
DESIGNING SUPPORT FOR MPI-2 PROGRAMMING

INTERFACES ON MODERN INTERCONNECTS

A Thesis

Presented in Partial Fulfillment of the Requirements for

the Degree Master of Science in the

Graduate School of The Ohio State University

By

Tejus Gangadharappa, B.E

* * * * *

The Ohio State University

2009

Master’s Examination Committee:

Dr. D.K. Panda, Adviser

Dr. P. Sadayappan

Approved by

Adviser

Graduate Program in
Computer Science and

Engineering

c© Copyright by

Tejus Gangadharappa

2009

ABSTRACT

Scientific computing has seen an unprecedented growth in the recent years. The

growth of high performance interconnects and the emergence of multi-core processors

have fueled this growth. Complement to the growing cluster sizes, researchers have

developed varied parallel programming models to harness the power of larger clusters.

Popular parallel programming models in use range from traditional message passing

and shared memory models to newer partitioned global address space models. MPI,

a de-facto programming model for distributed memory machines was extended in

MPI-2 to support two new programming paradigms: the MPI-2 dynamic process

management interface and the MPI-2 remote memory access interface.

The MPI-2 dynamic process management provides MPI applications the flexibility

to dynamically alter the scale of the job by allowing applications to spawn new pro-

cesses, making way for a master/slave paradigm in MPI. The MPI-2 remote memory

access interface allows applications the illusion of globally accessible memory. In this

thesis, we study the two MPI-2 programming interfaces and propose optimized de-

signs for the them. We design a low overhead connection-less transport based dynamic

process interface and demonstrate the effectiveness of our design using benchmarks.

We address the design of the remote memory interface on onload-ed InfiniBand us-

ing a DMA copy offload. Our design of the remote memory interface provides for

computation-copy overlap and minimal cache pollution. The proposed designs are

ii

implemented and evaluated on InfiniBand, a modern interconnect which provides a

rich set of features. The designs developed as a part of this thesis are available in

MVAPICH2, a popular open-source implementation of MPI over InfiniBand used by

over 900 organizations.

iii

This is dedicated to my parents, friends and other random people

iv

ACKNOWLEDGMENTS

The satisfaction that accompanies the successful completion of any task would be

incomplete without the mention of those who made it possible.

I would like to thank my adviser, Prof. D. K. Panda for guiding me throughout

the duration of my M.S. study. I appreciate the time and effort he invested in steering

my work. I am thankful to Prof. P. Sadayappan for agreeing to serve on my Master’s

examination committee.

I acknowledge the students of the Network-Based Computing Laboratory (Nowlab),

particularly Matthew Koop, Jaidev Sridhar, Gopal Santhanaraman, Karthik Gopalakr-

ishnan and Wei Huang for their willingness to work with and help me on several

occasions.

I would also like to thank all my Nowlab colleagues Hari Subramoni, Karthik

B Gopalakrishnan, Krishan Kandalla, Xiangyong Ouyang, Ping Lai, Greg Marsh,

Miao, Ajay and Sreeram. Finally, my acknowledgements to Jonathan for helping me

in several system/cluster issues. Thanks to all the people who made the years at Ohio

State fun, especially Jaidev, Deepak and Santosh.

Finally, I would like to thank my family members and friends back home.

v

VITA

June 14, 1981 .Born - Bangalore, India

2003 .B.E., Computer Science and Engg.,
Visvesvaraya Technological University,
Belgaum, India.

2004-2005 . Member of Technical Staff,
Adobe Systems India

2005-2007 . Software Development Engineer,
Citrix R&D India

2008-2009 . Graduate Research Associate,
The Ohio State University

PUBLICATIONS

Research Publications

Tejus Gangadharappa, Matthew Koop and D. K. Panda “Designing and Implement-
ing MPI-2 Dynamic Process Management On InfiniBand”. Workshop on Parallel
Programming Models and Systems Software (P2S2), Held in conjunction with Int’l
Conference on Parallel Processing (ICPP), Sept 2009. To be Presented.

Tejus Gangadharappa, Gopal Santhanaraman, Karthik Gopalakrishnan, Sreeram Potluri
and D. K. Panda “Improving MPI One-sided Passive Communication Using I/OAT
Offload Engines”. OSU Technical Report. April 2009

FIELDS OF STUDY

Major Field: Computer Science and Engineering

Studies in High Performance Computing: Prof. D. K. Panda

vi

TABLE OF CONTENTS

Page

Abstract . ii

Dedication . iv

Acknowledgments . v

Vita . vi

List of Tables . x

List of Figures . xi

Chapters:

1. Introduction . 1

1.1 Overview of Modern Interconnects 2
1.2 Overview of InfiniBand . 3

1.2.1 Communication Model . 3
1.2.2 Transport Modes . 4
1.2.3 Offloaded InfiniBand Interfaces 5
1.2.4 Onloaded InfiniBand Interfaces 6

1.3 Overview of Message Passing Interface (MPI) 7
1.3.1 MPI Communicators . 7
1.3.2 Point-to-point communication 8
1.3.3 Collective communication 9

1.4 Problem Statement . 9
1.5 Organization of Thesis . 10

vii

2. Designing MPI-2 Dynamic Process Management 11

2.1 Background . 12
2.1.1 MPI Inter-communicator 12
2.1.2 Dynamic Process API . 13

2.2 Design of Dynamic Process Management 15
2.2.1 Dynamic process framework 15
2.2.2 Spawn Phase . 16
2.2.3 Scheduling Phase . 16

2.3 Design of Dynamic Process Management: Communication Phase . 17
2.3.1 Communication Methods 17
2.3.2 MPI Comm spawn . 19
2.3.3 MPI Comm connect . 20

2.4 Designing Benchmarks for Dynamic Process Management 21
2.4.1 Spawn Latency . 21
2.4.2 Spawn Rate . 22
2.4.3 Inter-communicator point-to-point latency 22

2.5 Distributed Rendering with Dynamic Process Management 23
2.6 Performance Evaluation . 23

2.6.1 Spawn Latency . 24
2.6.2 Spawn Rate . 26
2.6.3 Inter-group Latency . 28

2.7 Application-Level Evaluation . 29
2.8 Related Work . 30
2.9 Summary . 31

3. Designing MPI-2 Remote Memory Access Interface 33

3.1 Background . 34
3.1.1 MPI-2 Remote Memory Access 34
3.1.2 Overview of InfiniPath . 36

3.2 Design of Passive Remote Memory Interface 37
3.2.1 Overview . 37
3.2.2 Basic Design (BD-RMA): 38
3.2.3 Helper Thread Design (TH-RMA) 39

3.3 Design of Passive Remote Memory Interface using I/OAT 42
3.3.1 Overview of I/OAT . 42
3.3.2 I/OAT Copy Offload Design 42
3.3.3 I/OAT Based Design (IO-RMA) 43

3.4 Performance Evaluation . 46
3.4.1 I/O AT Micro-benchmarks 46

viii

3.4.2 MPI Benchmarks . 48
3.4.3 Computation-Communication Overlap 50
3.4.4 Effect on Caches . 52

3.5 Related Work . 53
3.6 Summary . 54

4. Conclusions and Future Work . 55

4.1 Designing MPI-2 Dynamic Process Management 55
4.2 Designing MPI-2 Remote Memory Access 56

Bibliography . 57

ix

LIST OF TABLES

Table Page

2.1 POV-Ray Application Execution Times (in seconds) 29

3.1 L2 Cache misses . 52

x

LIST OF FIGURES

Figure Page

1.1 InfiniBand Architecture . 4

2.1 Inter-communicator . 12

2.2 Dynamic Process Management framework 15

2.3 Flowchart of Spawn . 18

2.4 512 cores: Cyclic rank allocation . 25

2.5 512 cores: Block rank allocation . 26

2.6 Spawn Rate . 27

2.7 Inter-group Latency . 28

3.1 Overview of the RMA operations . 37

3.2 Basic RMA Design (BD-RMA) . 39

3.3 Helper Thread Design (TH-RMA) . 40

3.4 I/OAT Copy offload architecture . 43

3.5 I/OAT RMA Offloading design (IO-RMA) 44

3.6 Copy Latency (small) . 47

3.7 Copy Latency (large) . 47

xi

3.8 MPI Put Latency (small) . 48

3.9 MPI Put Latency (large) . 49

3.10 MPI Put Bandwidth . 50

3.11 Computation-Communication Overlap 51

xii

CHAPTER 1

INTRODUCTION

The field of supercomputing has evolved and changed rapidly over the years and

the ever increasing network and processor speeds has fueled this growth. The current

fastest supercomputer, the Roadrunner [1] has ushered us into a new era achieving

a performance of 1026 teraflops, becoming the first machine to break the petaflop

barrier. The Roadrunner, like many other clusters on the top 500 [3] list is built from

commodity parts. To build a high-performance cluster, designers need to decide on

three main aspects: Processor, Interconnect and Programming Model.

The complexity of single processors have reached such a limit that designers are

now opting to design multi-core processors to exploit the inherent thread level par-

allelism in large applications. Scientific applications that have historically run on

multiple-processors are well adapted to running on multi-core architectures. The

growing number of core counts on the processors have led to dramatic increase in

cluster sizes. The Ranger [21] cluster, for example utilizes only 3936 processors but

have a total of 62976 processing cores.

The interconnect defines the connection protocols and standards used to connect

the processors in a cluster. Some of the common interconnects used are Ethernet,

Myrinet, InfiniBand, Quadrics etc. InfiniBand is a high-performance interconnect

1

based on open standards. InfiniBand has gained widespread acceptance in high per-

formance computing, it is evident by increased usage of InfiniBand in the top 500 [3]

list.

A programming model is a software technology used to implement/design paral-

lel algorithms. pthreads, OpenMP, Message Passing Interface (MPI)[12], Partitioned

Global Address Space (PGAS) languages are some of the common parallel program-

ming models in use. Of these, MPI has become the de-facto standard for writing

parallel programs on large distributed memory machines or clusters. MVAPICH2[15]

is a popular MPI implementation over InfiniBand interconnect. It is currently used

by over 900 organizations and is used in several of the top 500 supercomputers.

The rest of this chapter provides an overview of modern interconnects, the Infini-

Band interconnect and MPI.

1.1 Overview of Modern Interconnects

Modern interconnects are different from traditional interconnects like Ethernet in

the features they provide. Without discussing any particular interconnect, we can con-

sider the following features as elements a modern interconnect would possess: Direct

Memory Access (DMA) support, support for atomic operations, remote DMA sup-

port, connection-less/connection-oriented transport support and reliable/un-reliable

transport support. Traditional interconnects had high latency and low bandwidth

and high processing overheads. The network protocol itself was run on the host

processor and processor performed the costly memory copy operations. Addition-

ally, traditional network devices are controlled by kernel-based drivers and context

switches between kernel and applications limited the achievable bandwidth. Modern

2

interconnects are being designed to support operating system bypass semantics with

single-copy schemes. InfiniBand is a modern interconnect that provides all of the

above features.

1.2 Overview of InfiniBand

InfiniBand was developed as a system wide network meant to connect CPU’s and

all I/O devices. InfiniBand was meant to replace all existing fabrics, however it is

now used mostly as an inter processor communication fabric in high performance

computing. The low latency (1.0-3.0 usec) and high bandwidth ensured rapid adop-

tion of InfiniBand in the cluster and this is evident from the number of clusters in the

top 500 (over 25%) that use InfiniBand as its interconnect. InfiniBand adapters can

perform all the protocol processing in hardware, such adapters are called Offloaded

adapters. Some adapters use the host processor to offload protocol and communica-

tion processing; these adapters are called Onloaded adapters. The following sections

introduce the communication model and transport modes of InfiniBand.

1.2.1 Communication Model

The InfiniBand network device is referred to as a Host Channel Adapter (HCA).

The InfiniBand communication model uses two queues called the send queue and

the receive queue. Together, they constitute the queue pair (QP). Send and receive

requests are posted in these queues. The work requests (WRs) are posted in the form

of a Work Queue Element (WQE) in the send/receive queues. They are picked up

by the HCA and acted upon. In the basic send/receive model of communication,

the receiver pre-posts several buffers into which the HCA copies incoming data. On

completion of any operation, the completion is indicated by placing a completion

3

entry in the completion queue (CQ). Completion of a send or receive operation can

be detected by polling the completion queue or by using an event-based asynchronous

notification model. Figure 1.1 shows the InfiniBand communication model.

Figure 1.1: InfiniBand Architecture

1.2.2 Transport Modes

The InfiniBand standard defines four modes of transport. Reliable Connection

(RC), Unreliable Datagram (UD), Reliable Datagram (RD) and Unreliable Connec-

tion (UC). The RC and UD modes are minimally required to be considered an Infini-

Band compliant HCA. RD is currently not implemented by any device.

4

The RC mode is a connected reliable model (akin to TCP) and is the most common

mode. An RC queue pair can be used to talk to one another RC queue pair. For n

processes to communicate, each process needs to create n − 1 queue pairs to all its

peers.

The UD mode is an unconnected unreliable model (akin to UDP). The main

advantage of UD is that a single queue pair can communicate with any other UD

queue pair in the network. Since the queue pairs are not connected, each message

queued for transmission is also provided the destination parameters. To address a

peer, the peers QP number and the Local Identifier (LID) is used. The LID is similar

to an IP address. The demerit of UD is that reliability needs to be ensured by the

application. Additionally, packetization of data needs to be performed for any data

above the Maximum Transfer Unit (MTU) which is typically 2KB.

1.2.3 Offloaded InfiniBand Interfaces

Offloaded InfiniBand HCA’s relieve the host processor from performing the net-

work communication processing. Offloaded adapters have an embedded processor on

the adapter which performs all the protocol processing. This model allows the ap-

plication to perform communication and computation concurrently. The InfiniHost

HCA’s from Mellanox[2] are an example of an offloaded adapter. Offloaded Infini-

Band adapters typically have the following features which are lacking on onloaded

adapters:

• Remote Direct Memory Access (RDMA): Offloaded adapters can directly write

data into memory using DMA transfers. RDMA additionally allows a process

direct access to a remote processes memory. The source process sends data as

5

well as the remote memory address that the data is to be written to. This

eliminates the remote processes involvement in the communication operation,

thus reducing host CPU overheads. The main disadvantage of the RDMA model

is it requires the destination memory to be pinned in physical memory.

• User-mode Operation: Offloaded adapters typically allow user mode applica-

tions to initiate sends and receives without trapping into the kernel. Avoiding

system calls reduces the number of context switches and improves latency.

• Protocol Offload: Offloaded adapters usually perform all the protocol processing

in the adapter itself. This reduces the load on the host processors.

1.2.4 Onloaded InfiniBand Interfaces

Onloaded adapters are similar to traditional Ethernet interfaces. They do not

contain any processor to offload protocol operations. The main benefit of this model

is that the host processors are generally very powerful and onloaded adapters can

leverage this power. Host processor speeds have been growing continously, the arrival

of multicore processors now allows the onloaded adapters to perform packet processing

as well as computation simultaneously. The InfiniPath[19] adapters from QLogic are

based on this model. The InfiniPath adapters do not use DMA to move data from

memory to the interface, instead they rely on the programmed I/O memory interface.

Since no DMA is performed, the software need not perform any memory pinning. We

provide more information about the InfiniPath adapter in Section 3.1.2 when we

design of the MPI-2 remote memory access interface for InfiniPath.

6

1.3 Overview of Message Passing Interface (MPI)

Message passing is a generic form of communication mainly used in parallel com-

puting for inter-process communication. The MPI standard is one such message

passing standard defined by the MPI forum[13]. Several implementations of the MPI

standard exist. MPICH, MPICH2, MVAPICH/MVAPICH2, OpenMPI and HP-MPI

are some of the major MPI implementations.

The first version of the MPI standard was called the MPI-1. The MPI-1 standard

defined the basic MPI point-to-point interface, the MPI collective interface and other

glue interfaces. The second version of the MPI standard, called MPI-2 was defined

in 2003. MPI-2 introduced several extensions to the existing MPI-1 specification. It

defined the MPI-2 dynamic process management interface, the MPI-2 remote memory

access interface and the MPI File I/O interfaces.

We first provide a basic overview of the MPI communication model, point-to-point

and collective interfaces. An overview of the remote memory access interface and the

dynamic process management interface are presented in Section 2.1 and Section 3.1

respectively.

1.3.1 MPI Communicators

In an MPI program, two processes can exchange messages. An MPI process is

identified by a [rank, process group] pair. The MPI communicator encapsulates the

ranks and the process group for which the ranks are described. Thus, a communicator

is a software construct that defines a group of processes and a context identifier for

communication within that group. All MPI operations are performed in the context

of some communicator. MPI operations use the rank and communicator context

7

information to deliver messages to the target. The MPI COMM WORLD is a pre-

defined communicator that allows for communication between all processes of the

job.

1.3.2 Point-to-point communication

Two MPI processes can exchange messages using the point-to-point communica-

tion interface. The sender process sends the message using the function MPI Send.

The MPI Send API requires the sending buffer, size of data being transmitted, the

type of the data (INT, FLOAT, DOUBLE etc), a unique send tag, the receiver’s

rank and the communicator to be used. The receiver uses the MPI Recv function to

receive the data into its buffer. It provides the length of data to receive, the type

of the data, the unique tag, the sender’s rank and the communicator. The mes-

sage is matched at the receiver using the [tag, source, communicator context] three-

tuple. Both MPI Send and MPI Recv are blocking functions, meaning they don’t

return until the data has been sent or received respectively. Alternately, MPI pro-

vides the MPI Isend and MPI Irecv interfaces to perform non-blocking send/receive.

These function initiate the send or receive and return immediatly. The send/receive

progresses asynchronously. The application is required to perform a MPI Wait to

complete the operations. If the application does not perform the MPI Wait the

send/receive might not progress at all (Note: this is implementation dependent and

varies across libraries).

8

1.3.3 Collective communication

A collective operation are communication operations done by a group of pro-

cesses acting together. MPI offers several types of collective operations. For exam-

ple: MPI Bcast is used to broadcast a certain message from one rank to all others,

MPI Alltoall is used by a group of processes to send data to all their peers and receive

some data from the peers. MPI Barrier, MPI Reduce, MPI Allreduce, MPI Allgather

are some of the other collectives.

1.4 Problem Statement

The MPI-2 standard introduced two new programming interfaces. The dynamic

process management interface and the remote memory access interface.

With the emergence of large distributed computing interfaces like MapReduce

and Hadoop, the grid paradigm has become important. The MPI-2 dynamic process

interface can be used in distributed computing or grids for performing computation.

However, the MPI-2 dynamic process interface has not been well studied in current

literature. With regard to this, we attempt to address the following issues:

• How can we design an efficient dynamic process interface on InfiniBand?

• Can we run real-world applications using dynamic process interface without

significant performance losses ?

The other important MPI-2 feature is the remote memory access interface. With

the increased popularity of new PGAS programming models like UPC and X10 it is

important to address the issue of designing MPI-2 remote memory access interface

on modern interconnects. In particular we attempt to address the issues of designing

9

MPI-2 remote memory access on onloaded adapters. As mentioned earlier onloaded

adapters lack the RDMA feature, without RDMA, the remote memory access interface

needs to be designed with point-to-point primitives. We attempt to address this

issue and propose new designs for better remote memory access over point-to-point

primitives. We address this in two steps:

• What are issues with the current MPI-2 remote memory access designs ?

• How can we design efficient MPI-2 remote memory access interface on Onloaded

InfiniBand adapters?

1.5 Organization of Thesis

The rest of this thesis is organized in the following way. Chapter 2 we design

the MPI-2 dynamic process interface over InfiniBand. We first present the dynamic

process model and the requirements of the design. We propose multiple designs and

evaluate our designs using benchmarks. Due to the lack of benchmarks in this area,

we have also designed these benchmarks. Finally, we show the performance of a

real-world ray-tracing application which uses the dynamic process interface.

In Chapter 3 we present the basic designs for MPI-2 remote memory access. We

study the issues with the naive designs and present new designs. Finally, we evaluate

our designs using micro-benchmarks. Conclusions and future work are presented in

Chapter 4.

10

CHAPTER 2

DESIGNING MPI-2 DYNAMIC PROCESS
MANAGEMENT

Dynamic process management is a feature of MPI-2 that allows an MPI process to

create new processes and manage communication with these processes. The dynamic

creation of processes allows application writers to develop multi-scale applications or

master/worker based programs. Although several MPI implementations support this

feature there have not been any studies in designing the dynamic process interface.

Also, there are no standard benchmarks or applications that can evaluate the dynamic

process interface.

In this chapter, we present a design for the dynamic interface on InfiniBand.

The rest of this chapter is organized as follows: Section 2.1 presents the background

information- an introduction to the dynamic interface. Section 2.2 presents our pro-

posed design followed by Section 2.4 which proposes a set of benchmarks which is

used to evaluate our designs. In Section 2.6 we evaluate our design and present

experimental results and finally conclude and summarize this section in Section 2.9

11

2.1 Background

2.1.1 MPI Inter-communicator

In Section 1.3.1 we introduced the concept of an MPI communicator. The com-

municator described is what typically called an intra-communicator: intra because

it allows for communication between processes in a certain process group. MPI-2

provides another type of communicator called the inter-communicator. The inter-

communicator is the basis of operation of the dynamic process model. An inter-

communicator is so called because it allows for communication between two process

groups. All communication is performed from a process in the local group with a pro-

cess in the remote group. Figure 2.1 illustrates the working of an inter-communicator.

The data is being sent from rank 0 from the left process group (called local group)

to the rank 0 on the right process group (called the remote group).

Figure 2.1: Inter-communicator

The MPI-2 dynamic interface uses intra-communicators to connect two existing

intra-communicator process groups into a single inter-communicator, thus creating

communication between process groups. This allows an existing MPI job to spawn a

12

new set of processes: the remote group. The two groups are bound with the inter-

communicator and can now exchange MPI messages. Furthermore, MPI allows us

to create a new intra-communicator from the inter-communicator thus merging the

process groups into a single large group. (thus growing the processes in the MPI job).

2.1.2 Dynamic Process API

The MPI standard defines three ways of creating or joining new processes into

existing MPI jobs. In our description of the interface we call the spawning process

parent process-root and the root of the spawned group the child-root.

• MPI Comm spawn:

int MPI Comm spawn(char *command, char *argv[], int maxprocs,

MPI Info *info, int root, MPI Comm comm, MPI Comm *intercomm,

int array of errcodes[])

The function starts maxprocs copies of command process. The function is col-

lective over the communicator comm, i.e. the function does not complete until

all processes in the communicator have created the inter-communicator and the

root process performs the role of the parent-root. The newly created set of pro-

cesses form an MPI COMM WORLD of their own. The root of the spawned

process group uses the function MPI Comm get parent to discover if it was

spawned from an existing MPI process. The API uses the accept/connect in-

terface between the parent-root and child-root to exchange rank and process

group information. The function returns intercomm, an inter-communicator

which contains the spawns in the remote group. The MPI application can now

exchange messages with the newly created processes using intercomm. The MPI

standard does not specify where and how the processes were started and leaves

13

it to the job scheduling infrastructure to manage. It only provides a information

structure info to propagate any hints to the job scheduling framework.

• MPI Comm accept/MPI Comm connect:

int MPI Comm accept(char *port name, MPI Info info, int root,

MPI Comm comm, MPI Comm *newcomm)

int MPI Comm connect(char *port name, MPI Info info, int root,

MPI Comm comm, MPI Comm *newcomm)

This API facilitates a client-server computing model to MPI processes with the

server process using the MP Comm accept to wait for incoming connection on

port name. The client uses MPI Comm connect to connect to the port name.

port name is an implementation and interconnect specific string that identifies

a process. The resulting inter-communicator intercomm now allows the client

process group to exchange messages with the server process group. As with MPI

Comm spawn, the accept/connect calls are collective over the communicator

comm and the root act as the root ranks in the connection establishment. Once

the connection is created, both process groups can communicate with the remote

groups using the inter-communicator.

• MPI Comm join:

int MPI Comm join(int sockfd, MPI Comm *intercomm)

Using this interface, two processes with an existing TCP/IP connection de-

scribed by the socket sockfd can establish an inter-communicator and start MPI

message exchange. The inter-communicator describes a singleton local group

and a remote group in this case. The socket is used to exchange MPI port

information, followed by an MPI connection creation using the accept/connect

interface. The socket is never used for MPI communication.

14

2.2 Design of Dynamic Process Management

In this section we describe our design of the dynamic process management frame-

work. We first consider the architecture of the dynamic process framework.

2.2.1 Dynamic process framework

Figure 2.2 hows the architecture of the MPI-2 dynamic process interface.

Figure 2.2: Dynamic Process Management framework

The MPI application uses the API described in Section 2.1.2 to spawn new tasks.

An MPI design has to handle the startup of the new tasks and the three phases of

this startup are the spawn phase, scheduling phase and the communication phase.

15

2.2.2 Spawn Phase

The spawn design requires the MPI application talk to the job manager. This is

accomplished using a common protocol between the dynamic process management

API and the job launcher. We use the Process Management Interface (PMI), a

generic protocol used by MPICH2[14] and MVAPICH2 [15] to communicate with the

job launcher. In our designs, we consider two job launch schemes, the Multi-Purpose

Daemon (MPD), which is the default scheme in MPICH2 [10] and mpirun rsh, a

MVAPICH2 specic startup manager based on the ScELA [20] architecture. The PMI

protocol uses key-value based message broadcast primitives to propagate information.

The parent-root broadcasts its port information, size of the job, the actual binary to

launch and arguments to the job-launcher via the PMI primitives. The job-launcher

takes corresponding action by performing the actual launch of the binaries on the

available hosts. The job-launcher has to perform a scheduling decision, and this is

the second phase of the startup.

2.2.3 Scheduling Phase

MPI-2 standard does not define a way to do task placement. The task scheduling is

performed by the startup agent or a job management system. Scheduling of dynamic

tasks requires the job manager to maintain global history of dynamic tasks and place

tasks based on this history. Our implementation uses MPD or mpirun rsh to schedule

tasks. Both tools place tasks in a round-robin manner, but suffer from the drawback

that multiple spawns are scheduled in the same order of available nodes resulting in

imbalance. The studies in [4] have addressed this issue in LAM-MPI by suggesting

various task placement mechanisms to maintain load balance. The third and last

16

phase of the dynamic interface is the communication phase. We provide a detailed

design for this phase.

2.3 Design of Dynamic Process Management: Communica-
tion Phase

To design the spawn interface we require the parent to request a spawn and wait

in the MPI Comm accept interface to establish the inter-communicator. The com-

munication phase begins with the child-root of the spawned process group connecting

back to the parent to exchange process group information. To establish the inter-

communicator the processes need to know the process group ID, the size of the re-

mote process group and the context ID to be used. Additionally, implementations

may require a way to identify each remote rank independently to exchange messages.

In our design each rank is uniquely identified by their UD queue pair numbers and the

LID. This information is exchanged between the root processes and broadcast within

their local groups. Figure 2.3 shows the flow of information required to implement

the spawn interface.

2.3.1 Communication Methods

Every spawn requests results in the child-root connecting to the parent process

to exchange information. An application that spawns tasks frequently will incur the

overhead of this connection establishment and communication for every spawn. Thus,

to efficiently design the spawn interface we need lightweight connection establishment

protocols and as noted in Section 1.2.2 there are different transport modes for Inni-

Band that we can use for this designing this phase:

17

Figure 2.3: Flowchart of Spawn

18

- Reliable Connection (RC):

This is a reliable but connection-oriented mode. There is significant overhead

to communicate with a new process. Establishing a reliable connection requires the

process to trap to the kernel and request a new queue pair. However, this is a one-

time cost and once this is performed using RC can provide lower latencies due to

other features such as RDMA.

- Unreliable Datagram (UD):

Unreliable Datagram (UD): Unreliable and connectionless. There is a very low

overhead to communicate with a new process. Software must perform segmentation of

messages over the MTU (often 2KB). If the amount of data to be exchanged between

the local and remote roots is small then using UD provides benefits. Since the data

size is small providing segmentation is cheap and there is no connection overhead. As

the number of spawned process in a group goes up, the data size will increase. In this

case using the RC may provide a benet.

2.3.2 MPI Comm spawn

To perform the spawn, we first create the connection information of the parent that

is passed to environment of the spawned children. This is managed via environment

variables and propagated by the job manager. The parent process advertises a port

in the form of an LID and two UD queue pair numbers. One of the UD queue pair

numbers is utilized for the accept/connect interface. The other UD queue pair number

is used for RC QP connection establishment [25]. Once the processes are spawned,

the parent process waits for the child-root of the remote group to connect back.

19

2.3.3 MPI Comm connect

The spawned process group collectively performs the connect. Only the child-root

connects to the parent process, while the other ranks wait for remote group infor-

mation. We have two possible designs at this point, using RC for message exchange

versus using UD.

- UD

If the amount of data to be exchanged with remote root is small then it is more

efficient to use a direct UD exchange. In this mode, the child-root sends the process

group size, process group ID and context ID for the communicator in a single UD

message. The parent-root acknowledges the exchange and sends its process group

ID, group size and context ID. Both the ranks broadcast the remote group informa-

tion within their own MPI COMM WORLD. In the next step, both root processes

exchange the connection information within their local groups. In our design the

connection information consists of the LID and UD QPN. In applications that spawn

often and spawn few processes the UD direct exchange model is more scalable and

quicker than creating short-lived RC connections.

- RC

If an application spawns large jobs and spawns are infrequent, the connect API

uses the second UD QP number to establish an RC connection with the remote root.

This connection establishment is according to the algorithm defined in [25]. Follow-

ing the message exchange, the two root ranks establish a RC connection that is used

to exchange process group information. At the end of the above stage each process

20

has the information required to independently create the inter-communicator to com-

municate with the remote group. The inter-communicator can now use regular MPI

communication using the point-to-point, remote memory access (RMA) or collectives.

We described the design of the dynamic process interface. To evaluate the per-

formance of our design we need to design a set of benchmarks. To the best of our

knowledge, there are no benchmarks to evaluate the MPI-2 dynamic process interface.

The following section describes our benchmarks.

2.4 Designing Benchmarks for Dynamic Process Manage-
ment

To the best of our knowledge, there are currently no metrics or standard applica-

tions to benchmark various designs and implementations of MPI-2 dynamic process

management. To address this need we design a set of benchmarks that are useful to

measure performance of a MPI-2 library. The benchmarks are similar to the existing

OSU Benchmark suite [17] released with the MVAPICH/MVAPICH2 software.

2.4.1 Spawn Latency

The spawn latency benchmark measures the time taken to perform the MPI Comm

spawn routine. We time the execution of this function in the parent-root process. The

time to spawn is an important metric as it is the measure of the overhead in using

dynamic process management. Minimizing this overhead is vital if dynamic processes

are to be used in MPI applications. Due to involvement of system resources and job

manager framework, the measured values of the latency has signicant variation. The

benchmark averages the latency over a large number of runs.

21

2.4.2 Spawn Rate

The spawn rate benchmark measures the rate at which an implementation is

able to perform the MPI Comm spawn routine. It is calculated by spawning jobs

continuously and finding the rate at which the implementation is able to create new

MPI jobs. The benchmark does not consider the time for disconnecting of the inter-

communicator. Spawn Rate is an important metric as it can estimate the scalability

of our design. To minimize the effect of spawned jobs on the spawn rate we put

the spawned process to sleep until the benchmark is complete. This is required as

multiple jobs will be scheduled to the same cores as the benchmark progresses.

2.4.3 Inter-communicator point-to-point latency

Sending point-to-point MPI data across an inter-communicator requires us to send

data from a local group to a remote group. This inter-group message latency is an

important metric as designs may have better optimizations for intra-communicators

than inter-communicators. With inter-communicators, message delivery has an addi-

tional overhead of mapping from the (local process group, rank) to the (remote process

group, rank). In some designs, such as ours, no connections are setup between ranks

of the local and remote process groups. Connections are setup on-demand, when

the ranks really need to communicate. The benchmark thus measures the effective

latency due to the connection establishment and the data transfer. The inter-group

latency calculates an average latency for a range of data sizes, between two ranks.

22

2.5 Distributed Rendering with Dynamic Process Manage-
ment

Graphics rendering is a highly parallelizable activity. Distributed rendering works

by distributing each frame to be rendered to the compute nodes of a cluster. A frame

can usually be rendered independently of other frames and the only communications

involved are the initial frame data distribution and final collection of rendered im-

ages. Rendering can programmed easily using a master-slave model. Render farms

are common in Computer Graphics Imagery (CGI) industry, with the farms hosting

several render servers that can be used by clients. To demonstrate the feasibility

and real-world application of the dynamic process interface we designed a dynamic

process version of POV-Ray, a popular, open-source ray-tracing application. Using

our design, a graphics programmer can decide at execution time the optimal number

of compute nodes required for the job and spawn the rendering on the nodes. There

have been MPI parallelization efforts on POVRay [18], but these implementations use

a static runtime environment. The dynamic process interface can be programmed to

have an changing environment in which we can expand or contract the available slave

resources. This is similar in concept to a render farm and this paradigm can be pro-

grammed using the MPI-2 interface. We will present our evaluations with POV-Ray

in Section 2.7.

2.6 Performance Evaluation

We use a 64-node Xeon cluster with each node having 8 cores and 6 GB RAM. The

nodes are equipped with InniBand DDR HCAs and 1 GigE NICs. We present results

using a 64x8 layout, which uses all 512 cores, with cyclic allocation of ranks. We

23

also present a result with block allocation of ranks. Our designs were implemented in

the MVAPICH2 library. We evaluate our design in MVAPICH2 as well as OpenMPI,

another popular MPI library.

2.6.1 Spawn Latency

Figure 2.4 shows the results of running the spawn latency benchmark. We present

five results in the graph, mvapich2MPD-RC: which uses only RC connections and

MPD for startup, mvapich2-mpirun rsh-RC: which uses RC connections and mpirun

rsh for startup, mvapich2-MPD-UD, which uses UD for initial information exchange

and MPD for 5 startup and mvapich2-mpirun rsh-UD which uses UD for initial in-

formation exchange, mpirun rsh for startup and OpenMPI : which shows the latency

results for the OpenMPI library.

As seen in Figure 2.4 the RC and UD implementations perform almost equally

when MPD is used for very small job sizes. For job size of 32 and beyond the UD

design shows a slight benet. With mpirun rsh we see a that the UD design provides a

lower spawn latency. The mvapich2-mpirun rsh-RC and OpenMPI perform similarly

(up to 128 processors) as both use a connection based startup model with similar job

launch mechanism. However, for 512 processes, mvapich2-mpirun rsh designs perform

better than OpenMPI. On the job startup angle, we find the MPD startup mechanism

is faster than mpirun rsh for small job size, however for larger jobs mpirun rsh is more

scalable. This is due to the fact that MPD maintains a ring-of-daemons on all nodes.

Spawning a new job on a node just requires a TCP/IP message to be sent to the

daemon, as compared to mpirun rsh which requires us to first spawn the launcher on

each node followed by the launcher spawning the new processes. MPD, however has

24

 0

 5

 10

 15

 20

 25

 30

 35

 40

 512 256 128 64 32 16 8 4 2 1

T
im

e
 t
a
k
e
n
 (

s
)

No. of processes spawned

mvapich2-MPD-RC
mvapich2-MPD-UD

mvapich2-mpirun-rsh-RC
mvapich2-mpirun-rsh-UD

OpenMPI

Figure 2.4: 512 cores: Cyclic rank allocation
‘

higher startup latency as number of ranks grows. mpirun rsh is a daemon-less startup

manager based on ScELA architecture [20]. It incurs higher overhead for small job

launches, but it is highly scalable and provides very low latency for higher job sizes.

The second set of results we present in Figure 2.5 are the the spawn latency with

block allocation of ranks. This is an important result as it shows the effect of HCA

contention on the spawn time. As seen in the graph, when there are multiple jobs per

node, the UD spawn design performs better than the RC design, as the UD model

has lesser startup overhead. The UD design is more relevant here as job allocation

is generally block distributed. The UD design is simpler and lightweight. OpenMPI

25

performs very similar to mvapich2-mpirun rsh-RC in this benchmark for up to 256

processes. However, for 512 processes mvapich2-mpirun rsh designs perform the best.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 512 256 128 64 32 16 8 4 2 1

T
im

e
 t
a
k
e
n
 (

s
)

No. of processes spawned

mvapich2-MPD-RC
mvapich2-MPD-UD

mvapich2-mpirun-rsh-RC
mvapich2-mpirun-rsh-UD

OpenMPI

Figure 2.5: 512 cores: Block rank allocation

2.6.2 Spawn Rate

The spawn rate benchmark is evaluated with 16-nodes of the cluster, for a total

of 128 cores. The benchmark measures the rate of sustained spawn supported by our

design. The reported value is the number of spawns/second with increasing job sizes.

Figure 2.6 shows the results of the benchmark running on our design.

26

 0

 2

 4

 6

 8

 10

 12

 128 64 32 16 8 4 2 1

S
p
a
w

n
 r

a
te

 (
s
p
a
w

n
/s

e
c
o
n
d
)

No. of processes spawned

mvapich2-MPD-RC
mvapich2-MPD-UD

mvapich2-rsh-RC
mvapich2-rsh-UD

OpenMPI

Figure 2.6: Spawn Rate

We see that the UD design using MPD job manager provides the best spawn rate.

The relatively higher cost of creating and destroying RC queue pairs leads to a slower

spawn rate with RC. As we have seen mpirun rsh startup has a higher initial overhead

and results in a lower spawn rate, however it scales very well and maintains a steady

spawn rate with increasing job size. OpenMPI performs similar to mpirun rsh and

has a low spawn rate for small jobs. Only mvapich2-MPD designs are able to provide

a high spawn rate for small jobs. The spawn rate is an important metric to consider

when designing an MPI application with frequent job spawns. The benchmark clearly

27

shows that to have a high spawn rate we need a low-overhead connection mode (like

UD) and an MPD-like startup framework.

2.6.3 Inter-group Latency

The inter-group latency is a basic latency test to measure the difference between

intra-communicator latency and intercommunicator latency. As we see in Figure 2.7,

 0

 5

 10

 15

 20

 25

 30

 35

 1 4 16 64 256 1024 4096 16384 65536

T
im

e
 (

u
s
)

Message size

mvapich2-Intra-communicator latency
mvapihc2-Inter-communicator latency
OpenMPI-Intra-communicator latency
OpenMPI-Inter-communicator latency

Figure 2.7: Inter-group Latency

for small message sizes, the mvapich2 inter-communicator exchange has a slightly

higher latency. This higher latency is due to searching of process group and manag-

ing the translation from local group to remote group. For large messages, the latency

28

of both the message exchanges are almost equal with very little variation and the

data transfer component dominates and the process group translation cost does not

affect overall latency. OpenMPI does not show any difference between intercommu-

nicator and intra-communicators. However, OpenMPI does perform slightly better

than MVAPICH2 for larger messages. This is due to the higher rendezvous threshold

utilized by the OpenMPI library compared to MVAPICH2

2.7 Application-Level Evaluation

The final results we present are the evaluations of a dynamic process POV-Ray

derived ray-tracing application. We implemented a parallel version of POV-Ray to

use MPI-2 dynamic process interface. We compare the results of using our RC design,

UD design and traditional static runtime parallel POV-Ray. For our evaluation we

render a 3000x3000 glass chess board with global illumination. Table 2.1 shows the

results of our evaluation.

Table 2.1: POV-Ray Application Execution Times (in seconds)
NP MPD-RC mpirun-rsh RC MPD-UD mpirun-rsh UD Traditional

2 2500 2500 2494 2494 2523

4 1258 1257 1251 1255 1263

8 631 635 634 639 644

16 363 368 360 365 342

32 220 230 215 225 196

64 148 160 144 154 129

Note: NP means Number of Processors

As seen in the table, the dynamic process framework adds very little overhead

to the overall execution of the application. Until 32 processes the speedup factor is

29

almost the same for all three designs. Beyond 32 processors, the cost of startup and

parallelization starts to accumulate and the dynamic version incurs some slowdown.

Evaluating a real-world problem clearly shows the feasibility of the dynamic pro-

cess framework. Moreover, using dynamic processes give more control to the applica-

tion programmer who can intelligently decide the parallelization factor and placement

of jobs at run-time. Additionally, using the dynamic process framework, applications

can dynamically change size and scale of the application which is a key benefit.

2.8 Related Work

The dynamic process architecture was defined by Gropp and Lusk [8]. The MPI-

2 standard defined the process creation and management interface. The standard

left the scheduling decisions to the MPI implementation. Marcia Cera et al [4] have

explored the issue of improving scheduling of dynamic tasks. Their solution perform

load-balancing of jobs across nodes of a cluster.

Edgar Gabriel et al. [6] provided an evaluation of the performance of dynamic

process interface of popular MPI implementations. However, they do not provide any

designs or discuss the issues in designing the interface. To the best of our knowledge,

our work is the first one that considers all the issues in designing and provides a

detailed design of a high-performance dynamic process interface. Our work is targeted

on InfiniBand but the same concepts hold for traditional networks like Ethernet.

Several researchers have explored using the dynamic process interface for fault-

tolerance in MPI applications. [11]. Kim et al. [9] have explored the design and im-

plementation of dynamic process management framework for grid-enabled MPICH.

30

However, their work did not explore the design of the MPI-2 dynamic process inter-

face, but implemented a new MPI interface MPI Rejoin that allows processes to join

existing process groups.

2.9 Summary

Over the years, MPI has become the dominant parallel programming model. Tra-

ditionally, grid and parallel applications have used the master/slave model of com-

putation. The MPI-2 dynamic process interface can be used in master/slave designs

and thus is finding increased adoption in grid environments. Additionally, the con-

nect/accept interface allows MPI-2 to be used in client/server models. In this work

we have addressed the designing of an efficient dynamic process interface. We im-

plemented our designs and evaluated them on MVAPICH2 [15], popular MPI imple-

mentation on InfiniBand. The lack of benchmarks in this area was addressed and

we designed benchmarks to evaluate our designs. Our study draws the following

conclusions:

• An MPD-like daemon based startup model is required for supporting frequent

task spawning. The spawn rate benchmark clearly shows the superiority of the

daemon based startup model.

• MPD suffers from very high latency for large job sizes. For very large job

launches, the ScELA [20] architecture has proved to be highly scalable and

reliable. Thus, mpirun rsh based startup models are required for managing

large jobs.

31

• Lightweight communication primitives are better for the task startup phase.

The benchmarks show the advantage of using a UD model for InniBand. Sim-

ilar lightweight transport schemes (such as UDP) should apply in other envi-

ronments (such as 10GigE).

• MPI Applications dont incur heavy overhead in using the dynamic process

framework. The evaluation of the ray-tracing application clearly demonstrates

the feasibility of the dynamic process paradigm with the benets of dynamically

growing or shrinking jobs.

32

CHAPTER 3

DESIGNING MPI-2 REMOTE MEMORY ACCESS
INTERFACE

The MPI-2 Remote Memory Access (RMA) interface provides an alternate pro-

gramming model, different from the MPI-1 point-to-point operations. In this model,

the communicating process knows the target process’s memory addresses and can

directly perform operations on the target’s memory. One of the key advantages of

using the remote memory operations is that, a single synchronization is enough to

initiate the data transfer of RMA several operations, unlike point-to-point which re-

quires synchronization for every operation. Additionally, due to the de-coupling of

communication and synchronization RMA allows processes to achieve computation-

communication overlap.

The designs of the MPI-2 remote memory access has been investigated by several

researchers. However, most researchers have explored efficient design of the MPI-2

RMA interface on interconnects with Remote Memory Direct Access (RDMA) prim-

itives. Several adapters such as On-loaded InfiniBand adapters and 1/10 GigE Eth-

ernet still lack support for remote operations. On such adapters the design of the

RMA interface require active involvement of the target processors thus limiting the

performance of the application. In this work we aim to address this area and improve

33

the design of the MPI-2 remote memory access to provide better performance and

overlap. We provide a novel approach using the Intel I/O Acceleration engine to

provide computation-copy overlap. We evaluate our designs and show the benefits in

terms of improved cache utilization, better overlap and lower latencies.

The rest of this chapter is organized as follows. In Section 3.1 we provide a

background of the MPI-2 remote memory interface and the InfiniPath adapter (an

on-loaded adapter) on which we perform our evaluations and experiments. Section

3.2 presents the design choices for the MPI-2 RMA interface for on-loaded intercon-

nect. Section 3.3 presents our optimized design with hardware copy-offloading. In

Section 3.4 we provide an evaluation of our designs and finally, Section 3.6 presents

a conclusion to this chapter.

3.1 Background

3.1.1 MPI-2 Remote Memory Access

In MPI-2 remote memory access (also referred to as RMA or one-sided communi-

cation) the origin process (the process that issues the RMA operation) can access a

target processes memory address space directly. The origin process. The origin pro-

cess provides all the parameters such as target rank, target memory address, target

datatype, etc. The memory area operated on is known as the window in MPI parlance.

MPI defines three one-sided operations: MPI Put, MPI Get and MPI Accumulate.

To illustrate the usage of the Put, we consider the definition of the Put operation.

MPI Put(void *origin addr, int origin count, MPI Datatype

origin datatype, int target rank, MPI Aint target disp,

int target count, MPI Datatype target datatype, MPI Win win)

34

The operation writes the data present in origin addr and of size origin count to

the destination. The actual size to be ’Put’ is the size of the datatype times the count.

The data is written to the window on target rank at a displacement of target disp.

The address of the window’s are collectively exchanged initially during the window

creation phase. The data being written need not be homogeneous, i.e. the target

can treat it as a different datatype with a different count, and hence these are also

specified by the origin process.

The initiation and synchronization of MPI-2 RMA operations need to be done

using MPI-2 synchronization primitives. MPI semantics allows one-sided operations

only within an epoch, which is the period between two synchronization events. MPI-2

defines two forms of synchronization.

• Active Synchronization: this requires both origin and target to synchronize

via a collective operation. The MPI Win fence and MPI Win post/MPI Win start

are the active synchronization methods.

• Passive Synchronization: In this method the origin process can lock a target

window, perform one-sided operations and unlock the window. In the passive

synchronization mode, the origin process alone makes the synchronization and

issues data transfer operations. The remote process is not involved at all. The

MPI Win lock/MPI Win unlock interface is used for this mode.

Passive synchronization is very effective on large scale systems as it can minimize

the coordination between the origin and target process. This kind of synchronization

gives greater potential for computation/communication overlap. In this work, we

primarily concentrate on the passive mode of synchronization. We mainly focus on

35

designing MPI one-sided communication for net- works that do not support one-

sided RDMA semantics. As a case study for this work, we use the InfiniPath [5]

network that doesnt expose an RDMA (Remote Direct Memory Access) interface,

unlike traditional verbs that support both send/receive as well as RDMA semantics.

3.1.2 Overview of InfiniPath

The InfiniPath Host Channel Adapter (HCA), an InfiniBand adapter from QLogic

has two verbs layer over which MPI can be written: the traditional Open Fabrics layer

and a light-weight communication layer (called the PSM API layer). InniPath uses

a connectionless model for communication. InInfiniPath HCAs do not use DMA

engines to send/receive data and thus do not require memory pinning. The PSM

API provides communication semantics similar to the TCP/IP socket model. The

sender process performs a PSM Send and the receiving process has to perform a

PSM Recv to receive the data. MPI tag and context information is used to perform

message matching. Since the communication model requires two processes to be

involved this communication model is also colloquially called the two-sided model or

the send/receive model.

InfiniPath HCAs do not contain an embedded processor and all protocol opera-

tions are performed by the host processor. This additional burden means the host

processor is not available for application processing. Our design explores ways by

which we can alleviate the load on the host processor by offloading the copy opera-

tions specific to one-sided communications.

36

3.2 Design of Passive Remote Memory Interface

In this section we discuss the challenges and design issues for implementing passive

synchronization based MPI one-sided interface over an on-loaded interface. The on-

loaded interface only provides a two-sided communication model as described earlier.

First we describe the basic data flow of the an MPI instance. Following the example

we discuss our designs in more detail.

3.2.1 Overview

Figure 3.1 illustrates the data flow of the remote memory access model.

Rank 0

MPI_Win_lock(1)
.
.

MPI_Put(data1, ..., 1)
MPI_Put(data2, ..., 1)
MPI_Put(data3, ..., 1)

.

.
MPI_Win_unlock(1)

Rank 1

MPI_..
(grant lock to 0)

.

.
do some computation

.

.
MPI_...

(unlock lock held by 0)

t
i

m
e
l
i
n
e

Figure 3.1: Overview of the RMA operations

In the figure, rank 0 acquires a the lock of target rank 1. The target rank is

required to be in the MPI library context to completion this operation. Once the

lock is acquired, rank 0 can perform all the RMA operations to the target rank.

37

On completion of the one-sided operations the rank 0 will release the lock using the

Win unlock operation. This illustrates the basic data/communication flow of a RMA

operation. Now we consider the designs for implementing the RMA interface on an

on-loaded adapter.

3.2.2 Basic Design (BD-RMA):

The basic design for the passive one-sided interface using a two-sided model re-

quires active involvement of the target process. Since some interconnects lack RDMA

and remote atomic locking capabilities, designs on such interconnects use a a two-

sided protocol. Figure 3.2 shows a one-sided operation being performed from rank 0

to rank 1.

Rank 0 initiates the passive one-sided operations by issuing the window lock op-

eration. A lock message is sent to rank 1 and rank 0 waits for the lock to be granted.

Once the lock is granted, rank 0 performs the MPI Puts followed by the unlocking

of the window. MPI semantics ensures that only after all the Puts are complete, the

lock is released. All the one-sided messages are received into pre-posted buffers and

then copied to the actual location in the target window.

Figure 3.2 clearly shows the problem with this design. The target rank is per-

forming computation and only when it enters the MPI library does it respond to the

lock protocol. This causes a large sender latency and also provides zero overlap of

computation-communication on the receiver side. We resolve this issue in our second

design which uses a multi-threaded approach to ensure the progress. With the emer-

gence of multi-core processors having a dedicated library thread ensure progress is

not a infeasible approach.

38

Rank 0

MPI_Win_lock

MPI_Put
MPI_Put
MPI_Put

.

.
MPI_Win_unlock

Rank 1

main thread main thread

computation
.
.
.
.
.

enter-MPI
MPI_....

grant lock
.

handle puts
.
.

Unlock done

T
I
M
E
L
I
N
E

Figure 3.2: Basic RMA Design (BD-RMA)

3.2.3 Helper Thread Design (TH-RMA)

The basic design presented in Section 3.2.2 does not provide any communication-

computation overlap and has a high sender overhead. The target rank does not

enter the MPI library and hence the origin rank does not progress with the one-sided

communication. One solution to alleviate this issue is shown in Figure 3.3.

39

Rank 0

MPI_Win_lock

MPI_Put
MPI_Put
MPI_Put

.

.
MPI_Win_unlock

Rank 1

main thread main thread

computation
.
.
.
.
.
.

MPI_.

T
I
M
E
L
I
N
E

helper thread

MPI_
(ensure progress)

.
grant lock

.
handle puts

.

.

.
Unlock done

.
(MPI_)

.

.

Figure 3.3: Helper Thread Design (TH-RMA)

In this design we have an additional helper thread running in the MPI library.

With this design, if the main thread is not in the MPI library, the helper thread can

ensure progress. This enables the one-sided communication to progress immediately.

Like the basic design, the lock message is rst received into pre-posted bu?ers. But

due to helper thread, the lock is granted immediately. Subsequently the Puts and the

unlock operations are also handled by the helper thread. The helper thread copies

40

out the received Puts from pre-posted bu?ers into target memory windows. In our

threaded design we also address the following design issues:

• One major demerit of this approach is the CPU contention between the main

thread and the helper thread. We resolve this by cancelling the helper thread

pthread cancel if the main thread enters the MPI library. When the main thread

exits the MPI library the helper thread is re-created. This ensures no lock or

CPU contention, the relatively cheap cost of creating a new thread makes this

approach feasible.

• The helper thread actively polls for communication progress. This would cause

CPU contention with the main thread. To resolve this we keep the completion

polling less aggresive in the helper thread. The helper thread sleeps intermit-

tently if no completion event is detected. If a completion event is detected, we

aggressively complete the processing of the polled event.

• One issue with this design is that if the amount of data transferred is very

large, the helper thread will spend a lot of time performing memory copies.

The memory copy is unavoidable without RDMA support. We try to solve

this by using the Intel I/O Accelerator technology (IOAT). The IOAT engine

provides hardware support for performing memory copies using DMA. Using

the I/OAT engine for copying large data also prevents the cache from being

polluted thus enabling the foreground computation to proceed without cache

effects.

41

We address the above issue by utlilizing the Intel I/O Acceleration engine to

provide hardware copy-offload. The next section introduces the I/OAT device and

describes the design of the MPI-2 RMA interface using the I/OAT device.

3.3 Design of Passive Remote Memory Interface using I/OAT

We first provide an overview of the Intel I/OAT technology followed by the design

of the copy-offload interface in Section 3.3.2. Section 3.3.3 presents the design of the

one-sided interface with I/OAT.

3.3.1 Overview of I/OAT

Intel I/O Acceleration Technology (I/OAT) is an I/O acceleration technology de-

veloped by Intel and available in most modern Intel Chipsets. The technology provides

a DMA engine to offload data-movement and reduce CPU overhead. On chipsets with

this feature, the I/OAT device is a PCI resource with a respective I/OAT DMA driver.

The I/OAT DMA engine can be used as copy-offoad engine, allowing the processors

to perform useful tasks. As mentioned in [26], using a copy-offload engine provides

a reduction in CPU usage and yields better performance. Copy engines can move

data in blocks larger than word-size and hence can provide higher performance on

larger data sets. Also, since the memory copy progresses asynchronously with com-

putation using the offload engine, it provides copy-communication and also reduces

cache pollution.

3.3.2 I/OAT Copy Offload Design

The architecture of the copy offload is shown in Figure 3.4 The copy offoad engine

is implemented as a Linux kernel module. User space applications can issue copy

42

requests to the module via an ioctl call. The kernel queues the requests unless an

explicit issue is performed, allowing multiple requests to be batch issued. On issueing

a copy, the dma-engine provides a cookie that can be polled for completion.

Application

User

Kernel
ioat_copy
module

ioatdma
module

PCI DMA Device

 get_user_pages()

dma_async_memcpy_pg_to_pg()

copy_issue copy_wait

Figure 3.4: I/OAT Copy offload architecture

The ioat copy module locks the user memory space using kernel API get user pages

and issues one DMA operation per page. The I/OAT DMA kernel interface exposes

the dma async memcpy pg to pg interface which issues one copy request per page.

The cookies returned by the DMA engine are stored for future polling. Completion

of all the issued copies are ensured by a single system call similar to MPI Waitall,

which returns only when all outstanding copies are complete.

3.3.3 I/OAT Based Design (IO-RMA)

Figure 3.5 shows the design of the one-sided interface with the I/OAT copy offload.

43

I/O Kernel Module

Rank 0

MPI_Win_lock

MPI_Put
MPI_Put
MPI_Put

MPI_Win_unlock

Rank 1

main thread main thread

computation
.
.
.
.
.
.

MPI_.

T
I
M
E
L
I
N
E

helper thread

MPI_
(ensure progress)

.

.

.
grant lock

.

.
Offload copy
Offload copy

I/OAT Completion
.

Unlock done
.
.

I/O Copy
module

I/O Poll
completion

Figure 3.5: I/OAT RMA Offloading design (IO-RMA)

44

In this design, the one-sided operations are not issued by the origin at the time of

the lock operation. Instead the origin rank queues all the issued one-sided requests

and delays issue until the unlock. At the unlock stage, the origin process knows the

exact size and number of operations in the queue. The lock request now performs two

tasks: (i) it requests for a lock from the target rank and (ii) it informs the target rank

the exact number of operations it will issue. Prescence of the helper thread enables

us to process the lock request immediately. Additionally, the helper thread maintains

the count of the incoming one-sided requests. Incoming Puts and Accumulates are

issued for memory copy to the I/OAT module. Knowing the count of the one-sided

operations allows us to batch multiple DMA issues in a single system call. Once all

the one-sided operations from our origin rank is processed, the I/OAT engine is polled

for completion and the lock is released.

Currently, I/OAT does not expose an interrupt driven completion semantic. Thus

we need to perform active polling to check for completion, however, polling is not

required for progress. Since polling is done only to detect completion, the operation

is kept lightweight. I/OAT completion semantics provides us the last completed

cookie. Since we internally maintain the list of pendings requests we can use this

informatio to calculate the number of outstanding DMA requests. If any pending

requests exist, the polling is suspended and the thread is put to sleep for a small time

interval. Upon waking the thread again checks for pending requests and iterates until

it nds all requests to have completed. Once all the DMA requests are completed the

lock is released and the origin rank is informed. Since, most of the data movement is

handled by the I/OAT engine and completion polling requires only a single system call

45

by the helper thread, the main thread can proceed with computation with minimal

overhead.

3.4 Performance Evaluation

In this section we present the experimental evaluation of our designs. The testbed

used is an Intel cluster. Each node is a dual processor (2.33 GHz quad-core) system

running an Intel 5000X Chipset with I/OAT support. Each node has 4 GB main

memory. The CPUs support the EM64T technology and run in 64 bit mode. The

nodes support 8x PCI Express interfaces and are InniPath QLE7140 HCAs with

PCI Express interfaces. The operating system used is RedHat Linux 2.6.18-92. We

implement our designs in the MVAPICH2 [15] library.

3.4.1 I/O AT Micro-benchmarks

In this section we present the basic I/OAT performance gures. Figure 3.6 shows

the I/OAT memory copy latencies for small sizes. The I/OAT copy offload has an

initial overhead which leads to sub-optimal performance for small copies. However,

as seen in Figure 3.7 the performance of the copy offload is better for large data sizes.

For data sizes of 4MB and above the I/OAT provides a better latency. We believe

this is due to the fact that I/OAT is able to move data in cache-size blocks while

memcpy can move data only word size at a time.

46

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

16K4K1K256641641

T
im

e
 (

u
s
)

Message size

libc memcpy
I/OAT copy

Figure 3.6: Copy Latency (small)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

4M1M256K64K

T
im

e
 (

u
s
)

Message size

libc memcpy
I/OAT copy

Figure 3.7: Copy Latency (large)

47

3.4.2 MPI Benchmarks

Figures 3.8 and 3.9 show the MPI Put latency with the three designs discussed.

The MPI Put latency measurement was done without any computation on the receiver

side. The basic design and the design with helper thread perform very similarly. We

do not see any signicant overhead incurred due to the thread cancellation in the

helper thread based design. With the I/OAT design, small messages suffer from a

higher latency due to the higher cost of issueing and completing the DMA request.

However, since multiple DMA requests can be issued for a copy the overall latency

per Put operation starts to improve with our I/OAT design. For large message sizes,

Figure 3.9 clearly shows signicantly lower latencies. At 4MB message sizes, the I/OAT

provides upto 30% lower latency than the basic design.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

16K4K1K256641641

T
im

e
 (

u
s
)

Message size

Basic Design
Design with offload thread
Design with I/OAT offload

Figure 3.8: MPI Put Latency (small)

48

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

4M1M256K64K

T
im

e
 (

u
s
)

Message size

Basic Design
Design with offload thread
Design with I/OAT offload

Figure 3.9: MPI Put Latency (large)

We measure the MPI Put messaging bandwidth using passive synchronization.

Figure 3.10 shows the bandwidth achieved by the three designs. For small messages

the basic design and the helper thread design perform well. The I/OAT design has

a lower bandwidth due to higher overhead incurred due to the system call and the

DMA polling. However, for larger messages > 32k we can see the benefits of the

new design. The benefits start as slow as 32K because multiple Put operations are

concurrently issued for DMA. The I/OAT DMA engine can assure progress of multiple

DMA requests and this allows concurrent copy operation corresponding to the Puts,

as opposed to the serialized copy of all the Puts in the other two designs.

49

 0

 200

 400

 600

 800

 1000

4M1M256K16K4K1K256641641

M
B

/s

Message size

Basic Design
Design with offload thread
Design with I/OAT offload

Figure 3.10: MPI Put Bandwidth

3.4.3 Computation-Communication Overlap

In this section we measure the communication-computation overlap obtained by

our designs. In our design, the helper thread is always assigned to the same CPU

as the main thread. Using other CPUs in themulti-core systems to run the helper

thread is not a realistic solution, hence this limits the overlap achievable. The overlap

experiment, considered the time spent by the receiver without computation as the

basic communication time. We introduce a comparable amount of computation in

the receiver process in the overlap test. If the overall latency of the receiver does

not change it signifies a100% overlap of the computation and the communication. As

seen in Figure 3.11, with the basic design, there is zero overlap and this is expected.

50

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

16M4M512K128K32K4K

O
v
e
rl
a

p
 %

Message size

Basic Design
Design with offload thread
Design with I/OAT offload

Figure 3.11: Computation-Communication Overlap

With the helper thread based design, due to low transmission time of small mes-

sages, the overlap achieved is minimal. But for higher message sizes > 128K, because

the helper thread ensures progress the lock is acquired quickly and the sender can

initiate all the data transmissions. This transmission time is now overlapped with

computation time. With the I/OAT based design, the transmission time is overlapped

with computation time as in the previous case. Additionally, the copy operations

progress concurrently with the computation, thus giving a significantly higher over-

lap value. We see upto 25% with 4MB message sizes using the I/OAT design and

even higher overlaps for 16MB. As the message size increases the transmission time

increases significantly (a part of the overlap). The copy time also increases for large

messages (providing more overlap), due to this the overlap will keep increasing with

51

increasing message sizes. The overlap can never be 100% as the same core performs

both the computation and the communication progress.

3.4.4 Effect on Caches

To evaluate the effect of our designs on the caches we designed an experiment to

mea- sure the L2 caches misses incurred. The experiment performs passive synchro-

nization based one-sided operations to a target rank, while the target rank performs

a compu- tation. We measure the L2 cache misses seen by the computation loop.

At the end of each loop of the computation the two ranks synchronize and repeat

the computation and one-sided communication. We use the oprofile Linux proler to

measure the L2 cache misses incurred. The resulting cache misses are averaged over

10 runs.

Table 3.1: L2 Cache misses
Message size Basic design Design with helper thread Design with I/OAT
32K 481625 736833 378500
256K 490000 850000 366000
1M 478875 894244 371500
4M 522000 896300 366500

As seen in Table 3.1 we see that the basic design has a high L2 cache miss rate.

Due to the iterative nature of the test we see that the program suffers from the

compulsary misses during the computation loop. However, completing the one-sided

communication at the synchronization point pollutes the cache and some of the com-

pulsary misses reoccur for next iteration. For this reason, the total L2 misses are very

52

similar across the range of message sizes, only slightly increasing. The helper thread

based design, has a high cache miss rate due to the same L2 cache being shared by two

threads. Each thread brings in data to the cache that is evicted by the other thread.

The cache miss measurements for this case varies significantly due to the dependence

on the scheduling of the two threads. The third column shows the lowest cache miss

numbers, for the design with I/OAT offload. The primary reason being I/OAT moves

data from memory to memory and hence the CPU caches remain unaffected. The

computation loop alone without any communication suffers from a total of 358,000

L2 misses. This experiment clearly demonstrates the efficiency of the I/OAT offload

design with respect to CPU caches.

3.5 Related Work

Several MPI-2 implementations support the one-sided communication model, MPICH2

[14], MVAPICH2 [15], OpenMPI [16], are some of the open-source implementations

of MPI- 2. Thread based design of passive synchronization have been proposed in [7],

however their designs do not solve the CPU contention issue when the main progress

thread executes the communication progress. Also, the naive usage of an helper

thread, leads to the helper thread consuming CPU even when no one-sided communi-

cation exists. Our approach denes the helper thread as a generic progress thread that

can progress any communication event seen on the network. Asychronous progress

for rendezvous communication using a thread based approach has been studied in

[10].

I/OAT feature has been used to achieve asynchronous memory copy in the con-

text of data-centers [24, 22, 23]. The Linux TCP/IP receive stack introduced the

53

Network DMA feature using I/OAT to reduce server overheads. Our work differs in

the aspect that we use I/OAT to offload data movement on the target side in MPI-2

one-sided communication.

3.6 Summary

The one-sided (RMA) communication model in MPI provides one-sided semantics

to the application writers. The passive one-sided communication mode can minimize

the coordination between the origin and target process and can ideally provide good

computation-communication overlap. However, this requires hardware support from

the networks in the form of RDMA read/write and remote locking capabilities. When

the network cannot provide such capabilities, the implementation is usually done on

top of two-sided semantics leading to sub-optimal performance.

Thus efficient designs of the one-sided interface needs to be explored on RDMA-

incapable networks. In this paper, we present a common basic design of implement-

ing the one-sided interface over two-sided communications. We extended the basic

design by proposing a new helper thread based design to ensure quick communication

progress in passive one-sided models and an I/OAT copy offload based design to alle-

viate CPU consumption. The experimental evaluations showed signicant performance

benets for large messages when I/OAT offloading is used. Using the I/OAT engine

provided the added benet of keeping the caches unpolluted, a major side-effect in

memcpy based designs. In this work we use Infinipath network as a case-study, how-

ever the designs presented are generic and are applicable to other RDMA-incapable

interconnects (such as naive 1/10 Gigabit Ethernet) and systems with DMA based

copy support.

54

CHAPTER 4

CONCLUSIONS AND FUTURE WORK

In this thesis, we have designed the MPI-2 programming interfaces on InfiniBand

interconnects. Our work involved designing effective startup and setup of dynamic

MPI processes and the optimization of MPI-2 RMA passive interface on onloaded

InfiniBand adapters.

4.1 Designing MPI-2 Dynamic Process Management

Few researchers have addressed designing the MPI-2 dynamic process interface.

To the best of our knowledge, this work is one of the first that addresses the design

issues in dynamic process interface and provides a detailed design for InfiniBand. We

also provided benchmarks and a real-world application as a proof-of-concept .

Our designs achieves the highest spawn rate of know MPI-2 InfiniBand implemen-

tations. Additionally, the application suffers from only minimal or no overhead when

designed over the dynamic process interface.

In future, we plan to carry out studies into the design of inter-communicator

collectives and design more applications using the dynamic process interface.

55

4.2 Designing MPI-2 Remote Memory Access

In Chapter 3, we presented the existing designs for the MPI-2 RMA interface

using passive synchronization. The designs showed that the basic design (BD-RMA)

which is used by several MPI implementations does not perform well. It has a high

sender overhead and provides no overlap. The thesis proposes a novel design for

the RMA interface by using the Intel I/OAT DMA engine to offload data movement

overheads. Though we evaluated our implementation on InfiniPath, the two-sided

nature of solution can be applied on any interconnect such as Ethernet.

In future, we plan to explore interrupt based designs for reducing CPU consump-

tion by the I/O kernel module.

56

BIBLIOGRAPHY

[1] http://www.lanl.gov/roadrunner/.

[2] Mellanox Technologies. http://www.mellanox.com.

[3] TOP 500 Supercomputer Sites. http://www.top500.org.

[4] Márcia C. Cera, Guilherme P. Pezzi, Elton N. Mathias, Nicolas Maillard, and
Philippe Olivier Alexandre Navaux. Improving The Dynamic Creation of Pro-
cesses in MPI-2. In EuroPVM/MPI, pages 247–255, 2006.

[5] QLogic Corporation. http://www.qlogic.com/default.aspx/.

[6] Jack J. Dongarra Edgar Gabriel, Graham E. Fagg. Evaluating Dynamic Commu-
nicators and One-Sided Operations for Current MPI Libraries. In International
Journal of High Performance Computing Applications.

[7] Weihang Jiang et al. Efficient Implementation of MPI-2 Passive One-Sided Com-
munication on Infiniband Clusters.

[8] W. Gropp and E. Lusk. Dynamic process management in an MPI setting. In
SPDP ’95: Proceedings of the 7th IEEE Symposium on Parallel and Distributeed
Processing, page 530, Washington, DC, USA, 1995. IEEE Computer Society.

[9] Sangbum Kim, Namyoon Woo, and Heon Y. Yeom. Design and Implementation
of Dynamic Process Management for Grid-Enabled MPICH.

[10] R. Kumar, A. Mamidala, M. Koop, G. Santhanaraman, and D. K. Panda. Lock-
free Asynchronous Rendezvous Design for MPI Point-to-point communication.
In EuroPVM/MPI 2008, September 2008.

[11] Ewing Lusk. Fault Tolerance in MPI Programs. Special issue of the Journal
High Performance Computing Applications, 18:363–372, 2002.

[12] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard,
Mar 1994.

57

[13] MPI-Forum. http://www.mpi-forum.org/.

[14] MPICH2. http://www.mcs.anl.gov/research/projects/mpich2/.

[15] Network-Based Computing Laboratory. MVAPICH: MPI over InfiniBand and
iWARP. http://mvapich.cse.ohio-state.edu.

[16] OpenMPI. http://www.open-mpi.org/.

[17] OSU Micro-Benchmarks. http://mvapich.cse.ohio-state.edu/benchmarks/.

[18] POV-Ray. http://www.povray.org/.

[19] Qlogic. InfiniPath. http://www.pathscale.com/infinipath.php.

[20] J. Sridhar, M. Koop, J. Perkins, and D. K. Panda. ScELA: Scalable and Exten-
sible Launching Architecture for Clusters. In International Conference in High
Performance Computing (HiPC08), December 2008.

[21] Texas Advanced Computing Center. HPC Systems.
http://www.tacc.utexas.edu/resources/hpcsystems/.

[22] K. Vaidyanathan, L. Chai, W. Huang, and D. K. Panda. Efficient Asynchronous
Memory Copy Operations on Multi-Core Systems and I/OAT. In International
Conference on Cluster Computing, 2007.

[23] K. Vaidyanathan, W. Huang, L. Chai, and D. K. Panda. Designing Efficient
Asynchronous Memory Operations Using Hardware Copy Engine: A Case Study
with I/OAT. In CAC, 2007.

[24] K. Vaidyanathan and D. K. Panda. Benefits of I/O Acceleration Technology
(I/OAT) in Clusters. In Proceedings of IEEE International Symposium on Per-
formance Analysis of Systems and Software (ISPASS 2007), 2007.

[25] Weikuan Yu, Qi Gao, and D.K. Panda. Adaptive connection management for
scalable MPI over InfiniBand. Parallel and Distributed Processing Symposium,
International, 0:81, 2006.

[26] Li Zhao, R. Iyer, S. Makineni, L. Bhuyan, and D. Newell. Hardware Support for
Bulk Data Movement in Server Platforms. pages 53–60, Oct. 2005.

58

