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Abstract

Efficiently capturing the resource usage in a shared server en-
vironment has been a critical research issue in the past several
years. With the amount of resources used by each application be-
coming more and more divergent and unpredictable, the solution
to this problem is becoming increasingly important. In the past,
several researchers have come up with a number of techniques
which rely on coarse-grained monitoring of resources in order
to avoid the overheads associated with fine-grained monitoring.
In this paper, we propose a low-overhead efficient fine-grained
resource monitoring scheme using the advanced Remote Direct
Memory Access (RDMA) operation provided by RDMA-enabled
interconnects such as InfiniBand (IBA). We evaluate the relative
benefits of our approach against traditional approaches in various
environments (including micro-benchmarks as well as real appli-
cations such as an auction server based on the RUBiS benchmark
and the Ganglia distributed monitoring tool). Our results indicate
that our approach for fine-grained monitoring can significantly
improve the overall system utilization, thereby resulting in up to
25% improvement in the number of requests the cluster-system can
admit.

1 Introduction
Cluster systems consisting of commodity off-the-shelf

(COTS) hardware components are becoming increasingly
attractive as platforms for resource-intensive applications,
primarily due to their high performance-to-cost ratio. To-
day, such systems are used in a variety of environments, in-
cluding compute-farms, where users can submit jobs to be
executed on the system’s resources. Depending on the kind
of such jobs, cluster-based systems can be broadly classified
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into two categories, viz., scientific supercomputers and en-
terprise servers. Scientific supercomputers such as the com-
puting servers at supercomputing centers are typically used
for academic as well as research oriented applications; the
nodes of such systems are mainly used in a dedicated man-
ner. Enterprise servers such as the clusters used by Google,
Yahoo, Amazon, etc., are typically used for business envi-
ronments; the nodes of such systems are mainly used in a
shared manner, i.e., multiple applications are executed on
the same set of nodes. In this paper, we concentrate on
shared enterprise server environments.

Efficiently identifying the amount of resources used in
such shared environments has been a critical research issue
in the past several years. With the amount of resources used
by each application becoming more and more divergent and
unpredictable [21, 19], the solution to this problem is be-
coming increasingly important. This issue is especially im-
portant for financial enterprise servers. For example, several
systems (e.g., Amazon) rely on the cluster resource usage
information for admission control of requests, i.e., an inac-
curate resource usage information could potentially lead to
lost revenue for such systems.

In order to tackle this problem, in the past, several re-
searchers have come up with a number of techniques [15,
13]. The primary idea of these techniques is to periodically
monitor the resources used in the cluster and use this in-
formation to make various decisions including whether a
request should be admitted, what resources should be allot-
ted to service the request, etc. Though these approaches are
generic and applicable for all environments, the main draw-
back with them is that they rely on coarse-grained moni-
toring of resources in order to avoid the overheads associ-
ated with fine-grained monitoring. Accordingly, they base
their techniques on the assumption that the resource usage
is consistent through the monitoring granularity (which is
in the order of seconds in most cases). On the other hand,
as demonstrated by recent literature, the resource usage of
requests is becoming increasingly divergent making this as-
sumption no longer valid [12].
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Remote Direct Memory Access (RDMA) is emerging as
the central feature of modern network interconnects like In-
finiBand(IBA) [7], Quadrics [4]. RDMA operations allow
the network interface to transfer data between local and re-
mote memory buffers without any interaction with the op-
erating system or processor intervention. In this paper, we
propose an approach that utilizes the advanced RDMA op-
erations in providing efficient fine-grained resource moni-
toring and consequently superior resource utilization, over-
load control and end performance for shared server environ-
ments. We first evaluate our approach to identify its rela-
tive benefits with traditional approaches in various environ-
ments (including micro-benchmarks as well as real applica-
tions such as an auction server based on the RUBiS bench-
mark and the Ganglia distributed monitoring tool). Evalu-
ations show that our approach helps in lowering the maxi-
mum and average response time of RUBiS auction bench-
mark by 90% and 20%, respectively. Next, we compare
these approaches with traditional coarse-grained resource-
monitoring techniques. Our results indicate that our ap-
proach for fine-grained monitoring can significantly im-
prove the overall system utilization, thereby resulting in up
to 25% improvement in the number of requests the cluster-
system can admit.

The rest of the paper is organized as follows: Section 2
describes an overview of one-sided communication model.
In Section 3, we discuss the design alternatives and imple-
mentation details. Section 4 presents the potential benefits
of our approach. The experimental results are presented in
Section 5. Discussion and related work are presented in
Section 6. We draw our conclusions and discuss future work
in Section 7.

2 Overview of One-Sided Communi-
cation Model

Many of the high-performance networks such as Infini-
Band, Quadrics, etc., provide two types of communication
semantics: channel semantics (send/recv communication
model) and memory semantics (one-sided communication
model). In channel semantics, every send request has a cor-
responding receive request at the remote end. Thus there
is a one-to-one correspondence between every send and re-
ceive operation.

On the other hand, memory semantics follows a one-
sided communication model. Here, Remote Direct Memory
Access (RDMA) operations are used which allow the initi-
ating node to directly access the memory of remote-node
without the involvement of the remote-side CPU. There-
fore, an RDMA operation has to specify both the memory
address for the local buffer as well as that for the remote
buffer. In addition, RDMA operations are allowed only
on pinned memory locations thus securing the remote node
from accessing any arbitrary memory location. There are

two kinds of RDMA operations: RDMA Write and RDMA
Read. In an RDMA write operation, the initiator directly
writes data into the remote node’s memory. Similarly, in
an RDMA Read operation, the initiator reads data from the
remote node’s memory.

In this paper, we leverage the one-sided RDMA op-
erations for achieving low-overhead fine-grained resource
monitoring. Eliminating the involvement of the peer side
can overcome the communication performance degradation
due to CPU workload of the peer side. This also avoids any
interrupt of the peer side processing.

3 Fine-Grained Resource Monitoring
The basic idea of fine-grained resource monitoring in

a shared server environment is to capture the dynamic
resource usage of the hosted applications. Fine-grained
resource monitoring can be implemented using two ap-
proaches: back-end based monitoring and front-end based
monitoring. In the former, the back-end informs the front-
end node on detecting a high load. In the latter, the front-end
node periodically sends a request to a resource monitoring
process in the back-end to retrieve the load information. It
is to be noted that when the back-end server gets a network
packet from the front-end, the kernel treats it as a high pri-
ority packet and tries to schedule the resource monitoring
process as early as possible. However, in the back-end re-
source monitoring scheme, the monitoring process sleeps
for a given time interval and calculates the load informa-
tion, thus decreasing its priority to be scheduled. Since
the load reporting interval resolution highly depends on the
operating system scheduling timer resolution, the schedul-
ing of this back-end monitoring process is vital for sending
the load responses in a timely manner. For fine-grained re-
source monitoring since there is a need for an immediate re-
ply and small reporting interval resolution, front-end based
resource monitoring is preferred. Previous work [18] also
suggests that a front-end based approach is better than back-
end based approach for fine-grained services. For these rea-
sons, in this paper, we focus on front-end based resource
monitoring.

In the following subsections, we present existing
sockets-based implementations and our proposed RDMA-
based design alternatives. Broadly, two ways of implement-
ing the front-end based resource monitoring for sockets and
RDMA exist: (i) Asynchronous and (ii) Synchronous. In
an asynchronous approach, the load calculating phase (i.e.,
reading the resource usage information and calculating the
current load on the back-end) and load requesting phase
(i.e., requesting for load information from the front-end) are
independent. On the other hand, in a synchronous approach,
the back-end calculates the current load information for ev-
ery request received from the front-end node.
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Figure 1. Sockets-based Resource Monitoring Mechanism (a) Asynchronous (b) Synchronous

3.1 Sockets-based Resource Monitoring

Traditional resource monitoring schemes use sockets
communication mechanism for resource monitoring. In our
implementation, we use /proc to get the system-level statis-
tics like information about running processes, CPU statis-
tics, network and I/O statistics, etc.

3.1.1 Asynchronous Resource Monitoring using Sock-
ets (Socket-Async)

In this approach, we have two processes, one running on
the front-end server and the other running on the back-end
server. The back-end server process consists of two threads;
a load calculating thread that calculates the load informa-
tion periodically and a load reporting thread that responds
to load requests from the front-end servers. The sequence
of steps in asynchronous resource monitoring using sockets
is shown in Figure 1a. In the first step (Step 1), the load
calculating thread reads /proc. To access /proc, a trap oc-
curs because of file I/O in Step 2, during which the kernel
calculates the system information. In Step 3, /proc sends
the monitoring information to the thread and in Step 4, the
thread copies this information to a known memory loca-
tion. Once this task is completed, the load calculating thread
sleeps for a specific time interval T and repeats this process
again. In parallel, the front-end monitoring process periodi-
cally sends a request for load information to the load report-
ing thread (Step a). The load reporting threads receives this
request, reads the load information from the known memory
location (Step b) and sends it to the front-end monitoring
process (Step c).

3.1.2 Synchronous Resource Monitoring using Sockets
(Socket-Sync)

This approach is very similar to the asynchronous approach,
except that there is no requirement for two threads in the
back-end. As shown in Figure 1b, when the front-end mon-
itoring process sends a load request (Step 1), the back-end
monitoring process calculates the load information by read-
ing the /proc file system (Step 2, 3 and 4) and reports this
load information to the front-end monitoring process (Step
5). Thus, there is no requirement for a separate thread to
calculate the load information for every time interval T .

3.2 RDMA-based Resource Monitoring
Many modern interconnects provide one-sided remote

memory operations such as RDMA that allows access to re-
mote memory without interrupting the remote CPU. In our
design, we use RDMA read operation to perform efficient
fine-grained monitoring.

3.2.1 Asynchronous Resource Monitoring using
RDMA (RDMA-Async)

In this approach, we use two different kinds of monitor-
ing processes running on front-end and back-end server.
The back-end monitoring process handles connection man-
agement and creates registered memory regions in the user
space. The front-end monitoring process periodically per-
forms RDMA read operations on the registered memory
regions to retrieve updated load information. We use the
same mechanism as Socket-Async scheme for calculating
the load information. The back-end monitoring process
constantly calculates the relevant load information after ev-
ery time T interval from /proc and copies the load informa-
tion onto the registered memory region.
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Figure 2. RDMA-based Resource Monitoring Mechanism (a) Asynchronous (b) Synchronous

The sequence of steps in RDMA-Async scheme is shown
in Figure 2a. It is very similar to Socket-Async approach ex-
cept that the communication is one-sided. Front-end mon-
itoring process performs RDMA read operation (Step a) to
obtain the load information.

3.2.2 Synchronous Resource Monitoring using RDMA
(RDMA-Sync)

In theory, as RDMA operations are one-sided, it is not pos-
sible to have a synchronous resource monitoring approach
using RDMA. However, in practice, we can achieve the
accuracy of synchronous resource monitoring if the front-
end node can obtain the most up-to-date load information
from the kernel memory of the back-end for every request.
To enable this, we register the necessary kernel data struc-
tures that hold the resource usage information, and allow
the front-end monitoring process to directly retrieve this in-
formation using RDMA read as shown in Figure 2b. Such a
design has two major advantages: (i) it removes the need for
an extra process in the back-end server and (ii) it can exploit
the detailed resource usage information in kernel space to
report accurate load information. Section 4 describes these
benefits in more detail.

4 Potential Benefits of RDMA-Sync
Using RDMA-Sync schemes to design and implement

fine-grained resource monitoring has several potential ben-
efits as described below.

Getting accurate load information: Due to the
asynchronous nature of Socket-Async and RDMA-Async
schemes, there is a delay between the time at which the
back-end monitoring process updates the load information
and the time at which the front-end monitoring process

reads this load information. For example, if we assume that
the load information is updated every T ms at the back-end
server, the load information seen by the front-end monitor-
ing process can be up to T ms old. In Socket-Sync scheme,
if the server nodes are heavily loaded, the back-end mon-
itoring process can compete for CPU with other threads
in the system. This can result in huge delays in report-
ing the current load information to the front-end monitoring
process. However, regardless of the back-end server load,
RDMA-Sync scheme can report accurate load information
since the front-end monitoring process directly retrieves the
load information from kernel data structures without in-
terrupting the CPU. As a result, RDMA-Sync scheme can
quickly and accurately detect the load and can help to avoid
overloaded conditions in several environments.

Utilizing detailed system information: While all other
monitoring schemes operate at the user space, RDMA-Sync
scheme operates at the kernel space. This provides sev-
eral opportunities to access portions of the kernel memory
which may be useful for providing system-level services.
Some of them are directly exposed via /proc interface while
others like irq stat, dq stat, and aven run are not. Though
the other schemes can access these kernel data structures
using a kernel module, later in the experimental section, we
show some unique benefits of the RDMA-Sync scheme.

No extra thread for remote resource monitoring: All
monitoring schemes except RDMA-Sync require a separate
thread on the back-end server to calculate the load of the
back-end node periodically. While this operation may not
occupy considerable CPU, in a highly loaded server envi-
ronment, it certainly competes for processor cycles. This
can result in huge delays in updating the load information.
Also, if the incoming traffic is extremely bursty, such de-
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lays may lead to poor reconfiguration and process migration
since delayed load information can give a wrong picture of
current load status of the back-end servers. However, in
RDMA-Sync scheme, there is no extra thread required to
calculate the load information thus avoiding all the issues
mentioned above.

Enhanced robustness to load: Performance of system-
level services over traditional network protocols can be de-
graded significantly if there is a high load in the back-end.
This is because both sides should get involved in communi-
cation and it is possible that the back-end monitoring pro-
cess capturing the load on the back-end may never get the
CPU for a long time. However, for protocols based on
RDMA operations, the peer side is totally transparent to
the communication procedure. Thus, the latency of both
RDMA-Sync and RDMA-Async schemes is resilient and
well-conditioned to load.

5 Experimental Results
For all our experiments we use the following two sys-

tem configurations: A cluster system consisting of 8 server
nodes built around SuperMicro SUPER P4DL6 mother-
boards and GC chipsets which include 64-bit 133 MHz PCI-
X interfaces. Each node has two Intel Xeon 2.4 GHz proces-
sors with a 512 kB L2 cache and a 400 MHz front side bus
and 1 GB of main memory. We used the RedHat 9.0 Linux
distribution. It uses an InfiniBand network with Mellanox
InfiniHost MT23108 DualPort 4x HCA adapter through an
InfiniScale MT43132 twenty-four 4x Port completely non-
blocking InfiniBand Switch. The IPoIB driver for the Infini-
Band adapters was provided by Voltaire Incorporation [1].
The version of the driver used was 2.0.5 10.

We use 8 client nodes with two Intel Xeon 3.0 GHz pro-
cessors which include 64-bit 133 MHz PCI-X interfaces, a
533 MHz front side bus and 2 GB memory. We use the Red-
Hat 9.0 Linux distribution. Apache 2.0.48, PHP 4.3.1 and
MySQL 4.0.12 was used in our experiments. Requests from
the clients were generated using eight threads on each node.
We use a polling time T of 50ms for resource monitoring
schemes in all the experiments unless otherwise explicitly
specified.

5.1 Micro-benchmarks
In this subsection, we evaluate the four schemes in terms

of latency, granularity, accuracy of load information ob-
tained and potential for extracting detailed system load in-
formation.

5.1.1 Latency of Resource Monitoring
In this section, we present the performance impact on the
monitoring latency of the four schemes with loaded condi-
tions in the cluster-based servers. We emulate the loaded
conditions by performing background computation and

Figure 3. Latency of Socket-Async, Socket-
Sync, RDMA-Async, RDMA-Sync schemes
with increasing background threads

communication operations on the server while the front-end
monitoring process monitors the back-end server load. This
environment emulates a typical shared server environment
where multiple server nodes communicate periodically and
exchange messages, while the front-end node, which is not
as heavily loaded, attempts to get the load information from
the monitoring process on the heavily loaded servers.

The performance comparison of Socket-Async, Socket-
Sync, RDMA-Async and RDMA-Sync for this experiment
is shown in Figure 3. We observe that the monitoring la-
tency of both Socket-Async and Socket-Sync increase lin-
early with the increase in the background load. On the other
hand, the monitoring latency of RDMA-Async and RDMA-
Sync scheme which use one-side communication, stays
the same without getting affected by the background load.
These results show the capability of one-sided communica-
tion primitives in a cluster-based server environment.

5.1.2 Granularity of Resource Monitoring
We present the impact on the performance of running appli-
cations with respect to increasing granularity of resource
monitoring of all four schemes. In this experiment, ap-
plication performs basic floating-point operations and re-
ports the time taken. We report the average application de-
lay normalized to the application execution time for each
of the schemes as we vary the granularity from 1 ms to
1024 ms as shown in Figure 4. We observe that the ap-
plication performance degrades significantly when Socket-
Async, Socket-Sync and RDMA-Async schemes are run-
ning in the background at smaller granularity such as 1
ms and 4 ms. Since the Socket-Async scheme uses two
threads for resource monitoring in the back-end server, we
find that this scheme affects the application performance
significantly in comparison with other schemes. In RDMA-
Async scheme, due to the presence of the back-end monitor-
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Figure 5. Accuracy of Load information (a) Number of threads running on the server (b) Load on the
CPU

Figure 4. Impact on application performance
with Socket-Async, Socket-Sync, RDMA-
Async, RDMA-Sync schemes

ing process, we see that the application performance degra-
dation is lesser in comparison with two-sided Socket-Sync
scheme. However, we find that there is no performance
degradation with RDMA-Sync scheme due to the fact that
there are no processes running on the back-end server to
affect the application performance.

5.1.3 Accuracy of Load Information
In this experiment, we analyze the accuracy of the load in-
formation obtained from the four schemes. In order to be
uniform across all four schemes, we design the experiment
in the following way. We run all four schemes simultane-
ously and monitor the load information. In addition, a ker-
nel module on the back-end server periodically reports the
actual load information at a finer granularity. To emulate
loaded conditions, we fired client requests to be processed
at the back-end server. We compare these numbers against
the load information reported by the kernel module and plot

the deviation between these two values.
Figure 5a shows the deviation of the number of threads

running on the server with respect to the numbers reported
by all four schemes. We see that all four schemes re-
port the same values initially since there was no load on
the server. However, as the load on the server increases,
we see that Socket-Async, Socket-Sync and RDMA-Async
show deviations with respect to the number of threads re-
ported by the kernel module. On the other hand, RDMA-
Sync scheme consistently reports no deviation. Further, we
observe that both Socket-Async and Socket-Sync schemes
show large deviations when the back-end server is heavily
loaded. Since sockets is a two-sided communication proto-
col, as the load on the back-end server increases, the latency
for capturing the number of threads running also increases
leading to such inaccuracies.

Figure 5b shows the accuracy of the CPU load informa-
tion reported by all four schemes in comparison with the ac-
tual CPU load. We perform the experiment in a similar way
as explained above. We find that Socket-Async, Socket-
Sync and RDMA-Async schemes show deviations in com-
parison with the actual load while RDMA-Sync scheme re-
ports very few deviations. Since CPU load fluctuates more
rapidly in comparison with number of threads in the system,
we see that RDMA-Async scheme also reports inaccurate
load information. Socket-Async and Socket-Sync schemes,
due to the reasons mentioned above, report stale CPU load
values leading to large deviations.

5.1.4 Detailed System Information
In this experiment, we evaluate our four schemes in terms of
their ability to obtain detailed system information with finer
granularity. To explore this feature, we measure the num-
ber of interrupts pending on CPUs of the servers. For our
evaluation, we use the irq stat kernel data structure, which
maintains the number of software, hardware and bottom-
half pending interrupts on each of the CPUs. We use all
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Figure 6. Number of Interrupts reported on both CPUs: (a) Socket-Async (b) Socket-Sync (c) RDMA-
Async (d) RDMA-Sync

four schemes to report these values to the front-end moni-
toring process. Since the data structure is available at the
kernel space, we use a kernel module to expose this to user-
space, so that Socket-Async, Socket-Async and RDMA-
Async schemes can report this information.

We see that the three schemes, Socket-Async, Socket-
Sync and RDMA-Async as shown in Figure 6a, 6b and 6c
report less and infrequent interrupts in comparison with the
RDMA-Sync scheme as shown in Figure 6d. As mentioned
above, an user process triggers the kernel module to report
the interrupt information for these three schemes. How-
ever, if there are pending interrupts on the CPUs and an
user process, operating system would give a higher prior-
ity to schedule the interrupts rather than the user process.
Furthermore, in a uni-processor kernel, the operating sys-
tem may complete all the interrupt handling and then pass
the control to the user process. However, since there is no
such requirement for RDMA-Sync scheme, we observe that
this scheme reports interrupt information more accurately.
Interestingly, RDMA-Sync scheme reports more interrupts
(in terms of the number of interrupts) in comparison with
the other three schemes. Moreover, the number of inter-
rupts reported on the second CPU by RDMA-Sync scheme
is consistently higher in comparison with the numbers re-
ported by all other schemes.

5.2 Application-Level Evaluation

In this section, we study the benefits of our resource
monitoring schemes with two well known applications. (i)
Web Servers and (ii) Ganglia - a cluster management tool.
Next, we compare the performance of the proposed fine-
grained resource monitoring schemes against the traditional
approaches.

5.2.1 Evaluation with Web Servers
Request patterns seen over a period of time inside the host-
ing centers that provide web services, may vary signifi-
cantly in terms of the popularity of content. In addition,

requests themselves may have varying computation time.
Small documents get served quickly while large documents
take more time to get transferred. Similarly dynamic web-
pages take varying computation time depending on the type
of the client request. Due to these complex issues, balanc-
ing the requests to efficiently utilize all the nodes in host-
ing centers is a challenging task. We chose a popular algo-
rithm used by IBM WebSphere [3], to evaluate the impact
of our resource monitoring schemes in load balancing. IBM
WebSphere utilizes load information such as CPU, memory,
network and connection load, assigns appropriate weights
to these load indices and calculates the average load of the
server. The least loaded servers are chosen for servicing the
request.

Figure 7. Throughput Improvement of Socket-
Async, Socket-Sync, RDMA-Async, RDMA-
Sync, e-RDMA-Sync schemes with RUBiS
and Zipf Trace

Cluster-based Server with RUBiS: We evaluate our
schemes in a cluster-based server environment using a RU-
BiS auction benchmark [5, 6] developed by Rice Univer-
sity. The benchmark simulates a workload similar to a typ-
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Table 1. RUBiS Benchmark
Query Average Response Time Maximum Response Time

Socket Socket RDMA RDMA e-RDMA Socket Socket RDMA RDMA e-RDMA
Async Sync Async Sync Sync Async Sync Async Sync Sync

Home 3 3 3 3 2 416 274 36 33 31
Browse 3 3 3 3 2 495 348 197 81 45
BrowseRegions 6 6 6 5 5 392 206 249 41 32
BrowseCatgryReg 17 17 18 16 14 265 278 210 74 66
SearchItemsReg 4 4 4 4 3 150 180 78 43 32
PutBidAuth 3 3 3 3 2 99 231 38 30 20
Sell 4 4 3 2 2 373 264 19 21 21
About Me (auth) 3 3 3 3 2 178 220 32 35 32

ical e-commerce website. It implements the typical func-
tionality of auction sites such as selling, browsing and bid-
ding. We modified the client emulator to fire requests to
multiple servers and we use the algorithm mentioned above
to evaluate the resource monitoring schemes. In order to
understand the benefits of detailed system information, we
added an e-RDMA-Sync scheme that utilizes system load
and also pending interrupts on the CPUs for choosing the
least-loaded servers. All other schemes use only system
load for choosing the least-loaded servers. Table 1 reports
average and maximum response time of several queries of
the RUBiS benchmark. We find that, both RDMA-Sync and
e-RDMA-Sync schemes perform consistently better than
the other three schemes. Since the maximum response time
is considerably low for RDMA-Sync scheme in compar-
ison with Socket-Async, Socket-Sync and RDMA-Async
schemes, it validates the fact that completely removing the
need for another process on the server brings down the
maximum response time. The improvement we realize for
queries like BrowseRegions, Browse is close to 90% for
RDMA-Sync and e-RDMA-Sync scheme. Other queries
like BrowseCategoriesInRegions and SearchCategoriesIn-
Region show benefits up to 80% for both RDMA-Sync
and e-RDMA-Sync scheme. In addition, we also observe
that there is considerable improvement in the average re-
sponse time of the queries for RDMA-Sync and e-RDMA-
Sync schemes in comparison with other schemes. Also, we
see that e-RDMA-Sync scheme consistently performs better
than RDMA-Sync scheme showing the benefits of using de-
tailed system information for performing effective and fine-
grained services.

Cluster-based Server with RUBiS and Zipf Trace: In
order to show the maximum potential of fine-grained re-
source monitoring, we design an experiment where cluster-
based servers host two web services. We use a Zipf trace
with varying α value. According to Zipf law, the relative
probability of a request for the ith most popular document
is proportional to 1/iα, where α determines the randomness
of file accesses. Higher the α value, higher is the temporal
locality of the document accessed.

The experiment is designed in the following manner. We

run the RUBiS benchmark and Zipf traces simultaneously
and use all five schemes namely Socket-Async, Socket-
Sync, RDMA-Async, RDMA-Sync and e-RDMA-Sync for
resource monitoring. We fix the RUBiS benchmark and
vary the α value for the Zipf trace from 0.25 to 0.9. As men-
tioned earlier, higher α values mean the workload has a high
temporal locality. We report the total throughput improve-
ment in comparison with the Socket-Async scheme for each
of these traces separately as shown in Figure 7. We can ob-
serve that in the case of Zipf trace with α value 0.25, both
RDMA-Sync and e-RDMA-Sync schemes achieve a per-
formance improvement of up to 28% and 35% respectively.
For smaller α values, we see a considerable performance
improvement. This is due to the fact that there are lots
of requests with different resource requirements and these
requests are forwarded to appropriate servers in a timely
manner. As α value increases, the number of requests with
different resource requirements decreases resulting in an in-
crease in the temporal locality of the documents. Hence the
load on all the servers are already well distributed leading
to lesser performance gains.

5.2.2 Evaluation with Ganglia
The second application we use to evaluate is Ganglia [2].
Ganglia is a scalable distributed monitoring system for clus-
ters and monitors several system-level statistics such as
CPU, memory and network usage, etc. In addition, Ganglia
uses a metric tool known as gmetric, which allows users
to specify any arbitrary metric to be monitored apart from
the default metrics. For our evaluation, we use this met-
ric to support fine-grained monitoring for Ganglia. Our re-
source monitoring schemes capture detailed system infor-
mation and reports to gmetric which in turn informs all gan-
glia servers.

For our experiments, as we concluded in Section 5.2.1,
RUBiS benchmark with e-RDMA-Sync perform the best
in comparison with all other schemes, we ran the RU-
BiS benchmark utilizing this e-RDMA-Sync scheme along
with Ganglia monitoring system. The motivation behind
this experiment is to see if any of our resource monitoring
schemes affect the performance of the RUBiS benchmark.
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Figure 8. Response Time of RUBiS benchmark with Ganglia (a) SearchItemInCategories (b) Browse

In the background, we use ganglia to monitor the cluster
and gmetric which uses one of four schemes (Socket-Async,
Socket-Sync, RDMA-Async and RDMA-Sync) to perform
fine-grained monitoring. Figure 8 shows the maximum re-
sponse time of two queries of a RUBiS benchmark. Fig-
ure 8a reports the maximum response time of SearchItem-
InCategories query and Figure 8b reports the maximum re-
sponse time of Browse query. As we see in Figure 8a,
when gmetric uses Socket-Async or Socket-Sync to per-
form fine-grained resource monitoring, the maximum re-
sponse time for the query is close to 250ms when the re-
source monitoring threshold is 1 or 4 ms. However, we find
that the maximum response time is unaffected when gmet-
ric uses RDMA-Async or RDMA-Sync scheme to perform
fine-grained resource monitoring. We see similar trends in
Figure 8b. This validates that RDMA-based resource moni-
toring does not affect the performance of other applications
as compared to a two sided communication protocol like
sockets.

5.2.3 Fine-grained Vs Coarse-grained Monitoring

Figure 9. Fine-grained vs Coarse-grained
Monitoring

In order to understand the impact of granularity of re-
source monitoring with applications, we evaluate the perfor-
mance for different load fetching granularity from 64 msecs
to 4096 msecs. Figure 9 shows the throughput performance
of a RUBiS benchmark and Zipf trace with α value 0.5 run-
ning simultaneously for different load fetching granularity.
We see that the throughput increases for decreasing granu-
larity for RDMA-Sync scheme. With granularity 1024 m
secs, all four schemes report comparable performance. As
the granularity decreases to 64 msecs, we see a performance
degradation for Socket-Sync and Socket-Async schemes.
Thus, traditional resource monitoring approaches based on
sockets cannot be used for fine-grained resource monitor-
ing. On the other hand, we see an improvement close to
25% for RDMA-Sync scheme compared to the rest of the
schemes when the granularity is 64 msecs showing the per-
formance benefits of fine-grained resource monitoring with
applications. Thus, our results indicate that fine-grained
monitoring can significantly improve the overall utilization
of the system and accordingly lead to up to 25% improve-
ment in the number of requests the cluster-system can ad-
mit.

6 Discussion and Related Work
Several researchers have proposed the feasibility and po-

tential of cluster-based servers [13, 17] for scalability and
availability of resource-intensive distributed applications.
In the past, researchers have proposed coarse-grained mon-
itoring approaches [15, 13] in order to avoid the overheads
associated with fine-grained monitoring for such environ-
ments. In this paper, we propose an approach for providing
a low-overhead fine-grained resource monitoring services
which can complement the cluster-based server infrastruc-
ture and result in better performance of system-level ser-
vices.

Researchers have proposed and evaluated various load
balancing policies using load information for cluster-based
network services [11, 18]. Our proposed scheme is applica-
ble to all the schemes that uses monitored information. In
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addition, some of the existing load-balancing schemes can
be enhanced further using the detailed system information
provided by our scheme. Several others have focused on
the design of adaptive systems that can react to changing
workloads in the context of web servers [10, 14, 16]. Our
schemes are also applicable in these environments which
uses monitored load information for reconfiguration of re-
sources.

Many of the modern interconnects such as IBA also pro-
vide features such as hardware multicast which can make
our solutions highly scalable. For example, the back-end
server node can use hardware multicast to inform a group
of front-end dispatchers about its status. These solutions
are known to scale well in large scale clusters. However,
these features use channel semantics as described in Sec-
tion 2. Hence such solutions are not completely one-sided
removing some of the benefits of our design. Due to the
fact that the kernel data structures are shared among differ-
ent nodes in the cluster environment, our solution demands
the need for accessing these memory regions remotely. Ex-
posing such memory regions can lead to security issues (e.g.
a remote node can update some internal kernel data struc-
tures). However, we mark these memory regions as read-
only thus avoiding the risk of modifying these memory re-
gions remotely.

7 Conclusions and Future Work
In this paper, we propose an approach for achieving ef-

ficient fine-grained resource monitoring using the advanced
RDMA operation of current generation intelligent network
adapters such as IBA, etc. We evaluate the benefits of our
proposed approach relative to traditional approaches in var-
ious environments (including micro-benchmarks as well as
real applications such as an auction server based on the
RUBiS benchmark and the Ganglia distributed monitoring
tool). Our results indicate that our approach for fine-grained
monitoring can significantly improve the overall utilization
of the system and accordingly lead to up to 25% improve-
ment in the number of requests the cluster-system can ad-
mit.

Dynamic reconfiguration of resources has been studied
in the context of nodes [9, 8], file systems [20] and storage
environments. Accurate monitoring of resources is critical
for efficient resource utilization in these environments. We
plan to extend the knowledge gained in this study to im-
plement a full-fledged reconfiguration module coupled with
accurate resource monitoring.
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