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Abstract

I/O is quickly emerging as the main bottleneck limiting
performance in modern day clusters. The need for scalable
parallel I/O and file systems is becoming more and more
urgent. In this paper, we examine the feasibility of leverag-
ing InfiniBand technology to improve I/O performance and
scalability of cluster file systems. We use Parallel Virtual
File System (PVFS) as a basis for exploring these features.

In this paper, we design and implement a PVFS version
on InfiniBand by taking advantage of InfiniBand features
and resolving many challenging issues. We design the fol-
lowing: a transport layer customized for PVFS by trading
transparency and generality for performance; buffer man-
agement for flow control, dynamic and fair buffer sharing,
and efficient memory registration and deregistration.

Compared to a PVFS implementation over standard
TCP/IP on the same InfiniBand network, our implementa-
tion offers three times the bandwidth if workloads are not
disk-bound and 40% improvement in bandwidth in the disk-
bound case. Client CPU utilization is reduced to 1.5% from
91% on TCP/IP. To the best of our knowledge, this is the
first design, implementation and evaluation of PVFS over
InfiniBand. The research results demonstrate how to design
high performance parallel file systems on next generation
clusters with InfiniBand.

1. Introduction
In modern day clusters, I/O is quickly emerging as the

main bottleneck limiting performance. The need for scal-
able parallel I/O and file systems is becoming more and
more urgent. As well, the use of standards in the hardware
components and in the software used in the cluster systems
is also becoming not just convenient but a necessity to en-
sure software reuse.

There has been a significant amount of work on parallel
and cluster file systems, which has repeatedly demonstrated
that a viable infrastructure consists of commodity storage
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units connected with commodity network technologies, to
provide high performance and scalable I/O support in clus-
ter systems [2, 4, 18, 12, 17, 21, 22]. The PVFS (Parallel
Virtual File System) [4] is a good example of such an archi-
tecture and a leading cluster file system for parallel comput-
ing in cluster systems. It addresses the need of high perfor-
mance I/O on low-cost Linux clusters.

However, the performance of network storage systems
is often limited by overheads in the I/O path, such as
memory copying, network access costs, and protocol over-
head [1, 11, 15]. Emerging network architectures such as
InfiniBand Architecture [9] create an opportunity to ad-
dress these issues without changing fundamental principles
of production operating systems. Two common features
shared by these networks are: user-level networking and re-
mote direct memory access (RDMA).

InfiniBand has been recently standardized by industry
to design next generation high-end clusters for both data-
center and high performance computing. In this paper, we
examine the feasibility of leveraging InfiniBand technology
to improve I/O performance and scalability of cluster file
systems. We use PVFS as a basis for exploring these fea-
tures and focus on a number of challenging issues that are
important for cluster file systems, including PVFS software
architecture which can take full advantage of InfiniBand
features, efficient transport layer to support PVFS proto-
cols, and buffer management. We implement PVFS over In-
finiBand by taking advantage of user-level networking and
RDMA. We evaluate our implementation using PVFS and
MPI-IO benchmarks and applications. We compare its per-
formance with that of unmodified PVFS over IBNice [13],
a TCP/IP implementation on InfiniBand.

This work contains several research contributions. Pri-
marily, it takes the first step toward understanding the role
of the InfiniBand architecture in next-generation cluster file
systems. Our research shows that:

1. The capabilities of InfiniBand user-level communica-
tion and RDMA can improve all performance aspects
of PVFS, including bandwidth, access time, and CPU
utilization.

2. A transport layer based on InfiniBand user-level pro-
gramming interface requires careful design regarding
aspects of communication strategy selection and vari-



ous optimizations in itself and interactions with other
software components.

3. Memory registration and deregistration for networks
with remote DMA capabilities adds a new dimension
to transport issues for I/O intensive applications. They
pose challenges on cluster file systems and require
careful management of buffer resources.

4. Compared to a PVFS implementation over TCP/IP on
the InfiniBand network, our implementation offers a
factor of three improvement in throughput. CPU uti-
lization decreases from 91% with IBNice to 1.5% in
our native implementation.

The rest of the paper is organized as follows. We first
give a brief overview on InfiniBand in section 2. Section 3
presents the architecture of PVFS over InfiniBand. Sec-
tions 4 and 5 describe the design of the PVFS transport layer
and buffer manager over InfiniBand, respectively. The per-
formance results are presented in section 6. Finally we ex-
amine related work in section 7 and draw our conclusions
and discuss future work in section 8.

2. Overview of InfiniBand
The InfiniBand Architecture (IBA) [9] defines a System

Area Network (SAN) for interconnecting both processing
nodes and I/O nodes. It provides a communication and man-
agement infrastructure for inter-processor communication
and I/O. InfiniBand Architecture has built-in QoS mecha-
nisms which provide virtual lanes on each link and define
service levels for individual packets.

A queue-based transport layer is provided in IBA. A
Queue Pair (QP) consists of two queues: a send queue
and a receive queue. The completion of requests is re-
ported through Completion Queues (CQs). Both channel
and memory semantics are supported in the IBA transport
layer. In channel semantics, send/receive operations are
used for communication. A receiver must explicitly post
a descriptor to receive messages in advance. In memory se-
mantics, RDMA write and RDMA read operations are used.

3. Proposed PVFS Architecture
In this section, we first give a brief overview of PVFS.

Then we define a general software architecture of PVFS
based on InfiniBand.

3.1. PVFS Overview
PVFS is a leading parallel file system for Linux cluster

systems. It was designed to meet increasing I/O demands of
parallel applications in cluster systems. In PVFS, a number
of nodes in a cluster system can be configured as I/O servers
and one of them is also configured to be the metadata man-
ager. It is possible for a node to host computations while
serving as an I/O node.

PVFS stripes files across a set of I/O server nodes to
achieve parallel accesses and aggregate performance. PVFS
uses the native file system on the I/O servers to store indi-
vidual file stripes. An I/O daemon runs on each I/O node
and services requests from compute nodes, particularly read
and write requests. Thus, data is transferred directly be-
tween I/O servers and compute nodes. More details about
PVFS can be found in [4].
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Figure 1. Proposed PVFS Software Architec-
ture on InfiniBand Network.

3.2. Proposed PVFS Software Architecture
The original PVFS was designed over TCP/IP in a mono-

lithic manner. Sockets are used for transferring messages.
TCP/IP stream semantics is taken into account to avoid any
buffer management. Since there are significant differences
in both semantics and functionality between sockets and the
IBA user-level interface, we believe a modular architecture
is helpful to better address design issues and to achieve an
efficient implementation.

Figure 1 shows our proposed PVFS software architecture
over the InfiniBand network. Since the metadata server is a
simpler case of the I/O server, we only show the architecture
of the client and the I/O server here.

There are six modules in the PVFS architecture. A buffer
manager, a communication manager, and a PVFS transport
layer reside on both the client and server sides. The PVFS
library is used by the client to generate requests. A request
manager and a file access manager exist on the server side
to process client requests.

The transport layer transfers data using user-level Infini-
Band primitives. The buffer manager supplies the trans-
port layer buffers and also supplies buffers to the file access
manager for file accesses. The request manager receives re-
quests and decides in what order to service requests, using
information supplied by the file access manager. The com-
munication manager chooses communication mechanisms
and schedules data transfers.

InfiniBand network offers much more flexible design
space for PVFS compared to other networks. Communi-
cation manager is responsible for choosing an appropriate
communication mechanism for each message. It also sched-
ules data communication to reduce network congestion and
avoid delaying other traffic in the network. It is capable
of applying a service level to each message which marks
its priority as it moves through the network. More details
about communication manager are discussed in [20].

In this paper, we focus on the transport layer and buffer
manager, which become more complicated when designing
PVFS over InfiniBand as compared to the original design of
PVFS over TCP/IP. Communication manager is also unique
over InfiniBand, however, due to the space limitation, we
do not cover it in details in this paper.

4. Designing PVFS Transport Layer
The PVFS transport layer provides data, metadata, and

control channels between PVFS compute nodes, I/O server
nodes, and the metadata manager. In this section, we first



analyze the characteristics of various types of messages in
PVFS. Second, we make appropriate communication strat-
egy selection for them, including communication choices,
message transfer mechanisms and event handling. Then we
propose optimized small data transfers and pipelined bulk
data transfers to further optimize the PVFS transport layer.

4.1. Messages and Buffers in PVFS
Messages in PVFS can be categorized as request mes-

sages, reply messages, data messages, and control mes-
sages. A request message is sent by the compute node to
the server (I/O server node or the metadata manager server)
to direct it to initiate operations such as read, write, and
lookup. The manager node also uses a request message to
inform the I/O server node of metadata management op-
erations if needed. A reply message is sent by a server
to inform the request initiator of completion of a request.
Data messages are used to transfer payload for file reads
and writes. Control messages are internal messages in the
PVFS system, such as flow control messages.

There are two types of buffers: Internal buffers and
RDMA buffers. Internal buffers are allocated by the PVFS
system. They are pinned when a connection is established
and remain active for a long period of time. On the servers
they can be used to service multiple clients. RDMA buffers
are used to achieve zero-copy data transfer between the
compute nodes and the I/O server nodes. On the client side,
RDMA buffers are provided by the application when it ini-
tiates read and write operations. On the I/O server side,
RDMA buffers are allocated to stage data in memory be-
fore it moves to the disk or to the network.

4.2. Communication Choices
InfiniBand provides both reliable and unreliable connec-

tion and datagram services. Since PVFS requires a reliable
transport layer, we focus only on the reliable connection
service.

In reliable connection service, InfiniBand offers
Send/Recv operations and both read and write RDMA oper-
ations. For each operation, the initiator can choose whether
to generate a completion event or not. Send/Recv oper-
ations and RDMA Write with Immediate data operations
consume receive descriptors and result in Solicited or Un-
solicited completion on the receive side [9]. These features
provide a flexible design space and the opportunity to op-
timize performance. Design choices should be made to
achieve a better fit for particular message types according
to how well they align with the characteristics of the corre-
sponding communication operations.

We choose send/recv operations for request, reply, and
control messages. Details about this choice can be found
in [20]. For data messages, the decision pertaining whether
to use RDMA Write or Read is also critical and discussed
in section 4.3. For small data messages, a tradeoff can be
made between the use of zero-copy RDMA data transfers
and non zero-copy transfers. We discuss the details of this
choice in section 4.5.

4.3. Message Transfer Mechanisms
There are four basic transfer mechanisms for PVFS

messages: Send/Recv, server-based RDMA, client-based
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Figure 3. Client-based RDMA Mechanism.

RDMA, and hybrid RDMA. We elaborate these mechanisms
below and show how to map PVFS operations to them.

In Send/Recv mechanism, messages are sent from send
internal buffers to receive internal buffers. Request and con-
trol messages are sent by this mechanism. Data messages
also can be sent using this mechanism, at the cost of some
memory copies. Flow control issues related to Send/Recv
message transfer are described in section 5.1.

In server-based RDMA mechanism, RDMA operations
are initiated only by the I/O servers. The clients are respon-
sible for providing RDMA buffer information. Figures 2(a)
and 2(b) show the operations involved in read and write
transfers, respectively. Since client RDMA buffer informa-
tion can be provided along with the request messages, the
I/O servers can initiate RDMA operations asynchronously
according to when they can be scheduled.

Figures 3(a) and 3(b) show the operations involved to
perform reads and writes when initiated using RDMA oper-
ations from the client. Generally speaking, the client-based
RDMA mechanisms require the server to send a control
message containing its RDMA buffer information before
data transfer can begin. It also requires that the client notify
the servers when RDMA operations are finished. It can be
seen that more control messages are usually needed in the
client-based RDMA mechanism, compared to the server-
based RDMA mechanism.

RDMA read is a round-trip operation and its perfor-
mance is usually lower than that of RDMA Write. The de-
tails of RDMA Write and Read performance comparison
can be found in [20]. Therefore, one can consider a hybrid
RDMA mechanism, wherein only RDMA Write operations
are used. In the hybrid mechanism, a PVFS read is designed
with server-based RDMA Write as shown in Figure 2(a) and
a PVFS write is designed with client-based RDMA Write as
shown in Figure 3(b).



4.4. Polling or Interrupt on Events
InfiniBand provides a single structure, Completion

Queues (CQ), to notify and deliver events for a large num-
ber of connections. There are two basic methods to catch
an event in a CQ. One is that applications explicitly poll
the associated CQ. Another one is to invoke pre-registered
event handlers to notify applications of events by interrupts.
In this method, applications can sleep and relinquish CPU
when waiting for an event.

Important goals when designing PVFS over InfiniBand
are to minimize CPU overhead on the client side, minimize
response latency for short transfers, and maximize through-
put for large transfers. In our design, notification of comple-
tion of sending request messages on the client side is done
using polling and notification of completion of incoming
reply and control messages with interrupts. On the server
side, all event notification is done with polling, as is appro-
priate for a dedicated machine.

4.5. Transport Layer Optimizations
We consider two schemes to optimize small data trans-

fers: Inline and Fast RDMA Write. For bulk data transfers,
pipelining communication and I/O is also considered.

4.5.1 Inline Data Transfer
Zero-copy data transfers require that application buffers
be registered before data transfer and may be deregistered
after data transfer. For small data messages, the perfor-
mance benefit of zero-copy transfer may not offset the cost
of memory registration and deregistration. In Inline data
transfer scheme, data is first copied into internal buffers
which are pre-registered and then transferred by Send/Recv
mechanism. If data can fit in an internal buffer with the re-
quest (for write) or the reply message (for read), they are
sent in one message. This technique has been used else-
where [6].

4.5.2 Fast RDMA Write
There is a significant performance difference between
RDMA Read and RDMA Write when the transfer size is not
large. This implies that using RDMA Write for small data
transfers is preferable if the benefit can offset the overhead
of doing so. Fast RDMA Write is mainly used to optimize
PVFS write operations. However, it is also used to opti-
mize PVFS read operations by avoiding application buffer
registration and deregistration.

To optimize small writes, the client does RDMA Write
to transfer data to the I/O server. However, as shown in
Figure 3(b), two additional control messages are needed.
To avoid the first control message, a small set of RDMA
buffers (called Fast RDMA buffers) are allocated and reg-
istered when a connection is established. The buffer in-
formation is cached on the peer side. Thus, the client can
RDMA write data directly into the Fast RDMA buffers on
the server. We use RDMA Write with Immediate data to
avoid the second control message.

4.5.3 Pipelined Bulk Data Transfer
There are two major phases in each I/O path: communica-
tion phase, where data is transfered between client buffers
and server buffers, and I/O phase, where data is moved from

server buffers to disk. Overlap between these two phases is
necessary for high performance in the case of large write
(or read) requests. One way to achieve communication and
I/O overlap is to split large transfers into multiple smaller
transfers. Pipelining communication and I/O also reduces
memory pressure in I/O servers. The I/O server can use
double buffering to service concurrent requests.

5. Designing Buffer Manager
A buffer manager provides buffers to the PVFS transport

layer and the file access manager. Buffers are either internal
buffers or RDMA buffers. There are three main tasks in a
buffer manager. First, flow control on internal buffers is to
ensure that every message sent by a Send operation has a
receive buffer posted on the receiver side. Second, it should
provide efficient memory registration and deregistration op-
erations for RDMA buffers. Third, a buffer manager should
provide fair and dynamic sharing to buffer consumers. This
task is particularly important in the I/O server. We focus on
these issues below.

5.1. Flow Control on Internal Buffers
Internal buffer management is a well-discussed issue in

the literature. A small set of internal buffers are allocated
and pinned on both sides of a connection. Each connection
has a separate pool of internal receive buffers. To ensure
that an incoming message can be put in an internal receive
buffer, a credit-based flow control mechanism is deployed
on a per-connection basis. At the beginning, some num-
ber of receive descriptors, each associated with an internal
receive buffer, are posted for each connection. Then, the
number of currently posted receive buffers is advertised by
flow control updates, which can be piggybacked on other
messages or sent as control messages. This information can
also be exchanged implicitly in the flow of matched request
and response message pairs.

5.2. Server RDMA Buffer Management
Server RDMA buffers are used to receive data from

clients and to read data from files. These buffers are ef-
fectively used to bridge the performance gap between net-
work and disk. Due to highly concurrent requests and pos-
sible large request sizes, a significant portion of the total
memory must be allocated as RDMA buffers on a dedicated
server. Clearly, the server can reuse these buffers for differ-
ent requests. Thus, all these regions can be pre-registered
at startup. The I/O server then keeps using them to service
client requests. Other options of allocating and registering
buffers, including a dynamic scheme, are discussed in [20].
Even with some dynamics, it can be expected that the fre-
quency of memory registration and deregistration is low in
the I/O server side. Thus, efficient memory registration and
deregistration is not a big issue.

The more important function for a server buffer manager
is to provide a fair and dynamic buffer sharing among all
clients. In the PVFS transport layer based on InfiniBand,
data is transferred as whole messages, not as bytes in a
stream. Buffers are also supplied explicitly. Message trans-
fers are thus atomic, and data placement and data arrival are
not separated as they are in TCP/IP. Therefore, unlike PVFS



over TCP/IP, explicit buffer assignment is needed in PVFS
over InfiniBand.

Another issue is that transfer sizes for requests could
be different. This variability can offer better performance,
while it requires that the buffer manager be able to sup-
ply different sizes of virtually contiguous buffers. Avoiding
fragmentation is important in this scenario.

The server buffer manager in our design works as fol-
lows. First, all RDMA buffers are allocated and organized
in zones, where each zone has a list of buffers of the same
size. Given a particular transfer size, we first look at the
corresponding zone list to try to get a contiguous buffer. If
there is no buffer available, the buffer may be chosen from
a bigger zone list. If there is no bigger buffer available, the
transfer will be chopped into small transfers using smaller
RDMA buffers. By this way, there is no dynamic fragmen-
tation on RDMA buffers and it is usually possible to transfer
data with a given transfer size.

5.3. Client RDMA Buffer Management

The client buffer manager is primarily responsible for
efficient registration and deregistration of PVFS application
memory regions. Memory registration and deregistration
are expensive operations. Thus, they impact performance
significantly when they are performed dynamically. On the
other hand, PVFS I/O applications require a large number
of I/O buffers which may be allocated no earlier than when
the request is issued, it is not possible to pre-register all I/O
buffers. Therefore, dynamic registration and deregistration
are not easily avoided.

To reduce the cost of dynamic registration and deregis-
tration, a pin-down cache [7] is incorporated in the buffer
manager. Pin-down cache delays deregistration of reg-
istered buffers and caches their registration information.
When these buffers are reused, their registration informa-
tion can be retrieved from pin-down cache. This technique
is quite effective when the amount of buffer reuse is high.

However, I/O intensive applications which PVFS mainly
targets use a large number of different I/O buffers. The
buffer reuse ratio may be low. This poses a challenge on
approaches such as pin-down cache which work well only
in the case where applications keep using a moderate num-
ber of buffers. In the next subsection, we propose a two-
level architecture to support efficient memory registration
and deregistration for I/O intensive applications.

5.4. Fast Memory Registration and Deregistration

Dynamic buffer registration is not avoided if applications
keep using different buffers. To reduce its cost, InfiniBand
software and adapters are expected to provide efficient reg-
istration operation. There are some optimization on buffer
deregistration in the literature. Zhou et al. [22] demon-
strated batched deregistration is an efficient way to reduce
the average cost of deregistering memory for database ap-
plications.

We propose a two-level architecture: pin-down cache
plus Fast Memory Registration component (termed as FMR)
and Deregistration component (termed as FMD). We refer
to this two-level architecture as Fast Memory Registration
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and Deregistration (FMRD) scheme in the rest of this pa-
per. This architecture offers advantages from both pin-down
cache and batched deregistration.

As shown in Figure 4, when a buffer is to be registered,
first, it checks if its registration is cached; if yes, informa-
tion is returned immediately. Otherwise, FMR is invoked
to register the user buffer. The registration information is
inserted into the cache. If there is no space left in the cache,
one entry is evicted from the cache and put into a dereg-
istration list. FMD is invoked to deregister all buffers in
the deregistration list when the number of entries in the list
reaches a threshold.

When a buffer is to be unregistered, only some informa-
tion such as reference count of the buffer is modified in the
cache. Real deregistration is delayed. Deregistration occurs
later in a batched fashion during registration.

The fast memory registration component also takes ad-
vantage of Mellanox fast memory region registration exten-
sion in VAPI [14]. More details about this architecture are
discussed in [20].

6. Performance Results

We have implemented PVFS on our InfiniBand testbed
with designs described in Sections 4 and 5. Our imple-
mentation is based on PVFS version 1.5.6. The InfiniBand
interface is VAPI [14], which is a user-level programming
interface developed by Mellanox and compatible with the
InfiniBand Verbs specification. This section presents per-
formance results from a range of benchmarks on our imple-
mentation of PVFS over InfiniBand. First, we demonstrate
that PVFS can take full advantage of InfiniBand features
to achieve high throughput, low CPU utilization, and high
scalability by comparing performance of our implementa-
tion with that of PVFS over IBNice [13], a TCP/IP imple-
mentation for InfiniBand. We use both PVFS and MPI-
IO micro-benchmarks as well as applications to carry out
the comparison. Then we quantify the impact of differ-
ent buffer management schemes on performance. Due to
space limitation, the impacts of optimizations in the trans-
port layer on performance are not shown in this paper. De-
tails are discussed in [20]. Unless stated otherwise, the unit
megabytes (MB) in this paper is an abbreviation for 2 �

�

bytes, or 1024 � 1024 bytes.



6.1. Experimental setup

Our experimental testbed consists of a cluster system
consisting of 8 nodes built around SuperMicro SUPER
P4DL6 motherboards which include 64-bit 133 MHz PCI-
X interfaces. Each node has two Intel Xeon 2.4 GHz pro-
cessors with a 512 kB L2 cache and a 400 MHz front
side bus. The machines are connected with Mellanox
InfiniHost MT23108 DualPort 4x HCA adapter through
an InfiniScale MT43132 Eight 4x Port InfiniBand Switch.
The Mellanox InfiniHost HCA SDK version is thca-x86-
0.0.6-rc1-build-002. The adapter firmware version is fw-
23108-1.16.0000 5-build-001. Each node has a Seagate
ST340016A, ATA 100 40 GB disk. We used the Linux Red-
Hat 7.2 operating system.

6.2. Network and File System Performance

Table 1 shows the raw 4-byte one-way latency and band-
width of VAPI and IBNice. The benchmark we used for
this purpose is ttcp, version 1.12-2, with a large socket
buffer size of 256 kB to improve IBNice performance. The
VAPI Send/Recv and RDMA Write performance is mea-
sured using the Mellanox perf main benchmark. The VAPI
RDMA Read performance is measured using our own pro-
gram which is constructed similarly to perf main.

Table 2 compares the read and write bandwidth of an
ext3fs file system on the local 40 GB disk against bandwidth
achieved on a memory-resident file system, using ramfs.
The bonnie [8] file-system benchmark is used.

Table 1. Network performance
Latency ( � s) Bandwidth (MB/s)

IBNice 40.1 185
VAPI Send/Recv 8.1 825

VAPI RDMA Write 6.0 827
VAPI RDMA Read 12.4 816

Table 2. File system performance
Write (MB/s) Read (MB/s)

ext3fs 25 20
ramfs 556 1057

It can be seen that there is a large difference in band-
width realizable over the network compared to that which
can be obtained on a disk-based file system. However, ap-
plications can still benefit from fast networks for many rea-
sons in spite of this disparity. Data is frequently in server
memory due to file caching and read-ahead when a request
arrives. Also, in large disk array systems, the aggregate
performance of many disks can approach network speeds.
Caches on disk arrays and on individual disks also serve to
speed up transfers. Therefore, the following experiments
are designed to stress the network data transfer independent
of any disk activities. We mainly focus on experiments on
a memory-resident file system. Results on ramfs are rep-
resentative of workloads with sequential I/O on large disk
arrays or random-access loads on servers which are capable
of delivering data at network speeds. We also show some
results on ext3fs to quantify the impact of CPU utilization
on the scalability of I/O server.

6.3. PVFS Concurrent Write Bandwidth
The test program used for concurrent write performance

is pvfs-test, which is included in the PVFS release package.
We followed the same test method as described in [4]. In all
tests, each compute node writes and reads a single contigu-
ous region of size ��� MB, where � is the number of I/O
nodes in use.

Figure 5 shows the write performance with the original
impmentation on IBNice and our implementation of PVFS
over VAPI, respectively. The legend “4N, 8MB” indicats
4 I/O nodes and that the request size is � MB. With IB-
Nice, the bandwidth increases at a rate of approximately
160 MB/s with each additional compute node when there
are sufficient I/O nodes to carry the load. With VAPI,
our implmentation offers a bandwidth increase of roughly
360 MB/s with each additional compute node. Similar re-
sults are attained for PVFS read and can be found in [20].

6.4. MPI-IO Micro-Benchmark Performance
The same test as in the previous subsection was mod-

ified to use MPI-IO calls rather than native PVFS calls.
The number of I/O nodes was fixed at four, and the num-
ber of compute nodes was varied from one to four. Figure 6
shows the performance of MPI-IO over PVFS on VAPI and
IBNice, for both memory-based and disk-based file sys-
tems. On ramfs file system, Figure 6 shows that PVFS na-
tive over VAPI offers about three times better performance
than PVFS over IBNice. Even on a disk-based file system,
ext3fs, it can be seen that although each I/O server is disk-
bound, a significant performance improvement, 15–42%, is
still achieved. This is because the lower overhead of PVFS-
VAPI leaves more CPU cycles free for I/O servers to process
concurrent requests.
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Figure 7 shows CPU utilization on the compute nodes

when the same program runs with four I/O servers on ramfs.
It can be seen that the CPU overhead of compute nodes is
as high as 91% in PVFS-IBNice. In contrast, the CPU over-
head in PVFS over VAPI is as low as 1.5%. This demon-
strates potential for greater scalability to a large number of
compute node clients.

6.5 Fast Memory Registration and Deregistration
We evaluated pvfs-test program with three different

memory registration and deregistration schemes. Results
are presented in Figure 8. The first one dynamically reg-
isters and deregisters I/O buffers per each I/O operation,
noted as Dynamic in the plot. The second one uses pin-
down cache only, noted as Pin-down cache. The third one
uses FMRD, noted as FMRD. The test program performs
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Figure 5. PVFS write performance comparision between IBNice and VAPI.
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Figure 6. MPI-IO Performance

1000 I/O operations, in which I/O buffers are from a buffer
pool with 1000 different buffers. We control pin-down
cache hit ratio explicitly. We choose 20% and 80% cache hit
as representatives of low buffer reuse and high buffer reuse
cases, respectively. The cache size is 100, which allows us
to take deregistration into account.

Figure 8 shows PVFS write bandwidth with different
schemes. Note that these results are normalized to the re-
sults of the case where there is no buffer registration or
deregistration. We can make three observations from these
results. First, memory registration and deregistration have
a significant impact on performance. Up to 35% decrease
is seen in the dynamic scheme. Second, significant im-
provement on performance is achieved with pin-down cache
and FMRD. Particularly, if the buffer reuse ratio is 80%,
pin-down cache increases bandwidth by about 24%, while
FMRD increases bandwidth by about 28%. Third, FMRD
works much better than pin-down cache in cases where
buffer reuse ratio is low. When buffer reuse ratio is 20%,
there is about 9% improvement in FMRD compared to the
pin-down cache.

6.6 Performance of the Tiled I/O Benchmark
The test application mpi-tile-io [16] implements tiled ac-

cess to a two dimensional dense dataset. This type of work-
load is seen in visualization applications and in some nu-
merical applications. For our tests, we used four compute
nodes and four I/O server nodes. Each compute node ren-
ders to one of a 2 � 2 array of displays, each with 1024 � 768
pixels. The size of each element is 24 bytes, leading to a file
size of 72 MB.

The access pattern in this test is noncontiguous in file
space but contiguous in memory. This is a good candi-
date to exercise PVFS list I/O [5]. We tested two versions

of mpi-tile-io: one uses multiple contiguous I/O operations
to achieve noncontiguous file accesses (“Without list I/O”),
the other uses PVFS list I/O to make a single noncontiguous
access.

Figure 9 shows the results for both PVFS-VAPI and
PVFS-IBNice. Compared to the performance of PVFS-
VAPI and PVFS-IBNice, with list I/O, PVFS-VAPI offers
2.7 and 2.2 times the bandwidth on read and write, respec-
tively. Without list I/O, the improvement is 79% and 93%,
respectively. The improvement difference between using
list I/O and not using it is because the access size is larger
for each pair of request and reply messages with list I/O and
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can yield more improvement from the VAPI layer.

7. Related Work

Various user-level communication protocols have been
used for network storage in the past. Zhou et al. [22] present
their experiences with VIA networks for database storage.
Magoutis et al. [12] explore DAFS performance character-
istics, also on VIA. Our work is based on the InfiniBand
architecture.

Work in [21, 3, 10] have described several transport lay-
ers for different domains on VI-like networks and/or the In-
finiBand network. Our transport layer differs them in many
ways, especially in the selection of communication mecha-
nisms and the cooperation between buffer management and
communication management schemes to deal with particu-
lar issues in I/O intensive applications.

Research work in [19, 7, 22] have proposed different ap-
proaches to reduce memory registration and deregistration
overheads, such as pin-down cache and batched deregistra-
tion. Our work, the two-level architecture, is indeed a com-
bination of the pin-down cache and batched deregistration.

8 Conclusions and Future Work

In this paper, we study how to leverage the emerging In-
finiBand technology to improve I/O performance and scala-
bility of cluster file systems. We designed and implemented
a version of PVFS that takes advantage of InfiniBand fea-
tures. Our work shows that the InfiniBand network and its
user-level communication and RDMA features can improve
all aspects of PVFS, including throughput, access time, and
CPU utilization. However, InfiniBand network also poses a
number of challenging issues to I/O intensive applications
which PVFS targets. We addressed these issues in this pa-
per by designing: a transport layer customized for the PVFS
protocol by trading transparency and generality for perfor-
mance, buffer management for flow control, dynamic and
fair buffer sharing, and efficient memory registration and
deregistration. Inline, Fast RDMA Write, and Pipelined
Bulk data transfers were designed and implemented in the
transport layer. Our results show that these techniques bring
significant performance gains. We also demonstrated that
our proposed two-level memory registration and deregistra-
tion architecture works better than other schemes and offers
efficient memory registration and deregistration in the I/O
intensive environment.

As of this writing, a major rewrite of PVFS is in active
development. Our work is directly applicable to this next
generation PVFS over networks with user-level access and
RDMA capabilities. We are working with the PVFS team
to incorporate our design into the next generation PVFS and
to implement it on InfiniBand.
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