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Abstract
Bulk memory copies incur large overheads such as CPU stalling

(i.e., no overlap of computation with memory copy operation), small
register-size data movement, cache pollution, etc. Asynchronous copy
engines introduced by Intel’s I/O Acceleration Technology help in
alleviating these overheads by offloading the memory copy operations
using several DMA channels. However, the startup overheads associ-
ated with these copy engines such as pinning the application buffers,
posting the descriptors and checking for completion notifications,
limit their overlap capability. In this paper, we propose two schemes
to provide complete overlap of memory copy operation with compu-
tation by dedicating the critical tasks to a single core in a multi-core
system. In the first scheme, MCI (Multi-Core with I/OAT), we offload
the memory copy operation to the copy engine and onload the startup
overheads to the dedicated core. For systems without any hardware
copy engine support, we propose a second scheme, MCNI (Multi-
Core with No I/OAT) that onloads the memory copy operation to the
dedicated core. We further propose a mechanism for an application-
transparent asynchronous memory copy operation using memory
protection. We analyze our schemes based on overlap efficiency, per-
formance and associated overheads using several micro-benchmarks
and applications. Our microbenchmark results show that memory
copy operations can be significantly overlapped (up to 100%) with
computation using the MCI and MCNI schemes. Evaluation with
MPI-based applications such as IS-B and PSTSWM-small using
the MCNI scheme show up to 4% and 5% improvement, respec-
tively, as compared to traditional implementations. Evaluations with
data-centers using the MCI scheme show up to 37% improvement
compared to the traditional implementation. Our evaluations with
gzip SPEC benchmark using application-transparent asynchronous
memory copy show a lot of potential to use such mechanisms in
several application domains.

I. Introduction
In recent years, there has been a rapid growth of compute-

intensive as well as memory-intensive applications in the
domains of medical informatics, genomics, satellite weather
processing, etc. These applications not only demand large
compute cycles but also higher memory performance. Emerg-
ing trends in processor technology has led to Multi-Core
Processors (also known as Chip-level Multiprocessing or
CMP) which provide large number of cores on a single node,
thus increasing the processing capability of current-generation

systems. On the other hand, over the years, improvements
in memory performance have not matched the improvements
in processor speed. The limited memory bandwidth is often
addressed as the major performance degradation factor for
many scientific applications. Several memory block operations
such as copy, compare, move, etc., are performed by the
host CPU leading to an inefficient use of the host compute
cycles. Further, if the application data is not in the cache, the
host CPU ends up waiting for the data to be fetched to the
cache or the registers before performing the memory block
operation thus leading to CPU stalling issues. The problem is
further magnified in multi-core systems since several cores can
concurrently access the memory leading to memory contention
issues. Due to several of the issues mentioned above, the abil-
ity to overlap computation and memory copy operation as a
memory copy latency-hiding mechanism becomes critical for
masking the gap between processor and memory performance.

Recently, Intel’s I/O Acceleration Technology (I/OAT) [10]
introduced an asynchronous Direct Memory Access (DMA)
copy engine within the chip which has direct access to main
memory and relatively lesser DMA startup and completion
overheads. Figure 1(a) shows the latency of memory copy
operation using the I/OAT’s DMA copy engine and the
associated overheads for different message sizes as mentioned
in [16]. Due to the fact that the copy engine is known to
give better performance for large memory copies, we focus
only on small and medium message sizes. Also, we report the
performance of traditional libc memcpy when the application
buffers are resident in the cache (referred as libc memcpy (hot-
cache) in the figure). As shown in Figure 1(a), we observe
that the traditional libc memcpy outperforms the I/OAT DMA
engine’s performance if the application buffers are in the
cache. Further, we observe that the DMA startup overhead
associated with the copy engine is much higher than the
memory copy time (libc memcpy hot-cache), thus removing
the benefits of asynchronous memory copy provided by these
copy engines. In this paper, we propose to mask this overhead
completely (referred as the ideal overhead in the figure) for
applications to get true benefits of the copy engine even for
small and medium message sizes.

Researchers in the past have looked at different ways of
providing memory copy operations as shown in Figure 1(b).
The shaded boxes show the components that already exist
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Fig. 1. Motivation for Using Asynchronous Memory Copy Operations
today. For single-core systems with no hardware copy en-
gine support, traditional libc memcpy is used for memory
copies. We refer to this scheme as SCNI (Single-Core with
No I/OAT). However, if the system has an I/OAT support,
applications can offload the memory copy to the copy engine.
We refer to this scheme as SCI (Single-Core with I/OAT).
As multi-core systems are emerging, it opens up new ways
to design and implement memory copy operations. Currently,
there is no study that has explored the impact of multi-
core systems in designing efficient memory copy operations.
We take on this challenge and introduce two new schemes
as shown in white boxes. In the first scheme, MCI (Multi-
Core with I/OAT), we offload the memory copy operation
to the copy engine and onload the startup overheads to a
dedicated core. For systems without any hardware copy engine
support, we propose a second scheme, MCNI (Multi-Core
with No I/OAT) that onloads the memory copy operation
to a dedicated core. We further propose a mechanism for
an application-transparent asynchronous memory copy opera-
tions using memory protection.

We evaluate our proposed schemes on multi-core and
I/OAT based systems and attempt to bring out the benefits
and issues associated with these schemes in terms of perfor-
mance, overlap capability and overheads using several micro-
benchmarks and applications. Our microbenchmark-level eval-
uations using MCI and MCNI schemes show that the memory
copy operations can be significantly overlapped (up to 100%)
with computation. Evaluation with MPI-based applications
such as IS-B and PSTSWM-small using the MCNI scheme
show up to 4% and 5% improvement, respectively, as com-
pared to the traditional implementation. Evaluations with data-
centers using the MCI scheme show up to 37% improvement
as compared to the traditional implementation. In addition,
our design and evaluation for an application-transparent asyn-
chronous memory copy using the SPEC benchmarks shows a
lot of promise (up to 10% improvement) for many applications
that uses memory copies.

II. Motivation and Background
In this section, we first provide a brief motivation for using

copy engines in memory copy operations and describe the
architecture of I/OAT copy engine. Next, we briefly discuss

our previously proposed scheme for offloading memory copies
using a copy engine (SCI scheme).

A. Motivations for Copy Offload Engine
The basic architecture of copy execution using a CPU or

a DMA copy engine is shown in Figure 2(a). As mentioned
in [18], utilizing a copy engine for memory copies helps in
reducing the CPU resources occupied and offers better perfor-
mance. CPU-based memory copies are limited by the register-
size data movement since the copy operation is implemented
as a series of load and store instructions through registers.
On the other hand, copy engines can perform memory copies
at a faster rate (L2 block size). Further, the load and store
instructions used in CPU-based memory copies may end up
occupying the CPU resources, thus limiting the CPU to not
look far ahead in the instruction window. Copy engines can
help in freeing up CPU resources so that other useful instruc-
tions can be executed. Since the memory-to-memory copy
operation can be performed without host CPU intervention,
applications can also achieve better overlap with memory
copies. Using a copy engine for bulk memory copies also
results in avoiding cache pollution effects as it can directly
perform the copy without getting the data onto the cache.

B. I/OAT Copy Engine Architecture
I/O Acceleration Technology [10] offloads the memory

copy operation using an asynchronous DMA copy engine. The
copy engine is implemented as a PCI-enumerated device in
the chipset and has multiple independent DMA channels with
direct access to main memory. When the processor requests
a block memory copy operation from the engine, it can
then asynchronously perform the data transfer with no host
processor intervention. When the engine completes a copy, it
can optionally generate an interrupt. I/OAT supports several
interfaces in kernel space for copying data from a source
page/buffer to a destination page/buffer.

C. Single-Core with I/OAT (SCI) Scheme
In our previous work [16], we proposed a SCI scheme

that offloads the memory copy operation to the I/OAT’s
hardware copy engine and used a kernel module to expose the
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Fig. 2. Copy Engine Architecture and SCI Scheme

features of the hardware copy engine to user applications. User
applications communicate with the kernel module (referred
as memory copy module in Figure 2(b)) for offloading the
copy operation. The kernel module initiates the memory
copy operation across each of the DMA channels. On a
completion notification request from the user, the kernel
module checks the progress of memory copy operation and
informs the application accordingly. In addition, tasks such
as pinning the application buffers, posting the descriptors,
releasing the buffers are also handled by the kernel module.
The SCI scheme also supports page caching mechanism to
avoid pinning of application buffers in the critical path. In this
mechanism, the kernel module caches the virtual to physical
page mappings after locking the application buffers. Once the
memory copy operation completes, the kernel module does
not unlock the application buffers to avoid the pinning cost if
the same application buffer is reused later.

III. Proposed Design
In this section, we first describe the overheads associated

with the SCI scheme. Next, we present two new schemes that
address the limitations of SCI scheme.

A. Overheads of SCI Scheme
Though the SCI scheme offers several benefits such as

performance improvement, cache pollution avoidance, overlap
capability, it has the following overheads.

Copy Engine Overheads: As mentioned in our previous
work [16], in order to perform a memory copy operation
using the copy engine, we need to post a descriptor to a
channel specifying the source and destination buffer and the
size of the data transfer. Due to the presence of multiple
channels in the copy engine, we incur the cost for posting
the descriptors across each DMA channel. After the copy
operation is initiated, we also need to check for the completion
of memory copy operation across all the channels. Though the
hardware copy engine provides a mechanism to avoid this cost
by sending an interrupt after the completion, this may not be
suitable for latency-sensitive applications.

Page Locking Overheads: Further, due to the fact that the
hardware copy engine can understand only physical addresses,

it is mandatory that the application buffers are locked/pinned
while the copy operation is in progress. However, page locking
cost can be significant since the kernel needs to pin each and
every page involved in the memory copy operation.

Context Switch Overheads: Due to the fact that the copy
engine is accessible only in kernel space, a context switch
occurs for every copy engine related operation performed by
the user application. This cost is especially large if multiple
applications try to access the copy engine at the same time
while the copy operation is still in progress resulting in several
context switch penalties.

Synchronization Overheads: Several applications can ac-
cess the hardware copy engine simultaneously and hence the
copy engine resources need to be locked for protection.

B. Multi-Core with I/OAT (MCI) Scheme
While the SCI scheme helps user applications to offload

memory copy operations, several critical operations still re-
main in the critical path. In this section, we propose a novel
scheme to alleviate these overheads.

1) Basic Design: In our design, we propose a scheme that
takes advantage of the copy engine and multi-core systems
to avoid the overheads in the critical path. Specifically, we
offload the copy operation to the hardware copy engine and
onload the tasks that fall in the critical path to another core or
a processor so that applications can exploit complete overlap
of memory operation with computation.

Figure 3(a) shows the various components of the proposed
scheme. Since the copy engine is accessible only in the kernel
space, we dedicate a kernel thread to handle all copy engine
related tasks and allow user applications to communicate
with the dedicated thread to perform the copy operation.
The dedicated thread also maintains a list of incomplete
memory copy requests and attempts to make progress for
these initiated requests. Apart from servicing multiple user
applications, the dedicated thread also handles tasks such as
locking the application buffers, posting the descriptors for
each user request on appropriate channels, checking for device
completions, releasing the locked application buffers after
completion events. Since the critical tasks are onloaded to this
dedicated thread, the user application is free to execute other
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Fig. 3. Asynchronous Memory Copy Operations

computation or even execute other memory operations while
the copy operation is still in progress thus allowing complete
overlap of memory copy operation and computation.

2) Avoiding Context Switch Overhead: In order to avoid
the context switch overhead between the application process
and the dedicated thread, we use a similar mechanism pro-
posed by [1], [13], [4]. This mechanism memory maps a
region from a user space to kernel space so that both the
application and the kernel thread can access this common
memory region at the same time. The memory region is
divided into a set of request and completion queues. The
request queue is used to submit memory copy requests by
the application. The dedicated thread constantly looks at the
request queue to process new copy requests. Similarly, the
completion queue is used to notify the completion of copy
operations by the kernel thread. The applications constantly
look at the completion queue for completion notifications.

3) Handling Locking and Synchronization: In the SCI
scheme, since the kernel module exposes a set of interfaces
for applications, several kernel instances can be spawned if
multiple applications need to access the copy engine. This
increases the requirement of locking the shared resources and
careful management for supporting concurrency. However,
in the MCI scheme, since the dedicated thread handles all
tasks for multiple applications, it avoids the need for locking
the resources and becomes easier for managing the shared
resources.

C. Multi-Core with No I/OAT (MCNI) Scheme
The MCI scheme mentioned in the previous section is

applicable only for multi-core systems with the copy engine
support. However, there are several multi-core systems with-
out copy engine support. In order to provide asynchronous
memory copy operations for such systems, we propose a
MCNI scheme (Multi-Core systems with No I/OAT) that
onloads the memory copy operation to another processor or a
core in the system. This scheme is similar to the MCI scheme.
In this scheme, as shown in Figure 3(b), we dedicate a kernel
thread to handle all memory copy operations, thus relieving
the main application thread to perform computation.

The MCNI scheme takes help from the operating system
kernel to perform memory copy operations. The dedicated
thread should have access to the physical pages pointed by
the application’s virtual address to perform copy operations
from one process to another process. This is done through
memory mapping mechanism [12], [1] that maps a part of
other processes address space into its own address space.
After the memory mapping process, the dedicated thread can
access the mapped area as its own memory region and perform
the copy operation. Since the memory mapping is a costly
function, our design also supports for caching the memory
mapped pages so that future copy requests with the same
source or the destination buffers can avoid the mapping cost
and perform the copy operation faster.

D. Application-Transparent Asynchronism
The main idea of application-transparent asynchronism is

to avoid blocking the application while the memory copy
operation is still in progress. With the asynchronous memory
copy interface, the application can explicitly initiate the copy
operation and wait for its completion using another function.
However, several applications are written with the blocking
routine (memcpy, bcopy), which assumes that the data is
copied once the function finishes. Further, the semantics of the
memcpy operation assumes that the buffer is free to be used
after the completion of memcpy operation. To transparently
provide asynchronous capabilities for such operations, two
goals need to be met: (i) the interface should not change;
the application can still use the blocking memcpy routine and
(ii) the application can assume the blocking semantics, i.e.,
once the control returns to the application, it can read or
write the buffer. Here, we use a similar approach proposed
by [5]. In our approach, we memory-protect the user buffer
(thus disallow the application from accessing it) and perform
the copy operations. After the copy operation completes, we
release the memory protection so that the applications can
access both the source and destination buffers. Since in a
memcpy operation the source does not get modified, we allow
read accesses to the source buffer. However, the destination
address gets modified during a copy operation and hence we
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do not allow accesses to this memory region during the copy
operation. We further optimize the performance for successive
memory copy operations by checking if the multiple pages
overlap. If they do overlap and if the first memory copy is still
in progress, we do not release the protection for the overlapped
pages of memory copy, since they will be protected by the
second memory copy operation. Further, during a memory
copy operation, we check the progress of previous memory
copy operations and accordingly release the protection. If
the application does not modify the destination buffer for
sufficiently long time, then the application will realize only the
page protection time, which is considerably lesser compared
to the copy operation for large message transfers. Currently,
we do not support application-transparent memory copies for
overlapping source and destination buffers.

Figure 4 illustrates the designs of memory copy operation
using the three different approaches. As shown in Figure 4(a),
in all three schemes (SCI, MCI and MCNI), though the mem-
ory copy operation is performed in the background, the appli-
cation blocks for every memory copy operation to finish be-
fore performing any other computation. Figure 4(b) shows the
impact of an application-aware memory copy operation which
needs modification in order to benefit from asynchronism.
Figure 4(c) shows the design of an application-transparent
asynchronous memory copy operation. As mentioned before,
we memory protect buffers before initiating the memory
copy operation and return the control to the application. If
the application attempts to access the destination buffer or
modify the source buffer, a page fault is generated due to
page protection. This results in a SIGSEGV signal for the
application which is handled by our helper module. In this
case, we block for all pending memory copy operations to
complete and release the protection appropriately.

E. Extensions to MPI Middleware
Message Passing Interface (MPI) is the de facto standard

in high performance computing. In this section, we describe
our extension to MPI intra-node communication implemen-
tation to take advantage of the asynchronous memory copy
operations. Our design is based on MVAPICH, which is a
high performance MPI library over InfiniBand [14]. The intra-
node communication in MVAPICH is achieved by attaching
all the processes to a user space shared memory region. The

sender copies messages into the shared memory region and
the receiver copies messages out of it. Therefore, at least
two copies are involved in this process. Small messages are
transferred using an eager protocol while large messages are
transferred using rendezvous protocol. The detailed design of
MVAPICH intra-node communication is described in [8]. In
our design, small messages are still transferred through the
user space shared memory region. For large messages, we
use the shared memory region for handshake messages, and
use asynchronous memory copy operations for transferring the
data. The protocol is described as below:

• Step 1: The sender sends a request to send message.
• Step 2: The receiver replies with an ok to send message

when it sees the request to send message and a matching
MPI recv operation is posted.

• Step 3: The receiver then posts its receive request by
initiating a non-blocking IPC read request to the kernel
for performing asynchronous memory copy operations,
and places this request into a pending recv queue.

• Step 4: When the sender receives the ok to send message,
it posts its send request by initiating a non-blocking IPC
write request to the kernel for performing asynchronous
memory copy operations, and places this request into a
pending send queue.

• Step 5: When the MPI application tries to make progress,
the sender and the receiver check the completion of
the pending operations by initiating a non-blocking IPC
check request to the kernel to check for completion
and inform the upper layer about the completion of the
operations.

IV. Experimental Results
We ran our experiments on a dual dual-core Intel 3.46 GHz

processors with 2 MB L2 cache system using SuperMicro
X7DB8+ motherboards which include 64-bit 133 MHz PCI-
X interfaces. The machine is connected with an Intel PRO
1000Mbit adapter. We used the Linux RedHat AS 4 operating
system and the kernel version 2.6.20 for all our experiments.

Our experiments are organized as follows. First, we analyze
our schemes in terms of performance, overlap capability
and the associated overheads. Next, we evaluate the impact
of these schemes with MPI-based applications and SPEC
benchmarks such as gzip and in data-center environments.
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A. Micro-benchmarks

In this section, we evaluate the schemes in terms of
latency and bandwidth performance, overlap efficiency and
its associated overheads.

1) Basic Performance with Page Caching: Figure 5 shows
the basic performance of memory copy operation using the
page caching mechanism, as mentioned in Section II-C. Fig-
ure 5(a) shows the latency of all four schemes. For the SCNI
scheme, we perform several memcpy operation using the libc
library and average it over several iterations. For the SCI, MCI
and MCNI schemes, we initiate the memory copy operation
and wait for the completion notification before initiating the
next copy operation. As shown in Figure 5(a), we see that
the latency of both SCNI and MCNI schemes for message
sizes greater than 2 MB is significantly worse compared to the
performance of the SCI and MCI schemes. Since the cache
size is only 2 MB, both the SCNI and MCNI schemes perform
the copy operation in memory using the CPU which is limited
by small register-size copy operations. However, for the SCI
and MCI schemes, since the copy operation is performed by
the DMA channels directly in memory, it is not limited by
the register size. Hence, we see a performance improvement
of up to a factor of two for the SCI and MCI schemes in
comparison with the SCNI and MCNI schemes. For message
sizes less than 1 MB, since the buffers can fit in cache, the
performance of the SCNI and MCNI schemes is significantly
better than the SCI and MCI schemes.

The bandwidth performance of memory copy operation is
shown in Figure 5(b). In this experiment, we initiate a window
of copy operations and wait for these copy operations to
finish. We repeat this experiment for several iterations and
report the bandwidth. As shown in Figure 5(b), we see that
the bandwidth performance of the SCNI and MCNI schemes
for message sizes less than 1 MB is significantly better than
the bandwidth performance of the SCI and MCI schemes due
to caching effects. The peak bandwidth for the SCNI and
MCNI schemes achieved are 11014 MB/s and 9087 MB/s,
respectively. However, for message sizes greater than 2 MB,
we see that the bandwidth of the SCNI and MCNI schemes
drops to 1461 MB/s and 1463 MB/s since the buffers are

accessed in memory. On the other hand, the SCI and MCI
schemes report a peak bandwidth of up to 2958 MB/s and
2954 MB/s, respectively.

To measure the overlap efficiency, we perform the overlap
benchmark as mentioned in [16]. First, the benchmark es-
timates the copy latency (Tcopy) by performing a blocking
version of memory copy operations. Next, the benchmark
initiates the asynchronous memory copy followed by a certain
amount of computation (Tcompute > Tcopy) which takes at
least the blocking copy latency and finally waits for the copy
completion. The total time is recorded as Ttotal. If the memory
copy is totally overlapped by computation, we should have
Ttotal = Tcompute. If the memory copy is not overlapped, we
should have Ttotal = Tcopy + Tcompute. The actual measured
value will be in between, and we define overlap as (Tcopy

+ Tcompute - Ttotal) / Tcopy. Based on the above definition,
the value of overlap will be between 0 (non-overlap) and 1
(totally overlapped). A value close to 1 indicates a higher
overlap efficiency. Figure 5(c) shows the overlap efficiency of
all four schemes in performing memory copy operations and
computations. For the SCNI scheme, since we only have a
blocking version of memory copy (libc memcpy), we see that
the overlap efficiency is zero. In the SCI scheme, since the
copy operation is offloaded, we observe that it can achieve up
to 0.88 (88%) overlap efficiency. However, for small message
sizes, we see that the overlap efficiency is quite low. On the
other hand, we observe that the MCI scheme can achieve up
to 1.00 (100%) overlap efficiency for large messages and up
to 0.78 (78%) overlap efficiency even for small messages. We
also observe that MCNI scheme achieves up to 1.00 (100%)
overlap efficiency for large messages and up to 0.5 (50%)
overlap efficiency for small messages.

2) Performance without Page Caching: In this section, we
measure the performance of our schemes without the page
caching mechanism.

Figure 6(a) shows the latency of all four schemes without
page caching. For the MCNI scheme, we observe that the
latency is significantly worse reaching up to 14829 µs for
16 MB message size. Further, we see that the SCI and MCI
schemes report a latency of 6414 µs and 6468 µs, respectively.
As mentioned earlier, since the application buffers are not
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cached, every memory copy operation using the SCI, MCI
and MCNI schemes incur a page locking cost, thus increasing
the latency. However, the SCNI scheme does not show any
degradation since the scheme does not depend on the under-
lying page caching mechanism. The bandwidth performance
without page caching mechanism is shown in the Figure 6(b).
Since the locking costs can be pipelined with several mem-
ory copy operations, we do not observe any degradation in
bandwidth for the SCI and MCI schemes. However, for the
MCNI scheme, due to huge mapping costs, we see a drop
in bandwidth. Figure 6(c) shows the overlap efficiency of all
four schemes without page caching mechanism. For the SCI
scheme, since the startup overheads fall in the critical path, we
observe that it can achieve only 0.74 (74%) overlap efficiency
for large message transfers. However, we see that both MCNI
and MCI schemes show up to 1.00 (100%) overlap efficiency.

3) Split-up Overhead of SCI, MCI and MCNI Schemes:
To understand the low overlap efficiency observed in the
previous section, we measure the split-up overhead of the
three schemes, namely the SCI, MCI and MCNI schemes.
Figure 7 shows the split-up overhead of using memory copy
operations with the SCI, MCI and MCNI schemes. For small
message sizes, we see that the pinning costs, startup overheads
and completion notifications consume considerable amount
of time reducing the overlap efficiency for the SCI scheme.
Even for large message sizes, we observe that the pinning
costs and DMA startup overheads occupy close to 18% and
7%, respectively. However, for the MCI and MCNI schemes,
we observe that the only overhead is posting the request
and checking for completions through memory transactions
in the response queue, thus resulting in almost 100% overlap
efficiency.

B. Evaluations with MPI

In this section, we present the MPI-level micro-benchmarks
and application performance.

Figure 8 shows the MPI level intra-node latency and
bandwidth. In our testbed, we found that the optimal threshold
to switch from eager to rendezvous protocol as 32 KB, thus
messages smaller than 32 KB are still transferred through
shared memory in all the schemes. Therefore, we only show
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the results larger than 32 KB. As shown in Figure 8(a), we see
that all the asynchronous memory copy schemes are able to
achieve better performance than the shared memory scheme.
For example, the MCNI scheme improves the latency by up to
37% compared to the shared memory scheme (SCNI) and the
MCI scheme improves the latency by up to 24% compared to
SCI scheme. Among the three asynchronous memory copy
schemes, the MCI scheme performs the best. The reasons
being, compared to the SCI scheme, the MCI scheme onloads
the operations in the critical path to another thread; and
compared to the MCNI scheme, the MCI scheme uses the
DMA engine which performs the copy more efficiently than
the CPU-based approach. The bandwidth performance shown
in Figure 8(b) reveals the same trend. The MCI scheme shows
up to 24% improvement in bandwidth as compared to the SCI
scheme. It is to be noted that the bandwidth of both the shared
memory scheme and the MCNI scheme drops at 2 MB since
the cache size is only 2 MB.

We use IS in NAS parallel benchmarks [11] and
PSTSWM [2] for our application level performance evalua-
tions. The normalized execution time is shown in Figure 9.
The results were taken on a single node. For MCI and MCNI
schemes, we use one of the cores in the system as the
dedicated core. Hence, we only show the performance of
shared memory (CPU) and SCI scheme for four processes,
since our experimental testbed has only four cores. As shown
in Figure 9, we see that the MCI scheme improves the
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Fig. 8. MPI-level Latency and Bandwidth
TABLE I. Application Message Size Distribution

Message Size 0 - 32KB 32KB - 1MB 1MB - 64MB
IS.A.2 68.1% 0 31.9%
IS.A.4 70.6% 0 29.4%
IS.B.2 68.1% 0 31.9%
IS.B.4 70.6% 0 29.4%
IS.C.2 68.1% 0 31.9%
IS.C.4 70.6% 0 29.4%
PSTSWM.sm.2 4.0% 0.4% 95.6%
PSTSWM.sm.4 3.6% 96.4% 0
PSTSWM.med.2 4.0% 0 96.0%
PSTSWM.med.4 3.0% 0.5% 96.5%

performance of IS by 12% and the performance of PSTSWM
by 7% as compared to the SCNI scheme. Further, we observe
that the MCNI scheme improves the performance of IS-B and
PSTSWM-small by 4% and 5%, respectively, as compared
to the SCNI scheme, respectively. The improvement seen is
expected because both IS and PSTSWM use a lot of large
messages, as shown in Table I. However, we observe that
the improvement seen in PSTSWM is not significant despite
using very large messages to communicate. This is due to
the computation intensive nature of the PSTSWM application.
For example, when running the medium problem size on four
processes, only 6.6% of the total time is spent in MPI.

C. Evaluations with SPEC and Data-Centers

In this section, we evaluate the performance of the pro-
posed schemes with gzip SPEC CPU2000 benchmark and sim-
ulated data-center services. SPEC CPU2000 benchmark [3] is
a set of benchmarks designed to characterize and evaluate
the performance of overall system performance such as CPU,
memory, etc. In this paper, we focus on one such benchmark,
gzip, which measures the CPU and memory performance.
In order to force SPEC CPU2000 benchmarks to use our
schemes, we preloaded a library that intercepts all memcpy
operations. In all our experiments, we forced the benchmarks
to use the different schemes if the message size is greater than
64 KB.

SPEC benchmarks focus on CPU and memory-intensive
operations (i.e., memory reads, computations, memory writes)
and hence we did not observe any significant improvement
in the overall execution time. However, we report the time
spent in memory copy operations (greater than 64 KB message
size) using the four different schemes during application
execution. With protection scheme, we include the time spent
in initiating the memory copy and protecting the source and
destination buffers and also the time spent in waiting for
the memory copy operation to finish when either the source
or the destination buffers are touched (i.e. the time spent
after receiving a SIGSEGV). Table II shows the total cost of
protecting the source and destination buffers before and after
the copy operation and we observe that the total protection
cost (this includes four mprotect calls) is quite less compared
to the total time for the memory copy operation. It is to be
noted that this cost is the worst case estimate and it can be
further optimized for consecutive memory copy operations
involving the same source or the destination buffers and if
the buffers are not touched in between these memory copy
operations.

TABLE II. Memory Protection Overhead

Msg. Size 64 KB 256 KB 1 MB 4 MB 16 MB
Cost (usecs) 4.3 7.1 18.6 63.6 227.9

Figure 10(a) shows the performance of gzip benchmark
with all four schemes. As shown in the figure, we observe
that both SCI and MCI schemes improve the performance of
memory copy time (i.e., memory copies greater than 64 KB)
by up to 35% as compared to SCNI scheme. We profiled the
message distribution of gzip benchmark for all message sizes
greater than 64 KB. We found that more than 50% of the
memory copies greater than 64 KB fall between 1 MB and
2 MB. Due to this reason, we observe that the SCI and MCI
schemes improve the performance of memory copies. For the
MCNI scheme, we observe that the performance does not im-
prove due to large mapping cost overheads. As mentioned in
Section III, application-transparent memory copies can further
improve the performance if the source and destination buffers
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are not accessed immediately after a memory copy operation.
As shown in Figure 10(a), we observe that the performance
of gzip consistently improves by 10% as compared to the
performance of blocking memory copy operations for SCI,
MCI and MCNI schemes. This result is quite promising for
several applications that use memory copies similar to the gzip
benchmark.

Next, we evaluate the performance of memory copy op-
erations in a data-center environment [15]. For efficiently
transferring the data from a remote site to the local node
in a data-center environment, a distributed shared state has
been proposed in the literature [17]. However, there is no
efficient support for transferring the data between a data-
center service and the application threads within a node. We
use the asynchronous memory copy operations for supporting
data sharing within a node. To emulate the multiple threads
copying the shared data scenario, we create a single server and
three application threads in a single node. The server initiates
a data copy operation to all three application servers and
waits for the completion operation. The application threads
also wait for the completion of the copy operation. For data
copy operation, we use a Zipf distribution with varying α
value which is common in several data-center environments.
According to Zipf law, the relative probability of a request for
the ith most popular document is proportional to 1/iα, where
α determines the randomness of file accesses. Higher the α
value, higher will be the temporal locality of the document
accessed. We use file sizes ranging from 500 bytes to 8 MB
in the Zipf trace. We emulate the data-center environment by
firing copy requests according the Zipf pattern and measure
the average latency after the completion of all copy operations.
We report the performance of the SCI, MCI and traditional
shared memory (SCNI) schemes for copying the data as shown
in Figure 10(b). We observe that the performance of the
MCI scheme is significantly better for all Zipf traces. The
MCI scheme shows up to 37% performance improvement
as compared to the SCI scheme for an α value of 0.5.

This is mainly due to avoiding context switch overheads and
scheduling the memory copy operations without any delay.
The shared memory (SCNI) scheme is better for larger α
values compared to the SCI scheme, since majority of the
data is transferred through the cache. However, as α value
decreases, we see that the performance of shared memory
(SCNI) scheme gets worse. Due to a lot of overheads asso-
ciated with the SCI scheme, the benefits of the SCI scheme
show up only when the application uses large memory copies
(smaller α values). The performance of the MCNI scheme
with other application threads (all four cores are completely
utilized) degraded significantly and hence we did not include
this result.

V. Discussion and Related Work
Researchers have proposed several solutions for asyn-

chronous memory operations in the past. Zhao et al [18] talk
about hardware support for handling bulk data movement.
Calhoun’s thesis [7] proposes the need for dedicated memory
controller copy engine and centralized handling of memory
operations to improve performance. However, many of these
solutions are simulation-based. Ciaccio [9] proposed the use of
self-connected network devices for offloading memory copies.
Though this approach can provide an asynchronous memory
copy feature, it has a lot of performance-related issues.
I/OAT [10] offers an asynchronous copy engine which im-
proves the copy performance with very little startup costs. In
this paper, we use this hardware for supporting asynchronous
memory operations. Further, as mentioned in Section III-D,
we proposed an application-transparent asynchronous memory
copy mechanism which showed up to 10% benefit. This result,
though evaluated only for gzip application, is quite promising
for several applications which can take advantage of complete
asynchronism without any modifications to applications.

Regarding MPI intra-node communication, Buntinas et. al.
[6] and Chai et. al. [8] have discussed shared memory based
approaches and optimizations. Jin et. al. have proposed a
kernel assisted memory map based design in [12], which is
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similar to the MCNI scheme discussed in this paper. However,
the scheme proposed in this paper is more general in that it
can be applied not only to MPI but also to other applications
such as data-centers. Besides, our scheme dedicates the copy
operation to another core thus providing complete overlap
of copy operation with computation in a single-threaded
application.

VI. Conclusions and Future Work
In this paper, we proposed two schemes to provide com-

plete overlap of memory copy operation with computation by
dedicating the critical tasks to a core in a multi-core system. In
the first scheme, MCI (Multi-Core with I/OAT), we offloaded
the memory copy operation to the copy engine and onloaded
the startup overheads associated with the copy engine to a
dedicated core. For systems without any hardware copy engine
support, we proposed a second scheme, MCNI (Multi-Core
with No I/OAT) that onloaded the memory copy operation
to a dedicate core. We further proposed a mechanism for an
application-transparent asynchronous memory copy operation
using memory protection. We analyzed our schemes based
on overlap efficiency, performance and associated overheads
using several micro-benchmarks and applications. Our mi-
crobenchmark results showed that memory copy operations
using the MCI and MCNI schemes can be significantly
overlapped (up to 100%) with computation. Evaluations with
MPI-based applications such as IS-B and PSTSWM-small
using the MCNI scheme show up to 4% and 5% performance
improvement, respectively, as compared to traditional imple-
mentations. Evaluations with data-centers using MCI show
up to 37% improvement compared to the traditional imple-
mentation. Our evaluations with gzip SPEC benchmark using
application-transparent asynchronous memory copy show a lot
of potential to use such mechanisms in several application
domains. We plan to extend the current designs to analyze the
impact of application-transparent memory copy mechanism
for several other end-applications.
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