
Benefits of Quadrics Scatter/Gather to PVFS2
Noncontiguous IO∗

Weikuan Yu Dhabaleswar K. Panda

Network-Based Computing Lab
Dept. of Computer Science & Engineering

The Ohio State University
{yuw,panda}@cse.ohio-state.edu

Abstract

Noncontiguous IO access is the main ac-
cess pattern in scientific applications. We
have designed an algorithm that supports zero-
copy noncontiguous PVFS2 IO using a soft-
ware scatter/gather mechanism over Quadrics.
To investigate what impact Quadrics scat-
ter/gather mechanism can have on PVFS2 IO
accesses, in this paper, we perform an in-
depth evaluation of the scatter/gather mecha-
nism. We also study how much this mecha-
nism can improve on the performance of sci-
entific applications. Our performance evalu-
ation indicates that Quadrics scatter/gather is
beneficial to PVFS2 IO bandwidth. The per-
formance of an application benchmark, MPI-
Tile-IO, can be improved by 113% and 66%
in terms of aggregated read and write band-
width, respectively. Moreover, our implemen-
tation significantly outperforms an implemen-
tation of PVFS2 over InfiniBand, which does

∗This research is supported in part by a DOE
grant #DE-FC02-01ER25506 and NSF Grants #CCR-
0311542, #CNS-0403342 and #CNS-0509452.

not support zero-copy noncontiguous IO.

1. Introduction

Many parallel file systems, including both
commercial packages [9, 11, 6] and research
projects [12, 8, 1], have been developed to
meet the needs of high IO bandwidth for sci-
entific applications. Among them, Parallel Vir-
tual File System 2 (PVFS2) [1] has been cre-
ated with the intention to support next gen-
eration systems using low cost Linux clusters
with commodity components. These parallel
file systems make use of network IO to par-
allelize IO accesses to remote servers. High
speed interconnects, such as Myrinet [3] and
InfiniBand [10], have been utilized in com-
modity storage systems to achieve scalable par-
allel IO. An effective integration of networking
mechanisms is important to the performance of
these file systems.

While most file systems are optimized for
contiguous IO accesses, scientific applications
typically make structured IO accesses to the
data storage. These accesses consist of a large

number of IO operations to many small regions
of the data files. The noncontiguity can ex-
ist in both the clients’ memory layout and a
file itself. In view of the importance of native
noncontiguous support for file systems, Thakur
et. al. [18] have proposed a structured IO inter-
face to describe noncontiguity in both memory
and file layout. PVFS2 is designed with a na-
tive noncontiguous interface, list IO, to support
structured IO accesses.

Quadrics interconnect [14, 2] provides a
very low latency (≤ 2µs) and high band-
width cluster network. It supports many of
the cutting-edge communication features, such
as OS-bypass user-level communication, re-
mote direct memory access (RDMA), as well
as hardware atomic and collective operations.
We have recently demonstrated that Quadrics
interconnect can be utilized for high perfor-
mance support of Parallel Virtual File System
2 (PVFS2) [21]. An efficient Quadrics scat-
ter/gather mechanism is designed to support
PVFS2 list IO. However, it is to be investi-
gated how PVFS2 IO accesses can benefit from
Quadrics scatter/gather, and what benefits it
can provide to scientific applications.

In this paper, we first describe PVFS2 list
IO and the noncontiguity that exists in PVFS2
IO accesses. We then evaluate the performance
benefits of Quadrics scatter/gather support to
PVFS2 IO accesses and scientific applications.
Our experimental results indicate that Quadrics
scatter/gather is beneficial to the performance
of IO accesses in PVFS2. Such zero-copy
scatter/gather-based PVFS2 list IO can signif-
icantly improve the performance of scientific
applications that involve noncontiguous IO ac-
cesses. We show that the read and write band-
width of an application benchmark, MPI-Tile-
IO, can be improved by 113% and 66%, re-
spectively. Moreover, our implementation of
PVFS2 over Quadrics, with or without scat-
ter/gather support, outperforms an implemen-

tation of PVFS2 over InfiniBand.
The rest of the paper is organized as follows.

In the next section, we provide an overview of
PVFS2 over Quadrics. In Section 3, we de-
scribe the design of scatter/gather mechanism
over Quadrics to support zero-copy noncon-
tiguous PVFS2 list IO. In Section 4, we pro-
vide performance evaluation results. Section 5
gives a brief review of related works. Section 6
concludes the paper.

2. Overview of PVFS2 over Quadrics

PVFS2 [1] is the second generation file
system from the Parallel Virtual File Sys-
tem (PVFS) project team. It incorporates
the design of the original PVFS [13] to pro-
vide parallel and aggregated I/O performance.
A client/server architecture is designed in
PVFS2. Both the server and client side li-
braries can reside completely in user space.
Clients communicate with one of the servers
for file data accesses, while the actual file IO is
striped across a number of file servers. Meta-
data accesses can also be distributed across
multiple servers. Storage spaces of PVFS2
are managed by and exported from individual
servers using native file systems available on
the local nodes.

PVFS2 has been ported to various different
high speed interconnects, including Myrinet
and InfiniBand. Recently, by overcoming the
static process model of Quadrics user-level
communication [22, 21], PVFS2 over Quadrics
has been implemented over the second gener-
ation of Quadrics interconnects, QsNetII [2].
This new release provides very low latency,
high bandwidth communication with its two
building blocks: the Elan-4 network interface
and the Elite-4 switch, which are intercon-
nected in a fat-tree topology. On top of its
Elan4 network [14], Quadrics provides two
user-level communication libraries:libelan

andlibelan4. PVFS2 over Quadrics is im-
plemented completely in the user space over
these libraries, compliant to the modular de-
sign of PVFS2. As shown in Fig. 1, its
networking layer, Buffer Message Interface
(BMI) [4], is layered on top of the libelan
and libelan4 libraries. More details on the
design and initial performance evaluation of
PVFS2/Quadrics can be found in [21].

lib{elan,elan4}

BMI

PVFS2 Client
IO Server

lib{elan,elan4}

BMIInterconnect
Quadrics

Storage

Storage

lib{elan,elan4}

BMI

Meta Server

Fig. 1. PVFS2 over Quadrics Elan4

3. Designing Zero-Copy Quadrics
Scatter/Gather for PVFS2 List
IO

Noncontiguous IO access is the main ac-
cess pattern in scientific applications. Thakur
et. al. [18] noted that it is important to achieve
high performance MPI-IO with native noncon-
tiguous access support in file systems. PVFS2
provides list IO interface to support such non-
contiguous IO accesses. Fig. 2 shows an ex-
ample of noncontiguous IO with PVFS2. In
PVFS2 list IO, communication between clients
and servers over noncontiguous memory re-
gions are supported over list IO so long as the
combined destination memory is larger than
the combined source memory. List IO can be
built on top of interconnects with native scat-
ter/gather communication support, otherwise,
it often resorts to memory packing and un-
packing for converting noncontiguous memory
fragments to contiguous memory. An alterna-
tive is to perform multiple send and receive op-
erations. This can lead to more processing and

more communication in small data chunks, re-
sulting in performance degradation.

�
�
�
� �

�
�
��

�
�
� �

�
�
� � �

� �
	
	

�
�

�
�

 �

�
�
� �

�
�
� �

�
�
��

�
�
��

�
�
�

�
�
�
� �

�
�
� � �

� �
� �
� � �

�
�
�

!
! "

"
#
#

Client

Server

Disk

List IO

Trove

Fig. 2. An Example of PVFS2 List IO

There is a unique chain DMA mechanism
over Quadrics. In this mechanism, one or
more DMA operations can be configured as
chained operations with a single NIC-based
event. When the event is fired, all the
DMA operations will be posted to Quadrics
DMA engine. Based on this mechanism,
the default Quadrics software release provides
noncontiguous communication operations in
the form of elan putv and elan getv. How-
ever, these operations are specifically designed
for the shared memory programming model
(SHMEM) over Quadrics. The final placement
of the data still requires a memory copy from
the global memory to the application destina-
tion memory.

To support zero-copy PVFS2 list IO, we pro-
pose a software zero-copy scatter/gather mech-
anism with a single event chained to multiple
RDMA operations. Fig. 3 shows a diagram

$ $ $$ $ $$ $ $$ $ $

% %% %% %% %

& && && && &

' '' '' '' '

((
((

))
))

* * ** * ** * ** * *

+ ++ ++ ++ +

, , ,, , ,, , ,, , ,

- -- -- -- -

.

/ / // / // / // / /

00
00

11
11

2 22 22 22 2

33
33

N

single event

Host Event

4

1

2 3

destination NICMultiple RDMA

Command Port

Destination MemorySource Memory

Fig. 3. Zero-Copy Noncontiguous Communica-

tion with RDMA and Chained Event

about how it can be used to support PVFS2
list IO with RDMA read and/or write. As the
communication on either side could be non-
contiguous, a message first needs to be ex-
changed for information about the list of mem-
ory address/length pairs. The receiver can de-
cide to fetch all data through RDMA read, or
it can inform the sender to push the data us-
ing RDMA write. With either RDMA read
or write, the number of required contiguous
RDMA operations,N , needs to be decided
first. Then the same number of RDMA de-
scriptors are constructed in the host memory
and written together into the Quadrics Elan4
command port (a command queue to the NIC
formed by a memory-mapped user accessible
NIC memory) through programmed IO. An
Elan4 event is created to wait on the comple-
tion of N RDMA operations. As this event
is triggered, the completion of list IO opera-
tion is detected through a host-side event. Over
Quadrics, a separate message or an event can
be chained to this Elan4 event and notify the
remote process. Note that, with this design,
multiple RDMA operations are issued without
calling extra sender or receiver routines. The
data is communicated in a zero-copy fashion,
directly from the source memory regions to the
destination memory regions.

4. Performance Evaluation

In this section, we describe the perfor-
mance evaluation of zero-copy Quadrics scat-
ter/gather for PVFS2 over Quadrics. The
experiments were conducted on a cluster of
eight SuperMicro SUPER X5DL8-GG nodes:
each with dual Intel Xeon 3.0 GHz proces-
sors, 512 KB L2 cache, PCI-X 64-bit 133
MHz bus, 533MHz Front Side Bus (FSB) and
a total of 2GB PC2100 DDR-SDRAM phys-
ical memory. All eight nodes are connected
to a QsNetII network [14, 2], with a dimen-

sion one quaternary fat-tree [7] QS-8A switch
and eight Elan4 QM-500 cards. The nodes
are also connected using the Mellanox InfiniS-
cale 144 port switch. The kernel version used
is Linux 2.4.20-8smp. The InfiniBand stack
is IBGD-1.7.0 and HCA firmware version is
3.3.2. PVFS2 provides two different modes
for its IO servers:trovesyncandnotrovesync.
The trovesync mode is the default in which IO
servers performfsyncoperations for immediate
update of file system metadata changes. The
notrovesync mode allows a delay in metadata
update. PVFS2 file system can achieve bet-
ter IO performance when running in this mode.
We choose notrovesync exclusively in our ex-
periments to focus on performance benefits of
Quadrics scatter/gather.

4.1. Benefits of Quadrics Scatter/Gather to
PVFS2 IO

To evaluate the performance of PVFS2 IO
operations, we have used a parallel program
that iteratively performs the following opera-
tions: create a new file, concurrently issue mul-
tiple write calls to disjoint regions of the file,
wait for them to complete, flush the data, con-
currently issue multiple read calls for the same
data blocks, wait for them to complete, and
then remove the file. MPI collective operations
are used to synchronize application processes
before and after each IO operation. In our pro-
gram, based on its rank in the MPI job, each
process reads or writes various blocks of data,
1MB each, at disjoint offsets of a common file.

We have divided the eight-node cluster into
two groups: servers and clients. Up to four
nodes are configured as PVFS2 servers and
the remaining nodes are running as clients.
Experimental results are labeled asNS for a
configuration with N servers. Basic PVFS2
list IO is supported through memory packing
and unpacking, marked as LIO in the figures.

There are little differences with different num-
ber of blocks. The performance results are
obtained with using the total IO size of 4MB
for each process. The aggregated read and
write bandwidth can be increased by up to 89%
and 52%, as shown by Figures 4 and 5, re-
spectively. These results indicate that zero-
copy scatter/gather support is indeed benefi-
cial to both read and write operations. Note
that the improvement on the read bandwidth
is better than the write bandwidth. This is be-
cause the read operations in PVFS2 is shorter
and less complex compared to write opera-
tions, thus can benefit more by optimizations
on data communication across the network.

4.2. Benefits of Quadrics Scatter/Gather to MPI-
Tile-IO

MPI-Tile-IO [16] is a tile reading MPI-IO
application. It tests the performance of tiled ac-
cess to a two-dimensional dense dataset, simu-
lating the type of workload that exists in some
visualization and numerical applications. Four
of eight nodes are used as server nodes and the
other four as client nodes running MPI-Tile-IO
processes. Each process renders a2 × 2 array
of displays, each with1024 × 768 pixels. The
size of each element is 32 bytes, leading to a
file size of 96MB.

We have evaluated both the read and write
performance of MPI-Tile-IO over PVFS2. As
shown in Fig. 6, with Quadrics scatter/gather
support, MPI-Tile-IO write bandwidth can
be improved by 66%. On the other hand,
MPI-Tile-IO read bandwidth can be improved
by up to 113%. These results indicate our
implementation is able to leverage the per-
formance benefits of Quadrics scatter/gather
into PVFS2. In addition, using MPI-Tile-
IO, we have compared the performance of
PVFS2 over Quadrics with an implementation
of PVFS2 over InfiniBand from the release

 0

 300

 600

 900

 1200

 1500

 1 2 3 4 5 6 7

A
gg

re
ga

te
d

B
an

dw
id

th
 (

M
B

/s
)

Number of Clients

LIO 1S
LIO 2S
LIO 4S

SG-LIO 1S
SG-LIO 2S
SG-LIO 4S

Fig. 4. Performance Comparisons of

PVFS2 Concurrent Read

 0

 300

 600

 900

 1 2 3 4 5 6 7

A
gg

re
ga

te
d

B
an

dw
id

th
 (

M
B

/s
)

Number of Clients

LIO 1S
LIO 2S
LIO 4S

SG-LIO 1S
SG-LIO 2S
SG-LIO 4S

Fig. 5. Performance Comparisons of

PVFS2 Concurrent Write

PVFS2-1.1.0. MPI-Tile-IO achieves less ag-
gregated read and write bandwidth over Infini-
Band (labeled as IB-LIO), compared to our
Quadrics-based PVFS2 implementation, with
or without zero-copy scatter/gather. This is be-
cause of two reasons. First, memory registra-
tion is needed over InfiniBand for communica-
tion and the current implementation of PVFS2
over InfiniBand does not take advantage of
memory registration cache to save registra-
tion costs. In contrast, memory registration is
not needed over Quadrics with its NIC-based
MMU. The other reason is that PVFS2/IB
utilizes InfiniBand RDMA write-gather and

read-scatter mechanisms for non-contiguous
IO. These RDMA-based scatter/gather mech-
anisms over InfiniBand can only avoid one lo-
cal memory copy. On the remote side, memory
packing/unpacking is still needed. So it does
not support true zero-copy list IO for PVFS2.

Write Read
0

50

100

150

200

250

300

350

400

B
an

dw
id

th
 (

M
B

/s
)

LIO
SG−LIO
IB−LIO

Fig. 6. Performance of MPI-Tile-IO Benchmark

5. Related Work

Optimizing noncontiguous IO has been the
topic of various research, covering a spectrum
of IO subsystems. For example, data siev-
ing [17] and two-phase IO [15] have been
leveraged to improve the client IO accesses of
parallel applications in the parallel IO libraries,
such as MPI-IO. Wong et. al. [19] optimized
the linux vector IO by allowing IO vectors to
be processed in a batched manner.

Ching et. al [5] have implemented list IO
in PVFS1 to support efficient noncontiguous
IO and evaluated its performance over TCP/IP.
Wu et. al [20] have studied the benefits of
leveraging InfiniBand hardware scatter/gather
operations to optimize noncontiguous IO ac-
cess in PVFS1. In [20], a scheme called Op-
timistic Group Registration is also proposed
to reduce costs of registration and deregis-
tration needed for communication over In-
finiBand fabric. Our work exploits a com-
munication mechanism with a single event
chained to multiple RDMA to support zero-
copy non-contiguous network IO in PVFS2

over Quadrics. Since communication over
Quadrics does not require memory registration,
we do not have to be concerned with these is-
sues in our implementation.

6. Conclusions

In this paper, we have described PVFS2
list IO and a software scatter/gather mecha-
nism over Quadrics to support zero-copy list
IO. We then evaluate the performance bene-
fits of this support to PVFS2 IO accesses and
a scientific application, MPI-Tile-IO. Our ex-
perimental results indicate that Quadrics scat-
ter/gather support is beneficial to the perfor-
mance of PVFS2 IO accesses. In terms of ag-
gregated read and write bandwidth, the per-
formance of MPI-Tile-IO application bench-
mark can be improved by 113% and 66%,
respectively, Moreover, our implementation
of PVFS2 over Quadrics significantly outper-
forms an implementation of PVFS2 over In-
finiBand.

In future, we intend to leverage more fea-
tures of Quadrics to support PVFS2 and study
their possible benefits to different aspects of
parallel file systems. For example, we intend
to study the benefits of integrating Quadrics
NIC memory into PVFS2 memory hierarchy,
such as data caching with client and/or server-
side NIC memory. We also intend to study the
feasibility of directed IO over PVFS2/Quadrics
using the Quadrics programmable NIC as the
processing unit.

References

[1] The Parallel Virtual File System, version 2.
http://www.pvfs.org/pvfs2.

[2] J. Beecroft, D. Addison, F. Petrini, and
M. McLaren. QsNet-II: An Interconnect for
Supercomputing Applications. Inthe Pro-
ceedings of Hot Chips ’03, Stanford, CA, Au-
gust 2003.

[3] N. J. Boden, D. Cohen, R. E. Felderman,
A. E. Kulawik, C. L. Seitz, J. N. Seizovic, and
W.-K. Su. Myrinet: A Gigabit-per-Second
Local Area Network.IEEE Micro, 15(1):29–
36, 1995.

[4] P. H. Carns, W. B. Ligon III, R. Ross, and
P. Wyckoff. BMI: A Network Abstraction
Layer for Parallel I/O, April 2005.

[5] A. Ching, A. Choudhary, W. Liao, R. Ross,
and W. Gropp. Noncontiguous I/O through
PVFS. In Proceedings of the IEEE Inter-
national Conference on Cluster Computing,
Chicago, IL, September 2002.

[6] A. M. David Nagle, Denis Serenyi. The
Panasas ActiveScale Storage Cluster – Deliv-
ering Scalable High Bandwidth Storage. In
Proceedings of Supercomputing ’04, Novem-
ber 2004.

[7] J. Duato, S. Yalamanchili, and L. Ni.In-
terconnection Networks: An Engineering Ap-
proach. The IEEE Computer Society Press,
1997.

[8] J. Huber, C. L. Elford, D. A. Reed, A. A.
Chien, and D. S. Blumenthal. PPFS: A
High Performance Portable Parallel File Sys-
tem. InProceedings of the 9th ACM Interna-
tional Conference on Supercomputing, pages
385–394, Barcelona, Spain, July 1995. ACM
Press.

[9] IBM Corp. IBM AIX Parallel I/O File Sys-
tem: Installation, Administration, and Use.
Document Number SH34-6065-01, August
1995.

[10] Infiniband Trade Association. http://www.
infinibandta.org.

[11] Intel Scalable Systems Division. Paragon
System User’s Guide, May 1995.

[12] N. Nieuwejaar and D. Kotz. The Galley
Parallel File System. Parallel Computing,
(4):447–476, June 1997.

[13] P. H. Carns and W. B. Ligon III and R. B.
Ross and R. Thakur. PVFS: A Parallel File
System For Linux Clusters. InProceedings of
the 4th Annual Linux Showcase and Confer-
ence, pages 317–327, Atlanta, GA, October
2000.

[14] Quadrics, Inc. Quadrics Linux Cluster Docu-
mentation.

[15] J. Rosario, R. Bordawekar, and A. Choud-
hary. Improved parallel i/o via a two-phase
run-time access strategy. InWorkshop on
Input/Output in Parallel Computer Systems,
IPPS ’93, Newport Beach, CA, 1993.

[16] R. B. Ross. Parallel i/o benchmarking con-
sortium. http://www-unix.mcs.anl.gov/rross/
pio-benchmark/html/.

[17] R. Thakur, A. Choudhary, R. Bordawekar,
S. More, and S. Kuditipudi. Passion: Op-
timized I/O for Parallel Applications.IEEE
Computer, (6):70–78, June 1996.

[18] R. Thakur, W. Gropp, and E. Lusk. On Im-
plementing MPI-IO Portably and with High
Performance. InProceedings of the 6th Work-
shop on I/O in Parallel and Distributed Sys-
tems, pages 23–32. ACM Press, May 1999.

[19] P. Wong, B. Pulavarty, S. Nagar, J. Morgan,
J. Lahr, B. Hartner, H. Franke, and S. Bhat-
tacharya. Improving linux block i/o layer for
enterprise workload. InProceedings of The
Ottawa Linux Symposium, 2002.

[20] J. Wu, P. Wychoff, and D. K. Panda. Support-
ing Efficient Noncontiguous Access in PVFS
over InfiniBand. InProceedings of Cluster
Computing ’03, Hong Kong, December 2004.

[21] W. Yu, S. Liang, and D. K. Panda. High
Performance Support of Parallel Virtual File
System (PVFS2) over Quadrics. InProceed-
ings of The 19th ACM International Con-
ference on Supercomputing, Boston, Mas-
sachusetts, June 2005.

[22] W. Yu, T. S. Woodall, R. L. Graham, and
D. K. Panda. Design and Implementation of
Open MPI over Quadrics/Elan4. InProceed-
ings of the International Conference on Par-
allel and Distributed Processing Symposium
’05, Colorado, Denver, April 2005.

