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Abstract— Multi-level buffer cache architecture has been
widely deployed in today’s multiple-tier computing environments.
However, caches in different levels are inclusive. To make better
use of these caches and to achieve the expected performance
commensurate to the aggregate cache size, exclusive caching has
been proposed. Demotion-based exclusive caching [1] introduces a
DEMOTE operation to transfer blocks discarded by a upper level
cache to a lower level cache. In this paper, we propose a DEMOTE
buffering mechanism over storage networks to reduce the visible
costs of DEMOTE operations and provide more flexibility for op-
timizations. We evaluate the performance of DEMOTE buffering
using simulations across both synthetic and real-life workloads
on three different networks and protocol layers (TCP/IP on
Fast Ethernet, IBNice on InfiniBand, and VAPI on InfiniBand).
Our results show that DEMOTE buffering can effectively hide
demotion costs. A maximum speedup of 1.4x over the original
DEMOTE approach is achieved for some workloads. Speedups in
the range of 1.08-1.15x are achieved for two real-life workloads.
The vast performance gains results from overlapping demotions
and other activities, reduced communication operations and high
utilization of the network bandwidth.

I. INTRODUCTION

Caching is designed to shorten access paths for frequently
referenced items, and so improve the performance of the
overall file and storage systems. With the increasing gap
between processors and disks, and decreasing memory price,
modern file and storage servers typically have large caches
up to several or even tens of gigabytes to speed up I/O
accesses [1]. In addition, the clients of these servers also
devote a large amount of memory for caching [2]–[5]. Multiple
clients may share file and storage resources through various
storage networks. A typical scenario is a two-level hierarchy:
the lower level cache can be a high-end disk array cache or a
cluster file server cache, and the upper level can be a database
server cache or a file client cache. We call a lower level cache

a server cache. In contrast, we call an upper level cache as a
client cache.

Most cache placement and replacement policies used in
multi-level cache systems maintain the inclusion property:
any block in an upper level buffer cache is also in a lower
level cache. The drawbacks of inclusive caching have been
observed in a rich set of literature [1], [6]–[8]. To aggregate
the cache size of the multi-level cache hierarchy and to achieve
exclusive caching, Wong and Wilkes [1] recently proposed a
simple operation called DEMOTE as an additional interaction
means between a client cache and a disk array cache to achieve
exclusive re-read cache. The DEMOTE operation is used to
transfer evicted data blocks from the client buffer cache to
the disk array cache. Then the server cache uses different
cache replacement policies for the demoted blocks and blocks
recently read from disks to yield exclusive caching.

In our study, we study the overheads of DEMOTE opera-
tions and propose a DEMOTE buffering mechanism to reduce
the impact of DEMOTE operations on the system perfor-
mance. In the DEMOTE buffering mechanism, a small portion
of buffer space is used to delay DEMOTE operations. When
an evicted block needs to be sent to the server cache, the block
is first placed in the DEMOTE buffer. Unlike eager demotions
in the DEMOTE mechanism [1], DEMOTE buffering delays
demotions and schedules them at an appropriate time in an
efficient way. We discuss design issues in DEMOTE buffering
and perform performance evaluations over different networks,
including TCP/IP of Fast Ethernet, IBNice of InfiniBand [9],
and VAPI of InfiniBand [9].

DEMOTE buffering has the potential to mask the DEMOTE
overheads, to smooth the variance (burstiness) in the DEMOTE
traffic, and to provide more flexibility for optimizations. In
DEMOTE buffering, the design space for optimizations is
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broadened, including non-blocking network operations, re-
mote direct memory access (RDMA), RDMA Gather/Scatter
operations in networks such as InfiniBand [10], [11], and
speculating demotions. Our performance evaluation through
simulations across both synthetic and real-life workloads on
different networks validates these potentials.

The rest of the paper is organized as follows. Background
is presented in Section II. Section III describes the system
architecture and various design issues in details. Section IV
presents and analyzes the simulation results. We examine some
related work in Section V and draw our conclusions and
discuss possible future work in Section VI.

II. BACKGROUND

We give a brief overview of demotion-based exclusive
caching and analyze its performance overheads in this section.
Some background information of InfiniBand is also presented.

A. Demotion-Based Exclusive Caching

Wong and Wilkes [1] proposed a simple operation called
DEMOTE as an additional interaction means between a client
cache and a disk array cache to achieve exclusive re-read

cache. The DEMOTE operation is used to transfer evicted data
blocks from the client cache to the disk array cache. To achieve
exclusive caching, the server cache should choose appropriate
cache placement and replacement policies to manage blocks
demoted from the client cache and blocks that have been read
from the disk. One of exclusive cache schemes discussed is
shown in Figure 1. The client cache uses the LRU policy
to read blocks from the server cache. The server cache puts
blocks it has sent to a client at the head (earliest to be
discarded) of its LRU queue, while puts demoted blocks from
the client cache at the tail. This cache management policy
most closely achieves a single unified LRU cache [1]. Ideally,
exclusive caching has the potential to double the effective
cache size with client and server caches of equal size.

Client LRU

      Demote

      Read

Server LRU

Discard

Client
Cache

Server
Cache

Fig. 1. Cache management in the DEMOTE exclusive caching.

When a client is to discard a clean block from its cache to
make space for other blocks, it first sends the block metadata
in advance of the block data [12]. This control message can

be used to avoid transferring the block data in some cases. For
example, from the metadata, the server can determine whether
or not it has cached the block, and if it has it can signal to
the client to abort the transfer.

Demotion-based exclusive caching relies on transferring
demoted blocks through network between the clients and
the server. Further, the DEMOTE approach performs eager
DEMOTE operations with assumption that the network is fast.
This method offers design simplicity. However, it introduces
the following performance overheads, which may offset the
benefits of exclusive caching for some workloads and net-
works.

� Eager DEMOTE operations increase request access time.
A request may be delayed because it needs to wait for
the completion of a DEMOTE operation to make space
for it. That is, the average client cache miss penalty will
be increased due to the cost of DEMOTE operations.

� DEMOTE operations increase the network traffic. In the
worst case, each read incurs a DEMOTE operation, the
network traffic is more than doubled (some control traffic
is also counted).

� Eager DEMOTE operations provide little design space for
optimizations. A DEMOTE operation must be finished
before a demand request can have space in the client
cache. Therefore, features such as non-blocking network
operations can not be applied. Besides, each block needs
a control message. In addition, the size of cache blocks
is usually small (e.g. 4 kB or 8kB), one cache block
per DEMOTE operation may not utilize the network
bandwidth efficiently.

We propose DEMOTE buffering to hide and/or reduce these
overheads. DEMOTE buffering provides more flexibility for
optimizations. These optimizations can make better use of
network features, such as non-blocking network operations
and gather/scatter operations. A control message in DEMOTE
buffering can contain multiple blocks’ metadata. This can
reduce control traffic and amortize control cost over multiple
blocks.

B. Overview of InfiniBand

The InfiniBand Architecture [10] defines a System Area
Network for interconnecting both processing nodes and I/O
nodes. It provides a communication and management in-
frastructure for inter-processor communication and I/O. The
InfiniBand specification defines three basic components: a
Host Channel Adapter (HCA), a Target Channel Adapters
(TCA), and a fabric switch. In an InfiniBand network, pro-
cessing nodes and I/O nodes are connected to the fabric by
Host Channel Adapters (HCAs) and Target Channel Adapters
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(TCAs), respectively. These components are intelligent hard-
ware devices. These hardware devices provide highly reliable,
fault-tolerant communication to enable improved bandwidth,
latency, and reliability of the system.

The HCA resides in the processor node and provides the
path from the system memory to the InfiniBand network. It has
a programmable direct-memory-access (DMA) engine with
special protection and address-translation features that allow
DMA operations to be initiated locally or remotely by another
HCA or a TCA. An abstraction interface for HCAs is specified
in the form of InfiniBand Verbs.

The TCA resides in the I/O unit and provides the connection
between an I/O device (such as a disk drive) or I/O network
(such as Ethernet or Fibre Channel) to the InfiniBand network.
It implements the physical, link, and transport layers of the
InfiniBand protocol. The interface of the TCA is vendor
implementation specific.

VAPI is a user-level software interface for InfiniHost HCAs
from Mellanox [13]. The interface is based on InfiniBand verbs
layer. It supports both send/receive operations and remote
direct memory access (RDMA) operations. Gather/Scatter are
also supported in RDMA operations. RDMA write operation
can gather multiple data segments together and write all data
into a contiguous buffer on the peer side in one single opera-
tion. RDMA read operation can read data from a contiguous
buffer on the peer side into several local buffers.

IBNice [13] is a kernel-level TCP/IP implementation over
InfiniHost HCAs. It provides full compatibility of legacy
TCP/IP protocol to applications.

Using IBNice can reduce development efforts, however,
applications can not fully realize the hardware capability. In
contrast, applications programmed with VAPI can take full
advantage of InfiniBand user-level networking and RDMA
features and potentially achieve the highest performance.

III. DEMOTE BUFFERING

In this section, we first describe the structure of DEMOTE
buffering and its potential benefits. Then we discuss its design
issues.

A. The Architecture of DEMOTE Buffering

In DEMOTE buffering, a small memory space, the DE-
MOTE buffer, is used on the client side for buffering demoted
blocks, as shown in Figure 2. DEMOTE buffering works as
follows: when a client encounters a cache miss and is about to
demote a clean block from its cache (e.g. to make space for a
READ), it first moves the demoted block into the DEMOTE
buffer. This operation is a local operation. Then it initiates a
request to the server cache to read the demanded block. Unless
the number of demoted blocks in the DEMOTE buffer is up to

a certain threshold, requests will not encounter any overhead
of DEMOTE operations.

Client LRU

Server LRU

Demote Buffering

      Read

Demote buffer

Discard

Non−blocking DEMOTE

      Read

Client
Cache

Server 
Cache

Fig. 2. Architecture of DEMOTE Buffering.

Double-buffering technique is used in our DEMOTE buffer-
ing mechanism. The threshold could be half of the DEMOTE
buffer size in blocks. Thus, when the DEMOTE buffer is half
full, non-blocking DEMOTE operations are initiated.

When client cache misses are too bursty, it is possible
that there is no space left in the DEMOTE buffer when a
client needs to demote a block. The client cache then checks
the completion of previously initiated demotions and reclaims
resources for future demoted blocks.

B. Benefits of DEMOTE Buffering

DEMOTE buffering has the following potential benefits.

1) Reduced visible DEMOTE cost. DEMOTE buffering
tries to hide the cost of DEMOTE operations by increas-
ing the overlap between demotions and other activities.
This is achieved through buffering demoted blocks in the
DEMOTE buffer and using non-blocking I/O to perform
DEMOTE operations.

2) Exploiting idle network bandwidth. DEMOTE buffer-
ing provides opportunities to use idle network bandwidth
to transfer demoted blocks in the DEMOTE buffer. The
network link between a client and a server is free when
the client cache hits occur or the client is not performing
I/O operations. If DEMOTE operations occur during this
period, the impact of the increased traffic on the system
performance is minimized. This benefit can be realized
easily with one-sided communication such as RDMA
operations in the InfiniBand network. For example, the
server can monitor the network usage and then initiate
RDMA Read operations to retrieve demoted blocks from
a client’s DEMOTE buffer when the link is free.

3) Better network utilization. In the DEMOTE buffering
mechanism, multiple control messages can be aggre-
gated into one single message for all buffered blocks.
The control messages can be piggybacked with request
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and reply messages. Effective scheduling or batching
on the transmission of multiple blocks in the DE-
MOTE buffer can be performed. For example, RDMA
Gather/Scatter operations in InfiniBand can be used to
retrieve multiple blocks in one operation, even though
they are not contiguous. This can achieve better network
utilization.

4) More flexibility for optimizations.
Demote buffering enables more flexibility for optimiza-
tions. One example is speculating demotion. When the
client cache misses are too bursty for the DEMOTE
buffering to hide the DEMOTE costs, the client can
only send metadata information of the demoted blocks
to the server. The server then speculates about cold
blocks [8] which are accessed infrequently and thus
are unnecessary to demote from the clients. After the
client receives the server’s speculation information, it
can replace those unnecessarily demoted blocks with the
newly demoted blocks directly. Speculating demotion
can be applied without DEMOTE buffering, however,
the control message cost is significant. In Demote
buffering, the control message cost can be amortized
effectively across multiple blocks.

In summary, Demote buffering has the potential to hide the
demotion cost through overlapping communication and other
activities, to reduce the number of communication operations,
to achieve better utilization of the network bandwidth, and
to allow more flexible optimizations to reduce the impact of
demotion cost on the system performance.

C. Design Issues in DEMOTE Buffering

The DEMOTE buffering mechanism shows very attractive
potential benefits over the eager DEMOTE mechanism, how-
ever, several issues need to be addressed for this mechanism
to be used in real systems to achieve high performance.

� Reducing DEMOTE buffering overhead. There are two
ways to buffer a demoted block. One is to copy the
demoted blocks into the DEMOTE buffer. The method
can have demoted blocks in a contiguous memory space
which can be used to optimize communication in some
networks. There is no change to the client cache space.
These advantages are achieved at the cost of memory
copy. The second one is to exchange the positions of a
free block in the DEMOTE buffer and a demoted block
in the client cache. There is no memory copy. However,
the client cache space and the DEMOTE buffer space
change with time. Noncontiguous data transmission may
occur [14]. Tradeoff must be made between the cost of
memory copy and the performance of noncontiguous data
transmission in the studied network.

� Tuning the size of the DEMOTE buffer. The size of
the DEMOTE buffer affects the ability of the DEMOTE
buffering mechanism to mask the demotion overhead.
From the server cache point of view, a DEMOTE opera-
tion is similar to a WRITE operation, and the DEMOTE
buffer is similar to a write-behind buffer. Ideally speaking,
the DEMOTE buffer size must be large enough to cover
the burstiness of the client cache misses. This is similar to
a write-behind buffer to cover the variance in the write
workload [15], [16]. On the other hand, the DEMOTE
buffer should not consume too much memory since most
memory should be devoted to the client cache.

� Maintaining cache hits. DEMOTE buffering introduces
a new complication: the delayed demotions may result in
cache misses in the client and server caches. To address
this issue, first the DEMOTE buffer should be considered
as a part of the client cache. When a client cache miss
occurs, the client should look at the DEMOTE buffer to
see if the requested block is stored. Thus, from main-
taining the client cache hit point of view, the DEMOTE
buffer works as a victim buffer in victim caching [17].
In a single-client system, this method solves the issue
completely. However, it is a little bit more complicated
in a multi-client system.

� Handling remote client cache hits. In a multi-client
system, it is possible that the demoted blocks in one
client’s DEMOTE buffer may be expected by others. That
is, the delayed demotions might decrease the server cache
hits for some workloads. One solution to this problem is
to let a server cache maintain a directory of which blocks
are in which client’s DEMOTE buffer. Since the number
of blocks in a DEMOTE buffer is small, the total space
for this directory is limited. Then when a request from
a client encounters a server cache miss, the server can
potentially retrieve the block from a different client which
is holding it in its demote buffer. Data transfer between
clients is also possible, as with Cooperative Caching [5],
[18]–[20].

IV. PERFORMANCE EVALUATION

We developed a simulator to simulate the DEMOTE buffer-
ing between the clients and the server over various networks.
For comparison, the original DEMOTE mechanism is also
simulated. Our simulator is built over fscachesim [1] by
adding communication details. The simulator takes synthetic
workloads and traces as input.

A. Experimental setup

Our experimental testbed consists of a cluster system con-
sisting of 8 nodes built around SuperMicro SUPER P4DL6
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motherboards and GC chipsets which include 64-bit 133 MHz
PCI-X interfaces. Each node has two Intel Xeon 2.4 GHz
processors with a 512 kB L2 cache and a 400 MHz front side
bus. The machines are connected with Mellanox InfiniHost
MT23108 DualPort 4x HCA adapter through an InfiniScale
MT43132 Eight 4x Port InfiniBand Switch. The Mellanox
InfiniHost HCA SDK version is thca-x86-0.1.2-build-001.
The adapter firmware version is fw-23108-rel-1 17 0000-rc12-
build-001. Each node has a Fujitsu Ultra3 SCSI (Model
MAM3184MC) disk, which is a 18.4GB and 15,000 rpm drive.
We used the Linux RedHat 7.2 operating system.

We perform tests over three different networks: TCP/IP
over Fast Ethernet (referred as FE), IBNice (TCP/IP over
InfiniBand), and native InfiniBand (using the VAPI library).
We intend to use these three networks to represent roughly�����

Gb/s, 1 Gb/s, and 10 Gb/s networks. Table I lists their
minimum latency, maximum bandwidth, and effective band-
width when the message size is 4 kB bytes.

TABLE I

NETWORK PERFORMANCE

FE IBNice VAPI
Latency ( � s) 68 36 5.4

eff. Bandwidth (MiB/s) 11 109 718
max. Bandwidth (MiB/s) 11.2 130 831

B. Single-client synthetic workloads

Three synthetic workloads: Random, Sequential, and
Zipf [21], are generated using the fscachesim package [1]. The
size of cache blocks is assumed 4 kB, the client and server
caches each have 16384 blocks.

We follow the following method as mentioned in [1] to
compare DEMOTE buffering and DEMOTE mechanisms. We
perform simulations over different networks with the above
synthetic workloads. The size of the working set is 32768
blocks, 32767 blocks, and 49152 blocks for the Random,
Sequential and Zipf workloads, respectively. In each test, the
caches are “warmed up” with a working-set size set of READs.
After the warm-up, another 10 timed READs are initiated.
Time to randomly access a 4 kB disk block is set to 10 ms,
the same value set in [1]. The DEMOTE buffer size is set to 10
cache blocks. The client cache hit ratios are 50%, 0%, and 86%
for Random, Seqential, and Zipf workloads, respectively; with
server cache hit ratios of 46%, 100%, and 9%. Note that these
ratios are expressed as fractions of the total client READs.
Since the cache hit results are important for us to understand
the performance of DEMOTE buffering, we put these results
in Table II for clearer reference.

The main metric for evaluating DEMOTE buffering is the
mean latency of a READ at the client. DEMOTE buffering

TABLE II

CLIENT AND SERVER CACHE HIT RATES FOR SINGLE-CLIENT SYNTHETIC

WORKLOADS.

Workload client server
Seq 0% 100%

Random 50% 46%
Zipf 86% 9%

achieves same cache hits and server hits as DEMOTE does.
The results in Table III show the mean latency of READs in
each workload with DEMOTE (DE for short) and DEMOTE
Buffering (DB for short) mechanisms.

It can be observed that DEMOTE buffering achieves the
highest speedup (1.44x) for the Sequential workload. This is
because there is no cache hit on the client, and all accesses are
cached in the server. Each access results in sending a demoted
block to the server and receiving a block from the server.

In Random workload, the number of demote operations is
50% of the size of the working set due to 50% client cache
hit ratio. There are 4% blocks needed to be read from disk.
DEMOTE buffering achieves considerable improvement on
Fast Ethernet and IBNice. However, the benefit diminishes on
VAPI because the total demotion overheads are less significant.

DEMOTE buffering achieves the least improvement in the
Zipf workload. This is actually expected, because of the
highest client cache hit ratio and the lowest server cache hit
ratio. The client cache hit ratio is 86%, indicating that there
are only 14% blocks needed to be demoted. The server cache
hit ratio is 9%, indicating that there are 5% blocks needed to
be read from disk. Since the disk access time is much higher
than the network access time, the total demotion overheads
become less significant in the Zipf workload.

TABLE III

MEAN READ LATENCIES AND SPEEDUPS OVER DEMOTE FOR

SINGLE-CLIENT SYNTHETIC WORKLOADS (DE: DEMOTE; DB: DEMOTE

BUFFERING)

Seq (ms) Random (ms) Zipf (ms)
DE 1.21 0.99 0.84

FE DB 1.09 (1.11x) 0.92 (1.08x) 0.83 (1.01x)
DE 0.26 0.52 0.73

IBNice DB 0.18 (1.44x) 0.46 (1.13x) 0.71 (1.03x)
DE 0.078 0.41 0.704

VAPI DB 0.056 (1.4x) 0.40 (1.03x) 0.70 (1.01x)

We note that performance gain achieved by using DEMOTE
buffering varies with the network performance, disk perfor-
mance, as well as workload access patterns. It depends how
significant the total demotion overheads are. It can be expected
that workloads with high client cache miss rates can benefit
more from DEMOTE buffering. In addition, the faster disks
are, the more significance DEMOTE buffering is. Furthermore,
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the performance gain is closely related to the performance
gap between network and disk. In Table III, we see DEMOTE
buffering achieves less improvement on VAPI than on IBNice,
this is because VAPI performs 6.5 times better than IBNice
and tens of times better than disk, the total demotion overheads
over VAPI are less significant than those over IBNice.

C. Effectiveness of DEMOTE buffering

To show the effectiveness of DEMOTE buffering directly,
we profiled the total demotion overheads visible to the client
in our tests. Results are shown in Table IV. With a small
DEMOTE buffer (10 blocks), up to 34% demotion overheads
are reduced by DEMOTE buffering.

TABLE IV

TOTAL DEMOTION OVERHEADS FOR SINGLE-CLIENT SYNTHETIC

WORKLOADS

Seq (s) Random (s) Zipf (s)
DE 12.76 10.65 1.91

FE DB 8.30 7.44 1.52
DE 9.45 4.70 1.70

IBNice DB 6.39 3.23 1.14
DE 0.95 1.81 0.33

VAPI DB 0.70 1.30 0.26

Note that in the above tests, one request is initiated imme-
diately after the completion of the previous one. This incurs
the highest burstiness of DEMOTE operations in all workloads
studied. It is possible that client cache misses are too bursty
to mask the DEMOTE overhead. That is, some of requests
should wait for the completion of non-blocking demotions for
spaces. Thus, the results in Table IV are actually the worst-
case results for DEMOTE buffering. In the next subsection,
we show that DEMOTE buffering can achieve better overlap
if we reduce the access rate.

D. Effects of Burstiness

The sequential workload results in the most bursty demote
operations since each READ incurs a DEMOTE operation. To
study how well DEMOTE buffering can mask the DEMOTE
overheads under different client cache miss burstiness, we
put some computation delay after each client read request.
We expect that the larger the delay is, the better DEMOTE
buffering can overlap demotions with the computation delay.
Consequently, the visible DEMOTE overheads to the client
decrease. In contrast, each read in the eager DEMOTE ap-
proach must pay the demotion cost no matter what the delay
is.

The results in Figure 3 validate our expectations. The
overhead visible to the client is expressed as the fraction of
the total overhead visible to the client in the eager DEMOTE,
shown in y-axis. The delays between two consecutive requests

are shown in x-axis. First, DEMOTE buffering effectively
reduces the demotion overheads visible to the client even with
small delays. Second, the delay at which the best overlap is
achieved is adversely proportional to the network bandwidth.
For example, when the delay is 500 � s, DEMOTE buffering
on Fast Ethernet can offer the best overlap, while similar
benefits arises with 100 � s for IBNice, and 50 � s for VAPI.
Third, another interesting observation is that still 36% and 32%
overheads are visible to the client on Fast Ethernet and IBNice
even with large delays, while only 12% overhead visible to
the client on VAPI. This is due to different CPU overheads
needed to transfer data in the three networks studied. Both
fast Ethernet and IBNice use the kernel-based TCP/IP stack
which incurs substantial overheads due to context switching
and memory copies. In contrast, VAPI provides user-level
networking which requires much less interference from the
host CPUs and operating system.
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Fig. 3. Demotion overhead visible to the client with different request rates.

E. The Single-client DB2 workload

We used the DB2 workload [22] to evaluate the benefits
of DEMOTE buffering for real-life workloads. The DB2
traces were generated by an eight-node IBM SP2 system. The
size of data set is 5.2 GB. The eight client nodes access
disjoint sections of the database. For single-client test, the
eight access streams are combined into one. Unlike the above-
mentioned tests, in this and the next tests, the disk accesses
are not simulated. We use a Fujitsu Ultra3 SCSI (Model
MAM3184MC) disk, which is a 18.4GB and 15,000 rpm drive.
DB2 exhibits a behavior between the sequential and random
workload styles [1]. The results of mean latencies achieved
with different DEMOTE buffers are shown in Figure 4. Data
points with zero block are results of DEMOTE. Overall, a
1.10 to 1.15x speedup over DEMOTE is achieved for Fast
Ethernet and IBNice on InfiniBand, a 1.05x speedup for VAPI
on InfiniBand. The mean latencies on IBNice and VAPI have
little sensitivity to the size of DEMOTE buffer.
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F. The Multi-client HTTPD workload

The HTTPD workload [22] was collected on a seven-node
IBM SP2 parallel web server serving a 524 MB data set.
There is a significant portion of blocks shared by clients. In
this study, we evaluate the impact of DEMOTE buffering on
the server cache hit ratio. For comparison, we implemented
two methods to process server cache misses. One is to reload
the missed blocks from disks, referred as Reload. The second
one tries to retrieve the missed blocks first from the clients’
DEMOTE buffers, referred as Retrieve. To keep the server
updated of which blocks are in clients’ DEMOTE buffers, the
client eagerly piggybacks metadata information of the demoted
block to the server cache in the request message.

In our test, each client has an 8 MB cache. The server
cache is 64 MB. This configuration results in 62% client cache
hits on average, 12% server cache hits, and 16% server cache
misses with the DEMOTE approach. In DEMOTE buffering,
when the DEMOTE buffer is less than 40 blocks, the server
cache misses remain same. When the DEMOTE buffer size is
set to 80, the average client cache hit ratio is 63%, 9% server
cache hit ratio, and 18% server cache miss ratio. Figure 5
shows the aggregated throughput (the total number of HTTPD
requests finished per second) of seven clients with different
DEMOTE buffer sizes. We use “1” to represent the Reload
method, and “2” for the Retrieve method. In Fast Ethernet
(FE), Reload performs better than Retrieve because of the
poor network performance. In both IBNice and VAPI, the
network access is much faster than the disk access; hence,
retrieve performs better than Reload. Although there is some
increase of the server cache misses when the DEMOTE buffer
becomes large, the DEMOTE buffering with Retrieve scheme
still provides better performance than the eager DEMOTE
approach whose results are shown by data points with zero
block in the figure. A speedup up to 1.08x can be achieved.
For example, the eager DEMOTE can support 9859 ops/sec on
IBNice, while DEMOTE buffering can support 10670 ops/sec,
a factor of 1.08 improvement.

8000

8500

9000

9500

10000

10500

11000

0 10 20 40 60 80

A
gg

re
gr

at
ed

 T
hr

ou
gh

pu
t (

op
s/

s)

Number of Blocks In the Demote Buffer

FE-1
FE-2

IBNice-1
IBNice-2

VAPI-1
VAPI-2

Fig. 5. HTTPD workload aggregate throughput

V. RELATED WORK

In a multi-level cache hierarchy, there exist two types
of interactions between cache entities: horizontal interaction
and vertical interaction. Cooperative Caching [5], [18]–[20]
can be considered to use horizontal interaction to aggregate
caches in a same level. Our work focuses on the vertical
interaction. Vertical interaction has been realized in different
ways. Client-controlled caching policy [23], DEMOTE Ex-
clusive caching [1], and eviction-based cache replacement [8]
are typical examples to perform various vertical interactions
to improve system performance. Perhaps the closest work
to ours in spirit is eviction-based cache replacement. Both
work are intended to avoid/reduce the costs of DEMOTE
operations. However, different approaches have been taken.
In eviction-based placement, the server cache tries to reload
blocks from disks when they are evicted from the client cache.
Our approach is still to demote blocks, however, we use
DEMOTE buffering to mask the overheads of demotions and
to provide flexibility for optimizations, including the tradeoff
between reload and demotion.

Demote buffering also shares similarity with victim
caching [17] proposed by Jouppi in the sense that a victim
buffer is used to place data evicted from cache. However,
we have a different goal in using a DEMOTE buffer. Victim
caching was proposed as an approach to improve the miss rate
of direct-mapped caches without affecting their access time. A
victim buffer is essentially used as a cache between a processor
cache and its refill path. Demote buffering was designed to
achieve efficient demotion interaction between two caches in
different levels and reduce/mask cost of demote operations.
The benefits of DEMOTE buffering are mostly from the over-
lap of demotion communication and other activities, instead
of the increase of cache hits as in victim caching.

VI. CONCLUSIONS AND FUTURE WORK

DEMOTE buffering is proposed to hide the cost of DE-
MOTE operations by increasing the overlap between de-
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motions and other activities in demotion-based exclusive
caching. It also provides more flexibility for optimizations,
such as non-blocking operations, aggregate of control mes-
sages, gather/scatter network operations, and speculating de-
motions. Results of experiments with synthetic workloads
demonstrate that 1.11-1.44x speedups are achieved for the
Sequential workload, up to 1.13x speedups for the Random
workload. Simulation results with real-life workloads validate
the benefits of DEMOTE buffering by 1.08-1.15x speedups
over the DEMOTE approach.

We are planning to design and implement demotion-based
exclusive caching with DEMOTE buffering in a cluster file
system, named PVFS [14], [24], [25]. Another direction is to
study how to choose appropriate cache management policies
and make them work together in different cache levels.
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