock after
the previous exclusive lock releases its lock

Proc 0 Proc 1 Proc 2
Shared Lock S Fetch_add N
Request <//‘> Comp(0,0,0) xclusive Lock
1 0 0k Request
Swap(t;3,3) ;l
13 3 Swap(1,3,3)
Shared Unlock Fetch_add PO|_|tS fon ocal
Request < war_tor
0 3 3
Pignal wait= the head> | Get Exclusive
[Unlock

OHIO
E ——EMEDOIST 15

ETWORK-BASE
COMPUTING

Intra-node Locking Design

* For intra-node locking, native loopback that needs a number of queue
pairs

(p+(p*(p-1))/2) is not an efficient implementation (P= number of
process on a node)

P QPs

(P+(P*(P-1))/2) QPs

* If the lock-unlock 64 bits data structures are allocated in the shared
memory region, the number of queue pairs used is decreased from

(p+(p*(p-1))/2) top

— Based on the intra-node locking design, if one process wants to acquire a
lock from other process in the same node, it issue atomic operation to itself

(loopback)

OHIO =
SIATE

ETWORK-BASE
COMPUTING

Lock All/Unlock All Implementation

* Lock all and Unlock all introduced in MPI-3 use only shared lock.

* In our design, they are implemented based on the lock/unlock
mechanism discussed eariler.

* If MPIL_MODE_ NOCHECK is used, then they are implemented as No Op

* Inside Lock all function, call win_lock is explicitly called for every
processes in the communicator

* For Unlock _all, the same mechanism is used to call unlock for every
process in the communicator

OHIO
E ——EvEEOIET 17

ETWORK-BASE
COMPUTING

Outline

* Performance Evaluation

* Conclusion and Future Work
OHIO
SIATE

Experimental Setup

* Cluster A
— Xeon Dual quad-core processor (2.67 GHz) with 12GB RAM

— Mellanox QDR ConnectX HCAs (32 Gbps data rate) with PCl_Ex
Gen2 interface

* Software stack

— Implemented on MVAPICH2-1.9 will be in future releases

e http://mvapich.cse.ohio-state.edu Latest releases : MVAPICH2-2.0a

* High Performance open-source MPI Library for InfiniBand, 10Gig/iWARP, and RDMA
over Converged Enhanced Ethernet (RoCE)

— MVAPICH (MPI-1) ,MVAPICH2 (MPI-2.2 and MPI-3.0), Available since 2002
— MVAPICH2-X (MPI + PGAS), Available since 2012

— Used by more than 2,077 organizations (HPC Centers, Industry and Universities) in
70 countries

OHIO
Ea ———EvEDOIST 19

http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/

ETWORK-BASE
COMPUTING

MPI Get with Lock-Unlock

One MPI_Get Latency Eight MPI_Get Latency
1400-I- Proposed=—e— Two Sided Bas’ed
g g 1200 / g
> > 1000 S
— — —

800
400
200 ’//

e s 16k 32k 64k 256k 1M 4M

Message size (Bytes) Message size (Bytes) Message size (Bytes)

* For one MPI_Get latency:

- Small messages: atomic based design incurs an overhead
compared to two-sided based design : two-sided design coalesces the 3

operations in one message

- Large messages: Amortized the overhead and have similar
performance

oﬁ% r eight MPI Get latency, the overhead is amortized and we see
ié" 'ih

W
MPI Get with Lock all-Unlock all

Small Messages Large Messages
o5 Proposed —e-Two Sided Based 005 Proposed ——Two Sided Based
70 /
f]
2 60 / ~ 4000 //
2 e 2
50
> / > 3000
g 40)4 g
= = 2000
3 28 " S
T S S e e S S 1000
10
0 T T T T T T T T T T T T T T 1 O T T T T T 1
N T R - TR SR 64k 128k 256k 512k 1M 2M 4M
Y © q(/o Y ™ ,»b
Message size (Bytes) Message size (Bytes)

* We see the same trend for small messages

e Our design could benefit large messages by asynchronously
iIssuing lock/unlock requests from different processes

OHIO
Ea ——EvEOIST 21

ETWORK-BASE
COMPUTING

Overlap Benchmark

B Two Sided Based M Proposed M Two Sided Based M Proposed
120 120

o 100 o 100

° ©

g 80 g 80

= 60 < 60

o> 40 S 40

s 8

S 20 o 20

o o

() 0 -) 0-

o 2.0 4.0 8.0 160 320 0 2.0 4.0 8.0 160 320

Number of Processes Number of Processes

Communication Overlap-Lock Communication Overlap-Lock_all

* Our design achieves almost optimal computation/communication
overlapping

OHIO
Ea ——EvEOIST 22

ETWORK-BASE
COMPUTING

Splash LU Kernel

B Two Sided Based M Proposed
30000

25000
20000 -

15000
10000 - 49%

5000 - ‘ 35%
O]

2.0 16 0 32.0
Number of processes

Execution time (ms)

* This modified version of Splash LU Kernel does dense LU
factorization

* Our design outperforms the two-sided approach by a factor or 49%
and 35% on 4 and 32 processes

OHIO
SIATE

ETWORK-BASE
COMPUTING

Conclusion and Future Work

* Proposed Locking mechanism to implement both shared and
exclusive lock with RDMA InfiniBand Atomics:

- No remote polling
- FIFO order.

* Show optimal computation communication overlap

* Demonstrated up to 49% improvement using Splash LU
Kernel

* Evaluate our designs with more applications/systems
* Provide RDMA based-designs for MPI-3 RMA over IB

OHIO
Ea —EvEDOIST 24

W
Thank You!

{limin, potluri, hamidouc, jose, panda} @cse.ohio-state.edu

Network Bas@@_omputing e

F=0 =— MVAPICH
-

Laboratory

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

MVAPICH Web Page
http://mvapich.cse.ohio-state.edu/

25

OHIO
e

http://nowlab.cse.ohio-state.edu/

