
In the workshop on Protocols for Fast Long Distance Networks (PFLDNet), April, 2006, Nara, Japan.
Also available as technical reports at Univerity of Illinois Chicago (EVL RG 20051031 vishwanath), Ohio State University (OSU-CISRC-10/05-TR70) and Los
Alamos National Laboratory (LA-UR-05-9068).

A Case for UDP Offload Engines in LambdaGrids
V. Vishwanath‡ P. Balaji§ W. Feng¶ J. Leigh‡ D. K. Panda§

‡Electronic Visualization Lab.,
Univ. of Illinois, Chicago

{venkat, spiff}@evl.uic.edu

§Network Based Computing Lab.,
Ohio State University

{balaji, panda}@cse.ohio-state.edu

¶Dept. of Computer Science,
Virginia Tech

feng@cs.vt.edu

Abstract
Though TCP/IP is considered the de facto standard for Internet related wide area

computing, its failure for LambdaGrids is well documented. On the other hand,

rate-controlled UDP/IP-based protocols are strongly emerging as a feasible so-

lution for meeting the performance goals in such environments. While such

protocols have been able to avoid most the drawbacks of TCP/IP, they are still

plagued by the drawbacks of UDP/IP, such as a host-based implementation, lim-

iting their performance on high-speed networks. On the other hand, researchers

have attempted to fix this drawback in TCP/IP using hardware offloaded TCP/IP

implementations such as the TCP Offload Engines (TOEs). Given these two

orthogonal developments, it is not completely clear about which is a better solu-

tion, i.e., a rate-controlled UDP/IP based protocol that is implemented in the host

or a hardware offloaded TCP/IP solution such as the TOE. In this paper, we com-

bine the benefits of both these solutions to design and develop an emulated UDP

Offload Engine (UOE) based on the Chelsio T110 TOE; a solution which would

transparently improve the performance for existing UDP/IP-based applications.

Evaluations of our emulated UOE stack show that our design can achieve up to

a 35% improvement in the performance while maintaining a significantly lower

CPU usage.

Keywords: LambdaGrid, UDP, TOE, Sockets

1 Introduction
LambdaGrids are a new paradigm in distributed computing,
where dedicated high-bandwidth optical networks allow glob-
ally distributed compute, storage and visualization systems to
work together as a planetary-scale supercomputer. A super-
computer, which can enable scientists to analyze, correlate and
visualize extremely large remote datasets, on demand and with
a high performance; an effective platform for global scientific
research. Realizing the LambdaGrid is comprised of two re-
lated, but subtly different aspects. The first aspect, is an envi-
ronment to enable the LambdaGrid, i.e., several globally dis-
tributed nodes with different capabilities bundled together with
high-bandwidth optical networks. This aspect is, to a large ex-
tent, a reality today [12, 13, 14]. The second aspect, is the ca-
pability to utilize the LambdaGrid, i.e., a networking protocol
stack which can allow researchers to harness the potential of the
LambdaGrid; an aspect which has been the focus of a significant
amount of research in the past few years.

Though TCP/IP is considered the de facto standard for In-
ternet related wide area computing, its failure for LambdaGrids
is well documented [8]. Accordingly, researchers have looked
for alternate solutions which can mask the limitations of TCP/IP
and provide high performance data communication capabilities
for such environments. Rate-controlled UDP/IP-based proto-

cols [11, 20, 9, 19, 6, 21, 17] are strongly emerging as feasible
solutions to meet these goals.

While these solutions have been able to avoid most of the
limitations of TCP/IP, they are still plagued by the drawbacks
of UDP/IP. For example, the host-based implementation of
UDP/IP significantly hinders the performance these protocols
can achieve for high-speed networks supporting throughputs
of 10Gbps and higher. On the other hand, researchers have
attempted to fix this drawback in TCP/IP using hardware of-
floaded TCP/IP implementations such as the TCP Offload En-
gines (TOEs). At where we stand today, it is not completely
clear about which is a better solution, i.e., a rate-controlled
UDP/IP-based protocol that is implemented in the host or a hard-
ware offloaded TCP/IP solution such as the TOE. The ideal so-
lution, however, is to take the best of both worlds – a hardware
offloaded UDP/IP implementation, i.e., a UDP Offload Engine
(UOE).

Given that there exists no UOE solution today, we decided to
take on the challenge to utilize the capabilities of a TOE and en-
hance its features to form an emulated UOE suiting the require-
ment of the LambdaGrid. We take a two phase approach: (i) we
develop a pseudo UDP/IP sockets layer which allows existing
UDP/IP applications and application-level protocols to transpar-
ently run over the TOE and (ii) we enhance the features of the
TOE to introduce the essence of UDP/IP communication into
it. These two phases together form the emulated UOE. In this
paper, we design and develop the emulated UOE based on the
Chelsio T110 TOE. We also perform evaluations of our emu-
lated UOE and compare it with the host-based UDP/IP stack.
Our results show that our design can achieve up to a 35% im-
provement in the performance while maintaining a significantly
lower CPU usage.

2 Background
In this section, we present a brief background about Protocol
Offload Engines (POEs) and High Performance Sockets imple-
mentations for such POEs.

2.1 Protocol Offload Engines (POEs)
Traditionally, the processing of protocols such as TCP/IP and
UDP/IP is accomplished via software running on the host CPU.
As network speeds scale beyond a gigabit per second (Gbps),
the CPU becomes overburdened with the large amount of pro-
tocol processing required. Resource-intensive memory copies,
checksum computation, interrupts, and reassembly of out-of-
order packets impose a heavy load on the host CPU. In high-

1



speed networks, the CPU has to dedicate more cycles to han-
dle the network traffic than to the application(s) it is running.
Protocol-Offload Engines (POEs) are emerging as a solution to
limit the processing required by CPUs for networking.

Device Driver

Offloaded Transport
Layer

Offloaded Network
Layer

Traditional Sockets

TCP / IP

High−Speed
Network Adapter

High Performance
Sockets

TCP/IP Sockets Interface

Sockets Application

Figure 1: High Performance Sockets

The basic idea of a POE is to offload the processing of pro-
tocols from the host CPU to the network adapter. A POE can
be implemented with a network processor and firmware, spe-
cialized ASICs, or both. High-performance networks such as
InfiniBand (IBA) [1] and Myrinet [5] provide their own proto-
col stacks that are offloaded onto the network-adapter hardware.
Many 10-Gigabit Ethernet (10GigE) vendors, on the other hand,
have chosen to offload the ubiquitous TCP/IP protocol stack in
order to maintain compatibility with existing infrastructure, par-
ticularly over the wide-area network (WAN) [7]. Consequently,
this offloading is more popularly known as a TCP Offload En-
gine (TOE). The Chelsio T110 is one such TOE.

2.2 High Performance Sockets (HPS)

High-performance sockets are pseudo-sockets implementations
that are built around two goals: (a) to provide a smooth tran-
sition to deploy existing sockets-based applications on clusters
connected with networks using offloaded protocol stacks and (b)
to sustain most of the network performance by utilizing the of-
floaded stack for protocol processing. These sockets layers over-
ride the existing kernel-based sockets and force the data to be
transferred directly to the offloaded stack (Figure 1). The Sock-
ets Direct Protocol (SDP) is an industry-standard specification
for such high-performance sockets implementations.

3 Design and Implementation Details

As described in Section 1, we utilize the capabilities of TCP
Offload Engines (TOEs) and the benefits of UDP/IP in Lambda-
Grid environments to develop a UDP Offload Engine (UOE) em-
ulation. In this section, we detail our approach in achieving this.
In particular, we describe a high-performance UDP/IP sockets
implementation on top of TOEs to allow transparent compati-
bility for existing UDP/IP applications in Section 3.1. In Sec-
tion 3.2, we describe the modifications to the features of the
Chelsio T110 TOEs to incorporate the benefits of UDP/IP.

3.1 High Performance UDP/IP Sockets
In order to implement a high-performance UDP/IP sockets im-
plementation on top of TOEs, many intrinsic issues and non-
trivial challenges need to be addressed. In this section, we dis-
cuss some of these challenges.
Connection Management Layer: UDP/IP is a connectionless
protocol, i.e., applications using UDP/IP sockets do not explic-
itly need to open connections before data communication. On
the other hand, TCP/IP is a connection-based protocol, i.e., ex-
plicit connection establishment is required for data communica-
tion. Building UDP/IP sockets on top of TCP/IP sockets requires
building a thin layer to hide connection management issues from
UDP/IP based applications. In our implementation, we built one
such layer, termed as the Connection Management Layer (CML)
to handle these details (Figure 2).

Device Driver

Offloaded Transport
Layer

Offloaded Network
Layer

TCP / IP

High−Speed
Network Adapter

High Performance
Sockets

TCP/IP Sockets Interface

UDP/IP Connection Management Layer

UDP/IP Data Management Layer

UDP/IP Sockets Interface

UDP/IP Sockets Application

Traditional Sockets

Figure 2: High Performance UDP/IP Sockets Architecture

When the upper layer tries to send or receive data to or from
another node, the request is handed over to the CML. On the re-
ceiver side (when a recv() request is issued), the CML performs
a select() operation waiting for either data to arrive on any of
the previously established TCP/IP connections or for a connec-
tion request to arrive. If data arrives on any of the previously
established TCP/IP connections, the data is copied into the ap-
propriate buffer and the control returned to the upper layer. If
on the other hand a connection request arrives, the connection is
accepted, data received, copied into the appropriate buffer and
then control returned to the upper layer.

On the sender side, the CML checks if a TCP/IP connection
is previously established between the two nodes. If it is, the data
is directly pushed out through a TCP/IP connection. Otherwise,
the CML attempts to open a TCP/IP connection on a pre-decided
port (provided as a configuration option to the CML). Here, there
are two scenarios possible. In the first scenario, the receiver has
already initiated a listen() call on the pre-decided port to listen
for incoming connections. In this case, the connection establish-
ment would be successful and the CML can directly send the
data to the receiver. In the second scenario, the receiver has been
delayed and has not initiated a listen() call on the pre-decided
port yet. In this case, the connection establishment would not be
successful and would return an error. The CML just returns this
error to the upper layer to be handled in an appropriate manner.
Data Management Layer: The Data Management Layer

2



(DML) sits on top of the CML and manages error cases returned
by the CML. For example, as mentioned earlier, if the receiver
side is delayed due to some reason and does not call a listen()
call, the CML’s attempt to establish a connection fails; in this
case, the CML just returns the error to the DML. The DML can
handle this in a number of approaches.

In the first approach, the DML copies the data to be commu-
nicated into a temporary buffer, schedules the data to be commu-
nicated and returns the control to the application. Though this
approach is simple, it has several disadvantages. First, the copy
of the data into a temporary buffer adds a significant amount of
overhead, especially for high-speed networks. Second, once the
data is copied, though the communication is scheduled, the ac-
tual communication can only be initiated when the application
tries to send or receive the next time. So, if the application gets
delayed in a computation loop and does not send or receive any
more data for a long time, the previously buffered data is not
sent out and remains in the DML’s temporary buffer.

The second approach is an extension of the first one. In this
approach, the DML blocks while attempting to communicate the
data, i.e., if the CML returns an error, it waits for a short amount
of time and attempts to establish a connection again. It continues
this till either a connection is established or a certain amount of
time is elapsed after which it falls back to the first approach.
In the current implementation, the fallback path is not entirely
stable; hence, for all our experimental results we set an infinite
timeout to fallback.

3.2 TOE Enhancements for the LambdaGrid

As described in Section 1, TCP/IP has several disadvantages
as compared to UDP/IP in high-latency, high-bandwidth net-
works such as those in the LambdaGrid. Thus, building UDP/IP
sockets on top of a TOE still suffers from the disadvantages of
TCP/IP in such environments. In this section, we describe the
features of TOEs that we tweaked to make them essentially be-
have like UDP/IP.
Disabling Congestion Control: The T110 adapters allow dis-
abling congestion control for the flows being sent out. However,
blindly disabling congestion using this approach has several dis-
advantages. Primarily, this setting is global for all connections
in the system, i.e., we cannot force some connections to bypass
congestion control while the others to retain them. Thus, if an
application uses both TCP/IP sockets as well as UDP/IP sock-
ets, congestion control is disabled for TCP/IP as well. To avoid
this we would like all TCP/IP communication to go through the
host-based TCP/IP stack and all UDP/IP communication to go
over the offloaded TCP/IP stack (without congestion control).

Also, the T110 adapter does not allow selective connection
offloading, i.e., during connection establishment the application
cannot decide whether this connection is offloaded or not. How-
ever, the adapter allows the user to configure the number of con-
nections that need to be offloaded; if this value is set to five, the
first five connections are handed over to the TOE stack and the
remaining are handled by the host-based TCP/IP stack. We will
refer to this value as N for convenience.

In our implementation, we initially set the value of N to zero

and disable congestion control on the TOE. When an applica-
tion opens a TCP/IP connection, we directly allow it to do so;
since N is set to zero, this connection is handled by the host-
based TCP/IP stack, i.e., congestion control is enabled for this
connection. If an application wants to do UDP/IP communi-
cation, as mentioned in Section 3.1, the CML tries to open a
TCP/IP connection to the remote node; before doing this, how-
ever, the CML increments N to one. Thus, when the TCP/IP
connection is established, it is handed over to the TOE, i.e., con-
gestion control is disabled. In summary, if the application at-
tempts to open a TCP/IP connection, it is always handled by the
host-based TCP/IP stack and hence congestion control is on; if
the application attempts to perform a UDP/IP communication, it
is always handled by the TOE and hence congestion control is
disabled.
Handling Out-of-Order Data: One of the advantages of
UDP/IP is that out-of-order data is directly delivered to the ap-
plication. In TCP/IP, if a packet is dropped, the following out-
of-order data is not delivered to the user, but is held in the
socket buffer. Thus, for high-latency network (e.g., those in the
LambdaGrid), one packet loss could result in the out-of-order
data being buffered for a very long time before its delivered to
the application.

In our implementation, we added a kernel-level patch to the
high-performance sockets layer above the TOE to directly de-
liver out-of-order data to the application. A copy of the data,
however, is still maintained at the sockets layer, so that the TOE
can use that to match sequence numbers and maintain reliability
in the data transfer. Once the intermediate data arrives, when the
sockets layer tries to deliver the data to the application, this data
is discarded.

4 Experimental Results
In this section, we present micro-benchmark level evaluation
comparing our implementation (UOE) with the traditional host-
based UDP/IP protocol stack (UDP). Specifically, we present
ping-pong latency, uni-directional bandwidth and CPU utiliza-
tion results.

The test-bed used for the evaluation consists of two nodes
equipped with dual Opteron 2.4 GHz processors, 1 MB of L2-
cache and 4 GB of 200 MHz DDR SDRAM. The Linux distri-
bution used was Suse 9.3 with the 2.6.6-SMP kernel.org kernel
patched with the Chelsio TOE modules. The motherboard used
was Tyan K8W Thunder and the chipset was AMD-8131. Each
node also had a Chelsio T110 TOE-based 10-Gigabit Ethernet
network adapter plugged into a 133 MHz/64-bit PCI-X slot; the
nodes were connected back-to-back. The driver version used for
the network adapters was 2.1.1.
Ping-Pong Latency: Figure 3(a) shows the point-to-point la-
tency achieved by the two stacks, UOE and UDP. In this test,
the sender node first sends a message to the receiver; the re-
ceiver receives this message and sends back another message to
the sender. Such exchange of messages is carried out for several
iterations, the total time calculated and averaged over the num-
ber of iterations. This gives the time for a complete message
exchange. The ping-pong latency demonstrated in the figure is

3



Latency

0

5

10

15

20

25

30

35

40

1 2 4 8 16 32 64 128 256 512 1024

Message Size (Bytes)

La
te

nc
y 

(u
se

c)

UOE

UDP

Throughput - CPU Utilization

0

1000

2000

3000

4000

5000

6000

7000

8000

12 16 32 64 128 256 512 1k 2k 4k 8k 16k 32k 64K 

Message Size

T
hr

ou
gh

pu
t (

M
bi

ts
/s

ec
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

C
P

U
 U

til
iz

at
io

n

UOE (CPU)
UDP (CPU)
UOE (normalized CPU)
UOE
UDP

Figure 3: Micro-Benchmarks: (a) Ping-Pong Latency and (b) Unidirectional Throughput

half of this amount, i.e., one-way communication latency. As
shown in the figure, UOE achieves a latency of about 26µs as
compared to the 32µs achieved by host-based UDP/IP for a 1-
byte message (improvement of 17%). This improvement in the
latency is attributed to the better packet-processing capability of
the TOE as compared to the host-based UDP/IP stack.

Uni-directional Throughput: Figure 3(b) shows the uni-
directional throughput and CPU usage achieved by the two
stacks. In this test, the sender node keeps streaming data at a
constant rate to the receiver. Once the data transfer is completed,
the data rate is calculated as the number of bytes sent out per unit
time. We used the iperf benchmark version 2.0.2 for this exper-
iment. As shown in the figure, UOE achieves a peak throughput
of about 7.4Gbps as compared to the 5.5Gbps achieved by host-
based UDP/IP (improvement of 35%).

For the CPU usage, we show three sets of numbers (Fig-
ure 3(b)). UDP (CPU) and UOE (CPU) are the amount of
CPU utilized for achieving the peak throughput by the two
stacks. However, this comparison is not entirely fair. Since
UOE achieves a better throughput as compared to the host-based
UDP/IP stack, the network adapter is able to send out data faster
from the socket buffer. Accordingly, the sockets layer can copy
data from the application faster (since its getting emptied faster,
it has to wait less). The faster data copy rate for UOE, hence,
shows a higher CPU usage in the measurements. To allow a
fairer comparison, we slow down the UOE to the same speed
as the host-based UDP/IP stack, measure the CPU usage and
present the results as UOE (normalized CPU). In this case, since
the network is sending out data at the same rate, the comparison
of the amount of CPU used is fairer. As shown in the figure,
both UOE and normalized UOE outperform host-based UDP/IP.
This is attributed to two reasons. First, the TOE performs a of-
floaded checksum computation as compared to the host-based
UDP/IP which uses host cycles to do this. Second, the host-
based UDP/IP uses an MTU size of 1500 bytes. Thus, if it has
to send a 45Kbyte message, it uses 30 segments and receives 10
interrupts (assuming an interrupt every 3 segments). The TOE
on the other hand, allows for segmentation offload where the
NIC exposes a much larger MTU size to the host than the actual
wire MTU. For example, in our experiments, the wire MTU was
1500 bytes while the TOE exposes a 16Kbyte MTU size. So, in
the previous example, to send a 45Kbyte message, the host uses
3 segments and gets only 1 interrupt, reducing the CPU usage.

5 Related Work
Due to the poor performance of TCP/IP and the practical dif-
ficulties in deploying high speed TCP/IP kernel variants in
LambdaGrid environments, several researchers including our-
selves, have developed a number of UDP-based application-
level protocols [11, 20, 9, 19, 6, 21, 17] for such environments.
However, all of these implementations rely on developing a
application-level protocols to handle details such as reliability,
rate-control, etc.; this can cause their performance to be severely
affected by factors such as context switches, CPU utilization,
memory copies, operating system scheduling [10].

There has also been significant amount of research in high
performance sockets implementations on the hardware offloaded
protocol stacks of various networks [18, 15, 3, 4, 2, 7, 16]. How-
ever, most of these solutions have been for TCP/IP sockets and
all of them have been developed and evaluated for the System
Area Network (SAN) environment.

In this paper, we present a novel design to combine the capa-
bilities of TOEs and the benefits of UDP/IP to provide an emu-
lation of a UDP/IP Offload Engine (UOE) leading to a signifi-
cantly higher performance and scalability in LambdaGrids.

6 Conclusions and Future Work
Though TCP/IP is considered the de facto standard for Inter-
net related wide area computing, its failure for LambdaGrids
is well documented. Several researchers came up with differ-
ent solutions to tackle this problem. Two of these solutions
seem to be particularly noticeable: (i) rate-controlled UDP/IP-
based protocols and (ii) TCP/IP offload engines (TOEs). Rate-
controlled UDP/IP-based protocols have been widely used by a
number of researchers for the past several years; however, like
UDP/IP, they rely on a host-based implementation, restricting
the performance they can achieve on high-speed networks. On
the other hand, TOEs allow a hardware-based implementation of
the protocol stack, but suffer from the drawbacks of TCP/IP in
the LambdaGrid environments. In this paper, we combined the
benefits of both these solutions to form an emulated UDP Of-
fload Engine (UOE) based on the Chelsio T110 TOE; a solution
which would transparently improve the performance for existing
UDP/IP-based applications.

As a part of the future work, we plan to design a version of
LambdaStream [20] to utilize the UOE and benefit from the rate
control on the network adapter.

4



7 Acknowledgments
We would like to thank Alan Verlo, Akira Hirano, Lance Long,
Patrick Hallihan and Jeremy Archuleta for all their support.We
would also like to thank Wael Noureddine, Felix Marti and Dim-
itrios Michailidis of Chelsio Communications for their help with
the 10G Network adapters and valuable suggestions.

The Electronic Visualization Laboratory (EVL) at the Uni-
versity of Illinois at Chicago specializes in the design and devel-
opment of high-resolution visualization and virtual-reality dis-
play systems, collaboration software for use on multi-gigabit
networks, and advanced networking infrastructure. These
projects are made possible by major funding from the Na-
tional Science Foundation (NSF), awards CNS-0115809, CNS-
0224306, CNS-0420477, SCI-9980480, SCI-0229642, SCI-
9730202, SCI-0123399, ANI-0129527 and EAR-0218918, as
well as the NSF Information Technology Research (ITR) coop-
erative agreement (SCI-0225642) to the University of California
San Diego (UCSD) for ”The OptIPuter” and the NSF Partner-
ships for Advanced Computational Infrastructure (PACI) coop-
erative agreement (SCI-9619019) to the National Computational
Science Alliance. EVL also receives funding from the State of
Illinois, General Motors Research, the Office of Naval Research
on behalf of the Technology Research, Education, and Commer-
cialization Center (TRECC), and Pacific Interface Inc. on behalf
of NTT Optical Network Systems Laboratory in Japan.

This work was also supported in part by the DOE ASC Pro-
gram through Los Alamos National Laboratory contract W-
7405-ENG-36, and technical and equipment support from Chel-
sio Communications.

References
[1] Infiniband Trade Association. http://www.infinibandta.org.

[2] P. Balaji, S. Narravula, K. Vaidyanathan, S. Krishnamoorthy, J. Wu, and
D. K. Panda. Sockets Direct Protocol over InfiniBand in Clusters: Is it
Beneficial? In the Proceedings of the IEEE International Symposium on
Performance Analysis of Systems and Software, Austin, Texas, March 10-
12 2004.

[3] P. Balaji, P. Shivam, P. Wyckoff, and D. K. Panda. High Performance
User Level Sockets over Gigabit Ethernet. In the Proceedings of the IEEE
International Conference on Cluster Computing, pages 179–186, Chicago,
Illinois, September 23-26 2002.

[4] P. Balaji, J. Wu, T. Kurc, U. Catalyurek, D. K. Panda, and J. Saltz. Im-
pact of High Performance Sockets on Data Intensive Applications. In the
Proceedings of the IEEE International Conference on High Performance
Distributed Computing (HPDC 2003), June 2003.

[5] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N.
Seizovic, and W. K. Su. Myrinet: A Gigabit-per-Second Local Area Net-
work. http://www.myricom.com.

[6] Philip M. Dickens. FOBS: A Lightweight Communication Protocol for
Grid Computing. In Europar, 2003.

[7] W. Feng, P. Balaji, C. Baron, L. N. Bhuyan, and D. K. Panda. Perfor-
mance Characterization of a 10-Gigabit Ethernet TOE. In Proceedings
of the IEEE International Symposium on High-Performance Interconnects
(HotI), Palo Alto, CA, Aug 17-19 2005.

[8] W. Feng and P. Tinnakornsrisuphap. The Failure of TCP in High-
Performance Computational Grids. In SC 2000: High-Performance Net-
working and Computing Conference, 2000.

[9] Y. Gu and R. Grossman. Experiences in the Design and Implementation
of a High Performance Transport Protocol. In SC, 2004.

[10] Y. Gu and R. Grossman. Optimizing UDP-based Protocol Implementa-
tions. In PFLDNet, 2005.

[11] E. He, J. Leigh, O. Yu, and T. Defanti. Reliable Blast UDP: Predictable
High Performance Bulk Data Transfer. In Cluster Computing, 2002.

[12] http://www.nlr.net. National lambda rail.

[13] http://www.startap.net/translight/. Translight.

[14] http://www.surfnet.nl/. Surfnet.

[15] J. S. Kim, K. Kim, and S. I. Jung. SOVIA: A User-level Sockets Layer
over Virtual Interface Architecture. In Proceedings of Cluster Computing,
2001.

[16] Myricom Inc. Sockets-GM Overview and Performance.

[17] N. Rao, Q. Wu, S. Carter, and W. Wing. Experimental Results On Data
Transfers Over Dedicated Channels. In BroadNets, 2004.

[18] H. V. Shah, C. Pu, and R. S. Madukkarumukumana. High Performance
Sockets and RPC over Virtual Interface (VI) Architecture. In Proceedings
of CANPC workshop, 1999.

[19] X . Wu and A. Chien. GTP: Group Transport Protocol for Lambda-Grids.
In 4th IEEE/ACM International Symposium on Cluster Computing and the
Grid (CCGrid), 2004.

[20] C. Xiong, J. Leigh, E. He, V. Vishwanath, T. Murata, L. Renambot, and
T. Defanti. LambdaStream - a Data Transport Protocol for Streaming
Network-Intensive Applications over Photnic Networks. In PFLDNet,
2005.

[21] X. Zheng, A. Mudambi, and M. Veeraraghavan. FRTP: Fixed Rate Trans-
port Protocol. In BroadNets, 2004.

5


