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Abstract

Open MPI is a project recently initiated to pro-
vide a fault-tolerant, multi-network capable implemen-
tation of MPI-2 [16], based on experiences gained
from FT-MPI [7], LA-MPI [10], LAM/MPI [23], and
MVAPICH [18] projects. Its initial communication
architecture is layered on top of TCP/IP. In this pa-
per, we have designed and implemented Open MPI
point-to-point layer on top of a high-end intercon-
nect, Quadrics/Elan4 [21]. The restriction of Quadrics
static process model has been overcome to accom-
modate the requirement of MPI-2 dynamic process
management. Quadrics Queued-based Direct Memory
Access (QDMA) and Remote Direct Memory Access
(RDMA) mechanisms have been integrated to form a
low-overhead, high-performance transport layer. Light-
weight asynchronous progress is made possible with
a combination of Quadrics chained event and QDMA
mechanisms. Experimental results indicate that the re-
sulting point-to-point transport layer is able to achieve
comparable performance to Quadrics native QDMA op-
erations, from which it is derived. Our implementation
provides an MPI-2 compliant message passing library
over Quadrics/Elan4 with a performance comparable to
MPICH-Quadrics.
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of the United States Department of Energy under contract W-7405-
ENG-36.

1. Introduction

Parallel computing architecture has recently evolved
into large scale systems with tens of thousands of pro-
cessors [1] or geographically distributed clusters [8].
These emerging computing environment leads to dra-
matically different challenges and requirements which
include not only the traditional crave for low latency
and high bandwidth but also the need for fault-tolerant
message passing, scalable I/O support, and fault-tolerant
process control. Open MPI [9] is a recent project initi-
ated not only as a research forum to address these new
challenges, but also as a development effort to produce
a new MPI-2 [16] implementation.

To support a wide range of parallel platforms, Open
MPI has designed its communication architecture as
two separate abstraction layers: a device-neutral mes-
sage management layer and a network-specific transport
layer. The latter is referred to as point-to-point transport
layer (PTL) and the former as point-to-point manage-
ment layer (PML). Work in [24] has demonstrated that
PML is able to satisfactorily aggregate bandwidth across
multiple network interfaces. The TCP/IP based net-
work communication incurs significant operating sys-
tem overhead and also multiple data copies [6]. It would
be better to take advantage of user-level communication
protocols [3] over high-end interconnects to expose their
maximum hardware capabilities. However, there are se-
mantics differences and mismatches between the upper
layers of Open MPI communication architecture and the
lower level communication protocols of high-end inter-
connects. It is necessary to have an in-depth examina-
tion of the particular requirements of Open MPI [9, 24]
PTL interface and the specific constraints of any new in-
terconnect.

In this paper, we take on the challenges to provide



a new design of Open MPI [9] point-to-point transport
layer over Quadrics/Elan4 [21, 2]. First, we start with
characterizing communication requirements imposed by
Open MPI design objectives, including process initi-
ation, integrating RDMA capabilities of different net-
works and asynchronous communication process. Then
we describe the motivation and objectives of the PTL
implementation over Quadrics/Elan4. Salient strate-
gies are proposed to overcome these challenges by tak-
ing advantage of Quadrics Queued-based Direct Mem-
ory Access (QDMA) and Remote Direct Memory Ac-
cess (RDMA) operations, as well as its chained event
mechanism. Experimental results indicate that the im-
plemented point-to-point transport layer achieves com-
parable performance to Quadrics native QDMA inter-
face, from which it is derived. This point-to-point
transport layer provides a high performance implemen-
tation of MPI-2 [16] compliant message passing over
Quadrics/Elan4, achieving a performance slightly lower
but comparable to that of MPICH-QsNetII [21].

The rest of the paper is presented as follows. In the
next section, we describe in detail the communication
architecture of Open MPI [9] and its requirements to the
point-to-point [24] transport layer. Section 3 provides
the motivation and objectives of this work. The design of
a transport protocol over Quadrics/Elan4 [21, 2] is dis-
cussed in section 4. Section 5 provides performance re-
sults. Section 6 provides a brief review of related works.
Section 7 concludes the paper.

2. Overview of Open MPI Communication
Architecture

Open MPI’s component-based architecture [9] is de-
signed to provide services separating critical features
into individual components, each with its own function-
alities and interfaces. In this section, we provide a brief
overview of the components relevant to Open MPI com-
munication architecture. For the convenience of discus-
sion, we present the layering of the related components
based on the communication flow path. This can be
slightly different from the layering presented in other lit-
eratures [9, 24], where the emphasis is given to how the
components are related from the perspective of software
engineering.

2.1. Open MPI Communication Stack

The basic Open MPI [9] communication architecture
is mapped onto two distinct components: Point-to-point
Management Layer (PML) and Point-to-point Transport

Layer (PTL). As shown in Fig. 2, Open MPI [15] point-
to-point communication is layered directly on top of
the PML interface, which provides generic functional-
ities of message management, such as handling appli-
cation requests, fragmenting, scheduling and reassem-
bling messages, as well as monitoring the progresses.
Currently, collective communication is provided as a
separated component on top of point-to-point commu-
nication. Further research will exploit the benefits of
hardware-based collective support [26, 13]. At the lower
layer, the PTL component is responsible for managing
connection and communication status, delivering pack-
ets over a specific network interface, and updating the
PML layer about packet progression.

2.2. PTL Interface and Communication Flow
Path

The PTL layer provides two abstractions: the PTL
component and the PTL module [9]. A PTL compo-
nent encapsulates functionalities of a particular network;
a PTL module represents an “instance” of a communica-
tion endpoint, typically one per network interface card.
In order to join and disjoin from the pool of available
PTLs, a PTL has to go through five major stages of ac-
tions: opening, initializing, communicating, finalizing
and closing. These stages of PTL utilization are dis-
cussed below:

Joining the Communication Stack– A PTL com-
ponent goes through the first two stages: opening and
initializing, to join the communication stack. A PTL
component is to be opened as a shared library. When it
is loaded successfully, a process initializes the network
interfaces, prepares memory and computing (e.g., addi-
tional threads) resources, and fills in the correct fields of
PTL modules (one per network interface). These PTL
modules are then inserted in the communication stack
as available PTL modules. When these procedures suc-
cessfully complete, the activation of this PTL compo-
nent is triggered through a component control function.

Inside the Communication Stack– PML schedules
messages across a new network when the PTL compo-
nent has activated its PTL modules. Fig. 2 shows a di-
agram of how messages are scheduled across multiple
networks. When the PML layer receives a request, it
schedules the first packet to one PTL based on a cho-
sen scheduling heuristic. For large messages, this packet
serves as arendezvous packet to the receiver. When
it is received by one of the PTLs, the receiving PTL
asks the PML layer to match this packet to the pre-
posted receive requests. If a match is made with a pre-
posted receive request, PML callsptl matched() to
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receive this message. An acknowledgment is returned
to the initiating PTL if this is arendezvous packet.
Any data inlined with the first packet are copied into
the application receive buffer, and the progress of this
amount of data isupdated at the PML layer through
ptl recv progress(). When the acknowledgment
arrives at the sender side, the initiating PTL updates the
PML layer about the amount of data transmitted through
ptl send progress(). Another scheduling heuris-
tic is then invoked to schedule the rest of the message
across available PTLs. The progress of the data trans-
mission is updated accordingly, and this eventually leads
to the completion on both sides.

Disjoining from the Communication Stack– There
are also two stages to disjoin a PTL from the communi-
cation stack: finalizing and closing. During the final-
izing stage, a PTL first finalizes its pending communi-
cation with other peer processes, then releases all the
associated memory and computing resources. The open
share library is closed after all the exposed PTL modules
are finalized.

3. Objectives

Open MPI [9] has its first PTL implementation on
top of the TCP/IP. Many of the strength and advantages
have been described in the earlier literatures [9, 24]. In
order to correctly project the objectives, it is necessary
to discuss design requirements for a PTL implementa-
tion. The design of Open MPI transport layer needs to
meet the requirements from three of Open MPI’s main
objectives, including fault tolerance, multi-network con-
current communication and dual-mode progress.

Fault Tolerance: Open MPI [9] targets at both process
fault tolerance and end-to-end reliable message de-
livery [10]. While the latter requires PTL to be

able to keep track of the progressing of individ-
ual message/packet, the former requires PTL to be
prepared for itself and others to dynamically join-
ing and disjoining the communication stack, check-
point/restart, and etc. Each PTL has to handle not
only the dynamics status of local network interface,
but also dynamic connections with other PTLs.

Multi-network Concurrent Communication: Open
MPI [9] scheduled messages across multiple PTLs.
However, different networks have different com-
munication semantics and requirements. In this
regard, while the PML layer needs to abstract and
encapsulate the difference between different PTLs,
each PTL also needs to map the PML function
interface on its existing transmission semantics.
Section 4 provides a discussion of related design
challenges over Quadrics/Elan4.

Dual-Mode Progress: Open MPI provides two differ-
ent modes to monitor and progress communication
across multiple network interfaces: non-blocking
polling and thread-based blocking. Non-blocking
polling checks the incoming and outgoing traffic
of each network device in a polling manner, which
can be performed by a MPI process that consists
of only a single thread. In contrast, in the thread-
based blocking mode additional threads are em-
ployed to block and wait on the status updates
of pending messages. A PTL component needs
to support thread-based blocking mode with min-
imum amount of memory resources and number of
threads.

3.1. Overview of Quadrics/Elan4

Quadrics network [21, 20] has recently released
its second generation network, QsNetII [2]. This



new release provides very low latency, high bandwidth
communication with its two building blocks: a pro-
grammable Elan-4 network interface and the Elite-4
switch, which are interconnected in a fat-tree topol-
ogy. Quadrics provides its libraries:libelan and
libelan4, on top of its Elan4 network [21]. Within
these default Quadrics programming libraries, a paral-
lel job first acquires a job-wise capability. Then each
process is allocated a virtual process ID (VPID), to-
gether they form a static pool of processes, i.e., the pro-
cess membership and connections among them cannot
change. Interprocess communication is supported by
two different models: Queue-based Directed Message
Access (QDMA) and Remote Directed Message Access
(RDMA). QDMA allows processes to post messages (up
to 2KB) to a remote queue of another process; RDMA
enables processes to write messages directly into remote
memory exposed by other processes.libelan also
provides a very usefulchained event mechanism, which
allows one operation to be triggered upon the comple-
tion of another. This can be utilized to support fast and
asynchronous progress of two back-to-back operations.
Similar mechanisms over Quadrics/Elan3 have been uti-
lized in [25].

3.2. Objectives of PTL Implementation Over
Quadrics/Elan4

While Quadrics libraries present parallel communi-
cation over a static pool of processes, Open MPI [9, 24]
targets MPI-2 [16] dynamic process management and
process checkpoint/restart. The PTL implementation
over Quadrics needs to support dynamic joining of PTL
modules over Quadrics network. To the best of the au-
thors’ knowledge, this is not available in any existing
MPI implementation over Quadrics either because the
MPI implementation does not support MPI-2 dynamic
process management or because the underlying commu-
nication is based on libelan’s model of statically con-
nected processes [21]. In addition, Open MPI aims
for concurrent message passing over multiple networks.
The communication/memory semantics can be differ-
ent between networks. For example, Quadrics/Elan4
is RDMA capable while TCP/IP-based communication
is not. The way RDMA works is quite different from
TCP/IP sockets. To provide a high performance imple-
mentation over Quadrics/Elan4, this work has the fol-
lowing objectives:

1. Supporting dynamic joining of PTL modules over
Quadrics

2. Integrating Quadrics RDMA capabilities into the
point-to-point transport layer

3. Providing asynchronous communication progress
while minimizing the performance impacts over
Quadrics

4. Design of Open MPI Communication
Support over Quadrics

In this section, we describe the design of Open
MPI [9] transport layer over Quadrics [21]. We have
proposed strategies to overcome challenges imposed by
Open MPI requirements. The rest of the section de-
scribes our strategies in these aspects: (a) communi-
cation initiation and finalization, (b) integrating RDMA
capabilities and (c) communication progress.

4.1. Communication Initiation and Finalization

As described in Section 3.1, Quadrics static model
of processes and static connection between them do not
match MPI-2 [16] dynamic process management [11]
specifications. Open MPI further requires processes to
be able to checkpoint/restart and migrate to a remote
node on-demand or in case of faults. This model im-
plies that the default static coupling of Quadrics virtual
process ID (VPID) and the rank of a MPI process is no
longer possible [21]. This is because VPID is a system
identifier related to the hardware capability and the con-
text on a specific node, while the process rank is a fea-
ture of a MPI communicator/universe that cannot change
even if processes migrate. In addition, the initial global
shared virtual address space over Quadrics is no longer
possible because it is not guaranteed that processes are
synchronized in their memory allocation when processes
initiate the network and join the parallel communication
at arbitrary time.

We propose to handle these challenges with the fol-
lowing strategies. First, we decouple the static coupling
of MPI rank and Quadrics VPID in a process, leaving
MPI rank for the identification of MPI processes and
VPID for Quadrics network addressing. Second, for
each new job, we create a Quadrics hardware capabil-
ity that can provide more VPIDs than initially needed.
This creates a pool of free VPIDs to be claimed by the
processes spawned later. Third, we eliminate the de-
pendence on global virtual address space for commu-
nication. For the processes that initially join parallel
communication synchronously, a global virtual address
space is made available. Processes that join (or rejoin)



later will not be able to utilize this global address space.
As a result of this, these processes cannot take advan-
tage of the the benefits of hardware broadcast support.
However, it does not preclude the possibility to regen-
erate a new global address space from the available ad-
dress space. This possibility is to be investigated as one
of further research topics in Open MPI [9]. Open MPI
Run-Time Environment (RTE) can help new processes
to establish connections with the existing processes. An
existing connection can go through its finalization stage
only when the involving processes has completed all the
pending messages synchronously. This is to avoid an
unpleasant scenario in which a leftover DMA descriptor
might regenerate its traffic indefinitely.
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4.2. Integrating Quadrics RDMA Capabilities

Quadrics QDMA communication model can only
transmit messages up to 2KB. Another model, RDMA
read/write, can transmit arbitrary messages. Additional
support needs to be provided for integrating Quadrics
RDMA capabilities into Open MPI communication ar-
chitecture. There is another constraint over Quadrics to
use these capabilities. For the network interface card to
carry out RDMA operations, the source and destination
memory addresses need to be presented in a different

format (E4Addr), which will be translated into physical
memory address by a specially designed Memory Man-
agement Unit (MMU) in the Elan4 network interface.

We first modify both the memory addressing for-
mat and the communication semantics take advantage
of these RDMA capabilities. The memory descriptor
format is expanded to include an E4Addr for address-
ing over Elan4 and other interconnects. This is only
a preliminary solution for concurrent message passing
over TCP and Quadrics communication protocol be-
cause both of them do not require memory registration
before communication. Over other interconnects, e.g.,
InfiniBand [12] and Myrinet [4], the memory range of
a message needs to be registered with the network in-
terface before the communication can take place. As a
part of the further research, we are experimenting with
a more informative memory descriptor to support net-
work concurrency. Second, we developed two schemes
to take advantage of RDMA read and write, respectively.
As shown in Fig. 3, in the first scheme, all send opera-
tions after the firstrendezvous fragment are all replaced
with RDMA write operations. At the end of these oper-
ations, a control fragment with a type FIN is sent to the
receiver for the completion notification of the full mes-
sage. In the second scheme, shown in Fig. 4, when the
rendezvous packet arrives at the receiver, instead of re-
turning an acknowledgment to the sender, the receiver
initiates RDMA read operations to get the data. When
these RDMA read operations complete, a different con-
trol message with a type FINACK is sent to the sender,
acknowledging the arrival of the earlier rendezvous frag-
ment and notifying the message completion. For per-
formance optimization, the transmission of the last con-
trol message can be chained to the last RDMA operation
using the chained event mechanism. When the RDMA
operation is done, the control message is automatically
triggered without host CPU detecting the completion of
RDMA operation and firing it off.

4.3. Asynchronous Communication Progress

One of Open MPI’s requirements to the trans-
port layer is asynchronous communication progress, in
which it employs additional threads to monitor and
progress pending messages. For the PTL implemen-
tation over TCP/IP, because one thread can block and
wait on the progress of multiple sockets, it is possible to
monitor the progress of all networking traffic with only
a single thread per TCP PTL. However, over Quadrics,
the blocking mode of the RDMA descriptor’s comple-
tion is supported through separated events at different
memory locations, as shown in Fig 5a. A single thread
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can only block and wait on the host event of a single
RDMA descriptor. It is practically inhibitive to have one
thread to block on each of all outstanding DMA descrip-
tors. Quadrics provides an event mechanism that can be
utilized to detect combined completion notification of
multiple outstanding RDMA operations. As shown in
Fig 5b, one event can be created with a count to wait on
the completion of multiple outstanding RDMA opera-
tion. This count is decremented by 1 when a RDMA de-
scriptor completes. In the end, an interrupt will be gen-
erated to the host process that is blocked on this event.
This mechanism requires a predefined count. That many
RDMA descriptors have to be completed before an in-
terrupt can be triggered. With a count bigger than 1,
it cannot wake up a blocking process upon the comple-
tion of individual RDMA operations. With a count of 1,
the completion of the first one or the first few RDMA
operations can be detected. But there is no available
mechanism over Quadrics to atomically reset the event
count back to 1 and block the process again for other
RDMA operations to complete. This is because at the
same time the other outstanding RDMA operations are
potentially modifying the same event count when their
messages are completed from the network, resulting in
a race condition. The progressing thread may fail to de-
tect the completion of some RDMA descriptors and not

progress the communication any further. This is shown
in the Figures 5c and 5d.

Quadrics QDMA [21] allows a process to check in-
coming QDMA messages posted by any process into its
receive queue. We propose to take advantages of both
QDMA shared completion queue and the chained DMA
mechanism to detect multiple outstanding RDMA oper-
ations. During the PTL initialization, a receive queue
is pre-created as the shared completion queue for multi-
ple RDMA operations, shown on the right side of Fig. 6.
When setting up RDMA descriptors, a QDMA operation
is chained to every RDMA operation. When a RDMA
operation completes, its associated chained QDMA will
generate a small message to the receive queue. For ev-
ery message being posted into the queue slots, an event
is generated to the host side for notification. Thus with
this shared completion queue, a single thread can be in-
troduced to block and wait on the host event for the
completion of many RDMA operations. This strategy
of a shared completion queue is shown in Fig. 6. In
terms of functionality, the new queue is the same as
the pre-created receive queue for the incoming message.
These two receive queues (Two-Queue) can be effec-
tively combined as a single queue (One-Queue) to sup-
port asynchronous progress. Needless to say that us-
ing one-queue-based approach leads to a slightly more
complex message handling logic, but it reduces the need
for additional resources and enables the use of only one
thread for asynchronous communication progress.

5. Performance Evaluation

We have implemented the proposed design of Open
MPI transport layer over Quadrics/Elan4. Implementa-
tion details can be found in [27]. In this section, we
describe the performance evaluation of our implemen-
tation. The experiments were conducted on a cluster of
eight SuperMicro SUPER X5DL8-GG nodes: each with
dual Intel Xeon 3.0 GHz processors, 512 KB L2 cache,
PCI-X 64-bit 133 MHz bus, 533MHz Front Side Bus
(FSB) and a total of 1GB PC2100 DDR-SDRAM physi-
cal memory. All eight nodes are connected to a QsNetII

network [21, 2], with a QS-8A switch and eight Elan4
QM-500 cards.

We have first performed experiments to evaluate all
of our design strategies. Then we have studied the lay-
ering overhead of Open MPI communication stacks and
evaluated its overall performance compared to MPICH-
QsNetII [21]. Since the strategies are specific for the
point-to-point message transport over Quadrics only, in
all of our experiments, we have activated only the PTLs



over Quadrics/Elan4 unless otherwise specified. The
first 100 iterations in each test are used to warm up the
network and nodes whenever applicable.

5.1. Performance Analysis of Basic RDMA Read
and Write

The PML layer schedules the first packet to a PTL
module based on the exposed fragment length. In the
case of large size messages, this packet is composed
of a rendezvous header with some inlined data. This
strategy is beneficial to the PTL design over TCP pro-
tocol, because the cost to initiate send/receive opera-
tions through the operating system is rather high com-
pared to the networking cost. However, with RDMA
capable networks, this strategy would incur an unnec-
essary memory copying overhead for data in the first
packet. We have provided an optimization to transmit
therendezvous messages without data inlined in the first
packet. Note that Open MPI provides a datatype compo-
nent to perform efficient packing and unpacking of so-
phisticated datatypes. However, it introduces some over-
head because a complex copy engine is initiated with
each request. For better understanding of the perfor-
mance strength of the Elan4 PTL, we have intentionally
replaced this copy engine with a genericmemcpy()
call.
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Fig. 7. Performance Analysis of Basic RDMA
Read and Write

Fig. 7 shows both the performance of RDMA read
and write with or without utilizing this datatype com-
ponent, and the performance with or without inlined
data. This evaluation focuses on messages up to 4KB.
With the threshold of sending rendezvous messages be-
ing 1984 bytes, it allows us to look at message com-
munication in both eager and rendezvous modes. As
shown in Fig. 7(a), the data type component does in-
troduce an overhead about 0.4µsec compared to the ba-
sic support without the datatype component. As also
shown in Fig. 7(b), RDMA read is able to deliver better
performance compared to RDMA write. This is to be
expected because the RDMA read-based scheme essen-

tially saves a control packet compared to RDMA write-
based scheme. When using the optimization to trans-
mit therendezvous packet without inlined data, the per-
formance is improved for all message sizes with either
RDMA Read or RDMA write.

5.2. Performance Analysis with Chained DMA
and Shared Completion Queue

The design of PTL/Elan4 has utilized chained DMA
mechanism in two scenarios: one to notify the comple-
tion of RDMA read and RDMA write, the other to di-
rect the completion notification of multiple RDMA op-
erations to a shared completion queue. We have mea-
sured their performance using RDMA read as an exam-
ple case. As shown in Fig. 8, using the chained DMA
for fast completion notification provides only marginal
improvements for the transmission of long messages.
The benefits is small because the total communication
time for messages≥ 2KB is rather high comparing
the possible benefits, i.e., automatically triggering the
next DMA without I/O bus traffic. PCI-X bus and fast
CPU processor (3GHz) used in the experiments also re-
duce the possible benefits of chained DMA. On the other
hand, the shared completion queue introduces around
1µsec performance cost. This is to be expected be-
cause of the time to fire an additional QDMA opera-
tion. In addition, using either a combined receive queue
(One-Queue) or two separated completion queues (Two-
Queue) provides about the same performance. This is
because the cost of checking the heads of two queues
or one queue is about the same with the polling-based
progress.
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5.3. Analysis of Communication Time in Differ-
ent Layers

We have performed an analysis of the Open MPI
communication stacks. Fig. 10 shows a diagram of com-



munication time in different layers. In a ping-pong la-
tency test, we take the timing from a) the time when
PTL/Elan4 has received a packet from the network and
is delivering it to the PML layer for matching, to b) the
time PTL/Elan4 receives another packet delivery request
from PML layer, as the communication time above the
PTL layer. This includes the communication time in
the PML layer and above. We refer to it asPML layer
cost, shown in Fig. 10 as L1. The latency at the PTL
layer,PTL Latency, is derived by subtracting that from
the overall ping-pong latency. This is shown in Fig. 10
as L2. Strictly speaking, L1 also includes the time that
the PML layer notifies the PTL layer about the success-
ful matching of a packet. We include this in the PML
latency for the convenience of analysis. Because the
short message transmission is based on top of Quadrics
QDMA model, we also compare L2 to the performance
of the native performance of QDMA,QDMA Latency.
Note that Open MPI communication layer uses a 64-
byte header for matching purpose. To achieve a fair
comparison, the PTL communication time of aN-byte
message is compared against with the communication
time of a64+N-byte QDMA operations. As shown in
Fig. 9, the PML layer and above has a communication
cost of 0.5µsec, while PTL/Elan4 delivers the message
with a performance comparable to QDMA.
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5.4. Performance Analysis of Thread-Based
Asynchronous Progress

The shared completion queue is introduced to support
thread-based asynchronous communication progress.
We have analyzed the performance of the asynchronous
progress using RDMA read in the Elan4 PTL. Table 1
shows the performance with various types of progress
rules: (a)Basic polling-based, (b)Interrupt-based, (c)
One-Thread-based, and (d)Two-Thread-based. Note
that the interrupt-based progress is not really a work-
able strategy in real-time communication because the
progress of MPI communication cannot block within a
single PTL. It is evaluated here to find out the cost of in-

terrupt that is used to wake up a thread. Cases (c) and (d)
utilize a combined completion queue or separated com-
pletion queues, respectively. The performance results
indicate that one-thread-based asynchronous progress is
more efficient. The overall cost of thread-based commu-
nication progress using one-thread is around18.9µsec,
comparing its latency22.76µsec to the3.87µsec latency
of Case (a). An interrupt costs about10.8µsec, compar-
ing the latency of Case (b) to that of Case (a). About
1µsec is due to the additional chained DMA, as dis-
cussed in Section 5.3. Thus around7µsec can be at-
tributed to the threading cost. Note that, when doing
these experiments, we have left both interrupt affinity
and processor affinity of the operating system at its de-
fault.

Table 1. Performance Analysis of Thread-Based
Asynchronous Progress (in µsec)

Size Basic Interrupt One Thread Two Threads
4B 3.87 14.70 22.76 27.50
4KB 15.25 27.16 32.80 47.72

5.5. Overall Performance of Open MPI over
Quadrics/Elan4

Fig. 11 shows the overall latency and bandwidth per-
formance of Open MPI over Quadrics/Elan4 with the
best options as described above, such as using chained
DMA for completion notification, using polling-based
progress without shared completion queue, and using
rendezvous packets without inlined data. The compari-
son is made to the default MPI implementation MPICH-
QsNetII . Our implementation has a latency perfor-
mance comparable to that of MPICH-QsNetII , except in
the range of small messages. This is due to the follow-
ing reasons: (a) MPICH-QsNetII transmits a shorter-
header, which is 32 bytes compared to 64 bytes in Open
MPI, (b) MPICH-QsNetII is built on top of Quadrics
T-port interface. Tport does a fast tag matching in the
NIC. For very short messages, host CPU does not touch
the message and its header in the critical communica-
tion path, therefore no data touching overhead [5, 6]. In
terms of bandwidth, our implementation performs par-
ticularly worse in the middle range of messages. This
is because Tport does efficient pipelining of messages.
There is a dip of bandwidth for 2KB messages. This
is because the threshold between small and rendezvous
messages is 1984 bytes, the size of maximum QDMA
messages minus 64 bytes of the header. Note our im-
plementation starts from different design requirements



to co-exist with PTL models of other networks and to be
MPI-2 [16] compliant. For example, we are not doing
NIC-based tag matching as MPICH-QuadricsII does in
its underlying Tport [21] interface to support MPI-1 [15]
interface. Currently we intend to have shared request
queues for managing traffic from different networks and
allow them to be able to crosstalk. The performance of
our current implementation may not be as good as, but
still comes close to that of MPICH-QsNetII [2].
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Fig. 11. Performance Comparisons of Open MPI
over Quadrics/Elan4 and MPICH-QsNet II

6. Related Work

MPI [15] has been thede facto messaging passing
standard. MPI-2 [16] extends MPI-1 with one-sided
communication, dynamic process management, parallel
I/O and language bindings.

Numerous implementations have been provided over
different networks, including high-end RDMA capa-
ble interconnects. These include MPICH-GM [17] for
Myrinet, MVAPICH [18] and MVAPICH2 [14] for In-
finiBand, MPICH-QsNet [21, 2] for Quadrics elan3 and
elan4 networks [21], and MPI-Sun [22] for Sun Fire
links. Among them, [17, 21, 18, 14] are able to take ad-
vantage of RDMA capabilities of their underlying net-
works. [22] primarily relies on Programmed IO (PIO)
for message passing. MPICH-NCSA [19] and LA-
MPI [10] support message passing over multiple net-
works. However, a single message cannot be sched-
uled across multiple networks. Different semantics in
addressing remote memory over different networks are
also not addressed. LAM/MPI [23] supports part of
MPI-2 interfaces, for example, dynamic process man-
agement. MVAPICH2 [14] is an MPI-2 implementa-

tion over InfiniBand. It supports both active and pas-
sive one-sided communication. MPICH-QsNet [21]
and LA-MPI [10] provide MPI implementation over
Quadrics network, but they do not support dynamic pro-
cess management or process checkpoint/restart. Change
of the membership and connections among MPI pro-
cesses usually aborts the parallel job. Open MPI [9, 24]
is initiated as a new MPI-2 implementation that support
fault tolerant and concurrent message passing over mul-
tiple networks. This work provides a design and imple-
mentation of high performance communication of Open
MPI over Quadrics/Elan4.

7. Conclusions

In this paper, we have presented the design and im-
plementation of Open MPI [9, 24] point-to-point trans-
port layer (PTL) over Quadrics/Elan4 [21, 2]. To match
the fault tolerant design goals of Open MPI, we have
designed the transport layer to allow dynamic processes
over Quadrics. Our design has also integrated Quadrics
RDMA capabilities into the communication model of
Open MPI [9, 24]. Thread-based asynchronous com-
munication progress is supported with a strategy using
both Quadrics chained event mechanism and QDMA.
Our evaluation has shown that the point-to-point trans-
port layer implementation achieves a latency compara-
ble to Quadrics native QDMA for small messages. Its
overall performance is slightly lower but comparable
to that of MPICH-QsNetII [21]. Our implementation
provides a MPI-2 [16] compliant message passing over
Quadrics/Elan4.

In future, we intend to study the effectiveness of
performance improvement with Open MPI’s aggregated
communication over multiple Quadrics network inter-
faces and across different interconnects. We also intend
to study fault tolerant process management and reliable
message delivery over multiple interconnects.
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