
Fast and Scalable Startup of MPI
Programs in InfiniBand Clusters

W. Yu, J. Wu, D.K. Panda

Dept of Computer Sci. and Engineering
The Ohio State University

{yuw,wuj,panda}@cse.ohio-state.edu

• Background
• Startup of MPI programs over IBA
• Designing Scalable Startup Schemes
• Performance Evaluation
• Conclusions and Future Work

Presentation Outline

• Cluster-based parallel computing
– Using MPI as the de facto Standard in HPC
– Evolved into thousands, tens of thousands

processors
– Focus on high performance message passing
– Fast and scalable startup is also needed

Background

• Process Initiation
– Processes initiated across the cluster
– Using iterative rsh/ssh
– Or PBS, MPD, among many others

• Connection Setup
– Initially not connected, not even knowing how to

connect between each other
– Need to set up Peer-to-Peer connection
– Need involvement of a third-party

Startup of MPI Programs

• A high performance interconnect
– A switch fabric to aggregate bandwidth and

connect nodes with HCA and HTA
– Blend well with latest trends in HPC
– Deliver low latency and over 10Gbps Bandwidth

• An emerging industry standard
– Data-Center
– Higher performance computing
– As more IBA clusters being delivered,

more parallel programs use MPI over InfiniBand

InfiniBand

• Based on MPICH and MVICH
• Open Source (current version is 0.9.4)
• Have been directly downloaded by more than 150 organizations and industry
• Available in the software stack distributions of IBA vendors

MVAPICH Software Distribution

National Labs/Research Centers
 Argonne National Laboratory
 Cornell Theory Center
 Center for Mathematics and Computer Science
 (The Netherlands)
 Inst. for Experimental Physics (Germany)
 Inst. for Program Structures and Data Organization
 (Germany)
 Lawrence Berkeley National Laboratory
 Los Alamos National Laboratory
 Max Planck Institute for Astronomy (Germany)
 NASA Ames Research Center
 NCSA
 National Center for Atmospheric Research
 Ohio Supercomputer Center
 Pacific Northwest National Laboratory
 Pittsburgh Supercomputing Center
 Research & Development Institute Kvant (Russia)
 Science Applications International Corporation
 Sandia National Laboratory

Universities
 Georgia Tech
 Indiana University
 Korea Univ. (Korea)
 Korea Inst. Of Science and Tech. (Korea)
 Kyushu Univ. (Japan)
 Mississippi State University
 Moscow State University (Russia)
 Northeastern University
 Penn State University
 Russian Academy of Sciences (Russia)
 Stanford University
 Technion (Israel)
 Technical Univ. of Munchen (Germany)
 Technical Univ. of Chemnitz (Germany)
 Univ. of Geneva (Switzerland)
 Univ. of Houston
 Univ. of Karlsruhe (Germany)
 Univ. of Massachusetts Lowell
 Univ. of Paderborn (Germany)
 Univ. of Potsdam (Germany)
 Univ. of Rio Grande (Brazil)
 Univ. of Sherbrooke (Canada)
 Univ. of Stuttgart (Germany)
 Univ. of Toronto (Canada)

MVAPICH Users (Cont’d)

 Abba Technology
 Advanced Clustering Tech.
 AMD
 Ammasso
 Appro
 Array Systems Comp. (Canada)
 Atipa Technologies
 Agilent Technologies
 Clustars Supercomputing-
 Technology Inc. (China)
 Clustervision (Netherlands)
 Compusys (UK)
 CSS Laboratories, Inc.
 Dell
 Delta Computer (Germany)
 Emplics (Germany)
 Fluent Inc.
 ExaNet (Israel)
 GraphStream, Inc.
 HP
 HP (France)

Industry
 IBM
 IBM (France)
 IBM (Germany)
 INTERSED (France)
 InfiniCon
 Intel
 Intel (China)
 Intel (Germany)
 Intel Solution Services (Hong Kong)
 Intel Solution Services (Japan)
 JNI
 Kraftway (Russia)
 Langchao (China)
 Linux Networx
 Linvision (Netherlands)
 Megaware (Germany)
 Mercury Computer Systems
 Mellanox Technologies
 Meiosys (France)
 Microway, Inc.
 NEC (Japan)
 NEC Solutions, Inc.
 NEC (Singapore)
 NICEVT (Russia)
 OCF plc (United Kingdom)

 OctigaBay (Canada)
 PANTA Systems
 ParTec (Germany)
 PathScale, Inc.
 Pultec (Japan)
 Pyramid Computer (Germany)
 Qlusters (Israel)
 Raytheon Inc.
 RLX Technologies
 Rosta Ltd. (Russia)
 SBC Technologies, Inc.
 Scyld Software
 SGI (Silicon Graphics, Inc.)
 SKY Computers
 Streamline Computing (UK)
 Systran
 Tomen
 Telcordia Applied Research
 Thales Underwater Systems (UK)
 Transtec (Germany)
 T-Platforms (Russia)
 Topspin
 Unisys
 Voltaire
 WorkstationsUK, Ltd. (UK)
 Woven Systems, Inc.

• Background
• Startup of MPI programs over IBA
• Designing Scalable Startup Schemes
• Performance Evaluation
• Conclusions and Future Work

Presentation Outline

• Four types of connections
– Reliable Connection
– Reliable Datagram (RD)
– Unreliable Connection (UC)
– Unreliable Datagram (UD)

• Connection Model used in MPI parallel programs
– On-demand Dynamic Connection with IB Connection

Management support
– Static connection model:

• have all processes fully connected before message passing MPI
communication

• Reliable Connection typically used for its performance, e.g.,
MVAPICH

Connection Model
over InfiniBand

• Characteristics of Reliable Connection
– Need to have a pair of queue-pair established
– Need to exchange QP-ID (queue-pair identification)

and LID (HCA identification)
– Connection-oriented

• Representative Implementation, MVAPICH
– Unique QP-ID per-process
– N*(N-1) connections among N processes

Reliable Connection

Startup in MVAPICH:
Process Initiation

rsh/ssh
daemon

fork/exec
port

process

launcher

• Application processes launched through rsh/ssh daemons
• All application processes connect back to launcher with

an open port, but not yet connected among each other

Connection Setup

process

launcherlid,qp{N-1}

lid,qp{N-1} lid,qp{N-1}

• The launcher gathers a LID and N-1 QP-ID from each process
• The combined N copies of LID and QP-ID are sent to each process
• Application processes then use LID and QP-ID to set up RC

connections

Scalability Bottlenecks
• Connection setup phase

– Receive: N copies of LID + (N-1) QP ID
– Send: N copies of (N* LID + N * (N-1) QP-ID)
– Amount of data:

• O(N3) for N processes
• 4GB for 1024-processes

• Also at the process initiation phase
– Iterative and serialized rsh/ssh

• Background
• Startup of MPI programs over IBA
• Designing Scalable Startup Schemes
• Performance Evaluation
• Conclusions and Future Work

Presentation Outline

Efficient Connection Setup
• Reducing the data volume

– Out of (N-1) QP-ID from each process, only one QP-
ID is needed for a particular peer process to set up
IB connection

– Data reassembly at the job launcher
• Instead of sending the combined N*(N-1) QP-ID,

select (N-1) QP-ID for a particular processes

– Reducing the total data volume from N3 to N2

Communication Parallelization

• Each process sends its LID and QP-ID’s for its left-hand side (lhs)
and right-hand side (rhs) processes

lid,qp{lhs,rhs}

(lid,qp){lhs,rhs}

Bootstrap Channel

Process 0

Process 1Process 2

Process 3

• In return, each processes receives LID and QP-ID, from both lhs
and rhs processes

Queue Pair Exchange over
the Bootstrap Channel

Process 0

Process 1Process 2

Process 3

lid,qp{N-1}

lid,qp{N-1}

lid,qp{N-1}

lid,qp{N-1}

(3)(1)

(0)

(2)

lid,qp{N-1}

lid,qp{N-1}

lid,qp{N-1}

lid,qp{N-1}

(2)

(0)

(3)

(1)

lid,qp{N-1}

lid,qp{N-1}

lid,qp{N-1}

lid,qp{N-1}

(0)

(2)

(1)

(3)

Bootstrap Channel
• Pros:

– Queue pair exchange with inband communication
over InfiniBand

– Fast IB communication compared to Ethernet
– Ring-based All-to-all Broadcast

• Each process is sending N copies of lid, qp{N-1}
• Parallelized queue pair exchange over the bootstrap channel

• Cons:
– An overhead of setting up the bootstrap channel

Fast Process Initiation

• We also utilize a fast job launcher to replace
iterative rsh/ssh-based process initiation
– MPD is chosen as it is widely distributed along with MPICH
– Can be applied to others such as PBS.

• Incorporated with the inband bootstrap channel to
improve the scalability of QP exchange

• Background
• Startup of MPI programs over IBA
• Designing Scalable Startup Schemes
• Performance Evaluation
• Conclusions and Future Work

Presentation Outline

Experimental Testbed

• A 128-node InfiniBand cluster
– Dual-SMP Intel xeon processors
– 2.4GHz, 4GB RAM
– PCI-X 133MHz/64-bit

• File system Effects
– NFS access could impact the startup
– All binary files are first broadcasted to local

disks to avoid file system bottleneck

Experiments

• Four Startup schemes were evaluated with varying
number of processes
– Original: the original startup scheme in MVAPICH 0.9.1
– SSH-DR: data reassembly to reduce the data volume
– SSH-BC:

• parallelized queue pair exchange over inband bootstrap channel

– MPD-BC:
• Fast process initiation with MPD
• Inband bootstrap channel for scalable connection setup

• Analytical Modeling of the scalabilities of these four schemes

Startup Time

3.10

13.3

13.45

13.7

128

1.58

6.76

6.77

7.3

64

3.371.690.940.58SSH-DR

3.381.700.950.61SSH-BC

Table 1. Performance Comparisons of Different Startup
Schemes (sec)

0.840.640.630.61MPD-BC

3.411.740.920.59Original

321684Number of
Processes

• Both SSH-DR and SSH-BC reduce the startup time
• MPD-BC perform the best because it takes advantage of MPD fast

process initiation and fast connection up with the bootstrap channel
• With up to 128-processes, the improvement can be more than 4 times

• General Formula: Tstartup = Tinit + Tconn + Constant
– Tstartup : Total startup time
– Tinit : Process Initiation Time
– Tconn: Connection Setup Time

• Original Scheme:
– Tstartup = O0 * N + O1 * (WN + WN

2) * N + O2

– O0, O1, O2 are constants;
– WN, WN

2 : Transfer time for N, N2 bytes, respectively

Modeling the Startup Time

• SSH-DR:
– Tstartup = D0 * N + Dcomp * N + D1 * (WN + WN) * N + D2

– Do, D1, D2 and Dcomp are constants
– Dcomp * N : Computation time for Data Reassembly
– WN + WN : data transfer time with reduced data volume

• MPD-BC:
– Tstartup = (Mo + Mreq * N) + (Mch_setup * N + M1*WN*N) + M2

– M0, M1, M2, Mreq and Mch_setup are constants;
– (Mo + Mreq * N): Parallelized process initiation in MPD, with a

launch request going through the ring of MPD daemons
– Mch_setup * N: The time to setup a bootstrap ring

Modeling the Startup Time

Effectiveness of the Modeling

• Parameters for the analytical models are computed based
on experiment results up to 128 processes

• The modeling results is rather effective to reflect the
trend of the experiment results

Scalability

• SSH-DR and MPD-BC have lower order of scalability trends
• Over 2048 processes, MPD-BC can improve the startup time

by more than two orders of magnitudes

• Background
• Startup of MPI programs over IBA
• Designing Scalable Startup Schemes
• Performance Evaluation
• Conclusions and Future Work

Presentation Outline

• Studied Scalable Startup of MPI programs over
InfiniBand Clusters

• Scalable connection setup with two schemes
– Data reassembly to reduce the data volume
– Parallelized queue pair exchange over a bootstrap channel

• Fast process initiation with MPD
– With the bootstrap channel to improve connection setup

• Improve startup time by 4 times over 128 processes
• Analytical model indicates two magnitudes of

improvement over 2048 processes

Conclusions

• Incorporate a file broadcast mechanism for even
faster process initiation

• Explore a hypercube-based data exchange to
enhance scalability of queue pair exchange for large
size systems

• Explore the possibility of on-demand dynamic
connection with InfiniBand connection management
support

Future Work

More Information

http://www.cse.ohio-state.edu/~panda/
http://nowlab.cis.ohio-state.edu/

E-mail: {yuw,wuj,panda}@cse.ohio-state.edu

NBCL home page

