
HIGH PERFORMANCE AND SCALABLE SOFT SHARED

STATE FOR NEXT-GENERATION DATACENTERS

DISSERTATION

Presented in Partial Fulfillment of the Requirements for

the Degree Doctor of Philosophy in the

Graduate School of The Ohio State University

By

Karthikeyan Vaidyanathan, M.Sc (Tech)

* * * * *

The Ohio State University

2008

Dissertation Committee:

Prof. D. K. Panda, Adviser

Prof. P. Sadayappan

Prof. F. Qin

Approved by

Adviser

Graduate Program in
Computer Science and

Engineering

c© Copyright by

Karthikeyan Vaidyanathan

2008

ABSTRACT

In the past decade, with the increasing adoption of Internet as the primary means

of electronic interaction and communication, web-based datacenters have become a

central requirement for providing online services. Today, several applications and ser-

vices have been deployed in such datacenters in a variety of environments including

e-commerce, medical informatics, genomics, etc. Most of these applications and ser-

vices share significant state information that are critical for the efficient functioning

of the datacenter. However, existing mechanisms for sharing the state information are

both inefficient in terms of performance and scalability, and non-resilient to loaded

conditions in the datacenter. In addition, existing mechanisms do not take complete

advantage of the features of emerging technologies which are gaining momentum in

current datacenters.

This dissertation presents an efficient soft state sharing substrate that leverages

the features of emerging technologies such as high-speed networks, Intel’s I/OAT

and multicore architectures to address the limitations mentioned above. Specifically,

the dissertation targets three important aspects: (i) designing efficient state shar-

ing components using the features of emerging technologies, (ii) understanding the

interactions between the proposed components and (iii) analyzing the impact of the

proposed components and their interactions with datacenter applications and services

in terms of performance, scalability and resiliency.

ii

Our evaluations with the soft state sharing substrate not only show an order

of magnitude performance improvement over traditional implementations but also

demonstrate the resiliency to loaded conditions in the datacenter. Evaluations with

several datacenter applications also suggest that the substrate is scalable and has a

low-overhead. The proposed substrate is portable across multiple modern intercon-

nects such as InfiniBand, iWARP-capable networks like 10-Gigabit Ethernet both in

LAN and WAN environments. In addition, our designs provide advanced capabilities

such as one-sided communication, asynchronous memory copy operations, etc., even

on systems without high-speed networks and I/OAT. Thus, our proposed designs,

optimizations and evaluations demonstrate that the substrate is quite promising in

tackling the state sharing issues with current and next-generation datacenters.

iii

Dedicated to my parents, Amma and Appa;

to my siblings, Raju and Suba;

to my wife, Swaroopa

iv

ACKNOWLEDGMENTS

I would like to thank my adviser, Prof. D. K. Panda for his support, patience and

encouragement throughout the duration of my Ph.D. study. I’m greatly indebted to

him for the time and efforts which he spent for my progress, especially during the

tough periods in my dissertation.

I would also like to thank my committee members, Prof. P. Sadayappan and Prof.

F. Qin for their valuable guidance and suggestions. I’m grateful to Dr. M. Schlansker,

Dr. N. Jouppi, Dr. J. Mudigonda and Dr. N. Binkert for their support and guidance

during my summer internships.

I’m thankful to my colleague Sundeep Narravula and Dr. Hyun-Wook Jin for the

innumerable discussions and collaborations relating to this research. I would like to

thank all my senior NOWLAB members for their patience and guidance: Dr. Pavan

Balaji, Dr. Jiesheng Wu, Dr. Jiuxing Liu and Dr. Weikuan Yu. I’m lucky to have

collaborated closely with my colleagues: Sundeep, Ping, Wei and Lei. I would also

like to thank all my colleagues: Sandy, Gopal, Amith, Sayantan, Abhinav, Wei, Lei,

Matt, Ping, Savitha, Qi, Hari, Ouyang, KGK, Tejus and Greg, for their discussions

on technical and non-technical issues, as well as their friendship.

During all these years, I met many people at Ohio State, some of whom are very

close friends, and I’m thankful for all their love and support: Sandeep Rao, Ajay,

Shankar, Deepa, Vijay, Chubs and Nithya. I’m also thankful to my friends who

v

helped me during the tough periods in my dissertation: Damak, Prasanth gangavelli,

Shanthi, Khandoo, Manoj, Gara and Nidhi.

Last, but definitely not the least, I would like to thank my wife, Swaroopa (Naga

Vydyanathan), for her understanding and love during my dissertation. She has spent

several sleepless nights proof reading all my papers and her support and encourage-

ment was in the end what made this dissertation possible. Finally, I would like to

thank my family members: amma, appa, raju, manni, suba, sai athimber, mano,

ashwin, gayathri, aditi, jayashree, my wife’s amma, appa, thatha, paatti, brother and

cousins (aravind and srikanth). They all receive my deepest gratitude and love for

their dedication and the many many years of support that provided the foundation

for this work. I would not have had made it this far without their love and support.

vi

VITA

September 1, 1978 . Born - New Delhi, India.

August 1996 - July 2001 .M. Sc (Tech) Information Systems,
M. Sc (Tech) General Studies, Birla
Institute of Technology and Sciences
(BITS), Pilani, India.

August 2001 - July 2002 . Research Associate, INSEAD, France.

August 2002 - December 2005 Graduate Teaching/Research Asso-
ciate,
The Ohio State University.

June 2006 - September 2006 Summer Intern,
HP Labs, Palo Alto, CA.

June 2007 - September 2007 Summer Intern,
HP Labs, Palo Alto, CA.

January 2006 - Present . Graduate Research Associate,
The Ohio State University.

PUBLICATIONS

K. Vaidyanathan, P. Lai, S. Narravula and D. K. Panda, “Optimized Distributed Data
Sharing Substrate for Multi-Core Commodity Clusters: A Comprehensive Study with

Applications”, IEEE International Symposium on Cluster Computing and the Grid,
May 2008.

P. Lai, S. Narravula, K. Vaidyanathan and D. K. Panda, “Advanced RDMA-based

Admission Control for Modern Data-Centers”, IEEE International Symposium on
Cluster Computing and the Grid, May 2008.

vii

K. Vaidyanathan, L. Chai, W. Huang and D. K. Panda, “Efficient Asynchronous
Memory Copy Operations on Multi-Core Systems and I/OAT”, IEEE International

Conference on Cluster Computing, September 2007.

S. Narravula, A. Mamidala, A. Vishnu, K. Vaidyanathan and D. K. Panda, “High
Performance Distributed Lock Management Services using Network-based Remote

Atomic Operations”, IEEE International Symposium on Cluster Computing and the
Grid (CCGrid), May 2007.

K. Vaidyanathan and D. K. Panda, “Benefits of I/O Acceleration Technology (I/OAT)

in Clusters”, IEEE International Symposium on Performance Analysis of Systems and
Software, April 2007.

K. Vaidyanathan, W. Huang, L. Chai and D. K. Panda, “Designing Efficient Asyn-
chronous Memory Operations Using Hardware Copy Engine: A Case Study with

I/OAT”, International Workshop on Communication Architecture for Clusters, March
2007.

K. Vaidyanathan, S. Narravula and D. K. Panda, “DDSS: A Low-Overhead Dis-

tributed Data Sharing Substrate for Cluster-Based Data-Centers over Modern Inter-
connects”, IEEE International Symposium on High Performance Computing, Decem-

ber 2006.

H. -W. Jin, S. Narravula, K. Vaidyanathan and D. K. Panda, “NemC: A Network
Emulator for Cluster-of-Clusters”, IEEE International Conference on Communication

and Networks, October 2006.

K. Vaidyanathan, H. -W. Jin and D. K. Panda, “Exploiting RDMA operations

for Providing Efficient Fine-Grained Resource Monitoring in Cluster-based Servers”,
Workshop on Remote Direct Memory Access (RDMA): Applications, Implementa-

tions and Technologies, September 2006.

S. Narravula, H. -W. Jin, K. Vaidyanathan and D. K. Panda, “Designing Efficient
Cooperative Caching Schemes for Multi-Tier Data-Centers over RDMA-enabled Net-

works”, IEEE International Symposium on Cluster Computing and the Grid, May
2006.

P. Balaji, H. -W. Jin, K. Vaidyanathan and D. K. Panda, “Supporting iWARP

Compatibility and Features for Regular Network Adapters”, Workshop on Remote
Direct Memory Access (RDMA): Applications, Implementations and Technologies,

September 2005.

viii

H. -W. Jin, S. Narravula, G. Brown, K. Vaidyanathan, P. Balaji and D. K. Panda,

“Performance Evaluation of RDMA over IP: A Case Study with the Ammasso Gi-
gabit Ethernet NIC”, Workshop on High Performance Interconnects for Distributed

Computing, July 2005.

S. Narravula, P. Balaji, K. Vaidyanathan, H. -W. Jin and D. K. Panda, “Architecture
for Caching Responses with Multiple Dynamic Dependencies in Multi-Tier Data-

Centers over InfiniBand”, IEEE International Symposium on Cluster Computing and
the Grid, May 2005.

P. Balaji, S. Narravula, K. Vaidyanathan, H. -W. Jin and D. K. Panda, “On the

Provision of Prioritization and Soft QoS in Dynamically Reconfigurable Shared Data-

Centers over InfiniBand”, IEEE International Symposium on Performance Analysis
of Systems and Software, March 2005.

K. Vaidyanathan, P. Balaji, H. -W. Jin and D. K. Panda, “Workload-driven Analysis

of File Systems in Shared Multi-Tier Data-Centers over InfiniBand”, Workshop on
Computer Architecture Evaluation using Commercial Workloads, February 2005.

P. Balaji, K. Vaidyanathan, S. Narravula, K. Savitha, H. -W. Jin and D. K. Panda,

“Exploiting Remote Memory Operations to Design Efficient Reconfiguration for Shared
Data-Centers over InfiniBand”, Workshop on Remote Direct Memory Access (RDMA):

Applications, Implementations and Technologies, September 2004.

P. Balaji, S. Narravula, K. Vaidyanathan, S. Krishnamoorthy, J. Wu and D. K.
Panda, “Sockets Direct Procotol over InfiniBand in Clusters: Is it Beneficial?”, IEEE

International Symposium on Performance Analysis of Systems and Software, March

2004.

S. Narravula, P. Balaji, K. Vaidyanathan, S. Krishnamoorthy, J. Wu and D. K.
Panda, “Supporting Strong Coherency for Active Caches in Multi-Tier Data-Centers

over InfiniBand”, Workshop on System Area Networks, February 2004.

ix

FIELDS OF STUDY

Major Field: Computer Science and Engineering

Studies in:

Computer Architecture Prof. D. K. Panda
Software Systems Prof. P. Sadayappan
Computer Networks Prof. D. Xuan

x

TABLE OF CONTENTS

Page

Abstract . ii

Dedication . iv

Acknowledgments . v

Vita . vii

List of Tables . xv

List of Figures . xvi

Chapters:

1. Introduction . 1

1.1 Overview of Datacenters . 3

1.1.1 Datacenter Applications . 4
1.1.2 Datacenter Services . 5

1.1.3 Shared Datacenter Environments 5

1.2 Overview of Emerging Technologies 7
1.2.1 High Performance Networks 7

1.2.2 I/O Acceleration Technology (I/OAT) 10
1.2.3 Multicore Architectures . 12

1.3 Limitations of Existing State Sharing Mechanisms in Datacenters . 13
1.4 Problem Statement . 15

1.5 Dissertation Overview . 17

xi

2. Network-Assisted State Sharing using High-Speed Networks 24

2.1 Background and Related Work . 24
2.2 Proposed Design . 28

2.2.1 Soft Shared State using RDMA and Atomics 29
2.2.2 Efficient Locking and Synchronization Mechanisms 31

2.2.3 Coherency and Consistency Maintenance using Atomics . . 32
2.2.4 Fine-Grained Resource Monitoring Services 35

2.2.5 Active Resource Adaptation Services 42
2.3 Experimental Results . 44

2.3.1 State Sharing Latency . 46

2.3.2 State Sharing Overhead . 47
2.3.3 Performance with Datacenter Applications 48

2.3.4 Performance with Resource Monitoring Services 49
2.3.5 Performance with Active Resource Adaptation Services . . . 61

2.4 Summary . 63

3. DMA-Accelerated State Sharing using Intel’s I/OAT 65

3.1 Background and Related Work . 65

3.2 Design and Implementation Issues 67
3.2.1 Accelerated Memory Copy using Asynchronous DMA Engine 67

3.2.2 Inter-Process State Sharing using Asynchronous DMA Engine 69
3.2.3 Handling IPC Synchronization Issues 72

3.2.4 Handling Memory Alignment and Buffer Pinning Issues . . 73
3.3 Experimental Evaluation . 75

3.3.1 Memory Copy Performance 75

3.3.2 Overlap Capability . 79
3.3.3 Asynchronous Memory Copy Overheads 80

3.3.4 Inter-Process State Sharing Performance 82
3.4 Summary . 83

4. Multicore-aware State Sharing using Multicore Architectures 84

4.1 Background and Motivation . 84
4.1.1 JNIC Architecture . 87

4.1.2 RDMA Registration . 88
4.2 Related Work . 89

4.3 Design and Implementation Issues 90
4.3.1 State Sharing using Onloading 91

4.3.2 Handling Page Pinning and Page Swapping Issues 95

xii

4.3.3 Handling Flow Control Issues 97
4.4 Experimental Results . 98

4.4.1 Latency and Bandwidth . 98
4.4.2 Cost breakdown of Onloaded State Sharing 100

4.5 Summary . 104

5. Multicore-aware, DMA-Accelerated State Sharing 106

5.1 Background and Related Work . 106

5.2 Design and Implementation Issues 111
5.2.1 Dedicated Memory Copy using Multicore Systems 111

5.2.2 Dedicated Memory Copy Using Multicore Systems and DMA

Engine . 112
5.2.3 Avoiding Context Switch Overhead 114

5.2.4 Handling Locking and Synchronization Issues 114
5.2.5 Application-Transparent Asynchronous Memory Copy . . . 115

5.3 Experimental Results . 118
5.3.1 Performance with and without Page Caching 118

5.3.2 Split-up Overhead of Different Memory Copy Approaches . 122
5.3.3 Evaluations with SPEC and Datacenters 123

5.4 Summary . 127

6. Multicore-aware, Network-Assisted State Sharing 129

6.1 Background and Related Work . 129

6.2 Proposed Design Optimizations . 131
6.2.1 Message Queue-based DDSS (MQ-DDSS) 131

6.2.2 Request and Message Queue-based DDSS (RMQ-DDSS) . . 132

6.2.3 Request and Completion Queue-based DDSS (RCQ-DDSS) 133
6.3 Basic Performance . 135

6.3.1 DDSS Latency . 135
6.3.2 DDSS Scalability . 136

6.4 Application-level Evaluations . 138
6.4.1 R-Tree Query Processing 138

6.4.2 B-Tree Query Processing 139
6.4.3 Distributed STORM . 139

6.4.4 Application Checkpointing 141
6.5 Datacenter Services on Dedicated Cores 143

6.6 Summary . 146

xiii

7. DMA-Accelerated, Network-Assisted State Sharing 147

7.1 Background and Related Work . 147
7.2 I/OAT Micro-Benchmark Results 149

7.2.1 Bandwidth: Performance and Optimizations 150
7.2.2 Benefits of Asynchronous DMA Copy Engine 155

7.3 Datacenter Performance Evaluation 156
7.3.1 Evaluation Methodology . 157

7.3.2 Analysis with Single File Traces 159
7.3.3 Analysis with Zipf File Traces 160

7.3.4 Analysis with Emulated Clients 160

7.4 Summary . 161

8. Applicability of State Sharing Components in Datacenter Environments . 163

9. Conclusions and Future Research Directions 166

9.1 Summary of Research Contributions 167

9.1.1 State Sharing Components using Emerging Technologies . . 168
9.1.2 Interaction of Proposed State Sharing Components 169

9.2 Future Research Directions . 170
9.2.1 Low-overhead Communication and Synchronization Service 170

9.2.2 Dedicated Datacenter Functionalities 171
9.2.3 Integrated Evaluation . 171

9.2.4 Redesigning Datacenter System Software 171
9.2.5 Extending State Sharing Designs for HPC Environments . . 172

9.2.6 Impact of State Sharing in Virtualization Environments . . 172

Bibliography . 173

xiv

LIST OF TABLES

Table Page

2.1 State Sharing Interface . 35

2.2 Average Response Time with RUBiS Benchmark 58

2.3 Maximum Response Time with RUBiS Benchmark 58

3.1 Basic ADCE Interface . 68

3.2 ADCE Interface for IPC . 71

4.1 Registration Cost . 101

5.1 Memory Protection Overhead . 124

6.1 Application Performance . 140

8.1 Applicability of State Sharing Components in Datacenter Environments164

xv

LIST OF FIGURES

Figure Page

1.1 Datacenter Architecture . 4

1.2 Datacenter Issues . 6

1.3 InfiniBand Architecture (Courtesy InfiniBand Specifications) 8

1.4 Copy execution on CPU vs Copy Engines [103] 11

1.5 Proposed State Sharing Substrate . 18

1.6 Network-Assisted State Sharing Mechanism 19

1.7 DMA-Accelerated State Sharing Mechanism 20

1.8 Multicore-aware State Sharing Mechanism 20

1.9 Multicore-aware, DMA-Accelerated State Sharing Mechanism 21

1.10 Multicore-aware, Network-Assisted State Sharing Mechanism 22

2.1 Network-Assisted State Sharing Components 25

2.2 Network-Assisted State Sharing using the proposed Framework (a) Non

Coherent State Sharing Mechanism (b) Coherent State Sharing Mech-
anism . 29

2.3 Network-Assisted State Sharing Framework 31

2.4 Resource Monitoring Mechanism using Sockets: (a) Asynchronous and

(b) Synchronous . 38

xvi

2.5 Resource Monitoring Mechanism using State Sharing: (a) Asynchronous

and (b) Synchronous . 40

2.6 Dynamic Reconfigurability Schemes 45

2.7 Basic Performance using OpenFabrics over IBA: (a) put() operation,
(b) Increasing Clients accessing different portions (get()) and (c) Con-

tention accessing the same shared segment (put()) 47

2.8 Application Performance over IBA: (a) Distributed STORM applica-
tion and (b) Application Check-pointing 50

2.9 Latency of Socket-Async, Socket-Sync, RDMA-Async, RDMA-Sync
schemes with increasing background threads 52

2.10 Impact on application performance with Socket-Async, Socket-Sync,

RDMA-Async and RDMA-Sync schemes 53

2.11 Accuracy of Load information: (a) Number of threads running on the
server and (b) Load on the CPU . 54

2.12 Number of Interrupts reported on two CPUs: (a) Socket-Async and

(b) Socket-Sync . 56

2.13 Number of Interrupts reported on two CPUs: (a) RDMA-Async and
(b) RDMA-Sync . 56

2.14 Throughput Improvement of Socket-Sync, RDMA-Async, RDMA-Sync
and e-RDMA-Sync schemes compared to Socket-Async scheme with

RUBiS and Zipf Trace . 60

2.15 Fine-grained vs Coarse-grained Monitoring 61

2.16 Software Overhead on Datacenter Services (a) Active Resource Adap-
tation using OpenFabrics over IBA (b) Comparison of TCP and DDSS

performance using OpenFabrics over Ammasso 63

3.1 DMA-Accelerated State Sharing Components 66

3.2 Memory Copy Design using DMA Engine 69

xvii

3.3 Different IPC Mechanisms . 72

3.4 IPC using DMA copy engine . 73

3.5 Memory Copy Latency Performance 77

3.6 Memory Copy Bandwidth . 78

3.7 Cache Pollution Effects . 79

3.8 Computation-Memory Copy Overlap 81

3.9 Asynchronous Memory Copy Overheads 81

3.10 Inter-Process Communication Performance 82

4.1 Multicore-aware State Sharing Components 85

4.2 JNIC Prototype [83] . 88

4.3 JBMT Architecture . 93

4.4 get Operation in JBMT . 94

4.5 Flow Control in JBMT . 96

4.6 Latency of get operation . 99

4.7 Bandwidth of get operation . 100

4.8 Timing Measurements of JBMT get 101

4.9 Cost Breakdown of JBMT get . 102

5.1 Multicore-aware, DMA-Accelerated State Sharing Components 107

5.2 Motivation for Using Asynchronous Memory Copy Operations 108

5.3 Asynchronous Memory Copy Operations using MCNI 112

xviii

5.4 Asynchronous Memory Copy Operations using MCI 113

5.5 Different Mechanisms for Asynchronous Memory Copy Operations . . 116

5.6 Overlap Capability: (a) SCNI, (b) SCI, (c) MCI and (d) MCNI . . . 118

5.7 Micro-Benchmark Performance with Page Caching 121

5.8 Micro-Benchmark Performance without Page Caching 122

5.9 Overheads of SCI, MCI and MCNI Schemes 123

5.10 Application Performance . 125

6.1 Multicore-aware, Network-Assisted State Sharing Framework 130

6.2 Design Optimizations in State Sharing 133

6.3 DDSS Latency . 137

6.4 DDSS Scalability . 137

6.5 State Sharing Performance in Applications 141

6.6 Checkpoint Application Performance 143

6.7 Performance impact of DDSS on Web Servers: Number of Servers . . 144

6.8 Performance impact of DDSS on Web Servers: Monitoring Granularity 145

6.9 Performance impact of DDSS on Web Servers: Different File Sizes . . 145

7.1 DMA-Accelerated, Network-Assisted State Sharing Framework 148

7.2 Micro-Benchmarks: (a) Bandwidth and (b) Bi-directional Bandwidth 152

7.3 Multi-Stream Bandwidth . 153

7.4 Optimizations: (a) Bandwidth and (b) Bi-directional Bandwidth . . . 154

7.5 Copy Performance: CPU vs DMA . 156

xix

7.6 Performance of I/OAT and non-I/OAT: (a) Single File Traces and (b)

Zipf Trace . 160

7.7 Clients with I/OAT capability using a 16 KB file trace 162

9.1 State Sharing Components . 167

xx

CHAPTER 1

INTRODUCTION

Over the past several years, there has been an incredible growth of applications

in the fields of e-commerce [2, 8], financial services [17, 21, 26, 7], search engines

[9, 57, 25, 15, 4], medical informatics [24], etc. Indeed, it is almost impossible for

us to imagine our daily life without these applications (e.g., accessing a web page,

buying a book from an online book store). Typically, these applications are hosted

through a web-based datacenter [85, 55] (e.g., Google [9], Amazon [2], IBM [11],

HP [10]). Such datacenters are not only becoming extremely common today but are

also increasing exponentially in size, currently ranging to thousands of nodes. With

technology trends, the ability to store and share the datasets that these applica-

tions generate is also increasing. Accordingly, several distributed applications such

as STORM [24], database query processing [23, 16], Apache [54] and services such as

load-balancing [87], resource monitoring [78], reconfiguration [31], caching [71] and

several others have been developed and deployed in such environments.

Typically, these applications and services exchange key information at multiple

sites (e.g., system state, versioning and timestamps of data/meta-data, current sys-

tem load, locks currently held, coherency and consistency information and several

1

others). As demonstrated by recent literature [28, 71], managing this shared infor-

mation becomes critical for the efficient functioning of the datacenter. However, for

the sake of availability and performance, programmers typically use ad-hoc messaging

protocols for maintaining this shared information, which is both complex and cum-

bersome, as mentioned by Tang et. al [88]. Researchers [28, 42, 89, 79] in the past

have proposed simpler state sharing abstractions to hide these complexities. However,

these abstractions do not address issues such as load resiliency, low-overhead access

and efficient resource utilization which are becoming critical in current datacenters to

increase the performance and scalability. In addition, these abstractions do not take

complete advantage of features of emerging technologies which are currently gaining

momentum in next-generation datacenters.

On the other hand, the System Area Network (SAN) technology is making rapid

advances during the recent years. SAN interconnects such as InfiniBand (IBA) [61]

and 10-Gigabit Ethernet [60] not only provide high performance but also provide a

range of novel features such as Remote Direct Memory Access (RDMA), protocol

offload and several others. Emerging technology such as Intel’s I/O Acceleration

Technology (I/OAT) provides an asynchronous DMA engine to offload the memory

copy operations. Multicore architectures provide several processing elements within

a node which further opens up new ways to improve the datacenter performance

and scalability. This dissertation presents an efficient soft state sharing substrate

that leverages the features of these emerging technologies to address the limitations

mentioned above. Specifically, the dissertation targets three important aspects: (i)

designing efficient state sharing components using the features of emerging technolo-

gies, (ii) understanding the interactions between the proposed components and (iii)

2

analyzing the impact of the proposed components and its interactions with several ap-

plications and services. Applications and services can take advantage of the proposed

state sharing substrate with minimal effort.

The rest of this Chapter is organized as follows. First we provide an overview of

datacenter and emerging technologies in datacenter environments. Next, we present

the limitations associated with existing state sharing mechanisms in datacenter ap-

plications and services. Following that, we present the problem statement. Finally,

we provide an overview of this dissertation.

1.1 Overview of Datacenters

Figure 1.1 shows the common components involved in designing a web-based dat-

acenter. Requests from clients (over Wide Area Network (WAN)) first pass through a

load balancer which attempts to spread the requests across multiple front-end proxies

(Tier 0). These proxies determine if the request can be satisfied by a static (time

invariant) content web server or if the request requires more complex dynamic con-

tent generation. The proxies also usually do some amount of caching of both static

and dynamic content. Tier 1 is generally the most complex as it is responsible for all

application-specific processing such as performing an online purchase or building a

query to filter some data. At the back end of the processing stack (Tier 2) is the data

repository/ database server with the associated storage. This is the prime repository

of all the content that is delivered or manipulated.

Figure 1.2(a) illustrates the overall strategy for processing workload through the

datacenter tiers [85]. For accesses/queries involving static (time invariant) data, it

is beneficial to use caching schemes (with appropriate proxy and cache servers) to

3

satisfy maximum of the requests in Tier 0. Those requests which can not be satisfied

in Tier 0 are forwarded to the next tiers. In these situations, the application and

database servers may need to generate/access new data to serve this request. As the

requests move inside the datacenter tiers, more penalty is involved in terms of time.

As a result of query processing in the application and database tiers, the load on

these tiers naturally increases.

Figure 1.1: Datacenter Architecture

1.1.1 Datacenter Applications

With technology trends, several applications are developed and deployed to enable

sharing the datasets generated in scientific and commercial environments in these

datacenters. Web servers typically host applications such as Apache [54], Squid [52]

to process the static client requests and perform higher-level functionalities such as

load-balancing, caching, etc. Application servers process CGI, Java or PHP scripts

using Apache [54], RMI [90] and several other applications. Database servers host

applications such as MySQL [16], DB2 [84] which internally use many database query

4

processing service such as R-Tree [59], B-Trees [32], etc. In biomedical informatics,

applications such as STORM [24] are currently deployed to perform different data

queries and transfer the data from storage nodes to the front-end nodes. To provide

fault-tolerance, datacenters also use check-pointing applications [97] to monitor and

replay transactions in case of a failure. Apart from these, there are several other

applications in the fields of search engines, financial services, etc., that are deployed

in current datacenters.

1.1.2 Datacenter Services

In addition to the applications, datacenters also require intelligent support for

services for efficient functioning of the datacenter. Services such as active resource

adaptation service including reconfiguration [31] and admission control [64] deal with

scalable management of various system resources. Other services such as resource

monitoring [94] actively monitors the resource usage of system resources and helps

higher-level services in identifying the bottleneck resources and alleviating such bot-

tlenecks as they occur. Caching services such as active caching [71] and cooperative

caching [72] deal with efficient caching techniques for both static and dynamic (time

variant) content.

1.1.3 Shared Datacenter Environments

A clustered datacenter environment essentially tries to utilize the benefits of a

cluster environment (e.g., high performance-to-cost ratio) to provide the services

requested in a datacenter environment (e.g., web hosting, transaction processing).

5

Researchers have also proposed and configured datacenters to provide multiple inde-

pendent services, such as hosting multiple web-sites, forming what is known as shared

datacenters.

Figure 1.2(b) shows a higher level layout of a shared datacenter architecture host-

ing multiple web-sites. External clients request documents or services from the dat-

acenter over the WAN/Internet through load-balancers using higher level protocols

such as HTTP. The load-balancers on the other hand serve the purpose of exposing

a single IP address to all the clients while maintaining a list of several internal IP ad-

dresses to which they forward the incoming requests based on a pre-defined algorithm

(e.g., round-robin).

Data−Center Tiers

Bandwidth
Less Processing and

Bandwidth
More Processing and

WAN

More Requests Less Requests

Client

(a) Communication and Computation Is-
sues

Load Balancing
Cluster

Load Balancing
Cluster

Load Balancing
Cluster

Servers

Servers

Servers

Web−Site ’B’

Web−Site ’A’

Web−Site ’A’

Web−Site ’B’

Web−Site ’C’

Web−Site ’C’

WAN

Clients

(b) Shared Datacenter Environment

Figure 1.2: Datacenter Issues

6

1.2 Overview of Emerging Technologies

In this section, we first provide a brief background on high-performance networks

and its capabilities. Next, we present the capabilities of I/O Acceleration Technology.

Finally, we discuss the features of multicore architectures.

1.2.1 High Performance Networks

Several high-performance networks such as InfiniBand [61], 10-Gigabit Ether-

net [60], etc., mainly aim at reducing the system processing overhead by decreasing

the number of copies associated with a message transfer and removing the kernel

from the critical message passing path. This is achieved by providing the consumer

applications direct and protected access to the network.

The InfiniBand Architecture (IBA) is an industry standard that defines a System

Area Network (SAN) to design clusters offering low latency and high bandwidth. In

a typical IBA cluster, switched serial links connect the processing nodes and the I/O

nodes. The compute nodes are connected to the IBA fabric by means of Host Channel

Adapters (HCAs). IP is one type of traffic that could use this interconnect. IPoIB

provides standardized IP encapsulation over IBA fabrics as defined by the IETF

Internet Area IPoIB working group [14]. IBA defines a semantic interface called as

Verbs or Open Fabrics for the consumer applications to communicate with the HCAs.

The specification for Verbs includes a queue-based interface, known as a Queue Pair

(QP), to issue requests to the HCA. Figure 1.3 illustrates the InfiniBand Architecture

model.

Each Queue Pair is a communication endpoint. A Queue Pair (QP) consists of

the send queue and the receive queue. Two QPs on different nodes can be connected

7

Send Rcv

Q
P

Send Rcv

Q
P

CQE CQE

PHY Layer

Link Layer

Network
Layer

Transport
Layer

PHY Layer

Link Layer

Network
Layer

Transport
Layer

Operations,etc
Consumer Transactions,

(IBA Operations)
Consumer Consumer

Transport

WQE

Adapter
Channel

Port Port Port

Packet Relay

Port

Physical link Physical link

(Symbols)(Symbols)

Packet

IBA Operations

(IBA Packets)

IBA Packets

Packet Packet

C
ha

nn
el

 A
da

pt
er

Fabric

Figure 1.3: InfiniBand Architecture (Courtesy InfiniBand Specifications)

to each other to form a logical bi-directional communication channel. An application

can have multiple QPs. Communication requests are initiated by posting Work Queue

Requests (WQRs) to these queues. Each WQR is associated with one or more pre-

registered buffers from which data is either transferred (for a send WQR) or received

(receive WQR). The application can either choose the request to be a Signaled (SG)

request or an Un-Signaled request (USG). When the HCA completes the processing of

a signaled request, it places an entry called as the Completion Queue Entry (CQE) in

the Completion Queue (CQ). The consumer application can poll on the CQ associated

with the work request to check for completion. There is also the feature of triggering

event handlers whenever a completion occurs. For un-signaled requests, no kind of

completion event is returned to the user. However, depending on the implementation,

the driver cleans up the Work Queue Request from the appropriate Queue Pair on

completion.

8

RDMA Communication Model: IBA supports two types of communication

semantics: channel semantics (send-receive communication model) and memory se-

mantics (RDMA communication model). In channel semantics, every send request

has a corresponding receive request at the remote end. Thus there is one-to-one corre-

spondence between every send and receive operation. In memory semantics, RDMA

operations are used. These operations are transparent at the remote end since they

do not require the remote end to involve in the communication. Therefore, an RDMA

operation has to specify both the memory address for the local buffer as well as that

for the remote buffer. There are two kinds of RDMA operations: RDMA Write and

RDMA Read. In an RDMA write operation, the initiator directly writes data into

the remote node’s user buffer. Similarly, in an RDMA Read operation, the initiator

reads data from the remote node’s user buffer.

Atomic Operations Over IBA: In addition to RDMA, the reliable communi-

cation classes also optionally provide atomic operations directly against the memory

at the end node. Atomic operations are posted as descriptors as in any other type

of communication. However, the operation is completely handled by the HCA. This

feature is currently available only in IBA. The atomic operations supported are Fetch-

and-Add and Compare-and-Swap, both on 64-bit data. The Fetch-and-Add operation

performs an atomic addition at the remote end. The Compare-and-Swap is used to

compare two 64-bit values and swap the remote value with the data provided if the

comparison succeeds. Atomics are effectively a variation of RDMA: a combined write

and read RDMA, carrying the data involved as immediate data. Two different levels

of atomicity are optionally supported: atomic with respect to other operations on

9

a target channel adapter; and atomic with respect to all memory operation of the

target host and all channel adapters on that host.

1.2.2 I/O Acceleration Technology (I/OAT)

I/O Acceleration Technology introduced by Intel mainly targeted the datacenter

environment in an attempt to reduce the server-side overheads in protocol processing

of the TCP/IP stack. In this context, Intel’s I/OAT [58, 68, 81] introduced an Asyn-

chronous DMA Copy Engine (ADCE) to offload the data copy operation. ADCE is

implemented as a PCI-enumerated device in the chipset and has multiple independent

DMA channels with direct access to main memory. When the processor requests a

block memory operation from the engine, it can then asynchronously perform the

bulk data transfer with no host processor intervention. When the engine completes

a copy, it can optionally generate an interrupt.

DMA Engine: Figure 1.4 illustrates the basic architecture of a copy execution

using a CPU vs using a DMA copy engine. As mentioned in [103], utilizing a copy

engine for bulk data transfer offers several benefits:

1. Reduction in CPU Resources and Better Performance: Memory copies are

usually implemented as a series of load and store instructions through registers. Data

is fetched onto the cache and then onto the registers. Typically, the CPU performs

the copy by register size which is 32 or 64 bit long. On the other hand, using a

copy engine, memory copies can be done at a faster rate (close to block sizes) since

it directly operates with main memory. Further, the load and store instructions used

in CPU-based copies may end up occupying the CPU resources, limiting the CPU to

10

not look far ahead in the instruction window. Copy engines can help in freeing up

CPU resources so that other useful instructions can be executed.

2. Computation-Memory Copy Overlap: Since the memory-to-memory copy oper-

ation can be performed without host CPU intervention using an asynchronous copy

engine, we can achieve better overlap with memory copies. This is similar to DMA

operation where data is transferred directly between the memory and device which is

commonly used by networks such as InfiniBand, 10-Gigabit Ethernet, etc.

3. Avoiding Cache Pollution Effects: Large memory copies can pollute the cache

significantly. Unless the source or destination buffers are needed by the application,

allocating this buffer in the cache may result in polluting the cache as it can evict

other valuable resources in the cache. As mentioned in [103], cluster applications such

as web servers do not touch the data immediately even after completing the memory

copy. Using a copy engine in this case, results in avoiding any cache pollution as it

can directly perform the copy without getting the data onto the cache.

M
em

or
y

Cache

Registers

CPUCopy on CPU

Copy on DMA
copy engine

Cache Pollution
Critical resource touched

Stalled on Mem
Register−based

CPU not stalled CPU critical
compute overlap resources untouched Reduced pollution

DMA

Engine
Copy

Block granularity

Block granularity

Figure 1.4: Copy execution on CPU vs Copy Engines [103]

11

Though ADCE offers several benefits, the following issues need to be taken care

of. First, the memory controller uses physical addresses, so a single transfer cannot

span discontinuous physical pages. Hence, memory operations should be broken up

into individual page transfers. Secondly, memory copies whose source and destination

overlap should be carefully handled. Applications need to schedule such operations

in an appropriate order so as to preserve the semantics of the operation. Lastly, the

copy engine must maintain cache coherence immediately after data transfer. Data

movement performed by the memory controller should not ignore the data stored in

the processor cache, potentially requiring a cache coherence transaction on the bus.

1.2.3 Multicore Architectures

Emerging trends in processor technology has led to Multicore Processors (also

known as Chip-level Multiprocessing or CMP) which provide large number of cores on

a single node thus increasing the processing capability of current-generation systems.

Dual-core architectures (two cores per die) are widely available from various industry

leaders including Intel, AMD, Sun (with up to 8 cores) and IBM. The negligible cost

associated with placing an extra processing core on the same die has allowed these

architectures to increase the capabilities of applications significantly. Quad-core (four

cores per die) from Intel and AMD are also available currently. Recently, Intel has

announced that it will be introducing an 80-core die [51] within the next five years.

Other industries are expected to follow this trend. The emergence of several number

of cores within a single node further opens up news way for dedicating one or more

of these cores for performing specialized functions.

12

1.3 Limitations of Existing State Sharing Mechanisms in Dat-
acenters

In this section, we present the limitations of state sharing mechanisms in data-

center applications and services.

Existing datacenter applications such as Apache [54], MySQL [16], STORM [24],

etc., implement their own data management mechanisms for state sharing and syn-

chronization. Applications like database servers communicate and synchronize fre-

quently with other database servers to satisfy the coherency and consistency require-

ments of the data being managed. Web servers implement complex load-balancing

mechanisms at multiple sites based on current system load on the back-end nodes,

request patterns, etc. Active resource adaptation service implement locking mecha-

nisms to reconfigure nodes serving one website to another in a transparent manner.

Resource monitoring services, on the other hand, frequently acquire the load informa-

tion on remote nodes to assist higher-level services such as reconfiguration, admission

control, etc. Unfortunately, the mechanisms used to share the state information in

these applications and services have been developed in an ad-hoc manner using two-

sided communication protocols such as TCP/IP, which makes the sharing of state

information between applications extremely inefficient. Such protocols are known to

have high latency, low bandwidth and high CPU utilization limiting the maximum

capacity (in terms of requests the datacenter can handle per unit time) of datacen-

ters. Further, the processing of the TCP/IP stack includes additional overheads such

as multiple memory copies, context switches, interrupts, etc. In addition, these ap-

plications and services interact with other datacenter system software using System

V IPC mechanisms for both communication and synchronization. Such mechanisms

13

are also known for multiple memory copies, context switches, heavy operating system

involvement and involves the host CPU for protocol processing.

Apart from communication and synchronization, datacenter applications and ser-

vices exchange key information at multiple sites (e.g, versioning and timestamps of

cached copies, coherency and consistency information, current system load). However,

as mentioned earlier, programmers use ad-hoc messaging protocols for maintaining

this shared information. Unfortunately, as mentioned in [88], the code devoted to

these protocols account for a significant fraction of overall application size and com-

plexity. As system sizes increase, this fraction is likely to increase and cause significant

overheads.

Furthermore, many of the datacenter services periodically monitor the resources

used in the cluster and use this information to make various decisions including

whether a request should be admitted, what resources should be allotted to the re-

quest, adapt resources provided to different classes of requests, etc. Though these

approaches are generic and applicable for all environments, the main drawback with

them is that they rely on coarse-grained monitoring of resources in order to avoid

the overheads associated with fine-grained monitoring. Accordingly, they base their

techniques on the assumption that the resource usage is consistent through the moni-

toring granularity (which is in the order of seconds in most cases). On the other hand,

as demonstrated by recent literature [46], the resource usage of requests is becoming

increasingly divergent making this assumption no longer valid.

Finally, existing datacenter applications are multi-threaded. Each thread uses a

request-process-response model and multiple threads handle multiple requests simul-

taneously. Thus, the inefficiencies of protocol overheads using TCP/IP and System

14

V IPC mechanisms magnify when several threads (typically up to 256 to 512 threads

per node) perform communication and synchronization operations simultaneously.

1.4 Problem Statement

To address the limitations mentioned in Section 1.3, it is necessary to design an

efficient state sharing mechanism that provides high-performance and scalability to

datacenter applications and services. Further, as these datacenters are increasingly

relying on modern system and network architectures including multicore systems,

high-speed interconnects and I/O acceleration technologies, it is important that the

state sharing mechanisms be able to exploit these added features to improve the dat-

acenter performance and scalability. In addition, it is also important that the state

sharing mechanisms utilize the features of these technologies and translate them to ad-

vanced datacenter capabilities such as load resiliency, low-overhead and fine-grained

access, data/lock distribution and several others for applications and services. Fi-

nally, since multiple datacenter system software maintain and manage the same state

information at several tiers, the complexity of the applications can be significantly re-

duced if we can decouple the state sharing component from applications and manage

the state sharing independently.

In this dissertation, we aim to address the above mentioned issues by designing an

efficient state sharing substrate. Specifically, we will address the following questions:

• Can we leverage the features of high performance networks in designing an ef-

ficient state sharing mechanism that addresses the limitations associated with

communication protocols such as TCP/IP? - Current datacenters use TCP/IP

15

communication protocols to exchange significant state information. Such proto-

cols involve multiple memory copies, context switches and interrupts which not

only reduce the performance but also heavily involve the host CPU for protocol

processing. It would be beneficial to exploit the advanced features of modern

networks to alleviate such issues in state sharing with datacenter applications

and services.

• Can the state sharing mechanism address the limitations of inter-process com-

munication protocols using the advanced features of I/OAT? - Datacenters also

employ System V IPC mechanisms to communicate and synchronize between

processes on the same node. However, such mechanisms not only include mul-

tiple memory copies but also involve the host CPU, operating system in terms

of context switches, protocol processing which can affect the performance and

scalability of datacenter. It remains to be investigated whether offloading such

inter-process communication operations using I/OAT can be beneficial to dat-

acenter environments.

• How can multicore architectures help in improving existing state sharing mech-

anisms? - As mentioned earlier, there is a growing need for communication

protocols that do not involve the application for protocol processing, memory

copy operations, etc. One approach to solve this issue is to offload these oper-

ations to a dedicated external device such as the network adapter or the DMA

engine. If modern systems have multiple processing elements, a completely rad-

ical approach is whether such operations can be dedicated to one or more of

16

the processing elements. Such an approach can not only provide advance capa-

bilities to datacenters independent of any networking and I/O technologies but

can also demonstrate how other datacenter-specific operations can be onloaded

to multiple processing elements.

• Can we design and analyze the interactions of multiple emerging technologies

for state sharing in datacenters? - Modern systems have one or more of the

technologies such as high-speed networks, I/OAT and multicore architectures.

The interactions of these technologies such as the impact of multicore systems

with state sharing using high-performance networks, memory copies using DMA

engines and the impact of DMA engine on network processing remains to be

studied. It would be beneficial to explore such possibilities and further enhance

the state sharing mechanism in datacenter applications and services.

1.5 Dissertation Overview

Keeping the characteristics and the needs of state sharing in datacenters in mind,

we propose an efficient state sharing substrate leveraging the novel features of emerg-

ing technologies such as high-speed networks, I/OAT and multicore architectures.

Figure 1.5 shows the various components of our proposed state sharing substrate.

Broadly, in the figure, all the white boxes are the components which exist today. The

dark boxes are the ones which need to be designed to efficiently support state shar-

ing in next-generation datacenters. Specifically, we propose to design the following

components and evaluate its impact with datacenter applications and services:

17

DMA−Accelerated
State Sharing

Network−Assisted
State Sharing

Multicore−aware
State Sharing

Soft State Sharing Substrate

Datacenter Applications

Datacenter Services

DMA Copy
Engine Cores

Multicore
Architecture

I/O Acceleration
Technology (I/OAT)

 RDMA Atomics
Multiple

High−Performance Networks

Figure 1.5: Proposed State Sharing Substrate

• Network-Assisted State Sharing using high-speed networks: To avoid

the bottlenecks associated with TCP/IP based communication such as multi-

ple memory copies, high CPU utilization, we have designed and developed a

network-assisted state sharing component using the features of high-speed net-

works such as RDMA and atomic operations. The proposed component has

been demonstrated to work with multiple interconnects such as InfiniBand, 10-

Gigabit Ethernet and including iWARP-enabled networks such as Ammasso.

Detailed designs and evaluations of this component is discussed in Chapter 2.

Figure 1.6 shows the basic idea of a network-assisted state sharing substrate

with several processes (proxy servers) writing and several application servers

reading certain information simultaneously.

18

Proxy
Server

Proxy
Server

Proxy
Server

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

�����
�����
�����
�����

�����
�����
�����
�����

	�	�	
	�	�	
	�	�	

�
�

�
�

�
�

�����
�����
�����
�����

�����
�����
�����
�����

�
�

�
�

�
�

�����
�����
�����

get()

get()

put()

put() get()

Server
App

Server
App

Server
App

put()

Configuration
Current System

Load Information

Data Sharing Mechanism

Shared State

* get and put operations using RDMA read and write

External Helper Modules

Figure 1.6: Network-Assisted State Sharing Mechanism

• DMA-Accelerated State Sharing using I/OAT: We have designed and

developed efficient state sharing mechanisms that not only reduce the number

of memory copies involved in System V IPC mechanisms but also transparently

overlap the computation with memory copy operations with reduced CPU uti-

lization using an asynchronous DMA copy engine. We discuss the design chal-

lenges and our solutions in Chapter 3. Figure 1.7 shows the CPU-based and

DMA-based IPC communication mechanism that is used to share information

across applications and helper module within one node.

• Multicore-aware State Sharing using Multicore Architectures: Follow-

ing an onloading approach, we have designed and developed efficient memory

copy routines, communication and synchronization mechanisms in state sharing

for large-scale multicore environments. This component is discussed in detail

19

Module
Helper

Applications

TCP/IP

Proxy Server

RDMA, Atomics

Applications
IPC (CPU)

IPC (CPU) IPC (CPU)

(a) IPC Communication using CPU

Module
Helper

Applications

TCP/IP

Proxy Server

RDMA, Atomics

Applications

IPC (DMA)IPC (DMA)

IPC (DMA)

(b) IPC Communication using DMA

Figure 1.7: DMA-Accelerated State Sharing Mechanism

in Chapter 4. In this approach, as shown in Figure 1.8, the communication

related operations are completely dedicated to one or more processing elements

and the proposed solution provides advanced capabilities that is independent of

the high-speed networking and I/O technologies.

Module
Helper

Applications

Proxy Server

Dedicated Core
using traditional NICs

Dedicated RDMA, Atomics

TCP/IP

Dedicated CPU
IPC using

Figure 1.8: Multicore-aware State Sharing Mechanism

• Multicore-aware, DMA-Accelerated State Sharing: We have further de-

signed and analyzed the different combinations of these two technologies in

20

enhancing the System V IPC communication in state sharing, as shown in Fig-

ure 1.9. Detailed designs and evaluations of this component are discussed in

Chapter 5.

Module
Helper

Proxy Server

Applications Applications

RDMA, Atomics

TCP/IP

Control Messge using
Dedicate CPU

Dedicated Core

Control Messge using
Dedicate CPU

Data Message using DMA

Control Messge using Dedicated CPU

Data Message using DMA

Figure 1.9: Multicore-aware, DMA-Accelerated State Sharing Mechanism

• Multicore-aware, Network-Assisted State Sharing: The proposed network-

assisted state sharing can be further enhanced with the emergence of multicore

systems by using a combination of request and response queues for communica-

tion as shown in Figure 1.10. We have proposed several different approaches in

utilizing the capabilities of multicore systems and discuss our detailed designs

and optimizations in Chapter 6.

• DMA-Accelerated, Network-Assisted State Sharing: Apart from en-

hancing the System V IPC communication, the asynchronous DMA engine can

also enhance the network communication by offloading the copy operations from

21

Module
Helper

TCP/IPApplications

Proxy Server

IPC (Control &
Data Message)

RDMA, Atomics

(a) Communication using IPC Mecha-
nism

Produce Consume

ProduceConsume

Request

TCP/IP

Queue

Interrupt

Completion
Queue

Applications

Proxy Server

Module
Helper RDMA, Atomics

(b) Communication using Re-
quest/Response Queues

Figure 1.10: Multicore-aware, Network-Assisted State Sharing Mechanism

the host CPU to the DMA engine. We show the benefits of such an approach

using detailed evaluations in Chapter 7.

While several of these technologies and services provide features and high-performance,

it is important to understand how these benefits translate to application improve-

ment. We perform detailed analysis with several datacenter applications such as

Apache, STORM, database query processing using workloads such as RUBiS auc-

tion benchmark [20], TPC-W e-commerce workload [34], Zipf-like workload [104] and

understand the benefits in terms of response time, transactions processed, resource

utilization and several others. In addition, we demonstrate the capability of our pro-

posed state sharing substrate with datacenter services such as resource monitoring

and reconfiguration. The performance benefits achieved with these datacenter appli-

cations and services are discussed in detail under each of the proposed state sharing

chapters. In Chapter 8, we highlight several scenarios and system environments where

22

each of the proposed state sharing components can be applicable. Conclusions and

future work are discussed in Chapter 9.

23

CHAPTER 2

NETWORK-ASSISTED STATE SHARING USING
HIGH-SPEED NETWORKS

In this Chapter, we utilize the advanced features of high-performance networks

for designing an efficient state sharing substrate. Figure 2.1 shows the various com-

ponents of network-assisted state sharing substrate. Broadly, in the figure, we focus

on the colored boxes for designing efficient network-assisted state sharing components

and understanding its benefits with datacenter applications and services. The dark

colored boxes show the features and technologies that we utilize and the light colored

boxes show the proposed components and datacenter system software evaluated.

2.1 Background and Related Work

As mentioned in Chapter 1, existing datacenter applications such as Apache,

MySQL, etc., implement their own data management mechanisms for state sharing

and synchronization. Web servers implement complex load-balancing mechanisms

based on current system load, request patterns, etc. To provide fault-tolerance,

check-pointing applications save the program state at regular intervals for reaching

a consistent state. Many of these mechanisms are performed at multiple sites in a

cooperative fashion. Since communication and synchronization are an inherent part

24

Network−Assisted
State Sharing

Soft State Sharing Substrate

Synchronization
Locking & Coherency &

Consistency
MaintenanceMechanisms

Shared
Soft

State

DMA−Accelerated
State Sharing

Multicore−aware
State Sharing

Datacenter Applications

Active Resource AdaptationFine−grained Resource Monitoring
Datacenter Services

CheckpointingSTORM Apache ...

DMA Copy
Engine Cores

Multicore
Architecture

I/O Acceleration
Technology (I/OAT)

 RDMA Atomics
Multiple

High−Performance Networks

Figure 2.1: Network-Assisted State Sharing Components

of these applications, support for basic operations to read, write and synchronize

are critical requirements of the distributed state sharing substrate. Further, as the

nodes in a datacenter environment experience fluctuating CPU load conditions the

substrate needs to be resilient and robust to changing system loads.

Higher-level datacenter services are intelligent services that are critical for the

efficient functioning of datacenters. Such services require sharing of some state in-

formation. For example, caching services such as active caching [71] and cooperative

caching [102, 72] require the need for maintaining versions of cached copies of data

and locking mechanisms for supporting cache coherency and consistency. Active re-

source adaptation service requires the need for advanced locking mechanism in order

to reconfigure nodes serving one website to another in a transparent manner and

25

needs simple mechanism for data sharing. Resource monitoring services, on the other

hand, require efficient, low overhead access to the load information on the nodes. The

substrate has to be designed in a manner that meets all of the above requirements.

Broadly, to accommodate the diverse coherence requirements of datacenter ap-

plications services, the substrate should support a range of coherency models [48].

Secondly, to meet the consistency needs of datacenter applications, the substrate

should support versioning of cached data and ensure that requests from applications

at multiple sites view the data in a consistent manner. Thirdly, services such as

resource monitoring require the state information be maintained locally due to the

fact that the data is updated frequently. On the other hand, services such as caching

and resource adaptation can be compute intensive and hence require the data to be

maintained at remote nodes distributed over the cluster.

Apart from the above, the substrate should also meet the following needs. Due

to the presence of multiple threads on each of these applications at each node in

the datacenter environment, the substrate should support the access, update and

deletion of the shared data by all threads. Services such as resource adaptation

and monitoring are characterized by frequent reading of the system load on various

nodes in the datacenter. In order to efficiently support reading of this distributed

state information, the substrate must provide asynchronous interfaces for reading and

writing of shared information and provide the relevant wait operations for detecting

the completions of such events. Further, the substrate must be designed to be robust

and resilient to load imbalances and should have minimal overheads and provide

a low access latency to data. Finally, the substrate must provide an interface that

26

clearly defines the mechanisms to allocate, read, write and synchronize the data being

managed in order for such services and applications to utilize the substrate efficiently.

Related Work: There has been several state sharing models proposed in the

past for a variety of environments. The most important feature that distinguishes

DDSS from previous work is the ability to take advantage of several features of high-

performance networks, its applicability and portability with several high-performance

networks, its exploitation of relaxed coherence protocols and its minimal overhead.

Further, our work is mainly targeted for datacenter environments on very large scale

clusters.

Several run-time data sharing models such as InterWeave [47, 89], Khazana [42],

InterAct [79] offer many benefits to applications in terms of relaxed coherency and

consistency protocols. Friedman [56] and Amza et. al [30] have shown ways of com-

bining consistency models. Khazana [42] also proposes the use of several consistency

models. InterWeave [47, 89] allows various coherence models allowing users to define

application-specific coherence models. Many of these models are implemented based

on the traditional two-sided communication model targeting the WAN environment

addressing issues such as heterogeneity, endianness, etc. Such two-sided communica-

tion protocols have been shown to have significant overheads in a real cluster-based

datacenter environment under heavy loaded conditions. Also, none of state sharing

models take advantage of high-performance networks for communication, synchro-

nization and supporting efficient locking mechanisms. Though many of the features

of high-performance networks are applicable only in a cluster environment, with the

advent of advanced protocols such as iWARP [86] included in the OpenFabrics [77]

27

standard, DDSS can also work well in WAN environments and can still benefit appli-

cations using the advanced features offered by modern networks.

Several researchers have also proposed the feasibility and potential of cluster-

based servers [55, 82] for scalability and availability of resource-intensive distributed

applications. In the past, researchers have proposed coarse-grained monitoring ap-

proaches [78, 55] in order to avoid the overheads associated with fine-grained moni-

toring for such environments. Researchers have proposed and evaluated various load

balancing policies using load information for cluster-based network services [41, 87].

Our proposed scheme is applicable to all the load balancing schemes that use moni-

toring information. In addition, some of the existing load-balancing schemes can be

enhanced further using the detailed system information provided by our scheme. Sev-

eral others have focused on the design of adaptive systems that can react to changing

workloads in the context of web servers [40, 65, 80]. Our schemes are also applica-

ble in these environments which use monitoring information for reconfiguration of

resources.

2.2 Proposed Design

The basic idea of the state sharing substrate [97] is to allow efficient sharing of

information across the cluster by creating a logical shared memory region. The sub-

strate supports two basic operations, get operation to read the shared data segment

and put operation to write onto the shared data segment. Figure 2.2a shows a simple

distributed data sharing scenario with several processes (proxy servers) writing and

several application servers reading certain information from the shared environment

28

Proxy
Server

Proxy
Server

Proxy
Server

get()

get()

put()

put() get()

Server
App

Server
App

Server
App

put()

Configuration
Current System

Load Information

Data Sharing Mechanism

Shared State
���
���
���
���
���

���
���
���
���
���

�
�
�
�
�

���
���
���
���
���

���
���
���
���
���

�
�
�
�
�

get()

get()

put()

put() get()

Server

Server

Server

put()
Server

Server

Server

Master

Master

Master

Slave

Slave

Slave

Lock Data

Data Sharing Mechanism

Figure 2.2: Network-Assisted State Sharing using the proposed Framework (a) Non
Coherent State Sharing Mechanism (b) Coherent State Sharing Mechanism

simultaneously. Figure 2.2b shows a mechanism where coherency becomes a require-

ment. In this figure, we have a set of master and slave servers accessing different

portions of the shared data. Each master process waits for the lock to be acquired

for updating if the shared data is currently being read by multiple slave servers.

2.2.1 Soft Shared State using RDMA and Atomics

In the following sections, we refer to our proposed substrate as a distributed data

sharing substrate (DDSS). Each node in the system allocates a large pool of memory

to be shared with the shared state. We perform the allocation and release operations

inside this distributed memory pool. One way to implement the memory allocation is

to inform all the nodes about an allocation. However, informing all the nodes may lead

to large latencies. Another approach is to assign one node for each allocation (similar

to home-node based approach but the node can maintain only the metadata and the

actual data can be present elsewhere). This approach reduces the allocation latency.

The nodes maintain a list of free blocks available within the memory pool. During

29

a release ss() operation, we inform the designated remote node for that allocation.

During the next allocation, the remote node searches through the free block list and

informs the free block which can fit the allocation unit. While searching for the free

block, for high-performance, we get the first-fit free block which can accommodate

the allocation unit. High-speed networks, as mentioned in Section 1.2.1, provide one-

sided operations (like RDMA read and RDMA write) that allow access to remote

memory without interrupting the remote node. In our implementation, we use these

operations to perform the read and write. All the applications and services mentioned

in Figure 2.3 will need this interface in order access/update the shared data.

Though the substrate hides the placement of shared data segments, it also exposes

interfaces to the application to explicitly mention the location of the shared data

segment (e.g. local or remote node). For the remote nodes, the interface also allows

the application to choose a specific node. In our implementation, each time a data

segment is allocated, the next data segment is automatically allocated on a different

node. This design allows the shared data segments to get well-distributed among

the nodes in the system and accordingly help in distributing the load in accessing

the shared data segments for datacenter environments. This is particularly useful in

reducing the contention at the NIC in the case where all the shared segments reside in

one single node and several nodes need to access different data segments residing on

the same node. In addition, distributed shared segments also help in improving the

performance for applications which use asynchronous operations on multiple segments

distributed over the network.

30

In order to support multiple user processes or threads in a system to access the

substrate, we optionally provide a run-time daemon to handle the requests from mul-

tiple processes. We use shared memory channels and semaphores for communication

and synchronization purposes between the user process and the daemon. The daemon

establishes connections with other data sharing daemons and forms the state sharing

framework. Any service which is multi-threaded or the presence of multiple services

need to utilize this component for efficient communication. Connection management

takes care of establishing connections to all the nodes participating in either access-

ing or sharing its address space with other nodes in the system. It allows for new

connections to be established and existing connections to be terminated.

Coherency and
Consistency Maintenance

Data Placement

Locking
Mechanisms

Mgmt
MemoryIPC

Mgmt

Distributed Data Sharing Interface

Data−Center Applications and Services

Advanced Features of High−Speed Networks

Figure 2.3: Network-Assisted State Sharing Framework

2.2.2 Efficient Locking and Synchronization Mechanisms

Locking and synchronization mechanisms are provided using the atomic operations

which is completely handled by modern network adapters. The atomic operations

31

such as Fetch-and-Add and Compare-and-Swap operate on 64-bit data. The Fetch-

and-Add operation performs an atomic addition at a remote node, while the Compare-

and-Swap compares two 64-bit values and swaps the remote value with the data

provided if the comparison succeeds. In our implementation, every allocation unit is

associated with a 64-bit data which serves as a lock to access the shared data and we

use the Compare-and-Swap atomic operation for acquiring and checking the status

of locks. As mentioned earlier, modern interconnects such as IBA provide one-sided

atomic operations which can be used for implementing basic locking mechanisms. In

our implementation, we perform atomic compare and swap operations to check for

the lock status and in acquiring the locks. If the locks are implicit based on the

coherence model, then the substrate automatically unlocks the shared segment after

successful completion of get() and put() operations. Each shared data segment has

an associated lock. Though we maintain the lock for each shared segment, the design

allows for maintaining these locks separately. Similar to the data in state sharing

substrate, the locks can also be distributed which can help in reducing the contention

at the NIC if too many processes try to acquire different locks on the same node.

2.2.3 Coherency and Consistency Maintenance using Atom-

ics

Broadly, to accommodate the diverse coherency requirements of datacenter appli-

cations and services, the substrate supports a range of coherency models. The six

basic coherency models [48] to be supported are: 1) S trict Coherence, which obtains

the most recent version and excludes concurrent writes and reads. Database trans-

actions require strict coherence to support atomicity. 2) W rite Coherence, which

obtains the most recent version and excludes concurrent writes. Resource monitoring

32

services [94] need such a coherence model so that the server can update the sys-

tem load and other load-balancers can read this information concurrently. 3) Read

Coherence is similar to write coherence except that it excludes concurrent readers.

Services such as reconfiguration [31] are usually performed at many nodes and such

services dynamically move applications to serve other websites to maximize the re-

source utilization. Though all nodes perform the same function, such services can

benefit from a read coherence model to avoid two nodes looking at the same system

information and performing a reconfiguration. 4) Null Coherence, which accepts the

current cached version. Proxy servers that perform caching on data that does not

change in time usually require such a coherence model. 5) Delta coherence guarantees

that the data is no more than x versions stale. This model is particularly useful if a

writer has currently locked the shared segment and there are several readers waiting

to the read the shared segment. 6) T emporal Coherence guarantees that the data is

no more than t time units stale.

We implement these models by utilizing the RDMA and atomic operations of

advanced networks. However, for networks which lack atomic operations, we can

easily build software-based solutions using the send/receive communication model. In

the case of Null coherence model, since there is no explicit requirement of any locks,

applications can directly read and write on the shared data segment. For strict, read,

write coherence models, we maintain locks and get() and put() operations internally

acquire locks to the substrate before accessing or modifying the shared data. The

locks are acquired and released only when the application does not currently hold the

lock for a particular shared segment. In the case of version-based coherence model,

we maintain a 64-bit integer and use the InfiniBand’s atomic operation to update the

33

version for every put() operation. For get() operation, we perform the actual data

transfer only if the current version does not match with the version maintained at

the remote end. In delta coherence model, we split the shared segment into memory

hierarchies and support up to x versions. Accordingly, applications can ask for up to x

previous versions of the data using the get() and put() interface. Basic consistency is

achieved through maintaining versions of the shared segment and applications can get

a consistent view of the shared data segment by reading the most recently updated

version.

Proposed State Sharing Interface: Table 2.1 shows the current interface that

is available to the end-user applications or services. The interface essentially supports

six main operations for gaining access to the substrate: allocate ss(), get(), put(), re-

lease ss(), acquire lock ss(), release lock ss() operations. The allocate ss() operation

allows the application to allocate a chunk of memory in the shared state. This func-

tion returns a unique shared state key which can be shared among other nodes in

the system for accessing the shared data. get() and put() operations allow applica-

tions to read and write data to the shared state and release ss() operation allows

the shared state substrate to reuse the memory chunk for future allocations. The

acquire lock ss() and release lock ss() operations allow end-user application to gain

exclusive access to the data to support user-defined coherency and consistency re-

quirements. In addition, we also support asynchronous operations such as async get(),

async put(), wait ss() and additional locking operations such as try lock() operation

to support a wide range of applications to use such features.

The substrate is built as a library which can be easily integrated into distributed

applications such as checkpointing, DataCutter [24], web servers, database servers,

34

Operation Description
int allocate ss(nbytes, type, ...) allocate a block of size nbytes in the shared state
int release ss(key) free the shared data segment
int get(key, data, nbytes, ...) read nbytes from the shared state and place it in data
int put(key, data, nbytes, ...) write nbytes of memory to the shared state from data
int acquire lock ss(key) lock the shared data segment
int release lock ss(key) unlock the shared data segment

Table 2.1: State Sharing Interface

etc. For applications such as DataCutter, several data sharing components can be

replaced directly using the substrate. Further, for easy sharing of keys, i.e., the key

to an allocated data segment, the substrate allows special identifiers to be specified

while creating the data sharing segment. Applications can create the data sharing

segment using this identifier and the substrate will make sure that only one process

creates the data segment and the remaining processes will get a handle to this data

segment. For applications such as web servers and database servers, the substrate can

be integrated as a dynamic module and all other modules can make use of the interface

appropriately. In our earlier work, cooperative caching [72], we have demonstrated

the capabilities of high-performance networks for datacenters with respect to utilizing

the remote memory and support caching of varying file sizes. The substrate can also

be utilized in such environments.

2.2.4 Fine-Grained Resource Monitoring Services

The basic idea of fine-grained resource monitoring in a datacenter environment

is to capture the dynamic resource usage of the hosted applications. Fine-grained

35

resource monitoring can be implemented using two approaches: back-end based mon-

itoring and front-end based monitoring. In the former, the back-end informs the

front-end node on detecting a high load. In the latter, the front-end node period-

ically sends a request to a resource monitoring process in the back-end to retrieve

the load information. It is to be noted that when the back-end server gets a net-

work packet from the front-end, the kernel treats it as a high priority packet and

tries to schedule the resource monitoring process as early as possible. However, in

the back-end resource monitoring scheme, the monitoring process sleeps for a given

time interval and calculates the load information, thus decreasing its priority to be

scheduled. Since the load reporting interval resolution highly depends on the oper-

ating system scheduling timer resolution, the scheduling of this back-end monitoring

process is vital for sending the load responses in a timely manner. For fine-grained

resource monitoring since there is a need for an immediate reply and small reporting

interval resolution, front-end based resource monitoring is preferred. Previous work

[87] also suggests that a front-end based approach is better than back-end based

approach for fine-grained services. For these reasons, we focus on front-end based

resource monitoring.

In the following sections, we present existing sockets-based implementations and

our proposed design alternatives [94] based on the state sharing substrate. We refer

to the get() operation in the state sharing substrate as RDMA read in the following

sections. Broadly, two ways of designing the front-end based resource monitoring for

sockets and RDMA exist: (i) Asynchronous and (ii) Synchronous. In an asynchronous

approach, the load calculating phase (i.e., reading the resource usage information

and calculating the current load on the back-end) and load requesting phase (i.e.,

36

requesting for load information from the front-end) are independent. On the other

hand, in a synchronous approach, the back-end calculates the current load information

for every request received from the front-end node.

Asynchronous Resource Monitoring using Sockets (Socket-Async): In this

approach, we have two processes, one running on the front-end server and the other

running on the back-end server. The back-end server process consists of two threads;

a load calculating thread that calculates the load information periodically and a load

reporting thread that responds to load requests from the front-end servers. The

sequence of steps in asynchronous resource monitoring using sockets is shown in Fig-

ure 2.4(a). In the first step (Step 1), the load calculating thread reads /proc. To

access /proc, a trap occurs because of file I/O in Step 2, during which the kernel

calculates the system information. In Step 3, /proc sends the monitoring information

to the thread and in Step 4, the thread copies this information to a known memory

location. Once this task is completed, the load calculating thread sleeps for a specific

time interval T and repeats this process again. In parallel, the front-end monitoring

process periodically sends a request for load information to the load reporting thread

(Step a). The load reporting thread receives this request, reads the load information

from the known memory location (Step b) and sends it to the front-end monitoring

process (Step c).

Synchronous Resource Monitoring using Sockets (Socket-Sync): This ap-

proach is very similar to the asynchronous approach, except that there is no require-

ment for two threads in the back-end. As shown in Figure 2.4(b), when the front-end

monitoring process sends a load request (Step 1), the back-end monitoring process

calculates the load information by reading the /proc file system (Steps 2, 3 and 4)

37

and reports this load information to the front-end monitoring process (Step 5). Thus,

there is no requirement for a separate thread to calculate the load information for

every time interval T .

Figure 2.4: Resource Monitoring Mechanism using Sockets: (a) Asynchronous and
(b) Synchronous

We propose two design alternatives in performing fine-grained resource monitoring

using the state sharing substrate.

Asynchronous Resource Monitoring using RDMA: In this approach, as shown

in Figure 2.5(a), we use two different kinds of monitoring processes running on front-

end and back-end server. The back-end monitoring process handles connection man-

agement and creates registered memory regions in the user space. The front-end

monitoring process periodically performs RDMA read operations (similar to get()

operations using the resource sharing substrate) on the registered memory regions

38

to retrieve updated load information. We use the same mechanism as Socket-Async

scheme for calculating the load information. The back-end monitoring process con-

stantly calculates the relevant load information after every time T interval from /proc

and copies the load information onto the registered memory region.

Synchronous Resource Monitoring using RDMA: In theory, as RDMA oper-

ations are one-sided, it is not possible to have a synchronous resource monitoring

approach using RDMA. However, in practice, we can achieve the accuracy of syn-

chronous resource monitoring if the front-end node can obtain the most up-to-date

load information from the kernel memory of the back-end for every request. To enable

this, we register the necessary kernel data structures that hold the resource usage in-

formation to the state sharing substrate, and allow the front-end monitoring process

to directly retrieve this information using RDMA read (similar to get() operations

using the state sharing substrate) as shown in Figure 2.5(b). Such a design has two

major advantages: (i) it removes the need for an extra process in the back-end server

and (ii) it can exploit the detailed resource usage information in kernel space to report

accurate load information.

In this approach, we use a Linux kernel module for handling connection man-

agement, address exchange and memory registration of specific memory regions for

the front-end monitoring process to perform RDMA read operation. After the ini-

tialization phase, the kernel is no longer disturbed. As shown in Figure 2.5(b), the

load information is directly obtained from the kernel space, reading the kernel data

structures using RDMA read operations (Step a).

39

/proc

App
Threads

Threads

CPU

App

CPU

Kernel
Data Structures

Memory

User
Space

Space
Kernel

Memory

User
Space

Kernel
Space

Monitoring
process

Back−endFront−end

process
Monitoring

4
13

2

RDMA read

(a)

Front−end Node Back−end Node

App
Threads

Threads

CPU

App

CPU

Kernel
Data Structures

Memory

User
Space

Space
Kernel

Memory

User
Space

Kernel
Space

Front−end

process
Monitoring

(a)

RDMA read

Front−end Node Back−end Node

Figure 2.5: Resource Monitoring Mechanism using State Sharing: (a) Asynchronous
and (b) Synchronous

Potential Benefits of RDMA-Sync: Using the RDMA-Sync scheme to design and

implement fine-grained resource monitoring has several potential benefits as described

below.

Getting accurate load information: Due to the asynchronous nature of Socket-

Async and RDMA-Async schemes, there is a delay between the time at which the

back-end monitoring process updates the load information and the time at which the

front-end monitoring process reads this load information. For example, if we assume

that the load information is updated every T ms at the back-end server, the load

information seen by the front-end monitoring process can be up to T ms old. In the

Socket-Sync scheme, if the server nodes are heavily loaded, the back-end monitoring

process can compete for CPU with other threads in the system. This can result in

huge delays in reporting the current load information to the front-end monitoring

40

process. However, regardless of the back-end server load, the RDMA-Sync scheme

can report accurate load information since the front-end monitoring process directly

retrieves the load information from kernel data structures without interrupting the

CPU. As a result, the RDMA-Sync scheme can quickly and accurately detect the load

and can help to avoid overloaded conditions in several environments.

Utilizing detailed system information: While all other monitoring schemes operate

at the user space, the RDMA-Sync scheme operates at the kernel space. This provides

several opportunities to access portions of the kernel memory which may be useful

for providing system-level services. Some of them are directly exposed via /proc

interface while others like irq stat, dq stat, and aven run are not. Though the other

schemes can access these kernel data structures using a kernel module, later in the

experimental section, we show some unique benefits of the RDMA-Sync scheme.

No extra thread for remote resource monitoring: All monitoring schemes except

the RDMA-Sync scheme require a separate thread on the back-end server to calcu-

late the load of the back-end node periodically. While this operation may not occupy

considerable CPU, in a highly loaded server environment, it certainly competes for

processor cycles. This can result in huge delays in updating the load information.

Also, if the incoming traffic arrives in bursts, such delays may lead to poor reconfigu-

ration and process migration since delayed load information can give a wrong picture

of current load status of the back-end servers. However, in the RDMA-Sync scheme,

there is no extra thread required to calculate the load information thus avoiding all

the issues mentioned above.

Enhanced robustness to load: Performance of system-level services over traditional

network protocols can be degraded significantly if there is a high load in the back-end.

41

This is because both sides should get involved in communication and it is possible

that the back-end monitoring process capturing the load on the back-end may never

get the CPU for a long time. However, for protocols based on RDMA operations, the

peer side is totally transparent to the communication procedure. Thus, the latency

of both RDMA-Sync and RDMA-Async schemes is resilient and well-conditioned to

load.

2.2.5 Active Resource Adaptation Services

Request patterns seen over a period of time, by a shared datacenter 1.1, may

vary significantly in terms of the ratio of requests for each co-hosted web-site. For

example, interesting documents or dynamic web-pages becoming available and un-

available might trigger traffic in bursts for some web-site at some time and for some

other web-site at a different time. This naturally changes the resource requirements

of a particular co-hosted web site from time to time. The basic idea of resource

adaptation (used interchangeably with dynamic resource reconfiguration) is to utilize

the idle nodes of the system to satisfy the dynamically varying resource requirements

of each of the individual co-hosted web-sites in the shared datacenter. Dynamic re-

configurability of the system requires some extent of functional equivalence between

the nodes of the datacenter. We provide this equivalence by enabling software ho-

mogeneity such that each node is capable of belonging to any web-site in the shared

datacenter. Depending on current demands (e.g., due to a burst of a certain kind of

requests), nodes reconfigure themselves to support these requests.

Support for Existing Applications: A number of applications exist that allow

highly efficient user request processing. These have been developed over a span of

42

several years and modifying them to allow dynamic reconfigurability is impractical.

To avoid making these cumbersome changes to the applications, our design makes use

of external helper modules which works along with the applications to provide effective

dynamic reconfiguration. Tasks related to system load monitoring, maintaining global

state information, reconfiguration, etc. are handled by these helper modules in an

application transparent manner. These modules, running on each node in the shared

datacenter, reconfigure nodes in the datacenter depending on current request and load

patterns. They start, stop and use the run-time configuration files of the datacenter

applications to reflect these changes. The servers on the other hand, just continue

with the request processing, unmindful of the changes made by the modules.

Load-Balancer Based Reconfiguration: Two different approaches could be taken

for reconfiguring the nodes: Server-based reconfiguration and Load-balancer based

reconfiguration. In server-based reconfiguration, when a particular server detects a

significant load on itself, it tries to reconfigure a relatively free node that is currently

serving some other web-site content. Though intuitively the loaded server itself is

the best node to perform the reconfiguration (based on its closeness to the required

load information), performing reconfiguration on this node adds a significant amount

of load to an already loaded server. Due to this reason, reconfiguration does not

happen in a timely manner and the overall performance is affected adversely. On the

other hand, in a load-balancer based reconfiguration, the edge servers (functioning as

load-balancers) detect the load on the servers, find a free server to alleviate the load

on the loaded server and perform the reconfiguration themselves. Since the shared

information like load, server state, etc. is closer to the servers, this approach incurs

the cost of requiring more network transactions for its operations.

43

As mentioned in Chapter 1, by their very nature, the server nodes are compute

intensive. Execution of CGI-Scripts, business-logic, servlets, database processing, etc.

are typically very taxing on the server CPUs. So, the helper modules can potentially

be starved for CPU on these servers. Though in theory the helper modules on the

servers can be used to share the load information through explicit two-sided communi-

cation, in practice [71], such communication does not perform well. InfiniBand, on the

other hand, provides one-sided remote memory operations (like RDMA and Remote

Atomics) that allow access to remote memory without interrupting the remote node.

In our design, we use these operations to perform load-balancer based server recon-

figuration in a server transparent manner. Since the load-balancer is performing the

reconfiguration with no interruptions to the server CPUs, this RDMA based design

is highly resilient to server load. Figure 2.6(a) shows the RDMA based protocol used

by Dynamic Reconfigurability. As shown in the figure, the entire cluster management

and dynamic reconfiguration is performed by the lightly loaded load-balancer nodes

without disturbing the server nodes using the RDMA and remote atomic operations

provided by InfiniBand. Further details about the other design issues can be found

in [31]. Figure 2.6(b) shows how this datacenter service can be easily written over

the state sharing substrate.

2.3 Experimental Results

We evaluate the proposed substrate with a set of microbenchmarks to understand

the performance, scalability and associated overheads. Later, we analyze the appli-

cability of the substrate with applications such as Distributed STORM and check-

pointing and services such as resource monitoring and reconfiguration. We evaluate

44

Load
Balancer

Server

Website B Website A

Server

(Loaded)
Load Query

RDMA Read

RDMA Read

Load Query

Successful Atomic

Lock

Change Server Status

Successful Atomic

Unlock

Successful Atomic

(Not Loaded)

(Load Shared)(Load Shared)

Successful Atomic

Shared Update CounterChange

(a) Dynamic Reconfigurability using
RDMA [31]

Server

Website B

(Loaded)(Not Loaded)

(Load Shared)(Load Shared)

Load
Balancer

get() Load

Change

Website A

Server

get() Load

acquire_lock_ss()

release_lock_ss()

update() version

update() version

Atomic

Atomic

(b) Dynamic Reconfigurability using
DDSS

Figure 2.6: Dynamic Reconfigurability Schemes

our framework on two interconnects IBA [61] and Ammasso [3] using the OpenFabrics

implementation [77]. While designing the state sharing substrate, the iWARP [86]

implementation of OpenFabrics over Ammasso was available only at the kernel space.

We wrote a wrapper for user applications which in turn calls the kernel module to fire

appropriate iWARP functions. Our experimental testbed consists of a 12 node cluster

with dual Intel Xeon 3.4 GHz CPU-based EM64T systems. Each node is equipped

with 1 GB of DDR400 memory. The nodes were connected with MT25128 Mellanox

HCAs (SDK v1.8.0) connected through a InfiniScale MT43132 24-port completely

non-blocking switch. For Ammasso experiments, we use two node dual Intel Xeon

3.0 GHz processors with a 512 KB L2 cache and a 533 MHz front side bus and 512

45

MB of main memory. First, we evaluate the access latency and the overhead of our

proposed state sharing substrate.

2.3.1 State Sharing Latency

The latency test is conducted in a ping-pong fashion and the latency is derived

from round-trip time. For measuring the latency of put() operation, we run the test

performing several put() operations on the same shared segment and average it over

the number of iterations. Figure 2.7(a) shows the latencies of different coherence

models by using the put() operation of the substrate using OpenFabrics over IBA

through a daemon process. We observe that the 1-byte latency achieved by null and

read coherence model is only 20µs and 23µs, respectively. Note that the overhead of

communicating with the daemon process is close to 10-12µs and hence, we see large

latencies with null and read coherence models. For write and strict coherency model,

the latencies are 54.3µs and 54.8µs, respectively. This is due to the fact that both

write and strict coherency models, apart from the RDMA operation, also use atomic

operations to acquire the lock before updating the shared data. Version-based and

delta coherence models report a latency of 37µs and 41µs, respectively, since they

both need to update the version status maintained at the remote node using atomic

operations. Also, as the message size increases, we observe that the latency increases

for all coherence models. We see similar trends for get() operations with the basic

1-byte latency of get being 25µs. Figure 2.7(b) shows the performance of get() oper-

ation with several clients accessing different portions from a single node. We observe

that the substrate is highly scalable in such scenarios and the performance is not af-

fected for increasing number of clients. Figure 2.7(c) shows the performance of put()

46

0
20
40
60
80

100
120
140

1 4 16 64 25
6

10
24

40
96

16
38

4

65
53

6

Message Size

La
te

nc
y

(u
se

c)

Null Read Write
Strict Version Delta

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11

Number of Clients

La
te

nc
y

(u
se

c)

Null Read Write Strict Version Delta

0

100

200

300

400

500

600

10% 20% 40% 60% 80% 100%

Lock Contention

La
te

nc
y

(u
se

c)

Null Read Write
Strict Version Delta

Figure 2.7: Basic Performance using OpenFabrics over IBA: (a) put() operation, (b)
Increasing Clients accessing different portions (get()) and (c) Contention accessing
the same shared segment (put())

operation with several clients accessing the same portion from a single node. Here,

we observe that for relatively lesser contention-levels of up to 40%, the performance

of the put() operation does not seem to be affected. However, for contention-levels

more than 40%, the performance of clients degrades significantly in the case of strict

and write coherence models mainly due to the waiting time for acquiring the lock.

2.3.2 State Sharing Overhead

One of the critical issues to address on supporting state sharing substrate is to

minimize the overhead of the middleware layer for applications. We measure the

overhead for different configurations, namely: (i) a direct scheme that allows appli-

cation to directly communicate with underlying network through the substrate, (ii)

a thread-based scheme that allows applications to communicate through a daemon

process for accessing the substrate and (iii) a thread-based asynchronous scheme that

allows applications to use asynchronous operations using the substrate. We see that

the overhead is less than a microsecond (0.35µs) through the direct scheme. If the run-

time system needs to support multiple threads, we observe that the overhead jumps

47

to 10µs using the thread-based scheme. The reason being the overhead of round-trip

communication between the application thread and the substrate daemon using Sys-

tem V IPC communication comes close to 10µs. If the application uses asynchronous

operations (thread-based asynchronous scheme), this overhead can be significantly

reduced for large message transfers. However, in the worst case, for small message

sizes, this scheme can lead to an overhead of 12µs. The average synchronization time

observed in all the schemes is around 20µs.

2.3.3 Performance with Datacenter Applications

We redesign existing datacenter applications such as STORM and checkpointing

applications and show the improvement achieved in using our substrate.

STORM with DataCutter: STORM [24] is a middleware service layer devel-

oped by the Department of Biomedical Informatics at The Ohio State University. It

is designed to support SQL-like select queries on datasets primarily to select the data

of interest and transfer the data from storage nodes to compute nodes for processing

in a cluster computing environment. In such environments, it is common to have

several STORM applications running which can act on same or different datasets

serving the queries of different clients. If the same dataset is processed by multi-

ple STORM nodes and multiple compute nodes, the substrate can help in sharing

this dataset in a cluster environment so that multiple nodes can get direct access

to this shared data. In our experiment, we modified the STORM application code

to use the substrate in maintaining the dataset so that all nodes have direct access

to the shared information. We vary the dataset size in terms of number of records

and show the performance of STORM with and without the substrate. Since larger

48

datasets showed inconsistent values, we performed the experiments on small datasets

and we flush the file system cache to show the benefits of maintaining this dataset

on other nodes memory. As shown in Figure 2.8(a), we observe that the performance

of STORM is improved by around 19% for 1K, 10K and 100K record dataset sizes

using the substrate in comparison with the traditional implementation.

Application Check-pointing: We use a check-pointing benchmark to show the

scalability and performance of using the substrate. In this experiment, every process

attempts to checkpoint a particular application at random time intervals. Also, every

process simulates the application restart, by attempting to reach a consistent check-

point and informing all other processes to revert back to the consistent check-point at

other random intervals. In Figure 2.8(b), we observe that the average time taken for

check-pointing is only around 150µs for increasing number of processes. As this value

remains almost constant with increasing number of clients and application restarts,

it suggests that the application scales well using the substrate. Also, we see that

the average application restart time to reach a consistent checkpoint increases with

increasing clients. This is expected as each process needs to get the current checkpoint

version from all other processes to decide the most recent consistent checkpoint.

2.3.4 Performance with Resource Monitoring Services

In this section, we evaluate our proposed resource monitoring schemes as men-

tioned in Section 2.2.4. For all our experiments we use the following two system

configurations: A cluster system consisting of 8 server nodes built around SuperMi-

cro SUPER P4DL6 motherboards and GC chipsets which include 64-bit 133 MHz

PCI-X interfaces. Each node has two Intel Xeon 2.4 GHz processors with a 512 KB

49

0

1000

2000

3000

4000

5000

6000

7000

8000

1K 5K 10K 100K

of Records

Q
ue

ry
 E

xe
cu

tio
n

T
im

e
(m

se
c)

STORM STORM-DDSS

0

50

100

150

200

250

300

350

2 3 4 5 6 7 8 9 10 11 12

Number of Clients

T
im

e
(u

se
cs

)

0

100

200

300

400

500

600

N
o

of
 R

es
ta

rt
s

Avg Sync Time Avg Total Time No of Restarts

Figure 2.8: Application Performance over IBA: (a) Distributed STORM application
and (b) Application Check-pointing

L2 cache and a 400 MHz front side bus and 1 GB of main memory. We use the

RedHat 9.0 Linux distribution using an InfiniBand network with Mellanox InfiniHost

MT23108 DualPort 4x HCA adapter through an InfiniScale MT43132 twenty-four 4x

Port completely non-blocking InfiniBand Switch. The IPoIB driver for the InfiniBand

adapters was provided by Voltaire Incorporation [6]. The version of the driver used

was 2.0.5 10.

We use 8 client nodes with two Intel Xeon 3.0 GHz processors which include 64-bit

133 MHz PCI-X interfaces, a 533 MHz front side bus and 2 GB memory. We use the

RedHat 9.0 Linux distribution. Apache 2.0.48, PHP 4.3.1 and MySQL 4.0.12 were

used in our experiments. Requests from the clients were generated using eight threads

on each node. We use a polling time T of 50ms for resource monitoring schemes in

all the experiments unless otherwise explicitly specified.

Here, we evaluate the four schemes mentioned in Section 2.2.4 in terms of la-

tency, granularity, accuracy of load information obtained and potential for extracting

detailed system load information.

50

Latency of Resource Monitoring: In this section, we present the performance

impact on the monitoring latency of the four schemes with loaded conditions in the

cluster-based servers. We emulate the loaded conditions by performing background

computation and communication operations on the server while the front-end moni-

toring process monitors the back-end server load. This environment emulates a typical

shared server environment where multiple server nodes communicate periodically and

exchange messages, while the front-end node, which is not as heavily loaded, attempts

to get the load information from the monitoring process on the heavily loaded servers.

The performance comparison of Socket-Async, Socket-Sync, RDMA-Async and

RDMA-Sync schemes for this experiment is shown in Figure 2.9. We observe that

the monitoring latency of both Socket-Async and Socket-Sync schemes increases lin-

early with the increase in the background load. On the other hand, the monitoring

latency of RDMA-Async and RDMA-Sync schemes which use one-side communica-

tion, stays the same without getting affected by the background load. These results

show the capability of one-sided communication primitives in a cluster-based server

environment.

Granularity of Resource Monitoring: We present the impact on the performance

of running applications with respect to increasing granularity of resource monitoring

of all four schemes. In this experiment, application performs basic floating-point

operations and reports the time taken. We report the average application delay

normalized to the application execution time for each of the schemes as we vary the

granularity from 1 ms to 1024 ms as shown in Figure 2.10. We observe that the

application performance degrades significantly when Socket-Async, Socket-Sync and

RDMA-Async schemes are running in the background at smaller granularity such as 1

51

0

1000

2000

3000

4000

5000

6000

7000

1 2 4 8 16 32
Background Threads

La
te

nc
y

(u
s)

Socket-Async
Socket-Sync
RDMA-Async
RDMA-Sync

Figure 2.9: Latency of Socket-Async, Socket-Sync, RDMA-Async, RDMA-Sync
schemes with increasing background threads

ms and 4 ms. Since the Socket-Async scheme uses two threads for resource monitoring

in the back-end server, we find that this scheme affects the application performance

significantly in comparison with other schemes. In RDMA-Async scheme, due to the

presence of the back-end monitoring process, we see that the application performance

degradation is lesser in comparison with the two-sided Socket-Sync scheme. However,

we find that there is no performance degradation with the RDMA-Sync scheme due

to the fact that there are no processes running on the back-end server to affect the

application performance.

Accuracy of Resource Information: In this experiment, we analyze the accu-

racy of the load information obtained from the four schemes. In order to be uniform

across all four schemes, we design the experiment in the following way. We run all

four schemes simultaneously and monitor the load information. In addition, a ker-

nel module on the back-end server periodically reports the actual load information

52

0

2000

4000

6000

8000

10000

12000

14000

1 4 16 64 256 1024

Load Monitoring Granularity (ms)

A
pp

lic
at

io
n

de
la

y
(u

se
cs

) Socket-Async
Socket-Sync
RDMA-Async
RDMA-Sync

Figure 2.10: Impact on application performance with Socket-Async, Socket-Sync,
RDMA-Async and RDMA-Sync schemes

at a finer granularity. To emulate loaded conditions, we fired client requests to be

processed at the back-end server. We compare these numbers against the load in-

formation reported by the kernel module and plot the deviation between these two

values.

Figure 2.11(a) shows the deviation of the number of threads running on the server

with respect to the numbers reported by all four schemes. We see that all four schemes

report the same values initially since there was no load on the server. However, as

the load on the server increases, we see that Socket-Async, Socket-Sync and RDMA-

Async schemes show deviations with respect to the number of threads reported by

the kernel module. On the other hand, the RDMA-Sync scheme consistently reports

no deviation. Further, we observe that both Socket-Async and Socket-Sync schemes

show large deviations when the back-end server is heavily loaded. Since sockets is a

two-sided communication protocol, as the load on the back-end server increases, the

53

0

10

20

30

40

50

60

1 6 11 16 21 26 31 36 41 46 51 56

Time

D
ev

ia
tio

n

Socket-Async

Socket-Sync

RDMA-Async

RDMA-Sync

0

1

2

3

4

5

6

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Time

D
ev

ia
tio

n

Socket-Async

Socket-Sync

RDMA-Async

RDMA-Sync

Figure 2.11: Accuracy of Load information: (a) Number of threads running on the
server and (b) Load on the CPU

latency for capturing the number of threads running also increases leading to such

inaccuracies.

Figure 2.11(b) shows the accuracy of the CPU load information reported by all

four schemes in comparison with the actual CPU load. We perform the experiment

in a similar way as explained above. We find that Socket-Async, Socket-Sync and

RDMA-Async schemes show deviations in comparison with the actual load while

RDMA-Sync scheme reports very few deviations. Since CPU load fluctuates more

rapidly in comparison with the number of threads in the system, we see that RDMA-

Async scheme also reports inaccurate load information. Socket-Async and Socket-

Sync schemes, due to the reasons mentioned above, report stale CPU load values

leading to large deviations.

Detailed System Information: In this experiment, we evaluate our four schemes

in terms of their ability to obtain detailed system information with finer granularity.

To explore this feature, we measure the number of interrupts pending on CPUs of

the servers.

54

For our evaluation, we use the irq stat kernel data structure, which maintains

the number of software, hardware and bottom-half pending interrupts on each of the

CPUs. We use all four schemes to report these values to the front-end monitoring

process. Since the data structure is available at the kernel space, we use a kernel

module to expose this to user-space, so that Socket-Async, Socket-Async and RDMA-

Async schemes can report this information.

We see that the Socket-Async, Socket-Sync and RDMA-Async schemes, as shown

in Figures 2.12(a), 2.12(b) and 2.13(a) report less and infrequent interrupts in com-

parison with the RDMA-Sync scheme as shown in Figure 2.13(b). As mentioned

above, an user process triggers the kernel module to report the interrupt information

for these three schemes. However, if there are pending interrupts on the CPUs, the

operating system would give a higher priority to schedule the interrupts rather than

a user process. Furthermore, in a uni-processor kernel, the operating system may

complete all the interrupt handling and then pass the control to the user process.

However, since there is no such requirement for the RDMA-Sync scheme, we observe

that this scheme reports interrupt information more accurately. Interestingly, the

RDMA-Sync scheme reports more interrupts (in terms of the number of interrupts)

in comparison with the other three schemes. Moreover, the number of interrupts

reported on the second CPU by the RDMA-Sync scheme is consistently higher in

comparison with the numbers reported by all other schemes.

Performance with RuBiS and Zipf Workloads

Next, we study the benefits of our resource monitoring schemes in a datacenter

environment. Following that, we compare the performance of the proposed fine-

grained resource monitoring schemes against the traditional approaches.

55

0

5

10

1 11 21 31 41 51 61

Time

In

te
rr

up
ts

cpu0 cpu1

0

5

10

1 11 21 31 41 51 61

Time

In

te
rr

up
ts

cpu0 cpu1

Figure 2.12: Number of Interrupts reported on two CPUs: (a) Socket-Async and (b)
Socket-Sync

0

5

10

1 11 21 31 41 51 61

Time

In

te
rr

up
ts

cpu0 cpu1

0
5

10
15

1 11 21 31 41 51 61

Time

In

te
rr

up
ts

cpu0 cpu1

Figure 2.13: Number of Interrupts reported on two CPUs: (a) RDMA-Async and (b)
RDMA-Sync

56

Cluster-based Server with RUBiS: We evaluate our schemes in a cluster-based

server environment using a RUBiS auction benchmark [20, 29] developed by Rice Uni-

versity. The benchmark simulates a workload similar to a typical e-commerce website.

It implements the typical functionality of auction sites such as selling, browsing and

bidding. We modified the client emulator to fire requests to multiple servers and eval-

uate the resource monitoring schemes. In order to understand the benefits of detailed

system information, we added an e-RDMA-Sync scheme that utilizes system load and

also the pending interrupts on the CPUs for choosing the least-loaded servers. All

other schemes use only system load for choosing the least-loaded servers. Tables 2.2

and 2.3 report the average and maximum response time of several queries of the RU-

BiS benchmark. We find that, both RDMA-Sync and e-RDMA-Sync schemes perform

consistently better than the other three schemes. Since the maximum response time

is considerably low for the RDMA-Sync scheme in comparison with Socket-Async,

Socket-Sync and RDMA-Async schemes, it validates the fact that completely remov-

ing the need for another process on the server brings down the maximum response

time. The improvement we realize for queries like BrowseRegions, Browse is close

to 90% for RDMA-Sync and e-RDMA-Sync schemes. Other queries like BrowseCat-

egoriesInRegions and SearchCategoriesInRegion show benefits up to 80% for both

RDMA-Sync and e-RDMA-Sync schemes. In addition, we also observe that there

is considerable improvement in the average response time of the queries for RDMA-

Sync and e-RDMA-Sync schemes in comparison with other schemes. Also, we see that

the e-RDMA-Sync scheme consistently performs better than the RDMA-Sync scheme

showing the benefits of using detailed system information for performing effective and

fine-grained services.

57

Query Average Response Time
Socket Socket RDMA RDMA e-RDMA
Async Sync Async Sync Sync

Home 3 3 3 3 2
Browse 3 3 3 3 2
BrowseReg 6 6 6 5 5
BrowseCatgry 17 17 18 16 14
SearchItems 4 4 4 4 3
PutBidAuth 3 3 3 3 2
Sell 4 4 3 2 2
About Me 3 3 3 3 2

Table 2.2: Average Response Time with RUBiS Benchmark

Query Maximum Response Time
Socket Socket RDMA RDMA e-RDMA
Async Sync Async Sync Sync

Home 416 274 36 33 31
Browse 495 348 197 81 45
BrowseReg 392 206 249 41 32
BrowseCatgry 265 278 210 74 66
SearchItems 150 180 78 43 32
PutBidAuth 99 231 38 30 20
Sell 373 264 19 21 21
About Me 178 220 32 35 32

Table 2.3: Maximum Response Time with RUBiS Benchmark

58

Cluster-based Server with RUBiS and Zipf Trace: In order to show the

maximum potential of fine-grained resource monitoring, we design an experiment

where cluster-based servers host two web services. We use a Zipf trace with varying

α value. According to Zipf law, the relative probability of a request for the ith most

popular document is proportional to 1/iα, where α determines the randomness of

file accesses. Higher the α value, higher is the temporal locality of the document

accessed.

The experiment is designed in the following manner. We run the RUBiS bench-

mark and Zipf traces simultaneously and use all five schemes namely Socket-Async,

Socket-Sync, RDMA-Async, RDMA-Sync and e-RDMA-Sync schemes for resource

monitoring. We fix the RUBiS benchmark and vary the α value for the Zipf trace

from 0.25 to 0.9. As mentioned earlier, higher α values mean the workload has a high

temporal locality. We report the total throughput improvement in comparison with

the Socket-Async scheme for each of these traces separately as shown in Figure 2.14.

We can observe that in the case of Zipf trace with α value 0.25, both RDMA-Sync and

e-RDMA-Sync schemes achieve a performance improvement of up to 28% and 35%

respectively. For smaller α values, we see a considerable performance improvement.

This is due to the fact that there are lots of requests with different resource require-

ments and these requests are forwarded to appropriate servers in a timely manner.

As α value increases, the number of requests with different resource requirements

decreases resulting in an increase in the temporal locality of the documents. Hence

the load on all the servers are already well distributed leading to lesser performance

gains.

59

-5.00%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

� = 0.9 � = 0.75 � = 0.5 � = 0.25

Zipf alpha values

%
 Im

pr
ov

em
en

t

Socket-Sync
RDMA-Async
RDMA-Sync
e-RDMA-Sync

Figure 2.14: Throughput Improvement of Socket-Sync, RDMA-Async, RDMA-Sync
and e-RDMA-Sync schemes compared to Socket-Async scheme with RUBiS and Zipf
Trace

Performance with Coarse-grained vs Fine-grained Monitoring

In order to understand the impact of granularity of resource monitoring with ap-

plications, we evaluate the performance for different load fetching granularity from

64 msecs to 4096 msecs. Figure 2.15 shows the throughput performance of a RUBiS

benchmark and Zipf trace with α value 0.5 running simultaneously for different load

fetching granularity. We see that the throughput increases for decreasing granularity

for the RDMA-Sync scheme. With granularity 1024 m secs, all four schemes report

comparable performance. As the granularity decreases to 64 msecs, we see a per-

formance degradation for Socket-Sync and Socket-Async schemes. Thus, traditional

resource monitoring approaches based on sockets cannot be used for fine-grained re-

source monitoring. On the other hand, we see an improvement close to 25% for the

RDMA-Sync scheme compared to the rest of the schemes when the granularity is

60

64 msecs showing the performance benefits of fine-grained resource monitoring with

applications. Thus, our results indicate that fine-grained monitoring can significantly

improve the overall utilization of the system and accordingly lead to up to 25% im-

provement in the number of requests the cluster system can admit.

0

200

400

600

800

1000

1200

64 256 1024 4096

Granularity (ms)

T
P

S

Socket-Async

Socket-Sync

RDMA-Async

RDMA-Sync

Figure 2.15: Fine-grained vs Coarse-grained Monitoring

2.3.5 Performance with Active Resource Adaptation Services

In this section, we evaluate the proposed active resource adaptation (reconfigu-

ration) service, as mentioned in Section 2.2.5. We evaluate the service on two inter-

connects IBA and Ammasso using the OpenFabrics implementation. As mentioned

earlier, the iWARP implementation of OpenFabrics over Ammasso was available only

at the kernel space. We wrote a wrapper for user applications which in turn calls

the kernel module to fire appropriate iWARP functions. Our experimental testbed

61

consists of a 12 node cluster with dual Intel Xeon 3.4 GHz CPU-based EM64T sys-

tems. Each node is equipped with 1 GB of DDR400 memory. The nodes were con-

nected with MT25128 Mellanox HCAs (SDK v1.8.0) connected through a InfiniScale

MT43132 24-port completely non-blocking switch. For Ammasso experiments we use

two node dual Intel Xeon 3.0 GHz processors with a 512 KB L2 cache and a 533 MHz

front side bus and 512 MB of main memory.

As shown in Figure 2.16a, we see that the average reconfiguration time is only

133µs for increasing loaded servers. The x-axes indicates the number of servers that

are currently heavily loaded. The substrate overhead is only around 3µs and more

importantly, as the number of loaded servers increases, we see no change in the

reconfiguration time. This indicates that the service is highly resilient to the loaded

conditions in the datacenter environment. Further, we observe that the number of

reconfigurations increase linearly as the number of loaded servers increase from 5% to

40%. Increasing the loaded servers further does not seem to affect the reconfiguration

time and when this reaches 80%, the number of reconfigurations decreases mainly

due to insufficient number of free servers for performing the reconfiguration. Also,

for increasing number of reconfigurations, several servers get locked and unlocked in

order to perform efficient reconfiguration. Figure 2.16 also shows that the contention

for acquiring locks on loaded servers does not affect the total reconfiguration time

showing the scalable nature of this service. Figure 2.16b shows the performance of

TCP and DDSS substrate for increasing back-end load on the server. We see that the

performance of TCP degrades significantly with increasing back-end load, whereas

the performance of DDSS remains unaffected with increasing back-end load. This

demonstrates the load-resilient capability of DDSS in datacenter environments.

62

100
105
110
115
120
125
130
135
140

5 10 20 40 60 80

Load %

T
im

e
(u

se
cs

)
0

500

1000

1500

2000

2500

3000

N
o

of
 R

ec
on

fig
ur

at
io

ns

Reconfiguration Time software-overhead
No of Reconfigurations

0

100

200

300

400

500

600

700

1 2 4 8 16 32

Number of Compute/Communicate Threads

La
te

nc
y

(u
se

cs
) Version Check -

RDMA/iWARP
Version Check - TCP/IP

Figure 2.16: Software Overhead on Datacenter Services (a) Active Resource Adap-
tation using OpenFabrics over IBA (b) Comparison of TCP and DDSS performance
using OpenFabrics over Ammasso

2.4 Summary

In this Chapter, we proposed and evaluated a low-overhead network-assisted state

sharing substrate for cluster-based datacenter environment. Traditional implemen-

tations of data sharing using ad-hoc messaging protocols often incur high overheads

and are not very scalable. The proposed substrate is designed to minimize these

overheads and provide high performance by leveraging the features of modern inter-

connects like RDMA and atomic operations. The substrate performs efficient data

and memory management and supports a variety of coherence models. The substrate

is implemented over the OpenFabrics standard interface and hence is portable across

multiple modern interconnects including iWARP-capable networks both in LAN and

WAN environments. Experimental evaluations with IBA and iWARP-capable Am-

masso networks through micro-benchmarks and datacenter services not only showed

an order of magnitude performance improvement over traditional implementations

but also showed the load resilient nature of the substrate. Further, our evaluations

63

with fine-grained resource monitoring services show that our approach can signifi-

cantly improve the overall utilization of the system and accordingly lead to up to 25%

improvement in the number of requests the cluster system can admit. Application-

level evaluations with Distributed STORM using DataCutter achieved close to 19%

performance improvement over traditional implementation, while evaluations with

check-pointing application suggest that the state sharing substrate is scalable and

has a low overhead.

64

CHAPTER 3

DMA-ACCELERATED STATE SHARING USING
INTEL’S I/OAT

In this Chapter, we utilize the advanced features of I/OAT for designing efficient

state sharing substrate. Figure 3.1 shows the various components of DMA-accelerated

state sharing substrate. Broadly, in the figure, we focus on the colored boxes for

designing efficient DMA-accelerated state sharing components and understanding its

benefits with datacenter applications. The dark colored boxes show the features and

technologies that we utilize and the light colored boxes show the proposed components

and datacenter system software evaluated.

3.1 Background and Related Work

Apart from communicating across the nodes in a datacenter, several datacenter

applications and services also communicate across different threads running in the

same system. For example, several application servers communicate between them-

selves (may exchange shared data) for query processing. Several web server threads

communicate with services such as caching and resource monitoring for cached con-

tent or back-end system information using System V IPC communication. Due to

limitations in allocating large pool of shared memory, the resource or the data that

65

Soft State Sharing Substrate
Network−Assisted

State Sharing

Synchronization
Issues

Memory Alignment &

Issues
Buffer Pinning

DMA−Accelerated
State Sharing

Multicore−aware
State Sharing

Accelerated
Memory

Copy

Inter−Process

Sharing
State

Datacenter Applications

DMA Copy
Engine Cores

Multicore
Architecture

I/O Acceleration
Technology (I/OAT)

High−Performance Networks
(IBA, 10−Gigabit Ethernet)

 RDMA Atomics
Multiple

Figure 3.1: DMA-Accelerated State Sharing Components

is shared is also copied several times while communicating between the datacenter

threads. The limited memory bandwidth is often addressed as the major performance

degradation factor for many of these applications. Several memory block operations

such as copy, compare, move, etc., are performed by the host CPU leading to an

inefficient use of the host compute cycles. In addition, such operations also affect the

caching hierarchy since the host CPU fetches the data onto cache, thereby, evicting

some other valuable resources in cache. The problem gets even worse with the intro-

duction of multicore systems since several cores can concurrently access the memory

leading to memory contention issues, CPU stalling issues, etc. Due to several of the

issues mentioned above, the ability to overlap computation and memory operation as

a memory latency-hiding mechanism becomes critical for masking the gap between

processor and memory performance.

66

To alleviate such issues, in this Chapter, we propose a mechanism which utilizes

a DMA engine for accelerating the copy operation and overlaps computation with

memory copy operation by using Intel’s I/OAT.

Related Work: Researchers have proposed several solutions for asynchronous mem-

ory operations in the past. User-level DMA [69, 35] deal with providing asynchronous

DMA explicitly at the user space. Zhao et. al [103] talk about hardware support for

handling bulk data movement. Calhoun’s thesis [39] proposes the need for dedicated

memory controller copy engine and centralized handling of memory operations to

improve performance. However, many of these solutions are simulation-based. Ciac-

cio [49] proposed the use of self-connected network devices for offloading memory

copies. Though this approach can provide an asynchronous memory copy feature,

it has a lot of performance-related issues. I/OAT [58] offers an asynchronous DMA

copy engine (ADCE) which improves the copy performance with very little startup

costs.

3.2 Design and Implementation Issues

In this section, we propose our design [93] for accelerating the memory copy and

IPC operations using an asynchronous DMA engine offered by I/OAT.

3.2.1 Accelerated Memory Copy using Asynchronous DMA
Engine

As mentioned in Section 1.2.2, Intel’s I/OAT offers an asynchronous DMA engine

to offload the memory copy operation from the host CPU. Currently, Intel supports

several interfaces in kernel space for copying data from a source page/buffer to a desti-

nation page/buffer. These interfaces are asynchronous and the copy is not guaranteed

67

to be completed when the function returns. These interfaces return a non-negative

cookie value on success, which is used to check for completion of a particular mem-

ory operation. It is necessary to wait on another function to wait for the copies to

complete.

A memory copy operation typically involves three operands: (i) a source address,

(ii) a destination address and (iii) number of bytes to be copied. For user-space

applications, the source and destination addresses are virtual addresses. However,

as mentioned in Section 1.2.2, the DMA copy engine can only understand physical

addresses. The first step in performing the copy is to translate the virtual address

to physical addresses. For various reasons related to security and protection, this is

done at the kernel space. Once we get the physical address, we also need to make

sure that the physical pages that are mapped to the user application does not get

swapped onto the disk while the copy engine performs the data transfer. Hence, we

need to lock the pages in memory before initiating the DMA and unlock the pages

after the completion of the copy operation, if required. We use the get user pages()

function in the kernel space to lock the user pages.

Operation Description
adma copy(src, dst, len) Blocking copy routine
adma icopy(src, dst, len) Non-blocking copy routine
adma check copy(cookie) (Non-blocking) check for

completion
adma wait copy(cookie) (Blocking) wait for

completion

Table 3.1: Basic ADCE Interface

68

In order for the datacenter applications to use the copy engine, we propose the

addition of the following interfaces, as shown in Table 3.1. The adma icopy operation

helps in initiating the copy and returns a cookie which can be used later to check

for completion while the adma copy check operation helps in checking if the corre-

sponding memory operation has completed. The adma copy wait operation waits for

the corresponding memory operation to complete and the adma copy operation is

a blocking version which uses the copy engine and does not return until the copy

finishes. The basic design of our proposed approach is shown in Figure 3.2.

Kernel

User

Module

DMA

Module

dst page 1

dst page 2

dst page 0

ch 2

ch 1

ch 3

src page 0

src page 1

src page 2

src page 3

Memory

Memory Copy

Single−Threaded Applications

dst page 3

ch 0

ch 3ch 2ch 1ch 0

DMA

Figure 3.2: Memory Copy Design using DMA Engine

3.2.2 Inter-Process State Sharing using Asynchronous DMA
Engine

In addition to offloaded memory operations within a single process, applications

also require support for exchanging messages across different processes in a single

node. As shown in Figure 3.3, there are many ways of performing inter process

communication. The most common way followed is the user space shared memory

69

based approach. In this approach, processes A and B create a shared memory region.

Process A copies the source data onto the shared memory and process B copies

this shared memory segment to its destination. Clearly, this approach involves an

extra copy. Several HPC middle-ware layers such as MPI use this approach [44].

As mentioned in Section 1.2.2, this approach also occupies some CPU resources.

Another approach is the NIC-based loop back approach wherein network device can

DMA the data from the source to the destination. The third approach [62] is to

map the user buffer in kernel space and use the standard copy operation in kernel to

avoid an extra copy incurred by user space shared memory approach. In addition,

System V IPC communication can also be utilized to communicate across different

processes. However, this mechanism not only involves several memory copies but

also involves the operating system for context-switches, interrupts, etc., leading to

significant overheads. We propose an approach that utilizes the DMA copy engine to

perform the copy. Such an approach does not incur any extra copies, not touch many

CPU critical resources and also avoids any cache pollution effects.

We support the following user interface, as shown in Table 3.2, for applications

to exchange messages across different processes. The adma read and adma write op-

erations read and write data onto another process and adma iread and adma iwrite

operations initiate the data transfer. However, due to the presence of two different

processes, synchronization becomes a bottleneck for performance. Data transfer can-

not be initiated unless both the processes have posted their buffers for data transfer.

The adma icheck operation checks whether the memory operation has completed and

the adma wait operation waits till the memory operation completes.

70

Operation Description
adma iread(fd, addr, len) Non-blocking read routine
adma iwrite(fd, addr, len) Non-blocking write routine
adma read(fd, addr, len) Blocking read routine
adma write(fd, addr, len) Blocking write routine
adma check(cookie) (Non-blocking) check for

read/write completion
adma wait(cookie) (Blocking) Wait for

read/write completion

Table 3.2: ADCE Interface for IPC

Figure 3.4 shows the mechanism by which we support IPCs. Our design can

be easily integrated with the pipe or socket semantics. Currently, we support the

socket semantics for establishing the connection between different processes. Once

the connection is made, processes can use the set of interfaces mentioned above for

utilizing the copy engine. Let us consider two connected processes (A and B). If

process A needs to send data to process B, process A makes a request to the kernel

(Step 1). In step 2, the kernel locks the user page and adds the entry to a list of cached

virtual to physical mappings. The kernel then makes an entry to a list of pending

read and write requests. At this time, if process B posts its read buffer (Step 4), the

kernel locks the user page and caches the page mapping (Step 5). The kernel searches

the list to find the matching write request (Step 6). Since the write buffer is already

posted, it initiates the DMA copy (Step 7). Process A waits for the completion of

operation (Step 8) by issuing a request to the kernel. The kernel first makes sure

that the corresponding buffers are posted by waiting on a semaphore (Step 9a). This

71

semaphore is initially in a locked state and released when both the read and write

buffers match. Steps 10-11 are similar to Steps 8-9.

���

���

���������������
���������������
���������������
���������������

���������
���������
���������
���������

�����������������
�����������������
�����������������

	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	

Process B

User buffer

NIC based
Loop Back Copy (NLBC)

Memory Copy (USMC)

Process A

User buffer

Asynchronous DMA Copy
Engine based Copy (ADCEC)

Kernel Assisted Memory
Mapped Copy (KAMMC)

User space Shared

ADCEC

KAMMC

USMC

NLBC

Figure 3.3: Different IPC Mechanisms

3.2.3 Handling IPC Synchronization Issues

Since we have two different processes performing communication using the copy

engine, synchronization becomes a critical issue before initiating the DMA transac-

tion. For example, consider processes A and B wanting to communicate a buffer of

size 1 KB. We need to handle the following cases making sure that latency, progress

and CPU utilization do not get affected significantly. Case 1: Process A posts the

write buffer and waits for the operation to finish. Then process B posts an adma iread

operation. Case 2: Process B posts the read buffer and waits for the operation to

finish. Then process A posts an adma iwrite operation. Case 3: Both processes A

and B post their respective buffers before performing the wait operation. To address

these cases, we use a binary semaphore in our implementation. For Case 1, we queue

the request posted by Process A during the write request and we allow the process

72

User Buffer

...

User Buffer

1. Request (ioctl)

Process A

User

Kernel 9a. Wait on semaphore

9b. Wait for DMA
completion

5b. Cache the page
mapping

11a. Wait on semaphore

11b. Wait for DMA
completion

6. Search

Linked List of Posted Requests

3. Post Request

2a. Lock the user pages

2b. Cache the page
mapping

5a. Lock the user pages

7. Initiate DMA copy

8. Wait

4. Request (ioctl)

10. Wait

Process B

Figure 3.4: IPC using DMA copy engine

to wait on the semaphore during the wait operation. When Process B posts a read

buffer, the DMA is initiated and immediately process A is woken up by releasing

the semaphore. Process A then waits on the DMA copy to finish and the control

is given back to the user process. For Case 2, a similar approach is followed except

that Process A wakes up process B after process A posts the corresponding write

buffer. In Case 3, both processes A and B see a matching request posted and thus do

not wait on any semaphore and directly check for DMA completion. All three cases

avoid unnecessary polling and the control is released immediately after the buffers are

posted so that DMA completion is checked immediately leading to better notification.

3.2.4 Handling Memory Alignment and Buffer Pinning Is-

sues

Another issue is the memory alignment problem associated with source and des-

tination buffers. Since the copy engine operates with main memory, the performance

73

of the copy operation can be enhanced if the memory is page-aligned. For example,

lets say that the source address starts at offset 0 and the destination address at 2K.

If we assume the page size to be 4 KB, then we can only schedule a maximum of

2 KB copy since the copy length is required to be within the page-boundary, leading

to 2000 such operations if we assume a 4 MB data transfer. On the other hand, if

the addresses were page-aligned, we only need 1000 such operations. In the worst

case, we may end up issuing copies for very small messages (<100 bytes) for several

iterations. Clearly, by making the addresses page-aligned, we can save on the number

of copy operations and more importantly avoid issuing very small data transfers using

the copy engine.

As mentioned in Section 1.2.2, the copy engine deals with physical addresses as it

directly operates on main memory. To avoid swapping of user pages to the disk during

a copy operation, it is mandatory that the kernel locks the user buffers before initiating

the DMA copy and releases the user buffers once the copy completes. Usually this

locking/unlocking cost is quite large, in the order of µs contributing significantly to the

total time required for data transfer. To reduce this cost, we lock the buffers initially

and do not release the locked buffers even after the completion of data transfer. For

subsequent data transfers, if the same user buffer is reused, we can avoid the locking

costs and directly use the physical address that maps to the virtual address. However,

the kernel module needs to be aware of any changes in memory usage in applications

such as allocate and release, and appropriately release these buffers in the kernel.

Several applications can use the DMA engine simultaneously. Hence, it is possible

that a small memory operation is queued behind several large memory operations.

74

Due to the fact that we have several DMA channels, scheduling these memory opera-

tions on appropriate channels becomes a challenging task. Currently, we use a simple

approach of using the channels in a round-robin manner and schedule the memory

operations.

Apart from these issues, due to the other features mentioned in Section 1.2.2,

I/OAT can also directly improve the performance of the datacenter both in terms of

CPU utilization and the number of requests a datacenter can admit. More details

can be found in [98].

3.3 Experimental Evaluation

We ran our experiments on a dual dual-core Intel 3.46 GHz processors and 2 MB L2

cache system with SuperMicro X7DB8+ motherboards which include 64-bit 133 MHz

PCI-X interfaces. The machine is connected with an Intel PRO 1000Mbit adapter.

We used the Linux RedHat AS 4 operating system and kernel version 2.6.9-30.

3.3.1 Memory Copy Performance

First, we compare the performance of the copy engine with that of traditional

CPU-based copy and show its benefits in terms of performance and overlap efficiency.

For the CPU-based copy, we use the standard memcpy utility.

Latency and Bandwidth Performance: Figure 3.5(a) shows the performance of

copy latency using CPU and ADCE (DMA-accelerated state sharing approach) for

small message sizes. In this experiment, both source and destination buffers fit in

the cache. For the CPU-based copy operation, we measure the memcpy operation of

libc library and average it over several iterations. This is indicated as libc memcpy

(CPU-based) line in the figure. For the ADCE approach, we use the adma icopy

75

operation followed by the adma wait operation and measure the time to finish both

the operations.

As shown in Figure 3.5(a), we see that the CPU-based approach performs well

for all message sizes. This is mainly due to the cache size which is 2 MB. Since both

source and destination buffers can fit in the cache, the CPU-based approach performs

better. Figure 3.5(b) show the performance of copy latency for small messages when

source and destination buffers are not in the cache. In this experiment, we use two

64 MB buffers as source and destination. After every copy operation, we move the

source and destination pointers by the message size, so that memory copy always

uses different buffers. We repeat this for a large number of iterations and ensure that

the buffers are not in the cache. As observed in the figure, we see that the ADCE

approach using four channels performs better from 16 KB. As mentioned earlier, since

we are using buffers that are not in the cache, for the ADCE approach, we also incur

penalties with huge pinning costs for every copy operation. As a result, we see that

the performance is little worse compared to the previous experiment where the buffers

are in the cache. Also, the performance of the ADCE approach with one channel gets

better after 256 KB message size. However, as shown in Figure 3.5(c), we see that

the performance of the ADCE approach for large message sizes is significantly better

than the CPU-based approach. For 4 MB message size, we observe that the ADCE

approach with four channels results in 50% improvement in latency as compared to

the CPU-based approach. Also, we observe that the ADCE approach using four

channels achieves better latency compared to the ADCE approach with one channel.

The bandwidth performance of copy operation is shown in Figure 3.6. In this

experiment, we post a window of adma icopy operations (128 in our case) and wait for

76

 0

 50

 100

 150

 200

 250

 300

 256k 64k 16k 4k 1k

La
te

nc
y

(M
ic

ro
se

co
nd

s)

Message Size (Bytes)

ADCE 4 Channels
ADCE 1 Channel

libc memcpy (CPU-based)

(a) Small Message hot-cache

 0

 50

 100

 150

 200

 250

 300

 350

 400

 256k 64k 16k 4k 1k

La
te

nc
y

(M
ic

ro
se

co
nd

s)

Message Size (Bytes)

ADCE 4 Channels
ADCE 1 Channel

libc memcpy (CPU-based)

(b) Small Message cold-cache

 0

 2000

 4000

 6000

 8000

 10000

 12000

16M8M4M2M1M

La
te

nc
y

(M
ic

ro
se

co
nd

s)

Message Size (Bytes)

ADCE 4 Channels
ADCE 1 Channel

libc memcpy (CPU-based)

(c) Large Message hot-cache

Figure 3.5: Memory Copy Latency Performance

77

these memory operations to finish. We repeat this experiment for several iterations

and report the bandwidth. For the CPU-based approach, we use the libc memcpy

instead of the adma icopy operation. As shown in Figure 3.6, for message sizes till

1 MB, the CPU-based approach yields a maximum bandwidth of 9189 MB/s. This

is mainly due to the caching effect since the copy happens inside the cache. For

message sizes greater than 1 MB, we observe a huge drop in bandwidth for CPU-

based approach achieving close to 1443 MB/s. However, the ADCE approach with

four channels achieves a peak bandwidth of 2912 MB/s, almost double the bandwidth

achieved by the CPU-based approach. The ADCE approach with one channel achieves

close 2048 MB/s.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

16M 4M 1M 256k 64k 16k 4k 1k

B
an

dw
id

th
 (

M
B

/s
)

Message Size (Bytes)

ADCE 4 Channels
ADCE 1 Channel

libc memcpy (CPU-based)

Figure 3.6: Memory Copy Bandwidth

Cache Pollution Effects: In this section, we measure the effect of cache pollution

with applications. We design the experiment in the following way. We perform a

large memory copy operation and perform a column-wise access of a small memory

buffer which can fit in the cache. Figure 3.7 shows the access time for various memory

sizes. We measure the access time without the memory copy and report it as access

78

w/o copy and for remaining cases, we perform the memory copy using CPU and the

ADCE approach. As shown in figure, the access time after performing the copy using

the ADCE approach does not change with the normal access time. However, the

CPU-based approach increases the access time by 30% due to cache eviction. Since

the ADCE approach operates directly on main memory, it avoids cache pollution

effects. As a result, the access latency after using the ADCE approach does not

change. However, the CPU-based approach evicts some of the entries in the cache

resulting in an increase in access time latency.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

1M 256k 64k 16k 4k 1k

La
te

nc
y

(M
ic

ro
se

co
nd

s)

Message Size (Bytes)

ADCE
libc memcpy (CPU-based)

access w/o copy

Figure 3.7: Cache Pollution Effects

3.3.2 Overlap Capability

In this section, we evaluate the ability of the ADCE approach to effectively over-

lap memory copy process and computation. To carry this evaluation, we design an

overlap benchmark. For a certain message size, the benchmark first estimates the

latency of blocking memory copy Tcopy (adma icopy operation immediately followed

by adma wait operation). To test the overlap efficiency, the benchmark initiates an

79

asynchronous memory copy (adma icopy) followed by a certain amount of computa-

tion which at least takes time Tcompute > Tcopy, and finally waits for the completion

(adma wait). The total time is recorded as Ttotal. If the memory copy is totally over-

lapped by computation, we should have Ttotal = Tcompute. If the memory copy is not

overlapped, we should have Ttotal = Tcopy + Tcompute. The actual measured value will

be in between, and we define overlap as:

Overlap = (Tcopy + Tcompute - Ttotal) / Tcopy

Based on the above definition, the value of overlap will be between 0 (non-overlap)

and 1 (totally overlapped). A value close to 1 indicates a higher overlap efficiency.

Figure 3.8(a) illustrates the overlap efficiency we measured. As we can see, the CPU-

based copy using memcpy is blocking, thus we always get an overlap efficiency of 0.

By using the ADCE approach for large size memory copies, we are able to achieve up

to 0.92 (92%) and 0.87 (87%) overlap using one and four channels, respectively. For

the ADCE approach with four channels, we check the completion across four channels

and thus it results in lesser overlap compared to the ADCE approach with one channel

case. For smaller sizes, the overlap efficiency is small due to DMA startup overheads.

We see similar trend in overlap efficiency when the source and destination buffers are

not in the cache as shown in Figure 3.8(b). However, the actual percentages seen are

much lower. We explain the reason for such lower percentages in the section below.

3.3.3 Asynchronous Memory Copy Overheads

In order to understand the low overlap efficiency observed in the previous section,

we measure the split-up/overhead of the ADCE approach. Figure 3.9 shows the split-

up overhead of the ADCE approach using four channels. In this experiment, we

80

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

16M 4M 1M 256k 64k 16k 4k 1k

O
ve

rla
p

Message Size (Bytes)

ADCE 4 Channels
ADCE 1 Channel

libc memcpy (CPU-based)

(a) Hot-Cache

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

16M 4M 1M 256k 64k 16k 4k

O
ve

rla
p

Message Size (Bytes)

ADCE 4 Channels
ADCE 1 Channel

libc memcpy (CPU-based)

(b) Cold-Cache

Figure 3.8: Computation-Memory Copy Overlap

ran the copy latency test with source and destination buffers not in the cache and

measure the overhead of user/kernel transition, pinning of user buffer, DMA startup

and completion. We observe that the pinning cost occupies a significant fraction of

the total overhead. For small message sizes, we see that all four overheads contribute

equally towards the latency and there is very little room for overlap. For larger

message sizes, we see that the pinning cost and DMA startup cost occupies 30% and

7%, respectively. The remaining time is overlapped with the computation (62%).

Copy Engine Splitup Overhead

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1K 4K 16K 64K 256K 1M 4M

Message Size (bytes)

P
er

ce
nt

ag
e

O
ve

rh
ea

d
(%

)

User/Kernel Pinning DMA startup
DMA completion Overlap-Time

Figure 3.9: Asynchronous Memory Copy Overheads

81

3.3.4 Inter-Process State Sharing Performance

Figure 3.10(a) shows the IPC latency for ADCE based copy (ADCEC) and Kernel-

assisted memory mapped based copy (KAMMC). For 4 MB message size, we see

that the ADCEC approach achieves close to 2954 µs whereas the KAMMC approach

achieves close to 5803 µs. Further, for increasing message sizes, the performance of

the ADCEC approach is much better than the KAMMC approach.

Figure 3.10(b) shows the IPC bandwidth with ADCEC approach and KAMMC

approaches. Since the buffers can fit in the cache, we observe that the performance

of the KAMMC approach is better than the ADCEC approach till 256 KB message

size achieving close to 8191 MB/s. However, for message sizes greater than 1 MB, we

see that the ADCEC approach achieves 2932 MB/s whereas the KAMMC approach

achieves only 1438 MB/s.

 0

 2000

 4000

 6000

 8000

 10000

 12000

16M 4M 1M 256k 64k 16k 4k 1k

La
te

nc
y

(M
ic

ro
se

co
nd

s)

Message Size (Bytes)

ADCEC
KAMMC

(a) Latency

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

16M 4M 1M 256k 64k 16k 4k 1k

B
an

dw
id

th
 (

M
B

/s
)

Message Size (Bytes)

ADCEC
KAMMC

(b) Bandwidth

Figure 3.10: Inter-Process Communication Performance

82

3.4 Summary

Intel’s I/O Acceleration Technology offers an asynchronous memory copy engine

in kernel space that alleviates copy overheads such as CPU stalling, small register-size

data movements, etc. In this Chapter, we proposed a set of designs for asynchronous

memory operations in user space for both single process (as an offloaded memcpy())

and IPC using the copy engine. We analyzed our design based on overlap efficiency,

performance and cache utilization. Our microbenchmark results showed that using

the copy engine for performing memory copies can achieve close to 87% overlap with

computation. Further, the copy latency of bulk memory data transfers is improved

by 50%.

83

CHAPTER 4

MULTICORE-AWARE STATE SHARING USING
MULTICORE ARCHITECTURES

In this Chapter, we utilize the advanced features of multi-core systems for de-

signing efficient state sharing substrate. Figure 4.1 shows the various components

of multicore-aware state sharing substrate. Broadly, in the figure, we focus on the

colored boxes for designing efficient multicore-aware state sharing components and

understanding its benefits with applications. The dark colored boxes show the fea-

tures and technologies that we utilize and the light colored boxes show the proposed

components and datacenter system software evaluated.

4.1 Background and Motivation

Many high-performance networks such as InfiniBand [61], 10-Gigabit Ethernet [60],

Quadrics [18], Myrinet [36] and JNIC [83] support Remote Direct Memory Access

(RDMA) [19] to provide high-performance and scalability to applications. While

there are multiple RDMA standards, in this Chapter, we use the generic term to

denote one-sided inter-node memory access. Unlike two-sided sends and receives,

one-sided operations access remote memory without requiring the remote applica-

tion’s participation. RDMA often combines one-sided execution with OS-bypass to

84

Soft State Sharing Substrate
Network−Assisted

State Sharing
DMA−Accelerated

State Sharing
Multicore−aware

State Sharing

Page Pinning &
Page Swapping Issues

Flow Control

Issues
Dedicated RDMA

Datacenter Applications

DMA Copy
Engine Cores

Multicore
Architecture

I/O Acceleration
Technology (I/OAT)

 RDMA Atomics
Multiple

High−Performance Networks

Figure 4.1: Multicore-aware State Sharing Components

achieve low latency and high bandwidth. This provides network-centric application

primitives that achieve three major objectives: data is delivered without expensive

software-based copies; concurrency is improved when one-sided access occurs without

remote application cooperation; application processing is reduced when asynchronous

remote processing is moved away from the application. RDMA defines two primitives:

a put writes to, and a get reads from remote memory.

In the high-performance computing domain, the utility of RDMA is already

proven [73, 74]. MPI is the most popular standard for parallel computing and net-

works such as InfiniBand, Quadrics, etc., use RDMA to accelerate MPI’s two-sided

messaging. More recently, MPI also includes direct support for one-sided communi-

cations that exploits optimized RDMA. RDMA’s get and put operations are natural

communication primitives for Partitioned Global Address Space (PGAS) Languages,

such as Unified Parallel C (UPC) [5] and Co-Array Fortran [75], that incorporate ben-

efits from message passing’s scalability and shared memory’s ease-of-programming.

85

RDMA also offers potential in datacenter environments [85]. The distributed ap-

plications [91] hosted in these environments such as web and application servers, file

systems, caching and resource management services can significantly benefit from

RDMA for achieving datacenter-wide scalability. Researchers have proposed several

lower-level mechanisms such as Sinfonia [28], Khazana [42], DDSS [97] to build effi-

cient datacenter sub-systems including cluster file system, distributed lock manager,

and databases. These mechanisms typically deal with memory-based objects and ma-

nipulate these objects frequently. Thus, it is important to provide efficient distributed

manipulation of memory-based objects using get and put operations to increase the

performance and scalability.

While existing Remote Direct Memory Access (RDMA) provides a foundation,

a closer inspection indicates that today’s RDMA is not suitable for many of these

environments. Firstly, existing RDMA implementations do not preserve all of the

benefits of virtual memory to applications such as the illusion of using more memory

than that is physically present and the protection capabilities for memory regions

that are shared among user programs. Secondly, the memory regions used for RDMA

are typically managed by users in an independent manner. Multiple users making

independent decisions can lead to starvation of resources and robustness issues (e.g.,

a system crash due to unavailable pages). Networks such as Quadrics address some

of these limitations by using complex NIC hardware that maintains the page tables

and frequently interacts with the operating system. In this Chapter, we address these

limitations by proposing a software-centric onload approach.

Next, we present the capabilities of the JNIC architecture and the registration

issues with RDMA.

86

4.1.1 JNIC Architecture

The Intel/HP Joint Network Interface Controller (JNIC) [83] prototype mod-

els in-datacenter communications over Ethernet. Figure 4.2 shows a JNIC system

consisting of front-side-bus-attached NIC hardware and optimized software using a

dedicated kernel helper. The prototype hardware is an FPGA-based Gigabit Eth-

ernet NIC that plugs into an Intel Xeon socket, allowing communication over the

front side bus. A reliable communications (VNIC) layer implements JNIC-to-JNIC

communication using the TCP protocol. The VNIC layer presents virtual NIC device

interfaces to user or kernel tasks. Messages are sent by multiplexing message requests

from VNIC clients to the reliable communications layer. Messages are received when

the reliable communications layer receives a message and delivered to the appropriate

receiving destination VNIC. The VNIC implements copy-free transport using phys-

ically addressed DMA. At the time of VNIC-layer registration, VNIC source and

target buffers are physically locked/pinned regardless of when they are needed for

future RDMA. For more details on JNIC architecture and VNIC layer, the readers

are encouraged to refer to [83].

In this Chapter, we describe the architecture of a working onload-style RDMA

implementation. This architecture is carefully crafted to ensure forward progress even

when client applications compete for limited resources. To support multiple client

RDMA operations on regions of arbitrary size, a number of key tasks are executed.

Tasks include: flow control, region segmentation, page pinning, initiating copy-free

transport, and page unpinning.

87

Figure 4.2: JNIC Prototype [83]

4.1.2 RDMA Registration

RDMA typically involves two steps: registration and the actual put or get. The

registration process can be broadly classified into pinning-based registration [61, 60]

and hardware-assisted registration [18, 76]. In this section, we present the details on

these two registration strategies and its associated issues.

Pinning-based Registration: In this method, to register a buffer, a task makes

a system call into a kernel component of the RDMA service. The kernel initializes

the control data and creates a handle that encodes buffer access rights. The kernel

then swaps in and pins (locks) all the buffer pages. After a successful buffer pinning,

the kernel component asks the NIC to install a mapping between the handle and the

pinned physical pages and waits for an acknowledgment. The buffer handle is then

passed back to the user task after receiving the acknowledgment, which in turn sends

the buffer handle to remote tasks to be used in subsequent get (or put) requests.

88

Similarly, during a de-registration operation, the kernel component asks the NIC to

remove the mapping between the handle and the pinned physical pages and waits for

an acknowledgment. The kernel then unlocks all the buffer pages associated with the

handle and removes the corresponding entries. Due to the page pinning restriction in

the registration phase, this approach not only limits the amount of buffers registered

to available physical memory but can also waste the physical memory, if it is currently

not utilized. Finally, allowing users to pin physical memory compromises robustness.

One buggy application affects all others by monopolizing physical memory. Further,

the cost of this registration and de-registration is typically expensive [67, 100] in

networks such as InfiniBand.

Hardware-assisted Registration: In this approach (e.g. Quadrics [18]), the NIC

combines a hardware TLB and tweaks in operating system’s virtual memory sup-

port to allow the NIC to pin pages, initiate page faults and track changes in the

application’s page table. In this approach, there is no restriction on what memory is

DMA-able, potentially the entire virtual memory can be made available for RDMA

operations. However, pushing the responsibility of pinning and managing the page

tables to the NIC comes with increased hardware cost and complexity [33, 101]. Fur-

ther, the hardware requires frequent updates as changes are made to the internal

virtual memory subsystems.

4.2 Related Work

Modern processors are seeing a steep increase in the number of cores available

in the system [51]. As the number of cores increases, the choice to dedicate one or

more cores to perform specialized functions will become more common. In this work,

89

we proposed a mechanism to onload the RDMA tasks to a dedicated kernel helper

thread for such systems. Researchers [61, 18, 60, 76, 66, 81] have proposed several

mechanisms in designing RDMA operations and onloading techniques. In this work,

we combined the existing dynamic page pinning and onloading technique to perform

RDMA related tasks. Unlike conventional RDMA, buffer pinning is kernel-managed

to allow the system to have better control over critical resources in our proposed

design. Our architecture preserves the benefits of virtual memory in a robust and

well controlled environment. Further, the presence of a kernel helper thread avoids

replication of page table entries and provides faster access to kernel page tables and

page pinning, and simplifies the NIC hardware as compared to existing approaches.

In the following sections, we describe an architecture that eliminates problems

associated with user pinning and hardware-based registration by combining dynamic

page pinning [66] (the ability to pin a small set of pages and make progress in a

pipelined manner) and onloading [81] (the ability to perform the tasks on the host

processor).

4.3 Design and Implementation Issues

In this section, we present the design goals and details of our proposed onloaded

service [99].

Goals: To address the limitations mentioned above, our primary goal is to allow

RDMA operations on unpinned virtual memory with simplified NIC hardware. Thus,

we need a mechanism that supports page pinning only when necessary in a pipelined

manner but at the same time, the pinning process should be rapid and should not

slow down RDMA. In addition, we need a mechanism that jointly pins the pages

90

on both sending and receiving side to allow a copy-free hardware transport and a

mechanism that guarantees forward progress even when available memory is limited.

In the following sections, we present the detailed design of RDMA service that

meets our design goals.

4.3.1 State Sharing using Onloading

The basic idea of our design is to exploit the abundant compute cycles of future

many-core processors to perform the tasks involved in get and put operations. We

use a dedicated kernel helper thread to perform just-in-time physical page pinning,

access rights enforcement, copy-free data transport, guaranteeing progress even when

the pages are not resident in memory and handling flow control. We refer to the

RDMA service as JNIC’s Bulk Message Transport (JBMT) and present the details

in performing a JBMT get operation in the rest of the section.

Figure 4.3 shows the overall architecture of JBMT that provides copy-free au-

tonomous message delivery. As shown in the figure, the JBMT kernel helper thread

receives requests and generates responses through virtualized JBMT command and

completion ports. In this approach, a source buffer is registered by the server. JBMT

registration provides access control for the source region and it does not pin the mem-

ory pages. As a result, it does not consume valuable resources which are otherwise

required to manage the pinned memory regions. On a successful registration request,

a token is generated by JBMT. The resulting registration token is sent to the receiver

(client) using conventional VNIC messaging, which can be used for data transfer.

During a get operation, the receiver specifies the source region token, an offset into

the source region, a target region pointer, and a transfer length. Legal transfers are

91

confined to source buffers for which access rights were granted in prior source buffer

registrations.

After checking the access rights, JBMT decomposes a large message into smaller

dynamically pinned sections. First, a local section (a small portion of a large get op-

eration) is pinned. The local section can be any subset of the target region requested

by the get operation as dictated by memory availability. A request for a local section

is then sent to the server-side remote interface. After checking for available resources

on the server, the server attempts to pin a remote section for data transfer. The

remote section is again possibly a subset of the requested local section length. The

kernel helper thread on the server attempts to transmit the remote section to the

receiver as Ethernet-frame-size VNIC transfers. During this data transfer both the

local and remote sections are pinned/locked and hence, we can directly perform DMA

operations to transfer the data. After a remote section is transferred, it is unpinned

and additional remote sections are pinned and transmitted until the entire requested

local section has been received. After the local section is completed, it is unpinned

and the next local section is pinned and the process continues until the entire buffer

is transferred. Upon successful transfer of the entire buffer, a completion event is

deposited in the JBMT port’s completion queue, depending on application’s request.

Figure 4.4 shows the detailed steps involved during a get operation. As shown in

the figure, a get request is submitted as a message request into a local node command

queue for processing by the dedicated JBMT kernel helper thread. This command

queue (request and response) is a memory mapped queue that is shared between the

application and the dedicated JBMT kernel helper thread. The helper thread detects

the get request by polling on this command queue and the local target buffer handle

92

RDMA

Section Complete
Remote

VNIC

Helper

Helper

..
.

Local
Section Request

Deliver Frames

Register
Source
Buffer Request

GET

VNIC VNIC

Registered
Buffer Table

DMA

Registered
Buffer Table

DMA

Registration
Source

Remote status

Local statusSection
Progress

Local

JBMT portJBMT port

Progress
Section
Remote

Client
Send JBMT Handle

Server

Figure 4.3: JBMT Architecture

is checked to ensure that virtual buffer access is valid. In JBMT registration, the

buffers can be of arbitrary size and can exceed the size of physical memory. Hence,

this requires that virtual user buffers are segmented into smaller pinned sections

and processed sequentially. The get operation processes the target buffer handle to

determine the appropriate target virtual address for data transfer. As mentioned

above, the JBMT helper thread requests that the underlying VNIC layer register and

pin a portion of a user buffer and return the successfully registered physical section

size. This lower-layer registration pins sections of a larger virtual buffer temporarily

and on demand. Further, if the pages are not resident in memory, the helper thread

invokes a request to bring the swapped pages to memory and the details of how this is

handled will be discussed in Section 4.3.2. Allowing the lower layer to determine the

extent of physical pinning facilitates rapid progress when resources are plentiful and

93

ensures forward progress when resources are scarce. When resources are plentiful, a

large physical section minimizes pinning costs. When resources are scarce, progress

is ensured when only the head of the buffer is physically registered and as little as a

single page is pinned.

Once the maximum size of the local section is determined, a local section request

is sent to the server-side remote interface and similar steps are followed on server-side

to determine the minimum remote section. This architecture is carefully crafted to

ensure forward progress on both local and remote nodes. Upon completion of remote

and local sections, the status of the corresponding request is updated, the locked

pages are unpinned and proceeds to the next local section.

Do Local Section
(LS) Registration

Send LS Request

loop
polling

Pursue
Swap−in

polling GET Request

Init Msg. Status

Msg. done?

Receive Local

(All Frames)
Section

Yes

Head of Rem
Msg. Resident? No

No
Yes

loop

Send Remote

(All Frames)
Section

Yes

Init LS Status

LS done?

RS Resident?
Head of Rem

(RS) Registration
Do Remote Section

Yes

Local Section (LS) Request

No

No

Server Client

unregister

Progress

Update
RS

Pursue
Swap−in

unregister

Message
Progress

Update

Figure 4.4: get Operation in JBMT

94

In the following sections, we present the details of how we handle page pinning

while guaranteeing progress when pages are not in memory, flow control and page

swapping.

4.3.2 Handling Page Pinning and Page Swapping Issues

Page pinning consists of two actions. First, pinning requires that the head of

a requested buffer is physically resident. Thus, if the request buffer pages are not

physically resident, JBMT kernel helper thread stimulates the swap-in of needed

pages. Second, page pinning prevents future swap out of memory pages by marking

the kernel tables. When pages are missing, a separate thread of execution swaps the

needed pages. When no pages are resident, the resulting physical section has size zero,

and DMA is delayed. JBMT keeps track of the pending RDMA tasks and periodically

attempts to lock a non-empty physical section, if the head of the particular section is

currently resident in memory.

In operating systems like Linux, the kernel helper function that helps to lock/pin

the user pages is typically a blocking call. In other words, if the user pages are not

resident in memory, the helper function usually does not return until the pages are

swapped in and a lock is acquired on these pages. As a result, the dedicated kernel

helper thread may block for a very long time if it attempts to directly lock the buffers

that are currently not resident in memory. This would also result in blocking JBMT

operations submitted by other tasks that are currently in-flight and would significantly

affect the performance of any other JBMT client tasks. To avoid this scenario, we

use an asynchronous page fault handler thread to handle page fault requests from

JBMT kernel helper thread. The basic design of this thread is to accept a sequence

95

of page fault requests and make progress on these requests. This thread attempts to

bring in pages from disk for a small portion of the accessed user buffer. The thread

only touches the pages and does not pin or lock the pages in physical memory during

a page fault miss. This can also be modified so that the first page of the buffer can

be locked/pinned and the remaining pages can just be swapped in. Since the JBMT

helper thread periodically checks if pages are resident in memory and immediately

locks the pages if it is, locking the first page may not be necessary. Also, to process

multiple page fault requests at the same time, we spawn several asynchronous page

fault handler threads and the JBMT service chooses these threads in a round-robin

manner to submit page fault requests.

Reserve LS Credit
Reserve Available

Pin Memory
Credits (control)

Section
Remote
Section

Local

GET
Request

ACK

Release Pinned
Memory

Release RS Credit

Reserve RS Credit
Pin Memory

Local Section Request

Section Complete

Last Frame

Section Request NACK

if resource unavailable

Release Credits (control)
Release LS Credit

Release Pinned
Memory

Release Memory &
Credits

Start Timer to
Repeat Step 1

Step 1

Figure 4.5: Flow Control in JBMT

96

4.3.3 Handling Flow Control Issues

Though the actual data is delivered through DMA, JBMT sends control commands

to remote-node to perform the appropriate DMA data transfers. Thus, JBMT layer

needs to ensure that there is space on the remote-side to accept control commands and

thus requires flow-control mechanisms to prevent scenarios such as too many JBMT

requests from a single receiver, too many local section requests and several others. As

shown in Figure 4.5, we use a credit-based flow control in our design. Every JBMT

get operation reserves a local credit in order to send a local section request (shown as

Step 1 in the figure). Further, it also reserves enough control credits for the remote

node to send the control commands in performing the DMA transfer for the requested

local section. After the needed credits are successfully acquired, the client-side sends

a local section request to the remote node. Similarly, the remote node attempts to

acquire a remote section credit. This limit is applied to prevent a remote section to

service a large number of local section requests. During the failure of this event, the

remote-node sends appropriate NACK messages to release the credits/pages on the

local-side and repeat Step 1 at a later point in time using a timer. However, if enough

remote section credits are available, the remote node starts delivering the frames to

the local node. After completion, the local and remote node releases the credits to

process future local and remote section requests.

To summarize, our architecture provides substantial enhancement to traditional

RDMA by onloading the RDMA tasks such as page pinning, DMA startup/completion,

flow control, etc. Our architecture provides unlimited access to objects in unpinned

virtual memory, simplifies the NIC hardware and supports more control in managing

memory pages.

97

4.4 Experimental Results

In this section, we analyze the performance of our proposed RDMA service. Our

experimental test bed consists of two nodes with two 3 GHz Xeon “Gallatin” proces-

sors with a 512 KB cache and 512 MB memory. The FPGA-based 1-Gigabit Ethernet

NIC is connected via the FSB. In our prototype implementation, we design the put

as a remote get operation and defer a more efficient put implementation for future

work.

4.4.1 Latency and Bandwidth

In this experiment, we show the latency of a JBMT get operation. We perform

the benchmark in the following way. To measure the get latency, we initiate a JBMT

get operation and poll on the memory to wait for completion. After completion, we

post the next JBMT get operation. We repeat this for several iterations and report

the average, as shown in Figure 4.6. As mentioned earlier, a JBMT get operation

involves processing local and remote sections (shown as JBMT Processing Time in the

figure), a local section request (shown as VNIC Control Message Time in the figure)

and the actual data transfer (shown as VNIC Data Transfer Time in the figure).

We see that the latency of get operation for a 1 byte message is 19 µs. Further,

we observe that the JBMT Processing Time and the VNIC Control Message Time

occupies only 3 µs and 7 µs, respectively. Also, we see that the JBMT Processing

Time does not increase with increasing message sizes. However, JBMT Processing

Time will start varying when the buffers span over multiple pages and multiple local

and remote section sizes, especially for very large get operations. There are existing

caching techniques [100, 76] which can be used to further alleviate this overhead.

98

 0

 10

 20

 30

 40

 50

 60

102451225612864321684

La
te

nc
y

(m
ic

ro
se

co
nd

s)
Message Size (bytes)

VNIC Data Transfer Time
JBMT Processing Time

VNIC Control Message Time

Figure 4.6: Latency of get operation

Next, we present the bandwidth performance of the get operation. To measure

the get bandwidth, we post a window of get operations. After every get completion,

we post another get operation and repeat this for several iterations and measure the

get bandwidth. Figure 4.7 shows the bandwidth performance of get operation. We

see that the JBMT get can achieve a peak bandwidth of up to 112 MB/s for very

large messages, thus almost saturating the link bandwidth. Hence, it demonstrates

that performing page pinning during a JBMT get operation does not significantly

affect the bandwidth performance. However, for very small messages, we see that the

JBMT get shows poor bandwidth due to several factors including latencies required

for Ethernet transmission, needed page pinning in the critical path, and limitations

of our prototype.

99

 0

 20

 40

 60

 80

 100

 120

64k 16k 4k 1k 256 64 16 4 1

B
an

dw
id

th
 (

M
B

/s
)

Message Size (Bytes)

GET

Figure 4.7: Bandwidth of get operation

4.4.2 Cost breakdown of Onloaded State Sharing

First, we measure the registration and de-registration cost in JBMT. This reg-

istration is different from the VNIC-layer registration which pins/locks the memory

pages. JBMT registrations do not pin any pages. It only creates a local handle

which can be used by peer nodes for a future JBMT operation. We perform several

JBMT registrations of a particular message size and report the average latency in

performing the JBMT registration. The JBMT de-registration cost is measured in a

similar way. Table 4.1 reports the cost of registration and de-registration operations

in JBMT. Both registration and de-registration costs remain constant irrespective of

the message size of less than 2 µs. Due to the fact that pages are not pinned and

no page translations are maintained in the NIC, the registration and de-registration

operations remain constant and inexpensive.

100

Registration De-Registration
(usecs) (usecs)

Any Msg. Size 1.32 0.25

Table 4.1: Registration Cost

VNIC VNIC
VNIC
Helper

Register
Source
Buffer

create new finish

release
pages

section

(target)

create new finish

release
pages

sectionRS LS

RS Progress

Request
GET

JBMT portJBMT port

Total Thread
Switch TimeRDMA

Helper

Processing Time

Page Releasing
Time (source)

Processing Time
JBMT Completion

Page Pinning
Time (target)

Processing Time
JBMT Remote

progress
make

progress
make

pin pages
(source)

pin pages

Send JBMT Handle
ClientServer

JBMT Request

LS Progress

Page Pinning
Time (source)

VNIC Control
LS Request

RS Complete

Message Time

VNIC−VNIC Data Transfer Time

Figure 4.8: Timing Measurements of JBMT get

101

 1

 4

 16

 64

 256

 1024

 4096

 16384

64K32K16K8K4K2K1K

La
te

nc
y

(m
ic

ro
se

co
nd

s)

Message Size (bytes)

VNIC-VNIC Data Transfer Time
VNIC Control Message Time

JBMT Completion Processing Time
JBMT Remote Processing Time

Page Releasing Time
Page Pinning Time (source + target)

JBMT Request Processing Time
Total Thread Switch Time

Figure 4.9: Cost Breakdown of JBMT get

102

To further analyze the JBMT get operation in detail, we measure the cost of

several steps involved in JBMT get operation and report its overhead in Figures 4.8

and 4.9. The detailed tasks during a get operation (shown in red color) is shown in

Figure 4.8. The Total Thread Switch Time indicates the time taken to switch from

the application that initiates the get operation to the JBMT kernel helper thread that

listens for such requests. The JBMT Request Processing Time refers to the time spent

before initiating a local section request and the JBMT Completion Processing Time

refers to the time spent after receiving all the remote frames and the post processing

of a local section. The Page Pinning Time and Page Release Time refer to the time

spent in kernel for locking and releasing the user pages. The VNIC Control Message

Time refers to the time spent for sending a local section request to the remote side.

The JBMT Remote Processing Time refers to the time spent by the remote side in

initiating the remote section frames. The VNIC-VNIC Data Transfer Time indicates

the time spent in sending the data using the underlying VNIC layer.

In Figure 4.9, we observe the time spent by each of these operations for various

message sizes. We see that the time spent by Total Thread Switch Time, JBMT

Request, Remote and Completion Processing Time is much less when compared to

other components in a JBMT get operation. However, as mentioned earlier, due to

our prototype hardware, the time spent by these operations is still considered quite

high and there is room for improving this further. Further, we see that Page Pin-

ning Time, Page Release Time and VNIC-VNIC Data Transfer Time increases with

increasing message sizes. As message size increases, the buffers span over multiple

pages which automatically increases the page pinning/unpinning costs. Also, since

the message sizes are less than the maximum allowed local and remote section sizes

103

(1 MB), we observe that the overhead of JBMT Request Processing Time, JBMT

Completion Processing Time and JBMT Remote Processing Time does not increase

with increasing message size. The overhead of these operations is expected to in-

crease as the number of local/remote sections increases. However, this overhead will

be significantly less than the overall time taken to perform the get operation.

4.5 Summary

While the proposed state sharing mechanism using RDMA implementations do

provide efficient one-sided, inter-node remote memory access, they do not preserve all

of the benefits of virtual memory. Further, the memory regions are either managed

directly by users (requiring user control over system critical resources) or by using

complex NIC hardware. In this Chapter, we addressed these limitations by using

a software-centric onloading approach to perform tasks such as page pinning, DMA

startup/completion, page releasing, flow control and page fault handling. Our ar-

chitecture provides access to objects in unpinned virtual memory, simplifies the NIC

hardware, and ensures robust system behavior by managing memory within trusted

kernel code. The salient features and main contributions of the proposed approach

are:

1. Our approach exploits the abundant compute cycles in future many-core pro-

cessors to perform RDMA tasks. Our experimental results are measured on

a working prototype and demonstrate a low-overhead for performing needed

operations in the critical path.

2. Unlike many existing networks, our design preserves the key capabilities that are

provided by virtual memory. The design allows access to more virtual memory

104

than is physically present and supports access protection for client applications.

This is especially important in complex multiple program environments associ-

ated with commercial computing.

3. Our design utilizes a kernel helper thread to manage memory pages leading to a

robust and well controlled environment for managing the virtual memory sub-

system. This compares to existing approaches which require that users manage

memory pages or that pages are managed through complex NIC hardware.

4. Our design simplifies the NIC hardware by onloading RDMA tasks such as

page pinning, DMA startup/completion, page unpinning, handling page faults

and flow control to the kernel helper thread. Further, the presence of a kernel

helper thread avoids replication of page table entries and provides faster ac-

cess to page tables and helps in easier maintenance. In addition, there are no

changes/updates required in NIC hardware as changes are made to the internal

virtual memory subsystems.

Further, due to the presence of a kernel helper thread in our design, application-

specific tasks such as distributed queue insertions/modifications/deletions, locking

operations and several other memory-based operations can be onloaded, thus pro-

viding opportunities to revise the design and implementation of many subsystems in

multi-program datacenter environments.

105

CHAPTER 5

MULTICORE-AWARE, DMA-ACCELERATED STATE
SHARING

In this section, we utilize the advanced features of multicore systems and I/OAT

for designing efficient state sharing substrate. Figure 5.1 shows the various com-

ponents of the multicore-aware, DMA-accelerated state sharing substrate. Broadly,

in the figure, we focus on the colored boxes for designing efficient multicore-aware,

DMA-accelerated state sharing components and understanding its benefits with dat-

acenter applications. The dark colored boxes show the features and technologies that

we utilize and the light colored boxes show the proposed components and datacenter

system software evaluated.

5.1 Background and Related Work

As mentioned in the previous section, several datacenter applications and services

use memory copies extensively. The memory copy operation can be accelerated with

the help of a copy engine. However, this requires an on-chip or an off-chip DMA

engine that can perform the copy.

As mentioned in Chapter 3, ADCE can be utilized to perform accelerated copy

operations in several datacenter environments. Figure 5.2(a) shows the latency of

106

Soft State Sharing Substrate
Network−Assisted

State Sharing
DMA−Accelerated

State Sharing
Multicore−aware

State Sharing

Datacenter Applications

Application Transparent

Memory Copy
Asynchronous

Memory Copy
Dedicated

Locking &
Synchronization

Issues

DMA Copy
Engine Cores

Multicore
Architecture

I/O Acceleration
Technology (I/OAT)

 RDMA Atomics
Multiple

High−Performance Networks

Figure 5.1: Multicore-aware, DMA-Accelerated State Sharing Components

memory copy operation using the I/OAT’s DMA copy engine and the associated

overheads for different message sizes as mentioned in [93]. Since the copy engine is

known to give better performance for large memory copies [93], we focus only on

small and medium message sizes. Also, we report the performance of traditional

libc memcpy when the application buffers are resident in the cache (referred as libc

memcpy (hot-cache) in the figure). As shown in Figure 5.2(a), we observe that the

traditional libc memcpy outperforms the I/OAT DMA engine’s performance if the

application buffers are in the cache. Further, we observe that the DMA startup

overhead associated with the copy engine is much higher than the memory copy time

(libc memcpy hot-cache), thus removing the benefits of asynchronous memory copy

provided by these copy engines.

Researchers in the past have looked at different ways of providing memory copy

operations as shown in Figure 5.2(b). For single-core systems with no hardware copy

107

 0

 50

 100

 150

 200

 250

 300

 256k 64k 16k 4k 1k

La
te

nc
y

(M
ic

ro
se

co
nd

s)

Message Size (Bytes)

libc memcpy (hot cache)
I/OAT DMA

I/OAT DMA overhead
Ideal overhead

(a) Memory Copy Latency

Single Core

Multiple Cores

No I/OAT I/OAT

SCNI SCI

MCNI MCI
Single−Core with No I/OAT

Multi−Core with No I/OAT

Single−Core with I/OAT

Multi−Core with I/OAT

(b) Different Mechanisms for Memory
Copies

Figure 5.2: Motivation for Using Asynchronous Memory Copy Operations

engine support, traditional libc memcpy is used for memory copies. We refer to this

scheme as SCNI (Single-Core with No I/OAT). However, if the system has an I/OAT

support [68], applications can offload the memory copy to the hardware copy engine.

We refer to this scheme as SCI (Single-Core with I/OAT). As multicore systems are

emerging, it opens up new ways to design and implement memory copy operations.

Currently, there is no study that has explored the impact of multicore systems in

designing efficient memory copy operations. We take on this challenge and introduce

two new schemes as shown in white boxes. In the first scheme, MCI (Multi-Core

with I/OAT), we offload the memory copy operation to the copy engine and onload

the startup overheads to a dedicated core. For systems without any hardware copy

engine support, we propose a second scheme, MCNI (Multi-Core with No I/OAT)

that onloads the memory copy operation to a dedicate core.

108

Though the SCI scheme offers several benefits such as performance improvement,

cache pollution avoidance, overlap capability, it has the following overheads.

Copy Engine Overheads: As mentioned earlier, in order to perform memory copy

operation using a copy engine, we need to post a descriptor to a channel specifying the

source and destination buffer and the size of the data transfer. Due to the presence

of multiple channels in the copy engine, the cost of posting the descriptor increases

since this operation cannot be overlapped. After the copy operation is initiated,

we also need to check for the completion of memory copy operation across all the

channels. Though the hardware copy engine provides a mechanism to avoid this cost

by sending an interrupt after the completion, this may not be suitable for latency-

sensitive applications.

Page Locking Overheads: Further, due to the fact that the hardware copy en-

gine can understand only physical addresses, it is mandatory that the application

buffers are locked/pinned while the copy operation is in progress. Similarly, after the

completion of copy operation, the locked application buffers can be released. The

locking of application buffers is done in kernel space with the help of get user pages

function which is a costly kernel function. Especially if the application buffer is not

in memory, this overhead can be quite huge since the page has to be brought from the

disk. Later, in the experimental section, we show that this locking overhead occupies

a significant fraction of the total overhead limiting the overlap capability of the copy

engine.

Context Switch Overheads: Due to the fact that the copy engine is accessible

only in kernel space, a context switch occurs for every copy engine related operation

performed by the user application. This cost is especially huge if multiple applications

109

try to access the copy engine at the same time while the copy operation is still in

progress resulting in several context switch penalties.

Synchronization Overheads: As mentioned earlier, several applications can access

the hardware copy engine simultaneously and hence the copy engine resources need

to be locked for protection. Though spin locks are used in the SCI scheme, several

user applications compete for locks to gain access to the copy engine.

While the SCI scheme helps user applications to offload memory copy operations,

several critical operations still remain in the critical path. In the following section,

we propose a novel scheme to alleviate these overheads to achieve maximum overlap

between memory copy operation and computation.

Related Work: Researchers have proposed several solutions for asynchronous mem-

ory operations in the past. Zhao et al [103] talk about hardware support for handling

bulk data movement. Calhoun’s thesis [39] proposes the need for dedicated mem-

ory controller copy engine and centralized handling of memory operations to improve

performance. However, many of these solutions are simulation-based. Ciaccio [49]

proposed the use of self-connected network devices for offloading memory copies.

Though this approach can provide an asynchronous memory copy feature, it has a lot

of performance-related issues. I/OAT [1] offers an asynchronous copy engine which

improves the copy performance with very little startup costs. In this paper, we use

this hardware for supporting asynchronous memory operations.

Regarding intra-node communication, Buntinas et. al. [38] and Chai et. al. [43]

have discussed shared memory based approaches and optimizations. Jin et. al. have

proposed a kernel assisted design in [63], which is similar to the MCNI scheme dis-

cussed in this paper. However, the scheme proposed in this paper is more general

110

in that it can be applied not only to datacenter environments but also to high-

performance computing environments. Besides, our scheme dedicates the copy oper-

ation to another core thus providing complete overlap of copy operation with compu-

tation.

5.2 Design and Implementation Issues

In this section, we propose two design alternatives [92] to address the limitations

mentioned above.

Multi-Core with No I/OAT (MCNI) Scheme: In order to provide asynchronous

memory copy operations for systems without the copy engine support, we propose a

MCNI scheme (Multi-Core systems with No I/OAT) that onloads the memory copy

operation to another processor or a core in the system. This scheme is similar to the

MCI scheme. In this scheme, as shown in Figure 5.3, we dedicate a kernel thread

to handle all memory copy operations, thus relieving the main application thread to

perform computation.

5.2.1 Dedicated Memory Copy using Multicore Systems

The MCNI scheme takes help from the operating system kernel to perform memory

copy operations. To perform direct memory copy operations, the kernel thread should

have access to the physical pages pointed by the application’s virtual address to

perform copy operations to/from one process or to another process. This is done

through memory mapping mechanism that maps a part of other processes address

space into the address space of the kernel. After the memory mapping process, the

kernel thread can directly access the mapped area.

111

For memory mapping, we use the vmap kernel helper function provided by the

operating system. The vmap function essentially maps a set of physical pages into

contiguous virtual memory region. In order to get the physical pages of the application

buffer, we use the get user pages which not only locks the application buffer but also

returns the set of mapped physical pages. After mapping this memory region, the

kernel thread can access this memory region as its own and perform the memory copy

operation. We use the vunmap kernel helper function to remove the mapping of the

physical pages to release any unnecessary memory regions.

User

Application

Consume

vmap vmap

Kernel−mapped
source buffer

Kernel−mapped
destination buffer

memcpy

Memory

source buffer destination buffer
User space User space

Produce

Consume
Produce

Kernel Worker
Thread

Posting

Completion

Progress

vmap

Completion

Queue
Request

Queue

Figure 5.3: Asynchronous Memory Copy Operations using MCNI

5.2.2 Dedicated Memory Copy Using Multicore Systems and
DMA Engine

Multi-Core with I/OAT (MCI) Scheme: In order to alleviate the overheads

mentioned above, we propose a scheme that takes advantage of the copy engine and

multicore systems. Specifically, we offload the copy operation to the hardware copy

112

engine and onload the tasks that fall in the critical path to another core or a pro-

cessor so that applications can exploit complete overlap of memory operation with

computation.

Figure 5.4 shows the various components of the proposed scheme. Since the copy

engine is accessible only in the kernel space, we dedicate a kernel thread to handle all

copy engine related tasks and allow user applications to communicate with the kernel

thread to perform the copy operation. The kernel thread also maintains a list of

incomplete requests and attempts to make progress for these initiated requests. Apart

from servicing multiple user applications, the dedicated kernel thread also handles

tasks such as locking the application buffers, posting the descriptors for each user

request on appropriate channels, checking for device completions, releasing the locked

buffers after completion events. Since the critical tasks are onloaded to this kernel

thread, the user application is free to execute other computation or even execute other

memory copy operations while the copy operation is still in progress thus allowing

almost total overlap of memory copy operation and computation.

src page 0

src page 1

src page 2

src page 3
User

Application

dst page 0

dst page 1

dst page 2

dst page 3

ch 0 ch 1 ch 2 ch 3

DMA

ch 0

ch 1

ch 2

ch 3

Module
DMA

Consume

Consume
Produce

Kernel Worker
Thread

Posting

Completion

Progress

Pinning

Produce

Queue

Memory
Queue

Request

Completion

Figure 5.4: Asynchronous Memory Copy Operations using MCI

113

5.2.3 Avoiding Context Switch Overhead

In order to avoid the context switch overhead between the application process and

the kernel thread, we use an approach that has already been proposed by [83]. We

memory map a region from a user space to kernel space using a vmap kernel helper

function so that both the application and the kernel thread can access this common

memory region at the same time. We divide this memory region as a set of request and

response queues. We use the request and response queues to communicate between

the application and the kernel thread. The request queue is used to submit memory

copy requests by the application. The dedicated kernel thread constantly looks at

the request queue to process new copy requests. Similarly, the response queue is used

to notify the completion of copy operations by the kernel thread. The applications

constantly look at the response queue for completion notifications.

5.2.4 Handling Locking and Synchronization Issues

As mentioned earlier, the dedicated kernel thread can also help in handling pin-

ning and unpinning memory regions for performing efficient asynchronous memory

copy operations. Further, in the SCI scheme, since the kernel module exposes a set

of interfaces for applications, several kernel instances can be spawned if multiple ap-

plications need to access the copy engine. This increases the requirement of locking

the shared resources and careful management for supporting concurrency. However,

in the MCI scheme, since the dedicated kernel thread handles all tasks for multi-

ple applications, it avoids the need for locking the resources and becomes easier for

managing the shared resources.

114

5.2.5 Application-Transparent Asynchronous Memory Copy

The main idea of application-transparent asynchronism is to avoid blocking the ap-

plication while the memory copy operation is still in progress. With the asynchronous

memory copy interfaces, the application can explicitly initiate the copy operation and

wait for its completion using another function. However, several applications are writ-

ten with the blocking routine (memcpy), which assumes that the data is copied once

the function finishes. Further, the semantics of the memcpy operation assumes that

the buffer is free to be used after the completion of memcpy operation. To transpar-

ently provide asynchronous capabilities for such operations, two goals need to be met:

(i) the interface should not change; the application can still use the blocking memcpy

routine and (ii) the application can assume that the blocking semantics, i.e., once the

control returns to the application, it can read or write the buffer. In our approach, we

memory-protect the user buffer (thus disallow the application from accessing it) and

perform the copy operations. After the copy operation finishes, we release the mem-

ory protection so that the applications can access both the source and destination

buffers. Since in a memcpy operation the source does not get modified, we allow read

accesses to the source buffer. However, the destination address gets modified during

a copy operation and hence we do not allow accesses to this memory region during

the copy operation. We further optimize the performance by checking for copy com-

pletion on successive memory copy operation calls and release the protection. If the

application does not modify the destination buffer for sufficiently long time, then the

application will realize only the page protection time, which is much lesser compared

to the copy operation for large message transfers.

115

Application
User

Memory
Copy

Memory
Pin

DMA copy
Initiate

Kernel
Module / Thread

DMA copy
complete

Blocks
Application

Memory
Copy

Blocks Memory
Pin

DMA copy

complete

Overlap

Application
User

Memory
Pin

DMA copy

Kernel
Module / Thread

Overlap

Memory

SIGSEGV

(b) Application−aware Asynchronous Memory Copy (c) Application Transparent Asynchronous Memory Copy

Copy
Application

User Kernel
Module / Thread

Initiate

Application
Blocks

memcpy
complete

memcpy

complete
memcpy

complete

Application

Application
Blocks

(a) Application Transparent Memory Copy

Initiatememcpy
Initiatememcpy

Initiatememcpy
Protect

Initiate

DMA copy DMA copy
complete

Figure 5.5: Different Mechanisms for Asynchronous Memory Copy Operations

Figure 5.5 illustrates the designs of asynchronous memory copy operation. As

shown in Figure 5.5(a), though the memory copy is performed by the DMA engine

or by a dedicated core, the application blocks for every memory copy to finish before

performing any other operation. Figure 5.5(b) shows the impact of an application-

aware asynchronous memory copy operation. In this case, the application has to be

modified to take advantage of asynchronous feature. Figure 5.5(c) shows the design

of the application-transparent asynchronous memory copy operation approach. This

approach can be adopted along with the previous schemes. In this approach, as shown

in the Figure 5.5(c), we memory protect buffers before initiating the data transfer

and return the control to the application. If the application attempts to access the

destination buffer or modify the source buffer, a page fault is generated due to page

protection. This results in a SIGSEGV signal for the application which is handled by

our helper module. In this case, we block for all pending memory copy operations to

complete and release the protection appropriately. This can be further optimized if

we divide a large memory copy operation into smaller chunks and perform the page

116

protection and release for these smaller chunks. This can potentially allow better

overlap of memory copy operation with computation. However, if the application

touches the destination buffer or modifies the source buffer very frequently (thus

generating the page fault very frequently), it may lead to very less overlap of memory

copy operation with computation.

Potential Benefits of SCNI, SCI, MCI and MCNI Schemes: While all four

schemes address different design goals, in this section, we try to address the benefits

and issues with each of these schemes in providing asynchronous memory copy op-

erations to applications. The SCNI scheme simply uses libc memcpy which does not

provide any overlap to user applications as shown in Figure 5.6(a). However, the SCI

scheme shown in Figure 5.6(b), allows applications to take advantage of overlap capa-

bility after initiating the memory copy operation. In this scheme, the user application

waits for the kernel module to lock the application buffers and post the descriptors

across the DMA channels before performing the computation, thus limiting the over-

lap capability. On the other hand, in the MCI scheme as shown in Figure 5.6(c), we

see that the user application can proceed to perform computation immediately after

submitting the request to the request queue. This transaction also avoids context

switch overheads. This scheme provides almost complete overlap of memory copy op-

eration with computation. We expect similar trends for the MCNI scheme as shown

in Figure 5.6(d), in overlapping memory copy operation with computation. However,

due to huge mapping costs associated with this scheme, the memory copy operation

is very likely to take a longer time to finish, thus impacting the performance of large

memory copies.

117

Memory
Copy

User
Application

Blocks

Application

complete
memcpy

(a) SCNI

Memory
Application

User

Blocks
Application

Application
Blocks

Memory
Pin

Kernel

Initiate memcpy

memcpy complete

Overlap

(b) SCI

Check completion

Memory
Copy

Initiate

DMA copy
complete

DMA copy

Module

(c) MCI (d) MCNI

Memory
Copy

User
Application

Overlap

Thread
Kernel

Request Queue

vmap

Response Queue

memcpy

complete
memcpy

Completion
Check

Memory
Copy

User
Application

Pin
Memory

Initiate
DMA copy

DMA copy
complete

Overlap

Thread
Kernel

Request Queue

Response QueueCheck
Completion

User

memcpy

Figure 5.6: Overlap Capability: (a) SCNI, (b) SCI, (c) MCI and (d) MCNI

5.3 Experimental Results

We ran our experiments on a dual dual-core Intel 3.46 GHz processors with

2 MB L2 cache system using SuperMicro X7DB8+ motherboards which include 64-

bit 133 MHz PCI-X interfaces. We use the Linux RedHat AS 4 operating system and

the kernel version 2.6.20 for all our experiments.

Our experiments are organized as follows. First, we analyze our schemes in terms

of performance, overlap capability and the associated overheads. Next, we evaluate

the impact of these schemes in applications.

5.3.1 Performance with and without Page Caching

In this section, we evaluate the schemes in terms of latency and bandwidth per-

formance, overlap efficiency and its associated overheads.

Basic Performance with Page Caching: Figure 5.7 shows the basic performance

of memory copy operation using the page caching mechanism. Figure 5.7(a) shows

the latency of all four schemes. For the SCNI scheme, we perform several memcpy op-

eration using the libc library and average it over several iterations. For SCI, MCI and

118

MCNI schemes, we initiate the memory copy operation and wait for the completion

notification before initiating the next copy operation. As shown in Figure 5.7(a), we

see that the latency of both SCNI and MCNI schemes for message sizes greater than

2 MB is significantly worse compared to the performance of SCI and MCI schemes.

Since the cache size is only 2 MB, both SCNI and MCNI schemes perform the copy

operation in memory using the CPU which is limited by small register-size copy oper-

ations. However, for SCI and MCI schemes, since the copy operation is performed by

the DMA channels directly in memory, it is not limited by the register size. Hence,

we see a performance improvement of up to a factor of two for SCI and MCI schemes

in comparison with SCNI and MCNI schemes. For message sizes less than 1 MB,

since the buffers can fit in cache, the performance of SCNI and MCNI schemes are

significantly better than SCI and MCI schemes.

The bandwidth performance of memory copy operation is shown in Figure 5.7(b).

In this experiment, we initiate a window of copy operations and wait for these copy

operations to finish. We repeat this experiment for several iterations and report the

bandwidth. As shown in Figure 5.7(b), we see that the bandwidth performance of

SCNI and MCNI schemes for message sizes less than 1 MB is significantly better

than the bandwidth performance of SCI and MCI schemes due to caching effects.

The peak bandwidth for SCNI and MCNI schemes achieved are 11014 MB/s and

9087 MB/s, respectively. However, for message sizes greater than 2 MB, we see that

the bandwidth of SCNI and MCNI schemes drops to 1461 MB/s and 1463 MB/s since

the buffers are accessed in memory. On the other hand, SCI and MCI schemes report

a peak bandwidth of up to 2958 MB/s and 2954 MB/s, respectively.

119

To measure the overlap efficiency, we perform the overlap benchmark as men-

tioned in [93]. First, the benchmark estimates the copy latency (Tcopy) by performing

a blocking version of memory copy operations. Next, the benchmark initiates the

asynchronous memory copy followed by a certain amount of computation (Tcompute >

Tcopy) which takes at least the blocking copy latency and finally waits for the copy

completion. The total time is recorded as Ttotal. If the memory copy is totally over-

lapped by computation, we should have Ttotal = Tcompute. If the memory copy is not

overlapped, we should have Ttotal = Tcopy + Tcompute. The actual measured value will

be in between, and we define overlap as (Tcopy + Tcompute - Ttotal) / Tcopy. Based on the

above definition, the value of overlap will be between 0 (non-overlap) and 1 (totally

overlapped). A value close to 1 indicates a higher overlap efficiency. Figure 5.7(c)

shows the overlap efficiency of all four schemes in performing memory copy operations

and computations. For the SCNI scheme, since we only have a blocking version of

memory copy (libc memcpy), we see that the overlap efficiency is zero. In the SCI

scheme, since the copy operation is offloaded, we observe that it can achieve up to

0.88 (88%) overlap efficiency. However, for small message sizes, we see that the over-

lap efficiency is quite low. On the other hand, we observe that the MCI scheme can

achieve up to 1.00 (100%) overlap efficiency for large messages and up to 0.78 (78%)

overlap efficiency even for small messages. We also observe that the MCNI scheme

achieves up to 1.00 (100%) overlap efficiency for large messages and up to 0.5 (50%)

overlap efficiency for small messages.

Performance without Page Caching: In this section, we measure the performance

of our schemes without the page caching mechanism.

120

 0

 2000

 4000

 6000

 8000

 10000

 12000

16M 4M 1M 256k 64k 16k 4k 1k

La
te

nc
y

(M
ic

ro
se

co
nd

s)

Message Size (Bytes)

SCNI (CPU)
SCI (DMA)

MCI (DMA + core)
MCNI (core)

(a) Latency

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

16M 4M 1M 256k 64k 16k 4k 1k

B
an

dw
id

th
 (

M
B

/s
)

Message Size (Bytes)

SCNI (CPU)
SCI (DMA)

MCI (DMA + core)
MCNI (core)

(b) Bandwidth

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

16M 4M 1M 256k 64k 16k 4k 1k

O
ve

rla
p

Message Size (Bytes)

SCNI (CPU)
SCI (DMA)

MCI (DMA + core)
MCNI (core)

(c) Overlap

Figure 5.7: Micro-Benchmark Performance with Page Caching

Figure 5.8(a) shows the latency of all four schemes without page caching. For

the MCNI scheme, we observe that the latency is significantly worse reaching up

to 14829 µs for 16 MB message size. Further, we see that SCI and MCI schemes

report a latency of 6414 µs and 6468 µs, respectively. As mentioned earlier, since the

application buffers are not cached, every memory copy operation using SCI, MCI and

MCNI schemes incur a page locking cost, thus increasing the latency. However, the

SCNI scheme does not show any degradation since the scheme does not depend on

the underlying page caching mechanism. The bandwidth performance without page

caching mechanism is shown in the Figure 5.8(b). Since the locking costs can be

pipelined with several memory copy operations, we do not observe any degradation

in bandwidth for SCI and MCI schemes. However, for the MCNI scheme, due to

huge mapping costs, we see a drop in bandwidth. Figure 5.8(c) shows the overlap

efficiency of all four schemes without page caching mechanism. For the SCI scheme,

since the startup overheads fall in the critical path, we observe that it can achieve

121

only 0.74 (74%) overlap efficiency for large message transfers. However, we see that

both MCNI and MCI schemes show up to 1.00 (100%) overlap efficiency.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

16M 4M 1M 256k 64k 16k 4k 1k

La
te

nc
y

(M
ic

ro
se

co
nd

s)

Message Size (Bytes)

SCNI (CPU)
SCI (DMA)

MCI (DMA + core)
MCNI (core)

(a) Latency

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

16M 4M 1M 256k 64k 16k 4k 1k

B
an

dw
id

th
 (

M
B

/s
)

Message Size (Bytes)

SCNI (CPU)
SCI (DMA)

MCI (DMA + core)
MCNI (core)

(b) Bandwidth

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

16M 4M 1M 256k 64k 16k 4k 1k

O
ve

rla
p

Message Size (Bytes)

SCNI (CPU)
SCI (DMA)

MCI (DMA + core)
MCNI (core)

(c) Overlap

Figure 5.8: Micro-Benchmark Performance without Page Caching

5.3.2 Split-up Overhead of Different Memory Copy Approaches

To understand the low overlap efficiency observed for small messages in the pre-

vious section, we measure the split-up overhead of the three schemes, namely SCI,

MCI and MCNI schemes. Figure 5.9 shows the split-up overhead of using memory

copy operations with the SCI, MCI and MCNI schemes. For small message sizes, we

see that the pinning costs, startup overheads and completion notifications consume

considerable amount of time reducing the overlap efficiency for the SCI scheme. Even

for large message sizes, we observe that the pinning costs and DMA startup overheads

occupy close to 18% and 7%, respectively. However, for MCI and MCNI schemes, we

observe that the only overhead is posting the request and checking for completions

through memory transactions in the response queue, thus resulting in almost 100%

overlap efficiency.

122

0%

20%

40%

60%

80%

100%

S
C

I

M
C

I

M
C

N
I

S
C

I

M
C

I

M
C

N
I

S
C

I

M
C

I

M
C

N
I

S
C

I

M
C

I

M
C

N
I

S
C

I

M
C

I

M
C

N
I

S
C

I

M
C

I

M
C

N
I

1K 4K 16K 64K 256K 1M

Message Size (bytes)

P
er

ce
nt

ag
e

O
ve

rh
ea

d

User/Kernel Pinning DMA startup
DMA completion Overlap-Time

Figure 5.9: Overheads of SCI, MCI and MCNI Schemes

5.3.3 Evaluations with SPEC and Datacenters

In this section, we evaluate the performance of the proposed schemes with gzip

SPEC CPU2000 benchmark and simulated datacenter services. SPEC CPU2000

benchmark [22] is a set of benchmarks designed to characterize and evaluate the

performance of overall system performance such as CPU, memory, etc. In this work,

we focus on one such benchmark, gzip, which measures the CPU and memory per-

formance. In order to force SPEC CPU2000 benchmarks to use our schemes, we

preloaded a library that intercepts all memcpy operations. In all our experiments, we

forced the benchmarks to use the different schemes if the memory copy size is greater

than 64 KB.

123

SPEC benchmarks focus on CPU and memory-intensive operations (i.e., memory

reads, computations, memory writes) and hence we did not observe any significant

improvement in the overall execution time. However, we report the time spent in

memory copy operations (greater than 64 KB message size) using the four different

schemes during application execution. With the protection approach, we include the

time spent in initiating the memory copy and protecting the source and destination

buffers and also the time spent in waiting for the memory copy operation to finish

when either the source or the destination buffers are touched (i.e. the time spent

after receiving a SIGSEGV). Table 5.1 shows the total cost of protecting the source

and destination buffers before and after the copy operation and we observe that the

total protection cost (this includes four mprotect calls) is quite less compared to the

total time for the memory copy operation. It is to be noted that this cost is the worst

case estimate and it can be further optimized for consecutive memory copy operations

involving the same source or the destination buffers and if the buffers are not touched

in between these memory copy operations.

Msg. Size 64 KB 256 KB 1 MB 4 MB 16 MB
Cost (usecs) 4.3 7.1 18.6 63.6 227.9

Table 5.1: Memory Protection Overhead

Figure 5.10(a) shows the performance of gzip benchmark with all four schemes.

As shown in the figure, we observe that both SCI and MCI schemes improve the

performance of memory copy time (i.e., memory copies greater than 64 KB) by up to

35% as compared to the SCNI scheme. We profiled the message distribution of gzip

124

benchmark for all message sizes greater than 64 KB. We found that more than 50%

of the memory copies greater than 64 KB fall between 1 MB and 2 MB. Due to this

reason, we observe that SCI and MCI schemes improve the performance of memory

copies. For the MCNI scheme, we observe that the performance does not improve

due to large mapping cost overheads. As mentioned in Section 5.2, application-

transparent memory copies can further improve the performance if the source and

destination buffers are not accessed immediately after a memory copy operation. As

shown in Figure 5.10(a), we observe that the performance of gzip consistently improves

by 10% as compared to the performance of blocking memory copy operations for SCI,

MCI and MCNI schemes. This result is quite promising for several applications that

use memory copies similar to the gzip benchmark.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

CPU SCI MCI MCNI

M
e
m

o
ry

 C
o

p
y
 T

im
e
 (

u
s
e
c
s
)

No Protection
Protection

(a) Memory Copy Time (> 64 KB) in gzip
SPEC Benchmark

0

50

100

150

200

250

300

350

400

450

500

Zipf � = 0.9 Zipf � = 0.75 Zipf � = 0.5

A
v

e
ra

g
e

 L
a

te
n

c
y

 (
u

s
e

c
s

)

Shared memory
SCI (DMA)
MCI (DMA + core)

(b) Emulated Data Sharing in Datacenters

Figure 5.10: Application Performance

125

Next, we evaluate the performance of memory copy operations in a datacenter

environment [85]. For efficiently transferring the data from a remote site to the local

node in a datacenter environment, a distributed shared state has been proposed in

the literature [97]. However, there is no efficient support for transferring the data

between a datacenter service and the application threads within a node. We use the

asynchronous memory copy operations for supporting data sharing within a node.

To emulate the multiple threads copying the shared data scenario, we create a single

server and three application threads in a single node. The server initiates a data copy

operation to all three application servers and waits for the completion operation.

The application threads also wait for the completion of the copy operation. For data

copy operation, we use a Zipf distribution with varying α value which is common in

several datacenter environments. According to Zipf law, the relative probability of a

request for the ith most popular document is proportional to 1/iα, where α determines

the randomness of file accesses. Higher the α value, higher will be the temporal

locality of the document accessed. We use file sizes ranging from 500 bytes to 8 MB

in the Zipf trace. We emulate the datacenter environment by firing copy requests

according the Zipf pattern and measure the average latency after the completion of

all copy operations. We report the performance of SCI, MCI and the traditional

shared memory (SCNI) schemes for copying the data as shown in Figure 5.10(b). We

observe that the performance of the MCI scheme is significantly better for all Zipf

traces. The MCI scheme shows up to 37% performance improvement as compared to

the SCI scheme for an α value of 0.5. This is mainly due to avoiding context switch

overheads and scheduling the memory copy operations without any delay. The shared

memory (SCNI) scheme is better for larger α values compared to the SCI scheme,

126

since majority of the data is transferred through the cache. However, as α value

decreases, we see that the performance of the shared memory (SCNI) scheme gets

worse. Due to a lot of overheads associated with the SCI scheme, the benefits of the

SCI scheme show up only when the application uses large memory copies (smaller α

values). The performance of the MCNI scheme with other application threads (all

four cores are completely utilized) degraded significantly and hence we did not include

this result.

5.4 Summary

In this Chapter, we proposed several approaches to provide complete overlap of

memory copy operation with computation by dedicating the critical tasks to a core

in a multicore system. In the first scheme, MCI (Multi-Core with I/OAT), we of-

floaded the memory copy operation to the copy engine and onloaded the startup

overheads associated with the copy engine to a dedicated core. For systems without

any hardware copy engine support, we proposed a second scheme, MCNI (Multi-Core

with No I/OAT) that onloaded the memory copy operation to a dedicate core. We

further proposed a mechanism for an application-transparent asynchronous memory

copy operation using memory protection. We analyzed our schemes based on over-

lap efficiency, performance and associated overheads using several micro-benchmarks

and applications. Our microbenchmark results showed that memory copy operations

using MCI and MCNI schemes can be significantly overlapped (up to 100%) with

computation. Evaluations with datacenters using MCI show up to 37% improve-

ment compared to the traditional implementation. Our evaluations with gzip SPEC

127

benchmark using application-transparent asynchronous memory copy show a lot of

potential to use such mechanisms in several application domains.

128

CHAPTER 6

MULTICORE-AWARE, NETWORK-ASSISTED STATE
SHARING

In this Chapter, we propose design optimizations in state sharing substrate using

the features of both high-speed networks and multicore systems. Figure 6.1 shows

the various components of multicore-aware, network-assisted state sharing substrate.

Broadly, in the figure, we focus on the colored boxes for designing efficient multicore-

aware, network-assisted state sharing components and understanding its benefits with

datacenter applications and services. The dark colored boxes show the features and

technologies that we utilize and the light colored boxes show the proposed components

and datacenter system software evaluated.

6.1 Background and Related Work

As mentioned in the previous sections, we have proposed and developed state

sharing using several emerging technologies. Recently, multi-core systems have been

gaining popularity due to their low-cost per processing element and are getting de-

ployed in several distributed environments. In addition, many of these systems enable

simultaneous multi-threading (SMT), also known as hyper-threading, to support large

number of concurrent thread executions in the system. While the main idea of these

129

Request/Message
Queue−based Design

Request/Completion
Queue−based Design

Soft State Sharing Substrate
Network−Assisted

State Sharing
Multicore−aware

State Sharing
DMA−Accelerated

State Sharing

Datacenter Applications

Fine−grained Resource Monitoring
Datacenter Services

STORM R−Tree B−Tree Checkpointing ...Apache

DMA Copy
Engine Cores

Multicore
Architecture

I/O Acceleration
Technology (I/OAT)

 RDMA Atomics
Multiple

High−Performance Networks

Figure 6.1: Multicore-aware, Network-Assisted State Sharing Framework

systems is to provide multiple processing elements to function in parallel, it also

opens up new ways to design and optimize existing middle-ware such as the state

sharing substrate. Further, as the number of cores and threads multiply, one or more

of these cores can also be dedicated to perform specialized datacenter services. In

this context, we propose several design optimizations for the state sharing substrate

in multi-core systems and high-speed networks such as the combination of shared

memory and message queues for inter-process communication, dedicated thread for

communication progress and for onloading other state sharing operations such as get

and put. In the following sections, we refer to our proposed substrate as a distributed

data sharing substrate (DDSS).

Related Work: Modern processors are seeing a steep increase in the number of

cores available in the system [51]. As the number of cores increases, the choice to

130

dedicate one or more cores to perform specialized services will become more common.

In this paper, we demonstrated the benefits with a resource monitoring service using

DDSS. There has been several distributed data sharing models proposed in the past

for a variety of environments such as InterWeave [89], Khazana [42], InterAct [79]

and Sinfonia [28]. Many of these models are implemented based on the traditional

two-sided communication model targeting the WAN environment addressing issues

such as heterogeneity, endianness and several others. Such two-sided communication

protocols have been shown to have significant overheads in a cluster-based data-

center environment under loaded conditions [97]. The most important feature that

distinguishes DDSS from these models is the ability to take advantage of several

features of multi-core systems and high-performance networks for both LAN/WAN

environments, its applicability and portability with several high-speed networks and

its minimal overhead.

6.2 Proposed Design Optimizations

In this section, we first present our existing Message Queue-based DDSS (MQ-

DDSS) state sharing design as discussed in Chapter 2. Next, we present two design

optimizations [96, 95] for multi-core systems, namely, (i) Request/Message Queue-

based DDSS (RMQ-DDSS) and (ii) Request/Completion Queue-based DDSS (RCQ-

DDSS).

6.2.1 Message Queue-based DDSS (MQ-DDSS)

Existing DDSS service utilizes a kernel-based message queue to store and forward

user requests from one application thread to another and notification-based mecha-

nism to respond to network events. For example, in the case of a get() operation in

131

DDSS, the application thread performs an ipc send operation (shown as Step 1 in

Figure 6.2(a)) to submit a request. During this operation, the kernel (after a context-

switch) copies the user request buffer to a FIFO (First-In-First-Out) message queue.

If the corresponding ipc recv (shown as Step 2 in the figure) operation is posted by the

service thread, then the kernel copies the request buffer to the service thread’s user

buffer and sends an interrupt to the service thread to handle the request. Next, the

service thread determines the remote node that holds the data and issues an RDMA

read operation (Step 4). After the RDMA read operation completes, the network

sends an interrupt to the kernel (Step 6 shown in the figure) to signal the completion

and submits a completion event in the completion queue (Step 7). The kernel looks at

the interrupt service routine and raises another interrupt (Step 8) for the user process

in order to signal the completion of the network event. The service thread processes

the network completion event (Step 9) and accordingly informs the application thread

regarding the status of the operation (Steps 10 and 11). Though this approach does

not consume significant CPU, it suffers from the fact that the operating system gets

involved in processing the request and reply messages and in handling network events.

As a result, this approach leads to several context-switches, interrupts (shown as the

dashed line in Figure 6.2(a)) and thus may lead to degradation in performance.

6.2.2 Request and Message Queue-based DDSS (RMQ-DDSS)

One approach to optimize the performance of DDSS is to use a shared memory

region as a circular array of buffers (Steps 1 and 2 shown in the Figure 6.2(b)) for

inter-process communication. In this approach, the reply messages still follow the

132

Service
thread

Application
threads

Service
thread

Application
threads

Service
thread

Request
Queue

Request
Queue

Kernel Message Queues

(c) RCQ−DDSS

(4)(3)

Completion
Queue

(5)(6)

NIC

Request
Queue

Application
threads

(2)(1)

Request
Queue

Completion
Queue

(7)(8)

Kernel Space

User Space

(b) RMQ−DDSS

(3)

NIC

User Space

Kernel Space

(a) MQ−DDSS

Kernel Message Queues

(3)

(1) Completion
Queue

(11) (2) (10)

thread
Kernel

(8)

(4) (7)

(6)

(5)

(9)
NIC

User Space

Kernel Space

(1) (2)
Queue

Request

(4)

(6) (5)

(7)(8) Completion
Queue

Figure 6.2: Design Optimizations in State Sharing

path of using the kernel-based message queues (Step 7 and 8). Networks such as In-

finiBand and iWARP-capable 10-Gigabit Ethernet also allow applications to check for

completions through memory mapped completion queues. The DDSS service thread

periodically polls on this completion queue, thereby avoiding the kernel involvement

for processing the network events. However, the service thread cannot poll too fre-

quently as it may occupy the entire CPU. We propose an approach through which

critical operations such as get() and put() use a polling-based approach while other

operations such as allocate() and release() use a notification-based mechanism and

wait for network events. The performance of allocate() and release() operations are

not most critical since applications typically read and write information frequently.

This optimization reduces the kernel involvement significantly.

6.2.3 Request and Completion Queue-based DDSS (RCQ-
DDSS)

Another approach to optimize the performance of DDSS is to use a circular ar-

ray of buffers for both request and reply messages for inter-process communication

133

as shown in Figure 6.2(c). Applications submit requests using the request circular

buffer (Step 1) . The service thread constantly looks for user requests by polling at

all request buffers (Step 2) and processes each request (Step 3) by issuing the corre-

sponding network operations. The network processes this request (Step 4) and issues

a completion (Step 5) in a completion queue. The service thread periodically polls on

this queue (Step 6) to signal completions to applications threads (Step 7 and 8). It

is to be noted that a similar mechanism using memory mapped request and response

queues has already been proposed by [83]. This approach completely removes the

kernel involvement for both submitting requests and receiving reply messages, thus

leading to better performance for several operations in DDSS. However, application

threads need to constantly poll on the reply buffer to look for a receive completion

and this may result in occupying a significant amount of CPU. As application threads

in the system increase and if all threads constantly poll on the reply buffers, it is very

likely that the performance may degrade for systems with limited CPUs or SMTs.

However, for systems which support large number of cores or SMTs, this optimization

can significantly help improve the performance of the application.

We present various performance results. First, we present the impact of our design

optimizations in DDSS at a micro-benchmark level and then we show the performance

improvement achieved by applications such as distributed STORM, R-Tree and B-

Tree query processing, application checkpointing and resource monitoring services

using DDSS.

Our experimental testbed is a 560-core InfiniBand Linux cluster. Each of the 70

compute nodes have dual 2.33 GHz Intel Xeon “Clovertown” quad-core processors for

a total of 8 cores per node. Each node has a Mellanox MT25208 dual-port Memfree

134

HCA. For experiments with 10-GigE, we use two Chelsio T3B 10 GigE PCI-Express

adapters (firmware version 4.2) connected to two nodes. InfiniBand and 10-Gigabit

Ethernet software support is provided through the OpenFabrics/Gen2 stack [77],

OFED 1.2 release.

6.3 Basic Performance

In this section, we present the benefits of our design optimizations in DDSS over

IBA and 10-GigE.

6.3.1 DDSS Latency

First, we measure the performance of inter-process communication (IPC) using

the different approaches mentioned in Section 6.2. We design the benchmark in

the following way. Each application thread sends an eight byte message through

System V message queues or shared memory (using a circular array of buffers) to

the service thread. The service thread immediately sends a reply message of eight

bytes to the corresponding application thread. Figure 6.3(a) shows the inter-process

communication latency with increasing number of application threads for MQ-DDSS,

RMQ-DDSS and RCQ-DDSS approaches. We observe that the RCQ-DDSS approach

achieves a very low latency of 0.4µsecs while RMQ-DDSS and MQ-DDSS approaches

achieve a higher latency of 8.8µsecs and 13µsecs, respectively. This is expected since

the RCQ-DDSS approach completely avoids kernel involvement through memory-

mapped circular buffers for communication. Also, we see that the performance of

RCQ-DDSS approach scales with increasing number of processes as compared to

RMQ-DDSS and MQ-DDSS approaches. Next, we measure the performance of DDSS

operations including the inter-process communication and the network operations.

135

Figure 6.3(b) shows the performance of get() operation of DDSS over InfiniBand. We

see that the latency of a get() operation over InfiniBand using RCQ-DDSS approach

is 8.2µsecs while the RMQ-DDSS and MQ-DDSS approaches show a latency of up

to 11.3µsecs and 22.6µsecs, respectively. For increasing message sizes, we observe

that the latency increases for all three approaches. We see similar trends for a get()

operation over iWARP-capable 10-Gigabit Ethernet as shown in Figure 6.3(c).

6.3.2 DDSS Scalability

Here, we measure the scalability of DDSS with increasing number of processes

performing the DDSS operations over IBA. First, we stress the inter-process commu-

nication and show the performance of the three approaches, as shown in Figure 6.4(a).

We observe that, for very large number of client threads (up to 512), the RMQ-DDSS

approach performs significantly better than RCQ-DDSS and MQ-DDSS approaches.

Since the RCQ-DDSS approach uses significant amount of CPU to check for comple-

tions, it does not scale well with large number of threads. In the case of MQ-DDSS

approach, it generates twice the number of kernel events as compared to the RMQ-

DDSS approach and thus it performs worse. Next, we stress the network and show

the scalability of DDSS. In this experiment, we allocate the data on a single node

and multiple applications from different nodes access different portions of the data

simultaneously, as shown in Figure 6.4(b). We compare its performance by distribut-

ing the data across different nodes in the cluster and show its scalability. As shown

in Figure 6.4(c), we observe that the performance of DDSS scales with increasing

number of clients using the distributed approach as compared to the non-distributed

approach.

136

 0

 10

 20

 30

 40

 50

 60

 70

 7 6 5 4 3 2 1

La
te

nc
y

(M
ic

ro
se

co
nd

s)

Number of Client Threads

RCQ-DDSS
RMQ-DDSS

MQ-DDSS

(a) IPC Latency

 0

 10

 20

 30

 40

 50

 60

 70

16k4k1k 256 64 16 4 1

La
te

nc
y

(M
ic

ro
se

co
nd

s)

Message Size (bytes)

RCQ-DDSS
RMQ-DDSS

MQ-DDSS

(b) Performance of get() in
IBA

 0

 10

 20

 30

 40

 50

 60

 70

16k4k1k 256 64 16 4 1

La
te

nc
y

(M
ic

ro
se

co
nd

s)

Message Size (bytes)

RCQ-DDSS
RMQ-DDSS

MQ-DDSS

(c) Performance of get() in
10-GigE

Figure 6.3: DDSS Latency

 0.1

 1

 10

 100

 1000

 10000

 100000

 512 256 128 64 32 16 8 4 2 1

La
te

nc
y

(M
ic

ro
se

co
nd

s)

Number of Client Threads

RCQ-DDSS
RMQ-DDSS

MQ-DDSS

(a) IPC Latency

 0

 200

 400

 600

 800

 1000

 1200

 1400

 512 256 128 64 32 16 8 4 2 1

La
te

nc
y

(M
ic

ro
se

co
nd

s)

Number of Client Threads

RCQ-DDSS
RMQ-DDSS

MQ-DDSS

(b) Performance of get() for
single key

 0

 50

 100

 150

 200

 250

 512 256 128 64 32 16 8 4 2 1

La
te

nc
y

(M
ic

ro
se

co
nd

s)

Number of Client Threads

RCQ-DDSS
RMQ-DDSS

MQ-DDSS

(c) Performance of get() for
distributed keys

Figure 6.4: DDSS Scalability

137

6.4 Application-level Evaluations

In this section, we present the benefits of DDSS using applications such as R-

Tree and B-Tree query processing, distributed STORM, application checkpointing

and resource monitoring services over IBA.

6.4.1 R-Tree Query Processing

R-Tree [59] is a hierarchical indexing data structure that is commonly used to

index multi-dimensional geographic data (points, lines and polygons) in the fields of

databases, bio-informatics and computer vision. In our experiments, we use an R-tree

query processing application, developed by Berkeley [23] that uses helper functions

such as read page and write page to read and write the indexing information to the

disk. We place the indexing information on a network-based file system so that

multiple threads can simultaneously access this information for processing different

queries. We modify the read page and write page function calls to use the get() and

put() operations of DDSS and place the indexing information on DDSS to show the

benefits of accessing this information from remote memory as compared to the disk

using the network-based file system. Table 6.1 shows the overall execution time of an

R-Tree application with varying percentage of queries (100% query implies that the

query accesses all the records in the database while 20% implies accessing only 20%

of the records). As shown in the table, we see that all three approaches (RCQ-DDSS,

RMQ-DDSS and MQ-DDSS) improve the performance by up to 56% as compared to

the traditional approach (No DDSS approach) and the RCQ-DDSS approach shows

an improvement of up to 9% and 4% as compared to MQ-DDSS and RMQ-DDSS

approaches, respectively. Moreover, for increasing percentage of query accesses, we

138

see that the performance improvement decreases. This is expected since applications

spend more time in computation for large queries as compared to small queries, thus

reducing the overall percentage benefit.

6.4.2 B-Tree Query Processing

B-Tree [32] is a data structure that is commonly used in databases and file systems

which maintains sorted data and allows operations such as searches, insertions and

deletions in logarithmic amortized time. In our experiments, we use a B-Tree query

processing application, developed by Berkeley [23] that uses similar helper functions to

read and write the indexing information. Similar to the R-Tree application, we place

the indexing information in DDSS and compare its performance with accessing the

information from the disk using network-based file system. Table 6.1 shows the overall

execution time of a B-Tree application with varying percentage of queries. As shown in

Table 6.1, we see that all three approaches (RCQ-DDSS, RMQ-DDSS and MQ-DDSS)

improve the performance by up to 45% as compared to the traditional approach (No

DDSS approach) and the RCQ-DDSS approach shows an improvement of up to 3%

and 1% as compared to MQ-DDSS and RMQ-DDSS approaches, respectively.

6.4.3 Distributed STORM

STORM [70, 24] is a middle-ware layer developed by the Department of Biomed-

ical Informatics at The Ohio State University. It is designed to support SQL-like

queries on datasets primarily to select the data of interest and transfer the data from

storage nodes to compute nodes for data processing. In our previous work [97], we

demonstrated the improvement of placing the datasets in DDSS. In this work, we

139

place the meta-data information of STORM in DDSS and show the associated bene-

fits as compared to accessing the meta-data using TCP/IP communication protocol.

Table 6.1 shows the overall execution time of STORM with varying record sizes. As

shown in the table, we see that all three approaches improve the performance by 44%

as compared to the traditional approach (No DDSS approach). STORM establishes

multiple connections with the directory server to get the meta-data information and

uses socket-based calls to send and receive the data, which is a two-sided commu-

nication protocol. Most of the benefits shown is achieved mainly due to avoiding

connections (in the order of several milliseconds) and using one-sided communication

model.

Application No. of DDSS Avg Size Overall Execution Time (milliseconds)
Operations (bytes) No DDSS MQ-DDSS RMQ-DDSS RCQ-DDSS

R-Tree

20% 8 8192 3.917 1.868 1.786 1.700
40% 23 8192 12.427 7.149 7.013 6.855
60% 41 8192 25.360 15.609 15.481 15.189
80% 60 8192 42.457 27.529 27.232 26.830
100% 74 8192 60.781 43.064 42.587 42.385

B-Tree

20% 8 8192 4.715 2.675 2.605 2.576
40% 13 8192 8.114 4.906 4.805 4.743
60% 20 8192 12.242 7.336 7.186 7.149
80% 26 8192 16.040 9.490 9.425 9.311
100% 33 8192 20.400 11.534 11.360 11.265

STORM

1K 86 7.6 2250 1260.2 1259.4 1258.2
10K 177 6.4 4900 1910.8 1910.1 1909.4
100K 158 6.5 6200 3211 3210.7 3210
1000K 125 6.4 13100 11110.5 11110.3 11109.6

Table 6.1: Application Performance

To understand the decrease in performance improvement of RCQ-DDSS approach

as compared to MQ-DDSS and RMQ-DDSS approaches, we repeat the experiments

140

and report the time taken by the data sharing component in applications in Figure 6.5.

The performance benefits achieved in an R-Tree query processing application is shown

in Figure 6.5(a). We see that the performance benefits achieved by the RCQ-DDSS

approach as compared to MQ-DDSS and RMQ-DDSS approaches is 56% and 27%,

respectively. However, we also observe that the MQ-DDSS approach achieves close

to 87% performance improvement as compared to R-Tree query processing without

DDSS, with only 13% of the remaining time to be optimized further. As a result,

we see marginal improvements in application performance using the RCQ-DDSS ap-

proach as compared to MQ-DDSS and RMQ-DDSS approaches. We see similar trends

for B-Tree query processing and STORM as shown in Figures 6.5(b) and 6.5(c).

 1

 10

 100

 1000

 10000

 100000

100%80%60%40%20%

E
xe

cu
tio

n
T

im
e

(M
ic

ro
se

co
nd

s)

R-TREE-RCQ-DDSS
R-TREE-RMQ-DDSS

R-TREE-MQ-DDSS
R-TREE

(a) R-Tree Query Process-
ing

 1

 10

 100

 1000

 10000

 100000

100%80%60%40%20%

E
xe

cu
tio

n
T

im
e

(M
ic

ro
se

co
nd

s)

B-TREE-RCQ-DDSS
B-TREE-RMQ-DDSS

B-TREE-MQ-DDSS
B-TREE

(b) B-Tree Query Process-
ing

 1

 10

 100

 1000

 10000

1000K100K10K1K

E
xe

cu
tio

n
T

im
e

(M
ill

is
ec

on
ds

)

STORM-RCQ-DDSS
STORM-RMQ-DDSS

STORM-MQ-DDSS
STORM

(c) Meta-data in Dis-
tributed STORM

Figure 6.5: State Sharing Performance in Applications

6.4.4 Application Checkpointing

Here, we present our evaluations with an application checkpointing benchmark [97]

to demonstrate the scalability of all three approaches. In this experiment, every

process checkpoints an application at random time intervals (if the current version

141

does not match, it restarts to a previous consistent version, else commits an updated

version). Also, every process simulates the application restart by taking a consistent

checkpoint at other random intervals based on a failure probability 0.001 (0.1%).

Figure 6.6(a) shows the performance of checkpoint applications with increasing

number of processes within the same node. We observe that the performance of the

RCQ-DDSS approach scales with increasing number of application processes for up

to 16. However, for large number of processes up to 64, we see that the RMQ-DDSS

approach performs better which confirms the results shown in Section 6.3.2. Fig-

ure 6.6(b) shows the performance of checkpoint applications with increasing number

of processes on different nodes. Here, we stress the network by assigning the opera-

tions in DDSS on one single remote node and all processes perform DDSS operations

on this remote node. As shown in Figure 6.6(b), we see that the performance of all

three approaches scale for up to 16 processes. However, for processes beyond 16, the

performance of all three approaches fail to scale due to network contention. Further,

with 512 processes, we observe that the performance of the RCQ-DDSS approach

performs significantly worse as compared to RMQ-DDSS and MQ-DDSS approaches

which confirms the results shown in Section 6.3.2. Next, we show the performance

by distributing the operations in DDSS on all the nodes in the system and show its

scalability for up to 8192 processes. As shown in the Figure 6.6(c), we observe that

the RCQ-DDSS approach scales for up to 512 processes. However, for very large

number of processes up to 8192, we see that the RMQ-DDSS approach performs bet-

ter as compared to RCQ-DDSS and MQ-DDSS approaches, confirming our earlier

observations in Section 6.3.2.

142

 10

 100

 1000

 10000

 100000

 64 32 16 8 4 2 1

La
te

nc
y

(M
ic

ro
se

co
nd

s)

Number of Client Threads

RCQ-DDSS
RMQ-DDSS
MQ-DDSS

(a) Clients within a single
node (non-distributed)

 10

 100

 1000

 10000

 512 256 128 64 32 16 8 4 2 1

La
te

nc
y

(M
ic

ro
se

co
nd

s)

Number of Client Threads

RCQ-DDSS
RMQ-DDSS
MQ-DDSS

(b) Clients across different
nodes (non-distributed)

 10

 100

 1000

 10000

 100000

 1e+06

4k1k 256 64 16 4 1

La
te

nc
y

(M
ic

ro
se

co
nd

s)

Number of Client Threads

RCQ-DDSS
RMQ-DDSS
MQ-DDSS

(c) Clients across different
nodes (distributed)

Figure 6.6: Checkpoint Application Performance

6.5 Datacenter Services on Dedicated Cores

Several existing services such as resource monitoring, caching, distributed lock

manager can be built on top of the state sharing substrate. While these services help

improve the performance of many applications, it can also affect the performance

of other applications that run concurrently, since it requires some amount of CPU

to perform these tasks. To demonstrate this effect, we use a resource monitoring

application [94] and build it as a part of a DDSS service and show its impact with a

proxy server that directs client requests to web servers for processing HTML requests.

The DDSS service periodically monitors the system load on the web servers by issuing

a get() operation. For our evaluations, we use a cluster system consisting of 48 nodes

and each node has two Intel Xeon 2.6 GHz processors with a 512 KB L2 cache and

2 GB of main memory. In the 48-node experimental testbed, we use one CPU for

both the proxy server and the resource monitoring service and blocked the other CPU

with dummy computations. Figure 6.7(a) shows the response time seen by clients in

143

requesting a 16 KB file from the web server. We observe that the client response

time fluctuates significantly depending on the number of web servers monitored by

the DDSS service. With 32 web servers, we see that the client response time can get

affected by almost 50%. Next, we use one CPU for the proxy server and an additional

CPU for the DDSS service and show the performance impact in Figure 6.7(b). We

observe that the client response time remains unaffected irrespective of the number

of servers being monitored by the DDSS service. Accordingly, applications with

stringent quality of service requirements can use a dedicated core to perform the

additional services and still meet their requirements in an efficient manner. We also

varied the experiments in terms of different file size requests, as shown in Figure 6.9

and different monitoring granularities, as shown in Figure 6.8 and see similar trends.

0 200 400 600 800 1000
800

1000

1200

1400

1600

1800

2000

Iterations

La
te

nc
y(

M
icr

os
ec

on
ds

)

4Servers
8Servers
16Servers
32Servers

(a) DDSS Service and Web Server on
the same core

0 200 400 600 800 1000
800

1000

1200

1400

1600

1800

2000

Iterations

La
te

nc
y(

M
icr

os
ec

on
ds

)

4Servers
8Servers
16Servers
32Servers

(b) DDSS Service and Web Server on
different cores

Figure 6.7: Performance impact of DDSS on Web Servers: Number of Servers

144

0 200 400 600 800 1000
800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

Iteration Number

La
te

nc
y(

us
ec

s)

1ms
4ms
16ms

(a) DDSS Service and Web Server on
the same core

0 200 400 600 800 1000
800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

Iteration Number

La
te

nc
y(

us
ec

s)

1ms
4ms
16ms

(b) DDSS Service and Web Server on
different cores

Figure 6.8: Performance impact of DDSS on Web Servers: Monitoring Granularity

0 200 400 600 800 1000
800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

Iteration Number

La
te

nc
y(

us
ec

s)

8k
16k

(a) DDSS Service and Web Server on
the same core

0 200 400 600 800 1000
800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

Iteration Number

La
te

nc
y(

us
ec

s)

8k
16k

(b) DDSS Service and Web Server on
different cores

Figure 6.9: Performance impact of DDSS on Web Servers: Different File Sizes

145

6.6 Summary

In this Chapter, we presented design optimizations in DDSS for systems with

high-performance networks and multicore architectures and comprehensively evalu-

ated DDSS in terms of performance, scalability and associated overheads using several

micro-benchmarks and applications such as Distributed STORM, R-Tree and B-Tree

query processing, checkpointing applications and resource monitoring services. Our

micro-benchmark results not only showed a very low latency in DDSS operations

but also demonstrated the scalability of DDSS with increasing number of processes.

Application evaluations with R-Tree and B-Tree query processing and distributed

STORM showed an improvement of up to 56%, 45% and 44%, respectively, as com-

pared to traditional implementations. Evaluations with application checkpointing

demonstrated the scalability of DDSS. Further, we demonstrated the portability of

DDSS across multiple modern interconnects such as InfiniBand and iWARP-capable

10-Gigabit Ethernet networks (applicable for both LAN/WAN environments). In ad-

dition, our evaluations using an additional core for DDSS services showed a lot of

potential benefits for performing services on dedicated cores.

146

CHAPTER 7

DMA-ACCELERATED, NETWORK-ASSISTED STATE
SHARING

Figure 7.1 shows the various components of DMA-accelerated, network-assisted

state sharing substrate. Broadly, in the figure, we focus on the colored boxes for

designing efficient DMA-accelerated, network-assisted state sharing components that

assist network processing and understanding its benefits with datacenter applications.

The dark colored boxes show the features and technologies that we utilize and the

light colored boxes show the proposed components and datacenter system software

evaluated. Note that the design optimizations and the benefits shown in this section

demonstrate the capabilities of an asynchronous DMA engine in accelerating the

network communication for Ethernet-based networks.

7.1 Background and Related Work

Several clients request datacenter servers for either the raw or some kind of pro-

cessed data simultaneously. However, existing servers are becoming increasingly inca-

pable of meeting such sky-rocketing processing demands with high-performance and

scalability. These servers rely on TCP/IP for data communication and typically use

147

(Reduced CPU utilization, higher throughput, ...)
Receiver Memory Copy using I/OAT’s DMA

Network−Assisted
State Sharing

Multicore−aware
State Sharing

Datacenter Applications

DMA−Accelerated
State Sharing

Soft State Sharing Substrate

DMA Copy
Engine Cores

Multicore
Architecture

I/O Acceleration
Technology (I/OAT)

 RDMA Atomics
Multiple

High−Performance Networks

Figure 7.1: DMA-Accelerated, Network-Assisted State Sharing Framework

Gigabit Ethernet networks for cost-effective designs. The host-based TCP/IP proto-

cols on such networks have high CPU utilization and low bandwidth, thereby limiting

the maximum capacity (in terms of requests they can handle per unit time). Alterna-

tively, many servers use multiple Gigabit Ethernet networks to cope with the network

traffic. However, at multi-Gigabit data rates, packet processing in the TCP/IP stack

occupies a significant portion of the system overhead.

Packet processing [50, 53] usually involves manipulating the headers and mov-

ing the data through the TCP/IP stack. Though this does not require significant

computation, processor time gets wasted due to delays caused by latency of memory

accesses and data movement operations. To overcome these overheads, researchers

have proposed several techniques [45] such as transport segmentation offload (TSO),

jumbo frames, zero-copy data transfer (sendfile()), interrupt coalescing, etc. Unfor-

tunately, many of these techniques are applicable only on the sender side, while the

148

receiver side continues to remain as a bottleneck in several cases, thus resulting in a

huge performance gap between the CPU overheads of sending and receiving packets.

Intel’s I/O Acceleration Technology (I/OAT) [1, 13, 12, 58] is a set of features

which attempts to alleviate the receiver packet processing overheads. It has three

additional features, namely: (i) split headers, (ii) DMA copy offload engine and (iii)

multiple receive queues. However, in this work [98], we only evaluate the benefits of

DMA copy offload engine feature in network processing.

Related Work: Packet processing [50, 53] usually involves manipulating the head-

ers and moving the data through the TCP/IP stack. Though this does not require

significant computation, processor time gets wasted due to delays caused by latency

of memory accesses and data movement operations. To overcome these overheads, re-

searchers have proposed several techniques [45] such as transport segmentation offload

(TSO), jumbo frames, zero-copy data transfer (sendfile()), interrupt coalescing, etc.

Unfortunately, many of these techniques are applicable only on the sender side, while

the receiver side continues to remain as a bottleneck in several cases, thus resulting in

a huge performance gap between the CPU overheads of sending and receiving packets.

7.2 I/OAT Micro-Benchmark Results

In this section, we compare the ideal case performance benefits achievable by

I/OAT as compared to the native sockets implementation (non-I/OAT) using a set of

micro-benchmarks. We use two testbeds for all of our experiments. Their descriptions

are as follows:

Testbed 1: A system consisting of two nodes built around SuperMicro X7DB8+

motherboards which include 64-bit 133 MHz PCI-X interfaces. Each node has a

149

dual dual-core Intel 3.46 GHz processor with a 2 MB L2 cache. The machines are

connected with three Intel PRO 1000Mbit adapters with two ports each through a

24-port Netgear Gigabit Ethernet switch. We use the Linux RedHat AS 4 operating

system and kernel version 2.6.9-30.

Testbed 2: A cluster system consisting of 44 nodes. Each node has a dual Intel

Xeon 2.66 GHz processor with 512KB L2 cache and 2GB of main memory.

For the experiments mentioned in Sections 7.3, we use the nodes in Testbed 2 as

clients and the nodes in Testbed 1 as servers. For all other experiments, we only use

the nodes in Testbed 1. Also, for experiments within Testbed 1, we create a separate

VLAN for each network adapter in one node and a corresponding IP address within

the same VLAN on the other node to ensure an even distribution of network traffic.

In all of our experiments, we define the term relative CPU benefit of I/OAT as follows:

if a is the % CPU utilization of I/OAT and b is the % CPU utilization of non-I/OAT,

the relative CPU benefit of I/OAT is defined as (b − a)/b. For example, if I/OAT

occupies 30% CPU and non-I/OAT occupies 60% CPU, the relative CPU benefit of

I/OAT is 50%, though the absolute difference in CPU usage is only 30%.

7.2.1 Bandwidth: Performance and Optimizations

Bandwidth and Bi-directional Bandwidth: Figure 7.2(a) shows the bandwidth

achieved by I/OAT and non-I/OAT with an increasing number of network ports. We

use the standard ttcp benchmark [27] for measuring the bandwidth. As the number

of ports increase, we expect the bandwidth to increase. As shown in Figure 7.2(a),

we see that the bandwidth performance achieved by I/OAT is similar to the perfor-

mance achieved by non-I/OAT with an increasing number of ports. The maximum

150

bandwidth achieved is close to 5635 Mbps with six network ports. However, we see

a difference in performance with respect to the CPU utilization on the receiver side.

We observe that the CPU utilization is lower for I/OAT as compared to non-I/OAT

using three network ports and this difference increases as we see the number of ports

increase from three to six. For a six port configuration, non-I/OAT occupies close to

37% of the CPU while I/OAT occupies only 29% of the CPU. The relative benefit

achieved by I/OAT in this case is close to 21%.

In the bi-directional bandwidth test, we use two machines and 2*N threads on

each machine with N threads acting as servers and the other N threads as clients.

Each thread on one machine has a connection to exactly one thread on the other

machine. The client threads connect to the server threads on the other machine. Thus,

2*N connections are established between these two machines. On each connection,

the basic bandwidth test is performed using the ttcp benchmark. The aggregate

bandwidth achieved by all threads is calculated as the bi-directional bandwidth, as

shown in Figure 7.2(b). In our experiments, N is equal to the number of network

ports. We see that the maximum bi-directional bandwidth is close to 9600 Mbps.

Also, we observe that I/OAT shows an improvement in CPU utilization using only

two ports and this improvement increases with an increasing number of ports. With

six network ports, non-I/OAT occupies close to 90% of CPU whereas I/OAT occupies

only 70% of the CPU. The relative CPU benefits achieved by I/OAT is close to 22%.

This trend also suggests that with an addition of one or two network ports to this

configuration, non-I/OAT may not give the best network throughput in comparison

with I/OAT since non-I/OAT may end up occupying 100% CPU.

151

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6

Number of Ports

T
hr

ou
gh

pu
t (

M
bp

s)

0%

5%

10%

15%

20%

25%

30%

35%

40%

A
vg

. C
P

U
 U

til
iz

at
io

n

non-I/OAT I/OAT non-I/OAT-CPU I/OAT-CPU

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6

Number of Ports

T
hr

ou
gh

pu
t (

M
bp

s)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

A
vg

. C
P

U
 U

til
iz

at
io

n

non-I/OAT I/OAT non-I/OAT-CPU I/OAT-CPU

Figure 7.2: Micro-Benchmarks: (a) Bandwidth and (b) Bi-directional Bandwidth

Multi-Stream Bandwidth: The multi-stream bandwidth test is very similar to the

bi-directional bandwidth test mentioned above. However, in this experiment, only one

machine acts as a server and the other machine as the client. We use two machines

and N threads on each machine. Each thread on one machine has a connection to

exactly one thread on the other machine. On each connection, the basic bandwidth

test is performed. The aggregate bandwidth achieved by all threads is calculated as

the multi-stream bandwidth. As shown in Figure 7.3, we observe that the bandwidth

achieved by I/OAT is similar to the bandwidth achieved by non-I/OAT for an increas-

ing number of threads. However, when the number of threads increases to 120, we

see a degradation in performance of non-I/OAT; whereas, I/OAT consistently shows

no degradation in network bandwidth. Further, the CPU utilization for non-I/OAT

also increases with an increasing number of threads. With 120 threads in the system,

we see that non-I/OAT occupies close to 76% CPU whereas I/OAT only occupies

52% resulting in 24% absolute benefit in CPU utilization. The relative CPU benefits

achieved by I/OAT in this case is close to 32%.

152

0

1000

2000

3000

4000

5000

6000

7000

6 12 30 60 120

Number of Threads

T
hr

ou
gh

pu
t (

M
bp

s)
0%

10%

20%

30%

40%

50%

60%

70%

80%

A
vg

. C
P

U
 U

til
iz

at
io

n

non-I/OAT I/OAT non-I/OAT-CPU I/OAT-CPU

Figure 7.3: Multi-Stream Bandwidth

Bandwidth and Bi-directional Bandwidth with Socket Optimizations: As

mentioned in Section 1.2.2, several optimizations on the sender side exist to reduce the

packet overhead and also to improve the network performance. In this experiment, we

considered three such existing optimizations: (i) Large Socket buffer sizes (100 MB),

(ii) Segmentation Offload (TSO) and (iii) Jumbo Frames. In this experiment, we aim

to understand the impact of each of these optimizations and observe the improvement,

both in terms of throughput and CPU utilization on the receiver-side. Case 1 uses the

default socket options without any optimization. In Case 2, we increase the socket

buffer size to 100 MB. For Case 3, we further improve the optimization by enabling

segmentation offload (TSO) so that the host CPU is relieved from fragmenting large

packets. In Case 4, in addition to the previous optimizations, we increase the MTU-

size to 2048 bytes so that large packets are sent over the network. In addition to

153

the sender-side optimizations, in Case 5, we include the interrupt coalescing feature.

Performance numbers with various socket optimizations are shown in Figure 7.4.

In the bandwidth test, as shown in Figure 7.4(a), we observe two interesting trends.

First, as we increase the socket optimizations, we see an increase in the aggregate

bandwidth. Second, we observe that the performance of I/OAT is consistently better

than the performance of non-I/OAT. Especially for Case 5, which includes all socket

optimizations, the bandwidth achieved by I/OAT is close to 5586 Mbps, whereas

non-I/OAT achieves only 5514 Mbps. More importantly, we observe that there is a

significant improvement in terms of CPU utilization. As shown in Figure 7.4(a), the

relative CPU benefit of I/OAT increases as we increase the socket optimizations. We

see similar trends with the bi-directional bandwidth test as shown in Figure 7.4(b).

5250

5300

5350

5400

5450

5500

5550

5600

5650

Case 1 Case 2 Case 3 Case 4 Case 5

Sender-side Optimizations

T
hr

ou
gh

pu
t (

M
bp

s)

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

%
 C

P
U

 B
en

ef
it

w
ith

 IO
A

T

non-I/OAT I/OAT Relative CPU Benefit

8500

9000

9500

10000

10500

11000

11500

Case 1 Case 2 Case 3 Case 4 Case 5

Sender-side Optimizations

T
hr

ou
gh

pu
t (

M
bp

s)

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

%
 C

P
U

 B
en

ef
it

w
ith

 IO
A

T

non-I/OAT I/OAT Relative CPU Benefit

Figure 7.4: Optimizations: (a) Bandwidth and (b) Bi-directional Bandwidth

In summary, we see that the micro-benchmark results show a significant improve-

ment in terms of CPU utilization and network performance for I/OAT. Since I/OAT

in Linux has two additional features, the split-header and DMA copy engine, it is also

154

important to understand the benefits attributed by each of these features individu-

ally. In the following section, we conduct several experiments to show the individual

benefits.

7.2.2 Benefits of Asynchronous DMA Copy Engine

In this section, we isolate the DMA engine feature of I/OAT and show the benefits

of an asynchronous DMA copy engine. We compare the performance of the copy

engine with that of traditional CPU-based copy and show its benefits in terms of

performance and overlap efficiency. For CPU-based copy, we use the standard memcpy

utility.

Figure 7.5 compares the cost of performing a copy using the CPU and I/OAT’s

DMA engine. The copy-cache bars denote the performance of CPU-based copy with

the source and destination buffers in the cache and the copy-nocache bars denote the

performance with the source and destination buffers not in the cache. The DMA-

copy bars denote the total time taken to perform the copy using the copy engine and

the DMA-overhead bars include the startup overhead in initiating the copy using the

DMA engine. The Overlap line denotes the percentage of DMA copy time that can be

overlapped with other computations. As shown in Figure 7.5, we see that the perfor-

mance of DMA-based copy approach (DMA-copy) is better than the performance of

CPU-based copy approach (copy-nocache) for message sizes greater than 8 KB. Fur-

ther, we observe that the percentage of overlap increases with increasing message sizes

reaching up to 93% for a 64 KB message size. However, if the source and destination

buffers are in the cache, we observe that the performance of the CPU-based copy is

much better than the performance of the DMA-based copy approach. Also, since the

155

DMA-based copy can be overlapped with processing other packets, we incur only the

DMA startup overheads. As observed in Figure 7.5, we see that the DMA startup

overhead time is much less than the time taken by the CPU-based copy approach.

Thus, the DMA copy engine can also be useful even if the source and destination

buffers are in cache.

0
5

10
15
20
25
30
35
40
45
50

1K 2K 4K 8K 16K 32K 64K
Message Size (bytes)

T
im

e
(u

se
cs

)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

%
 O

ve
rla

p

copy-cache copy-nocache DMA-copy
DMA-overhead Overlap

Figure 7.5: Copy Performance: CPU vs DMA

7.3 Datacenter Performance Evaluation

In this section, we analyze the performance of a 2-tier datacenter environment

with I/OAT and compare its performance with non-I/OAT. For all experiments in

this section, we use the nodes in Testbed 1 for the datacenter tiers. For the client

nodes, we use the nodes in Testbed 2 for most of the experiments. We notify the

156

readers at appropriate points in the remaining sections when other nodes are used as

clients.

7.3.1 Evaluation Methodology

As mentioned in Section 1.2.2, I/OAT is a server architecture geared to improve

the receiver-side performance. In other words, I/OAT can be deployed in a data-

center environment and client requests coming over the Wide Area Network (WAN)

can seamlessly take advantage of I/OAT and get serviced much faster. Further, the

communication between the tiers inside the datacenter, such as proxy tier and applica-

tion tier, can be greatly enhanced using I/OAT, thus improving the overall datacenter

performance and scalability.

We set up a two-tier datacenter testbed to determine the performance character-

istics of using I/OAT and non-I/OAT. The first tier consists of the front-end proxies.

For this, we used the proxy module of Apache 2.2.0. The second tier consists of the

web server module of Apache in order to service static requests. The two tiers in

the datacenter reside on 1 Gigabit Ethernet network; the clients are connected to the

datacenter using a 1 Gigabit Ethernet connection.

Typical datacenter workloads have a wide range of characteristics. Some work-

loads may vary from high to low temporal locality, following a Zipf-like distribu-

tion [37]. Similarly workloads vary from small documents (e.g., on-line book stores,

browsing sites, etc.) to large documents (e.g., download sites, etc.). Further, work-

loads may contain requests for simple cacheable static or time invariant content or

more complex dynamic or time variant content via CGI, PHP, and Java servlets with

a back-end database. Due to these varying characteristics of workloads, we classify

157

the workloads into three broad categories: (i) Single-file Micro workloads, (ii) Zipf-

like workloads and (iii) Dynamic content workloads. However, in this work, we focus

our analysis on the first two categories.

Single-File Micro workloads: These workloads contain only a single file. Sev-

eral clients request the same file multiple times. These workloads are used to study

the basic performance achievable by the datacenter environment without being di-

luted by other interactions in more complex workloads. We use workloads ranging

from 2 KB to 10 KB file sizes since this is considered the average file size for most

documents in the Internet.

Zipf-like Workloads: It has been well acknowledged in the community that most

workloads for datacenters hosting static content, follow a Zipf-like distribution [37].

According to Zipf law, the relative access probability of a request for the i’th most

popular document is proportional to 1/iα, where α determines the randomness of file

accesses. In our experiments, we vary α from 0.95 to 0.5, ranging from high temporal

locality for documents to low temporal locality.

We also evaluate the performance achieved inside the datacenter with proxy

servers acting as clients and web-servers with I/OAT capability. For example, within

a datacenter, the proxy servers forward dynamic content requests to the application

servers. The application servers are known to be CPU-intensive due to processing of

scripts such as PHP, CGI, servlets, etc. If the application servers have I/OAT capa-

bility, the servers can not only accept more number of requests but can also process

the pending requests at a faster rate, due to reduced CPU utilization.

158

For both of the scenarios, we use a testbed with one proxy at the first tier and

one web-server at the second tier. Each client fires one request at a time and sends

another request after getting a reply from the server.

In this section, we separate our analysis into two categories. First, we analyze the

performance benefits of I/OAT with the two workloads. As mentioned above, we use

Testbed 2 to fire requests to the proxy server. Due to the I/OAT capability on the

server nodes, we expect the performance of the servers to improve.

7.3.2 Analysis with Single File Traces

In this experiment, we use five different traces with varying file size requests.

Trace 1 uses an average file size of 2 KB while Traces 2, 3, 4 and 5 use 4 KB, 6 KB,

8 KB and 10 KB file sizes, respectively. Each client has a 10,000 request subset of

different files and reports the TPS (Transactions Per Second) achieved after getting

the response from the servers for all of the requests. TPS is defined as the total

number of transactions serviced per second as seen by the client. Higher TPS values

attribute to better server performance.

Figure 7.6a shows the performance of a datacenter with varying trace files ranging

from 2 KB to 10 KB. As shown in Figure 7.6a, we see that the throughput reported

by I/OAT is consistently better than the throughput reported by non-I/OAT. It is

also to be noted that for Trace 2, with average file size of 4 KB, we see a significant

throughput improvement for I/OAT. I/OAT reports a TPS which is close to 9,754

whereas non-I/OAT reports only 8,569 TPS resulting in a 14% overall improvement.

For other traces, we see around 5-8% TPS improvement with I/OAT.

159

0

2000

4000

6000

8000

10000

12000

Trace 1
(2K)

Trace 2
(4K)

Trace 3
(6K)

Trace 4
(8K)

Trace
5(10K)

Traces

T
P

S

0%

10%

20%

30%

40%

50%

60%

70%

80%

%
 B

en
ef

it
w

ith
 I/

O
A

T

non-I/OAT I/OAT % Improvement

0

500

1000

1500

2000

2500

� = 0.95 � = 0.9 � = 0.75 � = 0.5

Zipf Traces

T
P

S

0%

10%

20%

30%

40%

50%

60%

70%

80%

%
 B

en
ef

it
w

ith
 I/

O
A

T

non-I/OAT I/OAT % Relative Improvement

Figure 7.6: Performance of I/OAT and non-I/OAT: (a) Single File Traces and (b)
Zipf Trace

7.3.3 Analysis with Zipf File Traces

Next, we evaluate the performance of the datacenter with the zipf-trace. As men-

tioned earlier, we vary the α values from 0.95 to 0.5 ranging from high temporal

locality to low temporal locality. As shown in Figure 7.6b, I/OAT consistently per-

forms equal to or better than non-I/OAT. Further, we note that non-I/OAT achieves

close to 1,989 TPS whereas I/OAT achieves close to 2,212 TPS, i.e., I/OAT achieves

up to 11% throughput benefit as compared to non-I/OAT. Also, we measured the

CPU utilization for these experiments but the improvement was negligible. However,

the throughput improves since the server can accept more requests (i.e., reduction in

CPU overheads result in greater CPU efficiency).

7.3.4 Analysis with Emulated Clients

Next, we evaluate the performance of I/OAT within a datacenter when both the

proxy and the web servers have I/OAT capability. In this experiment, the proxy server

acts as a client in sending the requests to the web servers. We use only the nodes in

160

Testbed 1, as mentioned in Section 7.2. Due to reduced CPU usage in proxy nodes

using I/OAT, we expect the clients to fire requests at a much faster rate, resulting

in higher throughput. Figure 7.7 shows the performance with I/OAT capability for

increasing number of client threads. In this experiment, we fix the file size to 16 KB

and vary the number of client threads from 1 to 256. As shown in Figure 7.7, we note

that the performance of I/OAT is similar to non-I/OAT from one to sixteen threads.

As the number of threads firing the requests increases from 32 to 256, we observe two

interesting trends. First, I/OAT throughput performance increases with an increasing

number of client threads. With 256 client threads, I/OAT achieves close to 14,996

TPS whereas non-I/OAT achieves only around 12,928, i.e., I/OAT achieves close to

16% throughput improvement as compared to non-I/OAT. It is also to be noted

that the CPU utilization of I/OAT is consistently lower than the CPU utilization

of non-I/OAT. In this experiment, we only report the CPU utilization on the client

node, since our focus is to capture the client-side benefits when clients have I/OAT

capability. We observe that the CPU utilization saturates with non-I/OAT with 64

threads and thus the throughput does not improve any further with an increase in the

client threads after 64. With I/OAT, we see that the CPU utilization saturates only

with 256 client threads, resulting in superior performance. I/OAT not only improves

the performance by 16%, but can also support a large number of threads (up to a

factor of four as compared to non-I/OAT).

7.4 Summary

I/O Acceleration technology (I/OAT) developed by Intel is a set of features partic-

ularly designed to reduce the packet processing overheads on the receiver-side. This

161

0

2000

4000

6000

8000

10000

12000

14000

16000

1 4 8 16 32 64 128 256

Number of Emulated Clients

T
P

S
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

A
vg

. C
P

U
 U

til
iz

at
io

n

non-I/OAT I/OAT
non-I/OAT-CPU I/OAT-CPU

Figure 7.7: Clients with I/OAT capability using a 16 KB file trace

Chapter studies the benefits of I/OAT technology through extensive evaluations of

micro-benchmarks as well as evaluations on a multi-tier datacenter environment. Our

micro-benchmark results showed that I/OAT results in 38% lower overall CPU uti-

lization in comparison with traditional communication. Due to this reduced CPU

utilization, I/OAT delivers better performance and increased network bandwidth.

Our experimental results with datacenters reveal that I/OAT can improve the total

number of transactions processed by 14%. In addition, I/OAT can sustain a large

number of concurrent threads (up to a factor of four as compared to non-I/OAT) in

datacenter environments, thus increasing the scalability of the servers.

162

CHAPTER 8

APPLICABILITY OF STATE SHARING COMPONENTS
IN DATACENTER ENVIRONMENTS

In this Chapter, we highlight several scenarios and system environments where

each of the state sharing components can be applicable. This can help the end users

who build datacenter system software to choose the right components based on the en-

vironment and the workload expected in order to get the maximum benefits. Table 8.1

summarizes the different datacenter workload environments and the benefits that can

be achieved using the different state sharing components depending on the systems

capability. We use the following notations to refer to the different technologies: (i)

HPN refers to the network-assisted state sharing component using high-performance

networks, (ii) I/OAT refers to the dma-accelerated state sharing component using

Intel’s I/O Acceleration Technology and (iii) MC refers to the multicore-aware state

sharing component using multicore systems. The combinations of these notations

such as HPN & I/OAT refers to the dma-accelerated, network-assisted state sharing

component, HPN & MC refers to the multicore-aware, network-assisted state sharing

component and MC & I/OAT refers to the multicore-aware, dma-accelerated state

sharing component.

163

Workloads
Performance State Sharing Components

Metric HPN I/OAT MC HPN & I/OAT HPN & MC MC & I/OAT

Static
Latency Good Good Good Best Best Good

Throughput Good Good Bad Best Good Bad
Both Good Good Avg Best Good Avg

Dynamic
Latency Good Good Good Best Best Good

Throughput Good Good Avg Best Good Bad
Both Good Good Avg Best Good Avg

Streaming Bandwidth Good Good Bad Best Good Bad

Table 8.1: Applicability of State Sharing Components in Datacenter Environments

For static datacenter workloads, the files are usually lesser in size, typically around

4 KB to 10 KB. In such workloads, if the requirements are latency-sensitive, we expect

that both dma-accelerated, network-assisted state sharing component and multicore-

aware, network-assisted state sharing component can give significant benefits to ap-

plications. For systems with I/OAT, since the DMA engine accelerates the copy

operations of memory operations and saving a few CPU cycles, we may not see a

huge latency benefits. However, if the workload is throughput-sensitive that occupies

significant CPU, the dma-accelerated state sharing component can help in improving

the performance. In such an environment, since applications are in need of CPU,

the multicore-aware state sharing and its interactions may show lesser benefits or can

even degrade the application performance. Thus, for systems with all three technolo-

gies, it is beneficial to use the dma-accelerated, network-assisted state sharing to get

the maximum benefits. For workloads which have both latency and throughput as a

constraint, we expect that using the dma-accelerated, network-assisted state sharing

component can satisfy both requirements and show maximum benefits as compared

to the other combinations.

164

In the case of dynamic workloads, we see similar trends, except that multicore-

aware state sharing component and its interactions start playing an important role.

As demonstrated by recent literature [71, 72], the role of one-sided operations in

dynamic content caching becomes an important factor in improving the performance.

Thus, we expect that the interactions of multicore systems can further improve the

performance. For streaming workloads, since we deal with large files, typically it

is bandwidth or throughput-sensitive. Thus, the dma-accelerated, network-assisted

state sharing component is expected to show the maximum benefits. It is to be

noted that the expected benefits are only applicable to current generation systems

and technologies and can significantly change for next-generation datacenters.

165

CHAPTER 9

CONCLUSIONS AND FUTURE RESEARCH
DIRECTIONS

With the increasing adoption of Internet as the primary means of electronic inter-

action and communication, web-based datacenters have become a common require-

ment for providing online services. Today, several distributed applications in the fields

of e-commerce, financial industries, search engines, biomedical informatics, etc., have

been developed and deployed in such datacenters. However, these applications tend

to have a complex design due to concurrency, synchronization and communication

issues. Existing mechanisms proposed to hide these complexities are both inefficient

in terms of performance and scalability, and non-resilient to loaded conditions in the

datacenter. In addition, existing mechanisms do not take complete advantage of the

features of emerging technologies which are gaining momentum in current datacen-

ters.

In this dissertation, we proposed an efficient soft state sharing substrate that

hides the above mentioned complexities and addresses the limitations in existing

state sharing mechanism by leveraging the features of emerging technologies such

as high-speed networks, Intel’s I/OAT and multicore architectures. The proposed

substrate improves the performance and scalability of several datacenter applications

166

and services. Figure 9.1 shows the various components designed as a part of this

dissertation. In the figure, all the dark colored boxes are the technologies which exist

today. The light colored boxes are the ones that are developed as a part of this

dissertation for designing a high-performance soft shared state for datacenters.

Network−Assisted
State Sharing

Multicore−aware
State Sharing

Soft State Sharing Substrate
DMA−Accelerated

State Sharing

Datacenter Applications

Datacenter Services

DMA Copy
Engine Cores

Multicore
Architecture

I/O Acceleration
Technology (I/OAT)

 RDMA Atomics
Multiple

High−Performance Networks

Figure 9.1: State Sharing Components

9.1 Summary of Research Contributions

We summarize the research contributions of this dissertation along three important

aspects: (i) designing efficient state sharing components using the features of emerging

technologies, (ii) understanding the interactions between the proposed components

and (iii) analyzing the impact of the proposed components and its interactions with

several datacenter applications and services.

167

9.1.1 State Sharing Components using Emerging Technolo-
gies

We leveraged the features of emerging technologies and proposed three com-

ponents: (a) network-assisted state sharing using high-speed networks, (b) DMA-

accelerated state sharing using Intel’s I/O Acceleration Technology and (c) multicore-

aware state sharing using multicore architectures.

Network-Assisted State Sharing: In Chapter 2, we utilized the features of high-

speed networks such as RDMA and atomic operations to address the limitations

associated with state sharing based on TCP/IP and improve the performance and

scalability of datacenter applications and services. We demonstrated the portability

of the proposed substrate across multiple modern interconnects including iWARP-

capable networks both in LAN and WAN environments. Evaluations with multiple

networks not only showed an order of magnitude performance improvement but also

demonstrated that the proposed substrate is scalable and has a low overhead.

DMA-Accelerated State Sharing: As mentioned in Chapter 3, the proposed sub-

strate leveraged the asynchronous memory copy engine feature of I/OAT to address

the limitations associated with System V IPC mechanisms and improve the perfor-

mance and CPU utilization of memory copy operations in datacenter environments.

In addition, the proposed substrate allows the capability of utilizing the system cache

intelligently.

Multicore-aware State Sharing: Multicore systems addresses the limitations of

existing state sharing mechanisms by dedicating the protocol processing, memory

copies to one or more cores. In addition, this approach also addressed other issues

such as user-managed memory regions, complex NIC hardware, the notion of physical

168

memory, etc., by using the software-centric onloading approach to manage the mem-

ory regions. The proposed architecture, as mentioned in Chapter 4, provides access to

objects in unpinned virtual memory, simplifies the NIC hardware, and ensures robust

system behavior.

9.1.2 Interaction of Proposed State Sharing Components

We further enhanced the proposed state sharing components for systems with

multiple of these emerging technologies and analyzed the impact with datacenter

applications and services.

Multicore-aware, DMA-Accelerated State Sharing: We thoroughly investi-

gated, designed and analyzed the several combinations of memory copy operations

using multicore systems and I/OAT in Chapter 5. We further proposed a mechanism

for an application-transparent asynchronous state sharing using memory protection.

Our evaluations with datacenter services and SPEC benchmarks showed a lot of po-

tential in several application domains.

Multicore-aware, Network-Assisted State Sharing: We presented several de-

sign optimizations in state sharing with multi-core systems and high-speed networks

in Chapter 6 and demonstrated the benefits in terms of performance, scalability and

associated overheads using several applications such as Distributed STORM, R-Tree

and B-Tree query processing, checkpointing applications and resource monitoring ser-

vices. Our evaluations using an additional core for state sharing services showed a

lot of potential benefits for performing services on dedicated cores.

169

Network-Assisted, DMA-Accelerated State Sharing: We demonstrated the

benefits of I/OAT in network communication through several receiver side optimiza-

tions in Chapter 7. Our evaluations not only increased the performance but also

improved the scalability of datacenter applications.

In Chapter 8, we highlighted several scenarios and system environments where

each of the state sharing components can be applicable.

9.2 Future Research Directions

Advances in processor and networking technologies continue to provide additional

capabilities for emerging datacenters. In this dissertation, we have utilized these

capabilities in proposing a state sharing substrate for datacenters. Though we have

proposed several components and studied its interactions, there are many interesting

research topics to pursue in this area. We present some of the research topics below.

9.2.1 Low-overhead Communication and Synchronization Ser-

vice

As the number of cores increase within the system up to 64 or 128 cores, a se-

quential execution of tasks is not going to get the benefits from pipelining, branch

predictors, caches, etc. Researchers are moving towards component-based model and

specializing the cores for different tasks such as communication, protocol handling,

logging, etc. The proposed state sharing service can be extended as a low-overhead

communication and synchronization service for efficient interaction of these special-

ized components and ultimately improve the performance and scalability of the dat-

acenter system software.

170

9.2.2 Dedicated Datacenter Functionalities

As a part of this dissertation, we have taken a first step in looking at dedicating a

core for tasks such as resource monitoring, memory copies and RDMA. Within a few

years, we are going to see a large number of cores within a system and researchers are

going to think of dedicating cores for specialized functionalities such as communica-

tion, synchronization, collective operations and other application-specific operations

such as queue insertions, deletions and and modifications. The ideas proposed in this

dissertation can be extended to understand, design and analyze the impact of such

functionalities in several environments.

9.2.3 Integrated Evaluation

While we have shown the benefits of state sharing for systems with at least two of

these technologies, it is also important to analyze the design optimizations and the

performance benefits achievable for systems with all three technologies. For exam-

ple, the DMA-accelerated state sharing component proposed in Chapter 3 can help

in accelerating the data copy operations of multicore-aware, network-assisted state

sharing proposed in Chapter 6. Thus, it is crucial to evaluate the interactions of these

components in an integrated manner.

9.2.4 Redesigning Datacenter System Software

Using the current designs of state sharing, several existing datacenter system

software such as distributed lock manager in databases, communication and synchro-

nizations mechanisms in distributed file systems, global memory aggregator, etc., can

be built on top of the state sharing service. Several applications and services which

require more memory can use the state sharing substrate as a collection of remote

171

memory within the cluster and use the cluster memory efficiently. This can be ex-

tended for other datacenter system software such as distributed databases, group

communication services and several others.

9.2.5 Extending State Sharing Designs for HPC Environ-

ments

The designs proposed in this dissertation are also applicable to HPC environments.

Preliminary designs and evaluations with MPI, a parallel programming model for

high-performance computing environment, shows a lot of promise for extending our

designs for other MPI operations such as collective communication, asynchronous

communication progress, one-sided communication and synchronization and several

others.

9.2.6 Impact of State Sharing in Virtualization Environments

Server consolidation using existing virtualization techniques is currently increas-

ing, thus requiring efficient ways of consolidating the system resources in a fine-grained

manner for managing the datacenter resources. The proposed state sharing designs

can be utilized for monitoring and efficiently sharing the system information in a vir-

tualized environment and can be used for several important designs such as migration,

increased/decreased allocation of system resources and availability.

172

BIBLIOGRAPHY

[1] Accelerating High-Speed Networking with Intel I/O Acceleration Technology.

http://www.intel.com/technology/ioacceleration/306517.pdf.

[2] Amazon Now is A Datacenter. http://www.heyotwell.com/heyblog/

archives/2006/03/amazon is now a 1.html.

[3] Ammasso, inc. http://www.ammasso.com.

[4] Ask Jeeves . http://www.ask.com.

[5] Berkeley UPC project home page. http://upc.lbl.gov.

[6] Breaking through the Bottleneck. http://www.voltaire.com.

[7] E-trade. http://us.etrade.com/.

[8] eBay imparts datacenter knowlege. http://www.infoworld.com/article/07/08/07/
Ebaykeynote 1.html.

[9] Google Data Center. http://www.datacenterknowledge.com/

archives/2008/Mar/27/google data center faq.html.

[10] HP Data Center. http://www.hp.com/hpinfo/

newsroom/press kits/2008/datacenter-transformation/.

[11] IBM Data Center. http://www.ibm.com/services/

us/index.wss/offering/its/a1000013.

[12] Increasing network speeds: Technology@intel.

http://www.intel.com/technology/magazine/communications/intel-ioat-
0305.htm.

[13] Intel I/O Acceleration Technology. http://www.intel.com/technology/
ioacceleration/306484.pdf.

[14] IP over InfiniBand Working Group. http://www.ietf.org/html.charters/

ipoib-charter.html.

173

[15] MSN. http://www.msn.com/.

[16] MySQL - Open Source Database Server. http://www.mysql.com/.

[17] NASDAQ Stock Market . http://www.nasdaq.com.

[18] Quadrics Supercomputers World Ltd. http://www.quadrics.com/.

[19] RDMA Consortium. http://www.rdmaconsortium.org/home.

[20] RUBiS: Rice University Bidding System. http://rubis.objectweb.org.

[21] Scottrade . http://www.scottrade.com.

[22] SPEC CPU2000 benchmarks. http://www.spec.org/cpu2000/.

[23] The GiST Indexing Project. http://gist.cs.berkeley.edu/.

[24] The STORM Project at OSU BMI. http://storm.bmi.ohio-state.edu/index.php.

[25] Yahoo Data Center. http://www.datacenterknowledge.com/archives/

yahoo-index.html.

[26] Yahoo! Finance. http://finance.yahoo.com/.

[27] USNA, TTCP: A test of TCP and UDP Performance, 2001.

[28] M. K. Aguilera, C. Karamanolis, A. Merchant, M. Shah, A. Veitch, and C. Kara-

manolis. Sinfonia: A New Paradigm for Building Scalable Distributed System.
In ACM Symposium on Operating Systems Principles (SOSP), 2007.

[29] C. Amza, E. Cecchet, A. Chanda, A. Cox, S. Elnikey, R. Gil, J. Marguerite,

K. Rajamani, and W. Zwaenepoel. Bottleneck Characterization of Dynamic
Web Site Benchmarks. In Technical Report TR02-391,Rice University, 2002.

[30] C. Amza, A. Cox, S. Dwarkadas, and W. Zwaenepoel. Software DSM Protocols
that Adapt between Single Writer and Multiple Writer. In Proc. of the 3rd Intl.

Symp. on High Performance Computer Architecture,, 1997.

[31] P. Balaji, K. Vaidyanathan, S. Narravula, K. Savitha, H. W. Jin, and D. K.

Panda. Exploiting Remote Memory Operations to Design Efficient Reconfigura-
tion for Shared Data-Centers. In Workshop on Remote Direct Memory Access:

Applications, Implementations, and Technologies (RAIT), 2004.

[32] R. Bayer and C. Mccreight. Organization and Maintenance of large ordered

indexes. In Acta Informatica, 1972.

174

[33] C. Bell and D. Bonachea. A New DMA Registration Strategy for Pinning-
Based High Performance Networks. In Proceedings of International Workshop

on Communication Architecture for Clusters, 2003.

[34] TPC-W Benchmark. http://www.tpc.org.

[35] M. A. Blumrich, C. Dubnicki, E. W. Felten, and K. Li. Protected, User-level
DMA for the SHRIMP Network Interface. In Proceedings of the 2nd IEEE

Symposium on High-Performance Computer Architecture (HPCA-2), 1996.

[36] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N.

Seizovic, and W. K. Su. Myrinet: A Gigabit-per-Second Local Area Network.
http://www.myricom.com.

[37] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web Caching and

Zipf-like Distributions: Evidence and Implications. In INFOCOM (1), pages
126–134, 1999.

[38] D. Buntinas, G. Mercier, and W. Gropp. The Design and Evaluation of Neme-
sis, a Scalable Low-Latency Message-Passing Communication Subsystem. In

Proceedings of International Symposium on Cluster Computing and the Grid
(CCGrid), 2006.

[39] Michael Calhoun. Characterization of Block Memory Operations. In Masters
Thesis, Rice University, 2006.

[40] J. Carlstrom and R. Rom. Application-Aware Admission Control and Schedul-
ing in Web Servers. In Proceedings of the IEEE Infocom 2002, 2002.

[41] E. Carrera and R. Bianchini. Efficiency vs. Portability in Cluster-Based Network

Servers. In Proceedings of the 8th Symposium on Principles and Practice of
Parallel Programming, Snowbird, UT, 2001.

[42] J. Carter, A. Ranganathan, and S. Susarla. Khazana: An Infrastructure for
Building Distributed Services. In International Conference on Distributed Com-

puting Systems (ICDCS), 1998.

[43] L. Chai, A. Hartono, and D. K. Panda. Designing Efficient MPI Intra-node

Communication Support for Modern Computer Architectures. In IEEE Inter-
national Conference on Cluster Computing, 2006.

[44] L. Chai, A. Hartono, and D. K. Panda. Designing High Performance and Scal-
able MPI Intra-node Communication Support for Clusters. In IEEE Interna-

tional Conference on Cluster Computing, 2006.

175

[45] J. Chase, A. Gallatin, and K. Yocum. End System Optimizations for High-
Speed TCP. IEEE Communications Magazine, 39(4):68–74, 2001.

[46] Jeffrey S. Chase, Darrell C. Anderson, Prachi N. Thakar, Amin Vahdat, and
Ronald P. Doyle. Managing Energy and Server Resources in Hosting Centres.

In Symposium on Operating Systems Principles, 2001.

[47] D. Chen, S. Dwarkadas, S. Parthasarathy, E. Pinheiro, and M. L. Scott. Inter-

Weave: A Middleware System for Distributed Shared State. In LCR, 2000.

[48] D. Chen, C. Tang, B. Sanders, S. Dwarkadas, and M. Scott. Exploiting High-

level Coherence Information to Optimize Distributed Shared State. In Proceed-
ings of the 9th ACM Symp. on Principles and Practice of Parallel Programming,

2003.

[49] Giuseppe Ciaccio. Using a Self-connected Gigabit Ethernet Adapter as a mem-

cpy() Low-Overhead Engine for MPI. In Euro PVM/MPI, 2003.

[50] J. R. David D. Clark, Van Jacobson, and H. Salwen. An analysis of TCP
processing overhead, 1989.

[51] Intel Corporation. http://www.vnunet.com/vnunet/news/2165072/inte l-
unveils-tera-scale, 2006.

[52] Squid: Optimising Web Delivery. URL: http://www.squid-cache.org/.

[53] Annie Foong et al. TCP performance analysis revisited. In IEEE International

Symposium on Performance Analysis of Software and Systems, 2003.

[54] The Apache Software Foundation. URL: http://www.apache.org/.

[55] Armando Fox, Steven D. Gribble, Yatin Chawathe, Eric A. Brewer, and Paul
Gauthier. Cluster-Based Scalable Network Services. In Symposium on Operating

Systems Principles, 1997.

[56] R. Friedman. Implementing Hybrid Consistency with High-Level Synchroniza-

tion Operations. In In Proceedings of 13th ACM Symp on Principles of Dis-
tributed Computing, 1993.

[57] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file sys-
tem. In SOSP, 2003.

[58] Andrew Gover and Christopher Leech. Accelerating Network Receiver Process-
ing. http://linux.inet.hr/files/ols2005/grover-reprint.pdf.

[59] A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. In

Proceedings on ACM SIGMOD Conference, 1984.

176

[60] J. Hurwitz and W. Feng. End-to-End Performance of 10-Gigabit Ethernet on
Commodity Systems. IEEE Micro, 2004.

[61] Infiniband Trade Association. http://www.infinibandta.org.

[62] H. W. Jin, S. Sur, L. Chai, and D. K. Panda. LiMIC: Support for High-

Performance MPI Intra-Node Communication on Linux Cluster. In Interna-
tional Conference on Parallel Processing (ICPP), 2005.

[63] H. W. Jin, S. Sur, L. Chai, and D. K. Panda. LiMIC: Support for High-
Performance MPI Intra-Node Communication on Linux Cluster. In Interna-

tional Conference on Parallel Processing, 2005.

[64] P. Lai, S. Narravula, K. Vaidyanathan, and Dhabaleswar K. Panda. Advanced
RDMA-based Admission Control for Modern Data-Centers. In International

Symposium on Cluster Computing and the Grid (CCGrid), 2008.

[65] S. Lee, J. Lui, and D. Yau. Admission control and dynamic adaptation for a

proportionaldelay diffserv-enabled web server. In Proceedings of SIGMETRICS,
2002.

[66] Jochen Liedtke, Volkmar Uhlig, Kevin Elphinstone, Trent Jaeger, and Yoonho
Park. How To Schedule Unlimited Memory Pinning of Untrusted Processes

Or Provisional Ideas about Service-Neutrality. In Workshop on Hot Topics in
Operating Systems, 1999.

[67] J. Liu, W. Huang, B. Abali, and D. K. Panda. High performance vmm-bypass
i/o in virtual machines. In USENIX Annual Technical Conference, 2006.

[68] S. Makineni and R. Iyer. Architectural characterization of TCP/IP packet

processing on the PentiumM microprocessor. In High Performance Computer
Architecture, HPCA-10, 2004.

[69] Evangelos P. Markatos and Manolis G. H. Katevenis. User-Level DMA with-
out Operating System Kernel Modification. In Proceedings of the Third Inter-

national Symposium on High-Performance Computer Architecture, (HPCA),
1997.

[70] S. Narayanan, T. Kurc, U. Catalyurek, and J. Saltz. Database Support for
Data-driven Scientific Applications in the Grid. In Parallel Processing Letters,

2003.

[71] S. Narravula, P. Balaji, K. Vaidyanathan, S. Krishnamoorthy, J. Wu, and D. K.

Panda. Supporting Strong Coherency for Active Caches in Multi-Tier Data-
Centers over InfiniBand. In Workshop on System Area Networks, 2004.

177

[72] S. Narravula, H.-W. Jin, K. Vaidyanathan, and D. K. Panda. Designing Effi-
cient Cooperative Caching Schemes for Multi-Tier Data-Centers over RDMA–

enabled Networks. In Proceedings of International Symposium on Cluster Com-
puting and the Grid (CCGrid), May 2006.

[73] Network-Based Computing Laboratory. MVAPICH: MPI over InfiniBand and

iWARP. http://mvapich.cse.ohio-state.edu/.

[74] J. Nieplocha and J. Ju. ARMCI: A Portable Aggregate Remote Memory Copy
Interface. In IEEE International Conference on Parallel and Distributed Pro-

cessing Symposium (IPDPS), 1999.

[75] R. Numrich and J. Reid. Co-array fortran for parallel programming, 1998.

[76] Joon Suan Ong. Network Virtual Memory. PhD. Thesis, The University of
British Columbia, 2003.

[77] OpenFabrics Alliance. OpenFabrics. http://www.openfabrics.org/.

[78] O. Othman, J. Balasubramanian, and D.C. Schmidt. The Design of an Adaptive

Middleware Load Balancing and Monitoring Service . In Proceedings of the

Third International Workshop on Self-Adaptive Software (IWSAS), 2003.

[79] S. Parthasarathy and S. Dwarkadas. InterAct: Virtual Sharing for Interactive
Client-Server Application. In Fourth Workshop on Languages, Compilers, and

Run-time Systems for Scalable Computers, 1998.

[80] G. Porter and R. H. Kaltz. Effective Web Service Loadbalancing through Sta-
tistical Monitoring. In SelfMan 2005, IFIP/IEEE International Workshop on

Self-Managed Systems and Services, 2005.

[81] G. Regnier, S. Makineni, R. Illikkal, R. Iyer, D. Minturn, R. Huggahalli,
D. Newell, L. Cline, and A. Foong. TCP Onloading for Data Center Servers.

In IEEE Computer, 2004.

[82] Yasushi Saito, Brian N. Bershad, and Henry M. Levy. Manageability, availabil-
ity and performance in porcupine: A highly scalable, cluster-based mail service.

In Symposium on Operating Systems Principles, 1999.

[83] M. Schlansker, N. Chitlur, E. Oertli, P. M. Stillwell, L. Rankin, D. Bradford,
R. J. Carter, J. Mudigonda, and N. Binkert and̃ N. P. Jouppi. High-performance

ethernet-based communications for future multi-core processors. In Interna-
tional Conference on High Performance Computing, Networking, Storage and

Analysis (Super Computing), 2007.

[84] IBM DB2 Database Server. URL: http://www.ibm.com/software/data/db2/.

178

[85] H. V. Shah, D. B. Minturn, A. Foong, G. L. McAlpine, R. S. Madukkaru-
mukumana, and G. J. Regnier. CSP: A Novel System Architecture for Scalable

Internet and Communication Services. In USITS ’01.

[86] H. V. Shah, J. Pinkerton, R. Recio, and P. Culley. Direct Data Placement over

Reliable Transports, 2002.

[87] K. Shen, T. Yang, and L. Chu. Cluster Load Balancing for Fine-grain Network

Services. In Proceedings of International Parallel and Distributed Processing
Symposium, 2002.

[88] C. Tang, D. Chen, S. Dwarkadas, and M. Scott. Integrating Remote Invocation
and Distributed Shared State, 2004.

[89] C. Tang, D. Chen, S. Dwarkadas, and M. L. Scott. Efficient Distributed Shared

State for Heterogeneous Machine Architectures. In International Conference on
Distributed Computing Systems (ICDCS), 2003.

[90] Introduction to Java RMI. URL: http://www.javacoffeebreak.com/articles/
javarmi/javarmi.html.

[91] K. Vaidyanathan, P. Balaji, S. Narravula, and H. W. Jinand D. K. Panda.
Designing Efficient Systems Services and Primitives for Next-Generation Data-

Centers. In NSF Next Generation Software(NGS) Program;, 2007.

[92] K. Vaidyanathan, L. Chai, W. Huang, and D. K. Panda. Efficient Asynchronous

Memory Copy Operations on Multi-Core Systems and I/OAT. In IEEE Inter-
national Conference on Cluster Computing, 2007.

[93] K. Vaidyanathan, W. Huang, L. Chai, and D. K. Panda. Designing Efficient

Asynchronous Memory Operations Using Hardware Copy Engine: A Case Study
with I/OAT. In Proceedings of International Workshop on Communication

Architecture for Clusters (CAC), 2007.

[94] K. Vaidyanathan, H. W. Jin, and D. K. Panda. Exploiting RDMA operations for

Providing Efficient Fine-Grained Resource Monitoring in Cluster-based Servers.
In Workshop on Remote Direct Memory Access: Applications, Implementations,

and Technologies (RAIT), 2006.

[95] K. Vaidyanathan, P. Lai, S. Narravula, and D. K. Panda. Benefits of Dedi-

cating Resource Sharing Services for Data-Centers using Emerging Multi-Core
Systems. In Technical Report OSU-CISRC-8/07-TR53, The Ohio State Uni-

versity, 2007.

179

[96] K. Vaidyanathan, P. Lai, S. Narravula, and Dhabaleswar K. Panda. Opti-
mized Distributed Data Sharing Substrate in Multi-Core Commodity Clusters:

A Comprehensive Study with Applications. In International Symposium on
Cluster Computing and the Grid (CCGrid), 2008.

[97] K. Vaidyanathan, S. Narravula, and D. K. Panda. DDSS: A Low-Overhead Dis-
tributed Data Sharing Substrate for Cluster-Based Data-Centers over Modern

Interconnects. In International Conference on High Performance Computing
(HiPC), 2006.

[98] K. Vaidyanathan and D. K. Panda. Benefits of I/O Acceleration Technology
(I/OAT) in Clusters. In Proceedings of the IEEE International Symposium on

Performance Analysis of Systems and Software (ISPASS), 2007.

[99] K. Vaidyanathan, M. Schlansker, J. Mudigonda, N. Binkert, and D. K. Panda.
RDMA Service using Dynamic Page Pinning: An Onloading Approach, 2008.

[100] Jiesheng Wu, Pete Wyckoff, and Dhabaleswar K. Panda. PVFS over InfiniBand:
Design and Performance Evaluation. In International Conference on Parallel

Processing (ICPP), 2003.

[101] Pete Wyckoff. Memory Registration Caching Correctness. In Proceedings of

International Symposium on Cluster Computing and the Grid (CCGrid), 2005.

[102] Youhui Zhang and Weimin Zheng. User-level Communication based Coopera-

tive Caching. In ACM Special Interest Group on Operating Systems (SIGOPS),
2003.

[103] Li Zhao, Ravi Iyer, Srihari Makineni, Laxmi Bhuyan, and Don Newell. Hard-

ware Support for Bulk Data Movement in Server Platforms. In Proceedings of
International Conference on Computer Design, 2005.

[104] George Kingsley Zipf. Human Behavior and the Principle of Least Effort.
Addison-Wesley Press, 1949.

180

