
High Performance Implementation of MPI Derived
Datatype Communication over InfiniBand

Jiesheng Wu, Pete Wyckoff
�
, and Dhabaleswar K. Panda

Computer and Information Science
The Ohio State University

Columbus, OH 43210�
wuj, panda � @cis.ohio-state.edu

�
Ohio Supercomputer Center

1224 Kinnear Road
Columbus, OH 43212

pw@osc.edu

Technical Report
OSU-CISRC-10/03-TR58

High Performance Implementation of MPI Derived Datatype Communication
over InfiniBand �

Jiesheng Wu
�

Pete Wyckoff
�

Dhabaleswar Panda
�

�
Computer and Information Science

The Ohio State University
Columbus, OH 43210�

wuj, panda � @cis.ohio-state.edu

�
Ohio Supercomputer Center

1224 Kinnear Road
Columbus, OH 43212

pw@osc.edu

Abstract

MPI derived datatype is a powerful method to define ar-
bitrary collections of noncontiguous data in memory and
to enable noncontiguous data communication in a single
MPI function call. It can be expected that MPI derived
datatype could become a key aid in application develop-
ment. In practice, however, the poor performance of many
MPI implementations with derived datatypes forces users to
resort to packing and unpacking data in contiguous buffers
manually. This usage actually defeats the purpose of having
derived datatype in the MPI standard.

In this paper, we systematically study two main types of
approach for MPI datatype communication: Pack/Unpack-
based approaches and Copy-Reduced approaches on the In-
finiBand network. We focus on overlapping packing, net-
work communication, and unpacking in the Pack/Unpack-
based approaches. We use RDMA operations to avoid pack-
ing and/or unpacking in the Copy-Reduced approaches. We
design four schemes to improve performance of datatype
communication.

We implement and evaluate three schemes based on one
of MPI implementations over InfiniBand. Performance re-
sults of a vector micro-benchmark demonstrate that latency
is improved by a factor of up to 3.4 and bandwidth by a
factor of up to 3.6 compared to the current datatype com-
munication implementation, which is derived from MPICH.
Collective operations like MPI Alltoall are demonstrated to
benefit. A factor of up to 2.0 improvement has been seen
in our measurements of those collective operations on a 8-
node system. We also notice that these schemes perform
differently in different cases. It is feasible that an imple-
mentation can incorporate multiple schemes and choose an

�
This research is supported in part by Department of Energy’s Grant

#DE-FC02-01ER25506, and National Science Foundation’s grants #EIA-
9986052, #CCR-0204429, and #CCR-0311542.

appropriate scheme given a datatype operation to achieve
the best performance. Techniques discussed in this paper
can be applied to other domains such as file and storage
systems to support efficient noncontiguous I/O access.

1 Introduction

The MPI (Message Passing Interface) Standard [21] has
evolved as a de facto parallel programming model for dis-
tributed memory systems. MPI has a number of features
that provide both convenience and high performance. One
of the important features is MPI derived datatype. Derived
datatype provides a powerful and general way to describe
arbitrary collections of noncontiguous data in memory in a
compact fashion. The MPI standard provides run time sup-
port to create MPI derived datatypes and use them in other
functions, such as regular message passing functions, per-
forming remote memory access (RMA), and I/O operations.

Typically, MPI derived datatypes allow users to have
concise representations of many commonly used data lay-
outs [11, 26]. An example is given in Section 3.2. It can
be expected that MPI derived datatype could become a key
aid in application development. In practice, however, the
poor performance of many MPI implementations with de-
rived datatypes [5, 11, 27, 30] becomes a barrier to us-
ing derived datatypes. A programmer often prefers pack-
ing and unpacking noncontiguous data manually even with
considerable effort. Therefore, it would not be surpris-
ing that there is no datatype communication in either the
NAS benchmarks [4] or the ASCI benchmarks [20]. On
the other hand, noncontiguous communication occurs com-
monly in many applications, such as (de)composition of
multi-dimensional data volumes [3, 8], fast Fourier trans-
form, and finite-element codes [5]. Thus, it is very im-
portant to provide efficient MPI datatype communication in
MPI implementations.

MPI datatype communication involves datatype process-
ing, and noncontiguous data communication (in this paper,
unless stated otherwise, we refer datatype to noncontiguous
datatype). In many networks which only support transfer
of contiguous data blocks, packing data into and unpacking
data out of a contiguous buffer are usually used for non-
contiguous data communication. There are several potential
ways to improve MPI datatype communication accordingly:
Improve datatype processing system [11, 15, 26]; Optimize
packing and unpacking procedures [5, 11]; Take advantage
of network features to improve noncontiguous data commu-
nication [30, 33]. In this paper, we focus on the last two
areas based on the InfiniBand network.

We systematically study two main types of approach
for MPI datatype communication: Pack/Unpack-based ap-
proaches and Copy-Reduced approaches on the InfiniBand
network. In the first type of approach, to reduce the impact
of pack and unpack costs on the performance of datatype
communication, we propose a new technique called Buffer-
Centric Segment Pack/Unpack (BC-SPUP) to pipeline the
three steps in a datatype communication: packing, network
communication, and unpacking. This technique offers po-
tential overlaps between packing, network communication,
and unpacking. Particularly, InfiniBand provides compara-
ble bandwidth to system memory copy bandwidth, which
makes more sense to overlap these three steps. There-
fore, the pack/unpack costs visible to applications are re-
duced effectively. In addition, this technique also re-
duces dynamic memory allocation and deallocation, mem-
ory registration and deregistration by using pre-registered
pack/unpack buffers as much as possible.

In Copy-Reduced approaches, the main idea is to use
InfiniBand remote direct memory access (RDMA) opera-
tions to transfer noncontiguous data in a datatype message
directly without packing and/or unpacking. We design three
schemes: RDMA Write Gather with Unpack (RWG-UP),
which avoids packing on the sender side; Pack with RDMA
Read Scatter (P-RRS) , which avoids unpacking on the re-
ceiver side; and Multiple RDMA Writes (Multi-W), which
avoids both packing and unpacking and achieves zero-copy
datatype communication.

We design the aforementioned four schemes. We iden-
tify their design issues and provide solutions to these issues.
We also implement and evaluate three of them: BC-SPUP,
RWG-UP, and Multi-W based on MVAPICH [24, 19], an
MPI implementation over InfiniBand. In this paper, we
make the following contributions:

1. Memory copies in datatype communication have sig-
nificant impact on the InfiniBand network which offers
high bandwidth comparable to memory bandwidth.
The proposed Buffer-Centric Segment Pack/Unpack
scheme effectively overlaps packing, network com-
munication, and unpacking; and reduces pack/unpack

costs visible to applications.

2. RDMA Gather/Scatter functionality can be used to
transfer datatype messages efficiently by reducing
memory copies. It allows multiple blocks to be trans-
ferred in one single operation. This not only reduces
the total startup costs, but also increases network uti-
lization. Our proposed RDMA Write Gather with Un-
pack scheme takes advantage of both RDMA Gather
Write and segment unpacking. The unpack cost is
masked effectively for large datatype messages.

3. Using multiple RDMA writes to transfer a datatype
message is very efficient due to zero-copy with con-
dition that each block size is large enough. Otherwise,
the total startup costs and the low network utilization
of small messages offset the benefit of zero-copy.

4. Memory registration and deregistration on networks
with RDMA capabilities add a new dimension to
datatype communication. Our scheme to register and
deregister datatype message buffers permits efficient
use of RDMA operations for datatype communication.

5. We implement and evaluate BC-SPUP, RWG-UP and
Multi-W schemes based on MVAPICH. Significant
improvement has been achieved in both point-to-
point and collective datatype communication. These
schemes perform differently in different cases. A com-
bination of these schemes can be deployed in an MPI
implementation. An appropriate scheme can be chosen
dynamically with respect to the datatype characteris-
tics.

The rest of the paper is organized as follows. We first
give a brief overview on InfiniBand in Section 2. Section 3
presents an overview of MVAPICH, its datatype commu-
nication, and a motivating example that illustrates prob-
lems and potential improvements in the current implemen-
tation. Section 4 describes two pack/unpack approaches for
datatype communication. Section 5 describes three copy-
reduced approaches. We describe the feasibility to combine
all schemes in one implementation and to choose one ap-
proach dynamically in Section 6. In Section 7, we highlight
some implementation details. The performance results are
presented in Section 8. We examine some related work in
Section 9 and draw our conclusions and discuss possible fu-
ture work in Section 10.

2 Overview of InfiniBand

The InfiniBand Architecture [13] defines a System Area
Network for interconnecting both processing nodes and I/O
nodes. It provides a communication and management in-
frastructure for inter-processor communication and I/O. In
an InfiniBand network, processing nodes and I/O nodes are

2

connected to the fabric by Host Channel Adapters and Tar-
get Channel Adapters, respectively.

An abstraction interface for HCAs is specified in the
form of InfiniBand Verbs. The interface of TCAs is vendor
implementation specific and not defined in the InfiniBand
architecture. In the Verbs abstraction, a queue-based com-
munication model is used. A Queue Pair consists of two
queues: a send queue and a receive queue. The send queue
holds instructions (descriptors) to transmit data and the re-
ceive queue holds instructions, that describe where received
data is to be placed. The completion of send and receive re-
quests is reported through Completion Queues (CQs). Once
a request is finished, a completion queue entry can be gener-
ated in the associated CQ. Flexible completion notification
mechanisms are provided.

InfiniBand Architecture supports both channel and mem-
ory semantics. In channel semantics, send/receive opera-
tions are used for communication. To receive a message,
the receiver first posts a receive descriptor into a receive
queue. Then, the sender posts a send descriptor into a send
queue to initiate data transfer. In channel semantics, there
is a one-to-one match between send and receive descrip-
tors. Multiple send and receive descriptors can be posted
and consumed in FIFO order.

In memory semantics, Remote Direct Memory Access
(RDMA) write and read operations are used. RDMA oper-
ations are one-sided. The initiator can write data into and
read data from a buffer on the remote node transparently.
Write Gather and Read Scatter are supported in RDMA op-
erations. RDMA write operation can gather multiple data
segments together and write all data into a contiguous buffer
on the remote side in one single operation. While RDMA
read operation can read data from a contiguous buffer on
the remote side into several local buffers. These gather and
scatter features are very useful to transfer noncontiguous
data. RDMA Write with Immediate data is also supported.
With Immediate data, a RDMA Write operation consumes a
receive descriptor and then can generate a completion entry
to notify the remote node of the completion of the RDMA
Write operation.

3 Datatype Communication in MVAPICH

In this section, we first describe MVAPICH, an MPI
implementation over InfiniBand [24, 19], including its ba-
sic communication protocols and datatype communication.
Then we present a motivating example to demonstrate per-
formance problems of datatype communication in MVA-
PICH and discuss possible ways to improve datatype com-
munication performance. Note that the MVAPICH datatype
communication path is mostly same as that in the standard
MPICH implementation [10], these problems are actually
general issues in all MPICH implementations over RDMA-

capable networks, such as MVICH [17] and MPICH-
GM [23].

3.1 Overview of MVAPICH

MVAPICH is a high performance MPI implementation
on InfiniBand. Its design is based on MPICH [10] and
MVICH [17]. The InfiniBand communication interface is
implemented as a communication device in the MPICH
ADI layer [29]. There are two basic protocols in MVA-
PICH: Eager and Rendezvous. In Eager protocol, a message
is transferred eagerly to a receiver’s internal buffer regard-
less of whether a receive operation had been issued or not.
In this protocol, data is first copied into an internal buffer on
the sender side. Then it is transferred to an internal buffer
on the receiver side. Later, data is copied from the receiver
internal buffer into the application buffer. The Eager proto-
col is used to transfer small and control messages.

In the Rendezvous protocol, the sender and the receiver
first perform handshake to synchronize with each other.
This synchronization ensures that a matched receive oper-
ation has been issued before data transfer. User buffers
on both sides are registered and related information is ex-
changed in the handshake procedure. A zero-copy imple-
mentation of the Rendezvous protocol is implemented us-
ing RDMA Write operations. The Rendezvous protocol is
used to transfer large messages.

MVAPICH is publicly available and has been widely
used in many labs, universities, and companies. In the cur-
rent MVAPICH, we have not exploited the design space
for MPI derived datatype communication over InfiniBand.
The MVAPICH datatype communication path is derived
from MPICH and MVICH without change. Figure 1 shows
the communication paths for both small and large datatype
messages in the current MVAPICH. Small datatype mes-
sages are packed into a temporary buffer (pack buffer) first,
then copied into an internal buffer of the Eager protocol.
On the receiver side, the message is first copied into a tem-
porary buffer (unpack buffer) from an internal buffer, then
unpacked into the user buffer. To transfer a large datatype
message, both sides allocate pack and unpack buffers dy-
namically. The sender packs data into a pack buffer and then
RDMA writes data into the receiver’s unpack buffer. The
receiver unpacks data into the user buffer. Zero-copy mes-
saging happens only between the pack and unpack buffers.
In both protocols, pack and unpack buffers are allocated
and freed dynamically. This pack/unpack scheme is a
generic datatype communication mechanism deployed in
many MPI implementations.

3.2 A Motivating Example

Many MPI implementations perform poorly with derived
datatypes [5, 11, 27, 30, 25]. We use a vector datatype ping-
pong latency test to demonstrate performance problems in

3

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�	�
�	�
�	�

	

	

	

�
�
�
�
�
�

	

	

	

�	�
�	�
�	�
�	�
�	�
�	�
�
�
�

�
�
�
�
�
�

�	�
�	�
�	�
�	�
�	�
�	�

�	�
�	�
�	�
�	�
�	�
�	�
�	�
�	�
�	�
�
�
�
�
�
�
�
�
�

�	�
�	�
�	�
�	�
�	�
�	�

�
�
�
�
�
�
�	�
�	�
�	�

!
!
!
"
"
"

#	#
#	#
#	#
$	$
$	$
$	$
%
%
%
&
&
&

'	'
'	'
'	'
((
((
((
)
)
)
*
*
*

+	+
+	+
+	+
,	,
,	,
,	,
-	-
-	-
-	-
.	.
.	.
.	.

/	/
/	/
/	/
0	0
0	0
0	0
1	1
1	1
1	1
2	2
2	2
2	2

3	3
3	3
3	3
4	4
4	4
4	4
5	5
5	5
5	5
6	6
6	6
6	6

7	7
7	7
7	7
8	8
8	8
8	8

Large datatype message

1
2
3
4

1: start 2: reply 3:data write 4: finish

Copy

Write
RDMA

Small datatype message

Pack/

User buf

Unpack

Eager
internal buf

User buf

Pack/
Unpack buf bufCopy

Pack Unpack Pack Unpack

Figure 1. Datatype Communication in MVAPICH

the generic MPICH datatype communication implementa-
tion and particular issues arisen in MVAPICH over Infini-
Band.

Suppose we want to send one or more columns in a
two-dimensional 128 9 4096 integer array from one pro-
cess to another process. There are several potential
schemes. The first scheme builds a derived datatype us-
ing MPI Type vector(128, x, 4096, MPI INT,
&newtype), where : is the number of columns, and then
to use this newtype in MPI Send() and MPI Recv().
The second scheme performs manual pack and unpack and
only sends contiguous messages. The third scheme trans-
fers each contiguous block one by one using individual MPI
calls. We refer these three schemes as Datatype, Manual,
and Multiple schemes, respectively.

One particular issue with the Datatype scheme on Infini-
Band network is that dynamic pack and unpack buffers may
incur on-the-fly memory registration and deregistration in
each datatype operation. It is possible that different pack
and unpack buffers are used in different datatype operations.
We call this case as Datatype plus registration and deregis-
tration (DT + reg for short in Figure 2).

Figure 2 shows a log-log plot of the ping-pong laten-
cies of the aforementioned cases with variable numbers of
columns in MVAPICH. As a reference, the latency results
for transferring the same size of contiguous data, termed as
Contig, are also shown.

Several observations can be made. First, no more than
one quarter of contiguous communication performance is
achieved in any scheme. All schemes except Multiple have
two memory copies on top of contiguous communication.
Second, Manual performs a little better than Datatype.
This is because of datatype processing overhead. Third,
Datatype plus registration and deregistration (DT+reg) is
much slower than Datatype. Fourth, Multiple performs a lit-
tle better when the block size is large enough. Though there
are no copies, the total cost of all operations, one per row,
and the low network utilization due to small message sizes,
degrade the zero-copy benefit when the block size is small.
Each individual MPI call needs to pay its protocol overhead
separately. In addition, it requires much effort from pro-

8

16

32

64

128

256

512

1024

2048

4096

8192

1 4 16 64 256 1024

La
te

nc
y

(u
s)

Number of Columns

Contig
Manual

Datatype
DT+reg
Multiple

Figure 2. Vector Datatype Transfer Latency
Comparison between Different Ways.

grammers to handle all communication details.

Therefore, the poor performance of datatype communi-
cation comes from: (1) memory copy; (2) memory regis-
tration and deregistration; (3) datatype processing; (4) total
startup costs of operations; and (5) low network utilization
due to small message sizes. This example motivates us to
redesign the datatype communication path in MVAPICH.

We consider the following two types of approach to
improve MPI datatype communication over InfiniBand:
Pack/Unpack-Based approaches and Copy-Reduced ap-
proaches. The first type of approach is based on the
pack/unpack mechanism. We propose a Buffer-Centric Seg-
ment Pack/Unpack scheme, which is presented in Section 4.
Copy-Reduced approaches center around reducing memory
copies by eliminating packing, unpacking, or both. We
design three schemes: RDMA Write Gather with Unpack,
Pack with RDMA Read Scatter, and Multiple RDMA Writes.
Details are discussed in Section 5.

4

4 Pack/Unpack-Based Approaches

In this section, we first describe the basic Pack/Unpack
scheme. Then we propose a Buffer-Centric Segment
Pack/Unpack scheme (BC-SPUP) and discuss its potential
benefits and design issues. This scheme provides overlap
between packing, network communication, and unpacking
and avoids on-the-fly memory registration and deregistra-
tion as much as possible. In Section 5, we discuss three
Copy-Reduced approaches, which eliminate packing, un-
packing, or both using RDMA operations.

4.1 Basic Pack/Unpack Scheme

MPI datatype communication based on the pack/unpack
mechanism can be divided into the following five steps:
datatype processing, packing, communication, datatype
processing, and unpacking. The basic pack/unpack scheme
follows these five steps in a straightforward manner.
Datatype processing and packing are usually integrated to-
gether, so do datatype processing and unpacking. This
scheme has been deployed in many MPI implementations.

This scheme is easy to implement. Messages seen by
the underlying communication interfaces are always in con-
tiguous regions of memory. It also has the minimum re-
quirement on the datatype processing routines. No partial
processing is needed [11, 26] because packing and unpack-
ing are performed on a whole datatype message. How-
ever, the performance of this scheme is poor. First, it in-
curs intermediate copies. Usually two additional copies are
required. Second, dynamic pack and unpack buffers in-
cur many memory allocation and deallocation operations.
Third, for networks which require that buffers be registered
before communication, dynamic pack and unpack buffers
may incur on-the-fly memory registration and deregistra-
tion. Fourth, packing, communication, and unpacking are
serialized.

To overcome these problems, we propose a scheme,
called Buffer-Centric Segment Pack/Unpack (BC-SPUP), in
the following subsection.

4.2 Buffer-centric Segment Pack/Unpack

The BC-SPUP scheme is designed to overcome the per-
formance problems in the basic pack/unpack scheme us-
ing two techniques. First, it uses pre-allocated buffers for
pack and unpack operations. These buffers are also op-
timized and ready for communication, such as aligned on
page boundary and registered for RDMA operations. Sec-
ond, this scheme breaks a datatype message into several
segments and applies the basic pack/unpack processing to
each segment.

The BC-SPUP scheme has the following potential ad-
vantages. First, it avoids dynamic memory allocation
and deallocation, reducing system overheads [7]. Sec-
ond, it eliminates memory registration and deregistration

on pack/unpack buffers. Third, these buffers can be well
aligned for better communication performance. Fourth, this
scheme has the potential to overlap packing, network com-
munication, and unpacking. Figure 3 shows this overlap.

Note that the buffer-centric segment pack/unpack
scheme still needs two copies, one for each side. However,
most of the copy costs are not visible due to overlap between
packing, communication, and unpacking. This scheme can
be also applied to other communication interfaces, such
as the regular shared-memory interface and networks pro-
viding shared memory semantics such as SCI [30]. The
pack/unpack buffers can be allocated from some shared re-
gions between a sender and a receiver.

21

1

2

1

2

1 2 3

2

1

Seg. 1
Packing

3

Seg. 3

Seg. 2 3

3

Communication

3 Unpacking

Basic Pack/Unpack

Segment Pack/Unpack

Figure 3. Overlap between packing, network
communication and unpacking in the Buffer-
Centric Segment Pack/Unpack scheme.

4.3 Design Issues in BC-SPUP

The Buffer-Centric Segment Pack/Unpack scheme
shows very attractive potential benefits over the basic
Pack/Unpack scheme. However, several issues need to be
addressed for this scheme to be used in MPI implementa-
tions to achieve high performance for datatype communica-
tion.

4.3.1 Pipelining Sender Processing

One of the main objectives in the BC-SPUP scheme is to
overlap host processing (including datatype processing and
packing/unpacking) and communication. This overlap is
achieved by breaking a large datatype message into sev-
eral segments and pipelining the host processing and com-
munication of each segment. This pipelining at the sender
has a pronounced effect when operating in the context of
a Rendezvous send. In this case it is not possible to start
the next message from the application point of view, thus
pipelining within this message shows substantial improve-
ment. In the case where the application submits multiple
small messages instead of large ones, these will be pipelined
independently of our choice of datatype processing. How-
ever, to enable a sender to perform packing on any part of

5

a datatype message, partial datatype processing is required.
Partial datatype processing allows us to start and stop the
processing of a datatype at nearly arbitrary points. Several
techniques [26, 15] have been proposed to provide partial
processing on MPI datatypes. Another issue is to choose
the segment size. Given a datatype message, the segment
size should be chosen to provide good overlap and to utilize
high network bandwidth as well.

4.3.2 Pipelining Receiver Processing

A receiver must know when each segment arrives to
pipeline. This requires a notification per segment for a
datatype message. A sender can use RDMA Write with Im-
mediate data to send each segment. Then a receive descrip-
tor is consumed and a completion entry is generated into a
CQ. However, this approach requires that multiple receive
descriptors have been posted for the coming segments. In
another way, the send can write a flag to a specified loca-
tion in the receiver memory. The receiver then can check
this flag to detect the arrival of a segment. This approach
can avoid pre-posting receive descriptors and possible flow
control. However, it requires one more RDMA operation
per each segment or techniques discussed in [19]. In our
design, we choose RDMA Write with Immediate data.

4.3.3 Handling Buffer Limit

The size of pre-registered pack/unpack buffer pool should
be limited to an appropriate size. We could have a per-
connection buffer pool to simplify buffer management;
however, it will occupy a significant amount of physi-
cal memory and limit scalability. It is desirable that the
pack/unpack buffer pool in each process be used to com-
municate with any remote process. In case of burst com-
munication, the pack/unpack buffer pool may be used up.
If all pack buffers are used up, a sender can stop sending
messages and wait for completion of previous operation for
pack buffers. If all unpack buffers are used up, a receiver
can delay response to the sender and then stall the com-
munication until unpack buffers are available. Another so-
lution to this issue is to allocate extra pack/unpack buffers
when they are used up. These buffers can be added into
the pack/unpack buffer pool. When the total size exceeds
some threshold, some of these extra pack/unpack buffers
may be deregistered. We choose the second solution. When
pack/unpack buffers are used up, we fall back to the dy-
namic pack/unpack allocation and registration as in the ba-
sic pack/unpack scheme.

5 Copy-Reduced Approaches

A common feature in the Pack/Unpack-based ap-
proaches described above is that data is copied between user
buffers and pack/unpack buffers. Copy-reduced approaches
are proposed to reduce or avoid these copies. In this section,

we describe three design schemes: RDMA Write Gather
with Unpack, which avoids packing on the sender side; Pack
with RDMA Read Scatter, which avoids unpacking on the
receiver side; and Multiple RDMA Writes, which avoids
both packing and unpacking.

5.1 RDMA Write Gather with Unpack

In RDMA Write Gather with Unpack (RWG-UP)
scheme, only unpack buffers are assigned on the receiver
side. A sender uses RDMA Write with Gather operations
to write multiple contiguous blocks of a datatype message
from its user buffers directly into the receiver’s unpack
buffer. Then, the receiver unpacks data into its user buffers.
Figure 4 shows this scheme. Thus, packing (i.e. one copy)
is eliminated on the sender side. Since a relatively large
number of blocks can be gathered in one RDMA Write op-
eration (for example, the current Mellanox SDK supports
64 blocks), the total number of RDMA Write operations
needed to transfer the whole datatype message is reduced
significantly. Therefore, the total startup overhead of all
RDMA operations is reasonably low. In addition, informa-
tion about a receiver’s unpack buffer for performing RDMA
Write is simple.

This scheme can easily achieve segment unpack as dis-
cussed in the BC-SPUP scheme in Section 4.2 to mask the
memory copy cost on the receiver side. The sender can
break a large message into several segments. Each time it
uses RDMA Write with Gather to send a segment and drives
the receiver to unpack the incoming segment.

�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

	�	
	�	
	�	
	�	
	�	
	�	

�

�

�

�

�

�

�����
�����
�����
�����

�����
�����
�����
�����

�
�

�
�

�
�

�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����

���
���
���

�����
�����
�����

���
���
���
�����
�����
�����

���
���
���

�����
�����
�����

���
���
���

RDMA
Gather

User

Receiver

Unpack

buffer

buffer User buffer

Unpack

Sender

Figure 4. RDMA Write Gather with Unpack
Scheme.

Similarly, as mentioned in the BC-SPUP scheme, seg-
ment unpack requires partial datatype processing and an
appropriate segment arrival mechanism. To enable RDMA
Write operations on a datatype message, the sender needs
to register all contiguous pieces of the datatype message.
Unlike registering and deregistering a contiguous buffer,
memory registration and deregistration on datatype mes-
sage buffers are more complicated. We discuss how to
achieve efficient memory registration and deregistration on
datatype message buffers in details in Section 5.4.1.

6

5.2 Pack with RDMA Read Scatter

As shown in Figure 5, the Pack with RDMA Read Scatter
(P-RRS) scheme follows the exactly opposite procedure of
the above RDMA Write Gather with Unpack scheme. The
sender packs a datatype message into a pack buffer, then it
asks the receiver to read it directly using RDMA Read op-
erations. The receiver can scatter what it reads into multiple
blocks of its datatype message buffer in one single opera-
tion.

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

	�	�	
	�	�	
	�	�	

�
�

�
�

�
�

�����
�����
�����
�����

�����
�����
�����
�����

�
�

�
�

�
�

�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

User

Receiver

buffer User buffer

Pack

Pack
buffer

RDMA Read
Scatter

Sender

Figure 5. RDMA Read Scatter with Pack
Scheme.

This scheme has almost the same requirements as men-
tioned in the RWG-UP scheme. However, this scheme is
a little more costly to pipeline packing and communica-
tion. The sender can have segment pack, however, when
a segment is available, a control message must be sent to
the receiver to trigger the receiver’s RDMA Read operation.
Another difference is that RDMA Read performance is al-
ways lower than that of RDMA Write [31]. This scheme
may be useful for asymmetric datatype communication: the
sender’s datatype is contiguous and the receiver’s datatype
is noncontiguous. For communication with noncontiguous
datatypes on both sides, this scheme will be less efficient
than the above RWG-UP scheme. Due to these observa-
tions, we do not implement this scheme in our implementa-
tion.

5.3 Multiple RDMA Writes

The Multiple RDMA Writes scheme (Multi-W) writes
each contiguous piece of a datatype message directly into
the receiver’s buffer, as shown in Figure 6. This scheme can
achieve zero-copy datatype messaging. There are two re-
quirements. First, all contiguous blocks of user datatype
message buffers must be registered. Second, the sender
should be aware of the layouts of contiguous blocks in the
receiver user buffer. That means the receiver must send the
sender not only its buffer information, but also its datatype
information. Then, the sender can decide the source and
destination buffers for each RDMA Write operation accord-
ing to these information.

One of the disadvantages in this scheme is the number
of RDMA operations may be large. Another disadvantage

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����

 � �
 � �
 � �

!�!�!
!�!�!
!�!�!
!�!�!
!�!�!
!�!�!
!�!�!

"�"�"
"�"�"
"�"�"
"�"�"
"�"�"
"�"�"
"�"�"

User

Receiver

buffer User buffer

RDMA Write

RDMA Write

RDMA Write

RDMA Write

Sender

Figure 6. Multiple RDMA Writes Scheme.

is that network utilization may be low because the message
sizes in RDMA writes are limited to the sizes of contiguous
blocks. However, it can be expected that when these sizes
are reasonably large, this scheme can achieve good perfor-
mance because of zero-copy messaging. The third disad-
vantage is that some datatype information may be compli-
cated. We discuss how a receiver can send its datatype in-
formation to a sender efficiently in Section 5.4.2.

5.4 Design Issues in Copy-Reduced Approaches

Copy-Reduced approaches show very attractive poten-
tial benefits due to reduced memory copies. However, sev-
eral issues need to be addressed for these schemes to be
used in MPI implementations to achieve high performance
for datatype communication. We address the following two
important issues: reducing memory registration and dereg-
istration overhead and handling receiver’s datatypes.

5.4.1 Reducing Memory Registration Overhead

Reducing overheads of memory registration and deregis-
tration on datatype message buffers is a common issue in
all three Copy-Reduced schemes. Techniques such as Pin-
down cache [12] and FMRD [32] mainly deal with registra-
tion and deregistration of contiguous buffers. There is an-
other complication in registering datatype message buffers
due to data noncontiguity in these buffers.

There are two simple schemes to register datatype mes-
sage buffers. The first scheme registers only contiguous
blocks. A large number of buffer registration and dereg-
istration events occur and result in high overheads. The
second scheme registers the whole buffer which covers the
datatype message, including gaps between two contiguous
blocks. This scheme reduces the number of registration
and deregistration operations at the cost of registering more
space. If the total size of the gaps is large, this scheme also
becomes costly.

Therefore, a tradeoff should be made between the num-
ber of registration and deregistration operations and the
total size of memory space to be registered and deregis-
tered. In [33], we proposed an efficient approach, Opti-
mistic Group Registration (OGR) to register a list of arbi-
trary buffers. OGR also deals with the situation in which

7

gaps between two buffers may not really have been allo-
cated by the application. Thus, it is a more general case
than the case of MPI datatype message buffers.

The Optimistic Group Registration scheme first groups
buffers into several memory regions. A cost model is used
to achieve the tradeoff between the number of operations
and the buffer size to be registered and deregistered. De-
tails of the model can be found in [33]. Large gaps which
nulls any benefit over individual registration are filtered out.
Then, it registers each region independently. The effective-
ness of this scheme has been demonstrated in [33] as well.

5.4.2 Handling Receiver’s Datatypes

A unique issue arises in the Multiple RDMA Writes
scheme: handling the receiver’s datatype on the sender side.
This issue results from three facts. First, MPI datatypes
have only local semantics. Datatypes defined in one process
cannot be used in another process. Second, the layouts of
data in both sides could be different between a matched send
and receive operation. Third, a sender must be able to fig-
ure out the address of each contiguous block in a receiver’s
datatype message buffer and its related registration infor-
mation such as protection keys before performing RDMA
write operations. Therefore, the receiver should send its
datatype representation and related registration information
to the sender before data transmission. Such information
can be sent along with other control messages (if small) or
as a separate message. Note that in heterogeneous systems,
this issue becomes even more complicated. Our discussion
is based on homogeneous systems.

An MPI datatype can be represented by a linear list of
� offset, length � tuples. Each tuple describes a contiguous
block of the datatype by its length and by its offset related to
the lower bound. Other light-weight representation formats
such as type tree [15] and dataloop [26] can be used here
to reduce the size of datatype representation messages. To
avoid sending datatype representation for each operation,
a datatype cache mechanism [14] can be used. This cache
mechanism was proposed by Träff et al in the context of per-
forming MPI-2 [22] one-sided communication. The basic
idea is to restructure an internal datatype when a datatype
representation is received, and store it in a cache table on the
sender side. This cache is indexed by the receiver’s global
rank and the index of a datatype. Thus, each datatype infor-
mation is sent only once in the first communication opera-
tion using that type. Only the type index is needed to be sent
in the following functions which use the same datatype. We
extend this cache mechanism to handle datatype free and
datatype index reuse. In case the receiver frees a datatype,
and reuses the type index for a new datatype, the receiver is
responsible for sending the new datatype representation. To
achieve this, we associate a version number with each type
index. When a type index is reused, its version number in-

creases by one. The receiver can detect the version number
change and then send the new datatype presentation to the
sender. The sender simply replaces the obsolete datatype in
its cache with the new one.

6 Choosing an Appropriate Approach

We discussed four main approaches to transfer datatype
messages in the last two sections. These approaches have
their own advantages and disadvantages. Accordingly, they
offer different performance in different situations. An inter-
esting question is: Given a datatype communication, can we
choose the best approach to perform data transfer? In this
section, we discuss the feasibility of choosing an appropri-
ate approach for a given datatype message communication.

The first choice is to choose which type of ap-
proach: Pack/Unpack-based approaches or Copy-Reduced
approaches. This choice is related to whether the costs
of memory registration and deregistration on user buffers
are comparable to the memory copy costs and how fre-
quently these buffers are reused among multiple operations.
For small messages, it is acceptable to go with the basic
pack/unpack scheme. For large messages, without extra in-
formation, the MPI implementation cannot make a perfect
choice over this. Our experience [18] shows that many ap-
plications use only several buffers for all communication,
and the costs of memory registration and deregistration can
be amortized among multiple operations. Thus, it may be
beneficial to go with Copy-Reduced approaches. It is also
helpful if we can make use of MPI Info objects to notify
the MPI implementation of buffers on which the applica-
tion has many communication operations. This can help to
decide whether to register these buffers or not.

The second choice is which particular Copy-Reduced ap-
proach may be more efficient. The handshake between a
sender and a receiver in the Rendezvous protocol as men-
tioned in Section 3.1 can help make a choice. An important
metrics in many common cases is the average size and the
median size of all contiguous blocks. If these two sizes are
large enough (e.g. several KBytes), the Multiple RDMA
Writes scheme is a good candidate. Otherwise, RDMA
Write Gather with Unpack and Pack with RDMA Read
Scatter may be more suitable. For example, the receiver
can decide whether it allocates an unpack buffer or not ac-
cording to its datatype data layouts. Then, the sender can
choose Multiple Writes or RDMA Write Gather with Un-
pack accordingly.

7 Implementation Details

We integrated the Buffer-centric Segment Pack/Unpack
(BC-SPUP), RDMA Write Gather with UnPack (RWG-
UP), and Multiple RDMA Write (Multi-W) schemes into

8

MVAPICH [19, 24]. In this section, we discuss some im-
plementation details. First, we discuss the implementation
of small datatype messages using the Eager protocol. Then
we describe the implementations of BC-SPUP, RWG-UP,
and Multi-W in the Rendezvous protocol.

7.1 Small Datatype Messaging

As mentioned in Section 3.1, small messages are first
copied into the Eager protocol internal buffers in the MPI
layer. Unlike the original implementation which uses ex-
tra pack/unpack buffers, we use the Eager protocol internal
buffers as pack and unpack buffers. When a small datatype
message is ready to be sent, we pack it directly to the Ea-
ger protocol internal buffers. Small datatype messages are
also received in the Eager protocol buffers. The receiver
then unpacks data into user buffers. Figure 7 shows small
datatype message communication in our implementation.
Compared to the original small datatype communication as
shown in Figure 1, two copies are reduced. In addition, no
pack/unpack buffers are needed.

User buffer

Eager internal
Buffer

RDMA Write

Pack Unpack

Figure 7. Small Datatype Message Transfer in
Eager Protocol.

7.2 Implementing BC-SPUP

We allocate and register one large pack buffer and one
large unpack buffer during MPI initialization time, each
with a size of 20 MBytes. These buffers are divided into
a list of segment buffers with a maximum supported seg-
ment size (128 KBytes). Large datatype messages use these
buffers. We statically define a segment size for a given mes-
sage size. For example, if the message size is equal to or
larger than 1 MBytes, the segment size is 128 KBytes. A
simple rule to choose the segment size is to have at least two
segments if the message size is equal to or larger than 16
KBytes. If the message size is less than 16 KBytes, all data
will be sent in one segment. Tuning on the segment size is
quite important; however, as a proof-of-concept implemen-
tation, we simplify the selection here. When the segment
size is decided, the sender first packs data into a segment
buffer; then it RDMA writes data into the receiver’s unpack
buffer. In case there is no pack or unpack buffers available,
we allocate and register extra buffers. We implemented par-
tial datatype processing mentioned in [26].

7.3 Implementing RWG-UP

In our RWG-UP implementation, an unpack buffer with
size of 20 MBytes is allocated and registered during the

MPI initialization. This buffer is divided into a list of seg-
ment buffers with the maximum supported segment size
(128 KBytes). The sender registers the user buffer using
the Optimistic Group Registration scheme (implementation
details can be found in [33]). When a receiver receives a
“rendezvous start” message, it tries to assign a list of seg-
ment buffers from the unpack buffer. If there is not enough
buffer available on the receiver side, the receiver is respon-
sible to allocate and register extra buffers. Then the receiver
sends a “rendezvous reply” message with segment unpack
buffer information to the sender. The sender then initiates
RDMA Write with Gather operations to put data into the
receiver’s segment unpack buffers. Immediate data is used
in RDMA Write operations to drive the receiver to perform
unpacking when a segment arrives.

7.4 Implementing Multi-W

In this scheme, the sender first sends a “rendezvous start”
message to the receiver. It then goes to register the user
datatype message buffer. When the receiver receives a “ren-
dezvous start” message and a matched receiver operation is
issued, it registers the receive buffer and sends related buffer
information and datatype representation information to the
sender. After the sender receives this message, it performs
RDMA Write operations. Registration and deregistration
are implemented in the same way as in the implementation
of RWG-UP scheme. We use a light weight representation
of datatype as mentioned in [26]. We have two implemen-
tations to post a list of RDMA write descriptors. One uses
the standard post function to post each descriptor one by
one. Another uses an extended interface [1] to post a list of
descriptors to the same send queue in one operation.

8 Performance Results

This section presents performance results from a range
of benchmarks on our implementations of different schemes
in MVAPICH. We attempted to find some standard bench-
marks such as the NAS benchmarks [4] and the ASCI blue
benchmarks [20], in which we wished datatype communica-
tions were used. Unfortunately no noncontiguous datatype
communication is used in these benchmarks yet, perhaps
due to the limited performance achieved in most applica-
tions. SKaMPI [25] provides benchmark for MPI derived
datatypes. The test datatypes are synthetic and most pa-
rameters are defined by users. For simplicity, we devel-
oped our own benchmarks, with intention to capture typi-
cal usage of derived datatypes. Unless stated otherwise, the
unit megabytes (MB) in this paper is an abbreviation for 2

���

bytes, or 1024 9 1024 bytes.
In this section, we first compare point-to-point latency

and bandwidth, and performance of collective operations in
different implementations. Then, we quantify effects of sev-

9

eral design choices on the performance of datatype commu-
nication, including segment unpack, list descriptor post and
buffer usage.

8.1 Experimental setup

Our experimental testbed consists of a cluster system
consisting of 8 nodes built around SuperMicro SUPER
P4DL6 motherboards and GC chipsets which include 64-bit
133 MHz PCI-X interfaces. Each node has two Intel Xeon
2.4 GHz processors with a 512 kB L2 cache and a 400 MHz
front side bus. The machines are connected with Mellanox
InfiniHost MT23108 DualPort 4x HCA adapter through an
InfiniScale MT43132 Eight 4x Port InfiniBand Switch. The
Mellanox InfiniHost HCA SDK version is thca-x86-0.2.0-
build-001. The adapter firmware version is fw-23108-rel-
1 17 0000-rc12-build-001. We used the Linux RedHat 7.2
operating system.

8.2 Vector Micro-benchmark

We evaluated the same example described in Section 3.2
in three new implementations: BC-SPUP, RWG-UP, and
Multi-W. Unless stated otherwise, in our tests, segment un-
pack was enabled in the RWG-UP scheme and list descrip-
tor post was enabled in the Multi-W scheme. In this bench-
mark, a certain number of columns in a two-dimensional
128 9 4096 integer array are transferred between two pro-
cesses. These columns can be represented by a vector
datatype shown in Section 3.2. The number of columns
varies from 1 to 2048.

Figure 8 compares ping-pong latencies in different im-
plementations, including the current MVAPICH datatype
implementation (“Generic”). BC-SPUP performs better
than the Generic scheme consistently. It gives a factor of 1.5
improvement over the Generic scheme for large datatype
messages. RWG-UP performs better than the Generic
scheme in most cases, except that the size of contiguous
block is too small for RDMA operations to achieve good
performance. It gives a factor of up to 1.8 improvement
over the Generic scheme. Multi-W offers a factor of 3.4 im-
provement when the number of columns is large. When the
size of contiguous blocks is small, Multi-W performance
degrades significantly.

Figure 9 compares their bandwidth. In the bandwidth
test, the same vector datatype is used. The sender pushes
100 consecutive datatype messages and then waits for a re-
ply from the receiver when all messages have been received.
Both BC-SPUP and RWG-UP give a factor of 1.2–2.0 im-
provement over the Generic scheme. Multi-W gives a factor
of 1.4–3.6 improvement over the Generic scheme when the
number of columns is larger than 64. Similarly, when the
number of columns varies from 4 to 64, Multi-W perfor-
mance degrades a lot because of the large number of RDMA

Write operations and the small message size in each opera-
tion.

When the number of columns is 1 or 2, the datatype
message follows the Eager protocol and has the same com-
munication path in all BC-SPUP, RWG-UP and Multi-W
schemes. Thus, the performance is identical. Compared
to the Generic scheme, two copies are saved as shown in
Figure 7. Thus, there is perceivable improvement over the
Generic scheme.

8.3 Performance of MPI Alltoall

Collective datatype communication can benefit from
high performance point-to-point datatype communication
provided in our implementations. We noticed that some
collective operations such as MPI Bcast perform ex-
plicit pack and unpack operations in their implementation
when noncontiguous datatype communication occurs [28],
these collective operations will not benefit from the perfor-
mance improvement of point-to-point datatype communi-
cation achieved in our implementations. Many of others,
which still use point-to-point noncontiguous datatype com-
munication in their implementation [28], can benefit from
our implementations.

We designed a test to evaluate MPI Alltoall perfor-
mance with derived datatypes. In the previous tests, all
block sizes are same. In this test, we designed a structure
datatype in which the size of its contiguous blocks is differ-
ent. The datatype is designed as shown in Figure 10: the
block size varies from one integer to : integers. The gap
(empty blocks in the plot) between two blocks equals to the
size of the first block.

...... ...

x1 2 4

Figure 10. A Struct Datatype.

Figure 11 compares MPI Alltoall performance of four
datatype communication implementations. We use 8 pro-
cesses. The number of integers in the last block varies from
2048 to 131072, as shown in the x-axis. The block sizes
increase exponentially from 4 bytes to the largest block size
from the first block to the last block. For example, when
the number of integers in the last block is 8192, the block
sizes vary from 4 bytes to 32768 bytes. We can see that all
BC-SPUP, RWG-UP and Multi-W schemes outperform the
Generic scheme. BC-SPUP gives an improvement factor of
minimum 1.2, maximum 1.5, and average 1.3. RWG-UP
gives an improvement factor of minimum 1.2, maximum
1.4, and average 1.3. Multi-W gives an improvement factor
of minimum 1.8, maximum 2.1, and average 2.0. For this
datatype, it can be observed that Multi-W is a good choice.

Measurements for other collective operations, which

10

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

2 8 32 128 512 2048

La
te

nc
y

(u
s)

Number of Columns

Generic
BC-SPUP
RWG-UP

Multi-W

0

0.5

1

1.5

2

2.5

3

3.5

2 8 32 128 512 2048

Im
pr

ov
em

en
t F

ac
to

r

Number of Columns

BC-SPUP
RWG-UP

Multi-W

Figure 8. Latency Comparison.

0

100

200

300

400

500

600

700

800

2 8 32 128 512 2048

B
an

dw
id

th
 (

M
B

/s
)

Number of Columns

Generic
BC-SPUP
RWG-UP

Multi-W

0

0.5

1

1.5

2

2.5

3

3.5

4

2 8 32 128 512 2048

Im
pr

ov
em

en
t F

ac
to

r

Number of Columns

BC-SPUP
RWG-UP

Multi-W

Figure 9. Bandwidth Comparison.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

2K 4K 8K 16K 32K 64K 128K

La
te

nc
y

(u
s)

Number of Integers in the Last Block

Generic
BC-SPUP
RWG-UP

Multi-W

Figure 11. MPI Alltoall Performance.

could not be presented in this paper due to space limita-
tion, have shown similar results as we observed in the test
of MPI Alltoall.

8.4 Effects of Segment Unpack

To quantify the effects of segment unpack in the RWG-
UP scheme, we disabled the unpack trigger in each seg-
ment. Then, the receiver begins to unpack until the whole
datatype message arrives. It can be expected that the seg-
ment unpack gives us better performance due to the overlap
between communication and unpacking. We used the afore-
mentioned vector bandwidth test to quantity the effects of
segment unpack. Figure 12 shows that a factor of 1.3 im-
provement in bandwidth can be achieved using the segment
unpack.

8.5 Effects of List Descriptor Post

As mentioned in Section 7.4, we have two methods to
post a list of RDMA write descriptors: single post many
times and list post once. We evaluated the vector band-

11

0

50

100

150

200

250

300

350

400

450

2 8 32 128 512 2048

B
an

dw
id

th
 (

M
B

/s
)

Number of Columns

No Seg Unpack
Seg Unpack

Figure 12. Effects of Segment Unpack.

0

100

200

300

400

500

600

700

800

900

2 8 32 128 512 2048

Number of Columns

B
an

d
w

id
th

 (
M

B
/s

)

0

0.5

1

1.5

2

2.5
Im

p
ro

ve
m

en
t

F
ac

to
r

Single

List

Factor

Figure 13. Effects of List Descriptor Post.

width test on these two methods of the Multi-W scheme.
Figure 13 shows that the list post offers improvement with
a maximum factor of 2.0 and a minimum factor of 1.2 over
the single post. The average improvement factor is 1.6. This
has two implications. First, posting descriptor is costly and
we expect InfiniBand vendors to further optimize it. Sec-
ond, list descriptor post is a good extension and should be
supported.

8.6 Effects of Buffer Usage

Buffer usage has a great impact on MPI communica-
tion performance [18]. Performance achieved in schemes
we discussed has different dependency with buffer usage,
for either application buffers or MPI internal buffers. Par-
ticularly, as shown in Section 3.2, the pack/unpack buffers
used in the Generic scheme are dynamically allocated and
potentially change in datatype communication operations.
It is highly probable that memory registration is necessary
for each datatype communication. The BC-SPUP scheme
uses a pre-registered buffer pool to reduce the impact of
dynamic memory allocation and registration to some ex-
tent. In the RWG-UP scheme, the unpack buffer is also

pre-registered. However, both schemes will need to stall
communication when the buffer pool is used up or register
more buffers. Both RWG-UP and Multi-W schemes regis-
ter user buffers. Their performance heavily depends on user
buffer usage patterns. For example, if an application keeps
using different buffer in each operation, the registration be-
comes necessary. To show the buffer usage effect, we con-
ducted the vector latency test in a worst scenario. That is, if
a scheme needs an internal buffer, the internal buffer is al-
located, registered, and deregistered on-the-fly; if a scheme
uses user buffers directly, the user buffers are different, dy-
namic registration and deregistration are included.

Figure 14 shows the worst latencies for each scheme.
When the number of columns is less than 512, both RWG-
UP and Multi-W schemes perform very poor. This is be-
cause they need to register and deregister the whole user
array (registering each block is even more costly in this
case [33]), while Generic and BC-SPUP only register and
deregister buffers with the real data size. The memory regis-
tration and deregistration costs dominate their performance.
When the number of columns increases, the difference in
the costs of registration and deregistration between these
schemes decreases. While the memory copy costs catch up,
both RWG-UP and Multi-W perform better than Generic
due to reduced memory copies. In this test, BC-SPUP al-
ways performs better than Generic. Since they both have
same registration and deregistration costs, the benefits com-
pletely come from the overlap between packing, commu-
nication, and unpacking due to the segment pack/unpack
technique.

0

1000

2000

3000

4000

5000

6000

4 8 16 32 64 128 256 512 1024 2048

La
te

nc
y

(u
s)

Number of Columns

Generic
BC-SPUP
RWG-UP

Multi-W

Figure 14. Latency Comparison in the Worst
Case of Buffer Usage.

9 Related Work

There are three potential areas to improve MPI datatype
communication: Improving datatype processing system,

12

Optimizing packing and unpacking procedures; To take ad-
vantage of network features to improve noncontiguous data
communication. There have been some successful work in
each area.

In [11], Gropp et al. have provided a taxonomy of MPI
derived datatypes according to their memory access patterns
and described how to efficiently implement these patterns.
Their work focuses on the pack/unpack mechanism. Träff et
al. have described a technique, called flattening on the fly,
for improving the performance of derived datatypes [15].
Their method aims to have a light-weight representation for
datatypes using a stack-based approach. Their approach
minimizes the use of expensive recursive function calls to
parse a derived datatype in the MPI implementation and
improves the performance of packing/unpacking. Ross et
al. [26] have designed a reusable datatype-processing com-
ponent for the MPICH2 implementation [2]. This compo-
nent provides three key characteristics: simplified type rep-
resentation; support for partial processing of datatypes; and
separation of type parsing from action to perform on data.
Thus, this component can be used in our implementations
to further improve performance as our future work.

Byna et al. [5] have presented a technique to optimize
datatype packing performance. In their work, optimized
packing algorithms are automatically selected with respect
to the architecture-specific parameters and the datatype
memory access patterns. Recently, MPICH2 [2] has begun
to deploy segment pack and unpack in its implementation.
The Los Alamos Message Passing Interface (LA-MPI) sys-
tem [9] has used shared memory regions as pack and unpack
buffers in its datatype communication path.

In [30], Worringen et al. have presented a direct copy
technique to improve performance of datatype communica-
tion. Their work takes advantage of remote memory opera-
tions provided in the SCI network to avoid one intermediate
copy. In [33], we have demonstrated the benefits of using
RDMA Gather/Scatter operations to support noncontiguous
file access in PVFS over InfiniBand. Only the case in which
buffers on the I/O server side are always contiguous is dis-
cussed. In this paper, we deal with a more general case and
more design alternatives.

There is also other I/O work related to MPI datatype.
Ching et al. [6] have used datatype to present noncontigu-
ous file access information and then to reduce the number
of requests and the size of request messages. Worringen et
al. [16] have described a listless I/O to improve noncontigu-
ous file access. Their work centers around efficient datatype
processing and packing/unpacking.

None of these previous work discusses and analyzes the
benefits of segment pack and unpack. Issues to register
and deregister pack/unpack buffers on RDMA-capable net-
works are not addressed yet. Furthermore, using RDMA
operations to reduce memory copies in datatype communi-

cation and its associated design issues are also not addressed
in these previous work.

10 Conclusions and Future Work

In this paper, we systematically study two main types of
approach for MPI datatype communication: Pack/Unpack-
based approaches and Copy-Reduced Approaches on the In-
finiBand network. Along the first type of approach, to re-
duce the impact of pack/unpack costs on the performance of
datatype message communication, we propose a technique
called Buffer-Centric Segment Pack/Unpack This scheme
provides overlap between packing, communication and un-
packing in datatype communication. It also avoids dynamic
memory registration and deregistration in common cases.

Along the second type of approach, we propose three
schemes: RDMA Write Gather with Unpack, Pack with
RDMA Read Scatter, and Multiple RDMA Writes. The
main idea behind these schemes is to use RDMA opera-
tions to reduce and/or eliminate packing and unpacking in
datatype communication.

We implement and evaluate three of these four schemes:
Buffer-centric Segment Pack/Unpack, RDMA Write Gather
with Unpack, and Multiple RDMA Writes in MVAPICH
over InfiniBand. Performance results of a vector micro-
benchmark demonstrate that latencies are improved by a
factor of 1.5-3.4 and bandwidth by a factor of 2.0-3.6 for
many cases compared to the current datatype communica-
tion implementation, which is derived from MPICH. Col-
lective operations on datatype messages also benefit from
these schemes. A factor of up to 2.0 improvement over the
original implementation has been seen in our measurements
on a 8-node system.

We show that segment pack and/or segment unpack are
quite helpful to achieve overlap between host processing
and network communication. The implication of this find-
ing is that the pipelining technique becomes more powerful
in systems with networks such as InfiniBand which can pro-
vide comparable performance to that of memory system. In
the RDMA Write Gather with Unpack scheme, we show
that segment unpack gives us a factor of 1.3 improvement
over that without segment unpack.

We also notice that these schemes perform differently
in different cases. We believe it is feasible to choose an
appropriate one to fit a given datatype communication to
achieve the best performance. This selection is also possible
within different parts of a single datatype message. We are
currently working in this direction.

We plan to have more tests and performance tuning in
our current implementations of these schemes and then re-
lease them publicly.

Acknowledgments

13

We would like to thank David Ashton, Darius Buntinas,
Rob Ross and Neill Miller at Argonne National Laboratory
for MPI derived datatype discussion with us. We are also
thankful to nowlab fellows, Dr. Hyun-Wook Jin, Jiuxing
Liu, Pavan Balaji, Weikuan Yu, Amith Mamidala, Weihang
Jiang, Adam Wagner, Karthikeyan Vaidyanathan, Sayantan
Sur, Gopalakrishn Santhanaraman, Sundeep Narravula, Ab-
hinav Vishnu, Savitha Krishnamoorthy, and Ranjit Noronha
for their helpful comments on the paper draft.

References
[1] Mellanox Technologies. http://www.mellanox.com.
[2] Argonne National Laboratory. MPICH2 Release 0.94.

http://www-unix.mcs.anl.gov/mpi/mpich2/.
[3] M. Ashworth. A Report on Further Progress in the Develop-

ment of Codes for the CS2. In Deliverable D.4.1.b F. Carbon-
nell (Eds), GPMIMD2 ESPRIT Project, EU DGIII, Brussels,
1996.

[4] D. H. Bailey, E. Barszcz, L. Dagum, and H. Simon. NAS
Parallel Benchmark Results. Technical Report 94-006, RNR,
1994.

[5] S. Byna, X.-H. Sun, W. Gropp, and R. Thakur. Improving
the Performance of MPI Derived Datatypes by Optimizing
Memory-Access Cost. In Proceedings of the IEEE Interna-
tional Conference on Cluster Computing, 2003.

[6] A. Ching, A. Choudhary, W. keng Liao, R. Ross, and
W. Gropp. Efficient Structured Data Access in Parallel File
Systems. In Proceedings of the IEEE International Confer-
ence on Cluster Computing, 2003.

[7] P. Ezolt. A Study in Malloc: A Case of Excessive Minor
Faults. In Proceedings of the 5th Annual Linux Showcase
and Conference. USENIX Association, 2001.

[8] B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale,
D. Q. Lamb, P. MacNeice, R. Rosner, and H. Tufo. FLASH:
An Adaptive Mesh Hydrodynamics Code for Modelling As-
trophysical Thermonuclear Flashes. Astrophysical Journal
Suppliment, 131:273, 2000.

[9] R. L. Graham, S.-E. Choi, D. J. Daniel, N. N. Desai,
R. Minnich, C. E. Rasmussen, L. Dean Risinger, and M. W.
Sukalski. A Network-Failure-tolerant Message-Passing sys-
tem for Terascale Clusters. In Proceedings of the 2002 Inter-
national Conference on Supercomputing, June 2002.

[10] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-
Performance, Portable Implementation of the MPI, Message
Passing Interface Standard. Technical report, Argonne Na-
tional Laboratory and Mississippi State University.

[11] W. Gropp, E. Lusk, and D. Swider. Improving the Perfor-
mance of MPI Derived Datatypes. In MPIDC, 1999.

[12] H. Tezuka and F. O’Carroll and A. Hori and Y. Ishikawa. Pin-
down Cache: A Virtual Memory Management Technique for
Zero-copy Communication. In 12th Int. Parallel Processing
Symposium, March 1998.

[13] InfiniBand Trade Association. InfiniBand Architecture Spec-
ification, Release 1.0, October 24, 2000.

[14] J. L. Träff, H. Ritzdorf and R. Hempel. The Implementation
of MPI–2 One-sided Communication for the NEC SX. In
Proceedings of Supercomputing, 2000.

[15] J. L. Träff, R. Hempel, H. Ritzdorf and F. Zimmermann.
Flattening on the Fly: Efficient Handling of MPI Derived
Datatypes. In PVM/MPI 1999, pages 109–116, 1999.

[16] J. Worringen, J. L. Träff, and H. Ritzdorf. Fast Parallel Non-
Contiguous File Access. In Supercomputing 2003: The Inter-
national Conference for High Performance Computing and
Communications, Nov. 2003.

[17] Lawrence Berkeley National Laboratory.
MVICH: MPI for Virtual Interface Architecture.
http://www.nersc.gov/research/FTG/mvich/
index.html, August 2001.

[18] J. Liu, B. Chandrasekaran, J. W. W. Jiang, S. Kini, W. Yu,
D. Buntinas, P. Wyckoff, and D. K. Panda. Perfor-
mance Comparison of MPI Implementations over InfiniBand
Myrinet and Quadrics. In Supercomputing 2003: The Inter-
national Conference for High Performance Computing and
Communications, Nov. 2003.

[19] J. Liu, J. Wu, S. P. Kini, P. Wyckoff, and D. K. Panda. High
Performance RDMA-Based MPI Implementation over Infini-
Band. In 17th Annual ACM International Conference on Su-
percomputing, June 2003.

[20] Los Alamos National Laboratory. The ASCI Blue
Benchmarks. http://www.llnl.gov/asci-
benchmarks/.

[21] Message Passing Interface Forum. MPI: A Message-Passing
Interface Standard, Mar 1994.

[22] Message Passing Interface Forum. MPI-2: Extensions to the
Message-Passing Interface, Jul 1997.

[23] Myricom Inc. MPICH-GM Software.
http://www.myricom.com/scs/index.html.

[24] Network-Based Computing Laboratory. MVA-
PICH: MPI for InfiniBand on VAPI Layer.
http://nowlab.cis.ohio-state.edu/
projects/mpi-iba/index.html, January 2003.

[25] R. Reussner, J. L. Träff, and G. Hunzelmann. A Benchmark
for MPI Derived Datatypes. Lecture Notes in Computer Sci-
ence, 1908:10+, 2000.

[26] R. Ross, N. Miller, and W. Gropp. Implementing Fast and
Reusable Datatype Processing. In EuroPVM/MPI, Oct. 2003.

[27] R. Ross, D. Nurmi, A. Cheng, and M. Zingale. A Case Study
in Application I/O on Linux Clusters. In SC2001, Nov. 2001.

[28] R. Thakur and W. Gropp. Improving the Performance of
Collective Operations in MPICH. In EuroPVM/MPI, Oct.
2003.

[29] R. Thakur, W. Gropp, and E. Lusk. An Abstract-Device
Interface for Implementing Portable Parallel-I/O Interfaces.
In Proceedings of Frontiers ’96: The Sixth Symposium on
the Frontiers of Massively Parallel Computation. IEEE Com-
puter Society, Oct. 27–31, 1996.

[30] J. Worringen, A. Gaer, F. Reker, and T. Bemmerl. Exploiting
Transparent Remote Memory Access for Non-Contiguous-
and One-Sided-Communication. In Workshop on Commu-
nication Architecture for Clusters 2002 (in conjunction with
IPDPS), April 2002.

[31] J. Wu, P. Wyckoff, and D. K. Panda. PVFS over Infini-
Band: Design and Performance Evaluation. Technical Re-
port, OSU-CISRC-0/03-TR, April 2003.

[32] J. Wu, P. Wyckoff, and D. K. Panda. PVFS over InfiniBand:
Design and Performance Evaluation. In Proceedings of the
2003 International Conference on Parallel Processing (ICPP
03), Oct. 2003.

[33] J. Wu, P. Wyckoff, and D. K. Panda. Supporting Efficient
Noncontiguous Access in PVFS over InfiniBand. In Proceed-
ings of the IEEE International Conference on Cluster Com-
puting, 2003.

14

