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Abstract— Modern high performance networks being used
for scalable distributed shared memory (DSM) systems sup-
port multiple paths to increase bandwidth and/or reduce
contention. Such networks violate the constraint of pairwise
in-order message delivery implicitly required by many exist-
ing directory-based cache coherence protocols. To solve this
problem, two alternative strategies are currently used by
computer architects. The first strategy, used in the SGI Ori-
gin series, is to employ an intelligent cache coherence pro-
tocol which detects and resolves all race conditions caused
by out-of-order (OoO) events. The second strategy, used
in the HAL Mercury series, is to use a sophisticated net-
work interface (NI) which detects and remedies every OoO
event before the messages are fed to the cache coherence
controllers. Both strategies involve complicated hardware
logic, either at the cache coherence controller level or at the
NI level.

In this paper, we propose a new strategy that uses block
correlated FIFO channels. This new strategy detects all po-
tential race conditions and prevents them from occurring.
It allows the use of a simple cache coherence protocol and
an inexpensive NI. We also present an efficient implementa-
tion of this strategy based on current technology. Detailed
simulations are performed using benchmark applications to
evaluate the performance of our new strategy. The results
indicate that compared to the existing strategies, our new
strategy always provides either the best or close to the best
overall performance. This study also provides valuable in-
sights into the design tradeoffs in incorporating modern net-
works into DSM systems.

Keywords— Parallel architecture, distributed shared mem-
ory systems, performance modeling, interconnection net-
works, network interface, directory-based protocols, and
cache coherence.

I. INTRODUCTION

Scalable distributed shared memory (DSM) systems,
represented by the cache coherent non-uniform memory ac-
cess (CC-NUMA) systems, are emerging as the trend in
building parallel systems because they provide the much
desired programmability. Using a directory based cache co-
herence protocol, CC-NUMA systems automatically repli-
cate remote data in the private caches of a processing node
when needed. Examples of such systems include Stan-
ford DASH/FLASH [1], MIT Alewife [2], Convex Exem-
plar [3], Sequent NUMA-Q [4], SGI Origin [5], and HAL
Mercury [6].

The inherent processor-to-memory communication in
CC-NUMA systems results in frequent exchange of short
messages. Communication latency is a pronounced com-
ponent of the penalty for a remote memory access in such
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systems [7], [8]. The interconnection networks in most CC-
NUMA systems employ modern switches/routers like SGI
SPIDER [9] and HAL PRC [6] which use performance-
enhancing mechanisms such as cut-through switching, mul-
tiple virtual channels, and efficient buffering extensively.
As a result, multiple paths exist between any given pair
of nodes, either implemented physically [10] or supported
logically via virtual channels [6], [9]. Multiple paths alle-
viate network congestion, increase throughput, and reduce
average message latency. One side effect of using multiple
paths is that messages from a source may arrive at a des-
tination in different orders. This is known as the pairwise
out-of-order (O0o0) message arrival problem. Although ex-
ceptions exist [5], many directory-based cache coherence
protocols [11] designed for DSM systems require pairwise
in-order arrival.

To exploit the advantages of a multiple-path network
in a DSM system, architects currently use two alternative
strategies. The first one, used in SGI Origin, is to en-
hance the cache coherence protocol with more intelligence
so that it can detect and resolve all critical out-of-order
(000) message arrivals. The main drawback of this strat-
egy is the high complexity in the design, verification, and
implementation of the resulting coherence protocol [6]. The
second strategy, used in HAL Mercury, is to enhance the
network interface with reordering capability to ensure that
all pairwise messages seen by the coherence protocol are in-
order (total FIFO channel). The drawback of this strategy
is a noticeable increase in both complexity and overhead
(delay) at the network interface.

In this paper, we take on such a challenge and propose a
new strategy for exploiting the benefits of multiple-path
networks in a DSM system using block correlated FIFO
channels. This new strategy detects all potential coherence
sensitive (pairwise) race conditions and prevents them from
occurring. It allows the use of both an in-order (FIFO)
cache coherence protocol and a simple network interface.
We also present an efficient implementation of this strat-
egy based on current technology. To quantitatively eval-
uate the performance of our proposed strategy, we have
performed simulation experiments using practical system
configurations and benchmark applications. For most ap-
plications, the results show that the new strategy is less
than 1% slower than the SGI Origin approach and up to
40% faster than the HAL Mercury approach. This demon-
strates that DSM systems using our proposed strategy can
provide very competitive performance at a much lower cost.
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The rest of this paper is organized as follows. Section II
reviews issues relevant to communication in DSM systems.
Sections IIT and IV describe the intelligent cache coherence
protocol strategy and the total FIFO channel strategy, re-
spectively. In Section V, we propose the block correlated
FIFO channel strategy and present an efficient implemen-
tation. Section VI describes our methodology for perfor-
mance evaluation and discusses the results, and finally in
Section VII we draw the conclusions.

II. Issues IN CC-NUMA SYSTEM DESIGN

In this section, we first overview the architecture of a
typical CC-NUMA system and then discuss several key is-
sues relevant to incorporating multiple-path networks in
such systems.

System Model: A typical CC-NUMA system consists of
a number of processing nodes connected together using a
scalable network. Each node has a processor, its private
cache, a portion of global shared memory, and a sophis-
ticated node controller. The node controller contains a
cache coherence controller and separate interfaces for the
processor module, the memory/directory module, and the
network. It also contains logic for deadlock prevention and
arbitration between the interfaces. The cache coherence
controller observes and resolves all cache misses and syn-
chronization operations. The network interface (NI) is re-
sponsible for sending/receiving messages and it provides
the desired communication abstraction to the remaining
part of a node. The abstraction of sending, transferring,
and receiving a message is often called a network transac-
tion [13].

Complexity of Cache Coherence Protocol: The cache
coherence protocol of a CC-NUMA system ensures that a
read to any memory location always gets the content from
the latest write which the reading processor is aware of.
Various cache coherence protocols differ on the types of
states and messages being used. The complexity of a pro-
tocol increases with the number of state types and message
types. Although fast high coverage techniques exist [12],
complete coverage verification methods rely on exhausting
the reachability of finite state machines or their equiva-
lents. Until now, verification of a highly complex coher-
ence protocol remains a monumental task for computer
architects [15]. Complex protocols also introduce larger
overhead on the critical path, leading to longer occupancy
for each state transition in the protocols.

000 Arrival and OoO Event: As mentioned earlier,
modern high-performance networks support multiple vir-
tual channels [6], [9] or multiple physical routes [10] be-
tween a pair of nodes to increase bandwidth and/or re-
duce congestion. When virtual channels are supported, a
path can be viewed as a chain of virtual channels from
the source node to the destination node. The latency of
a message varies depending on the length of the message,
the length of the used path, and congestion along the path
being used. Therefore, it is possible that between a source-
destination pair, a message using one path reaches its des-
tination sooner than a previously sent message using an-

other path. Such a bypassing scenario is commonly known
as an out-of-order (Oo0) arrival of messages [13]. A mes-
sage may bypass more than one messages. For each of the
bypassed messages, exactly one out-of-order (000) event
occurs.

Example Race Condition: In a CC-NUMA system,
many types of race conditions may be caused by OoO
events. Figure 1 shows one example. Node N; sends a
write-miss request (Rzq(1l)) to block B; whose home is
node N> and whose current owner is node N3. Once the
request Rxq arrives at Na, a flush request (F'sh(2)) is sent
by Na to N3. Assume right before the arrival of F'sh at N3,
the (dirty) copy of B is displaced and sent back (Wbk(3a))
to Na. Once F'sh reaches N3, a reply (Frp(3b)) is sent by
N3 back to Ny as the acknowledgment. Either message
Wbk or Frp may reach N, first (i.e., a race condition) in a
network allowing OoQ arrivals. This uncertainty becomes
a problem for many cache coherence protocols because af-
ter the F'rp arrives, reply Rxp(4) normally takes a copy
from the main memory at N2 which may or may not have
been updated by the Wbk. Such a (coherence-sensitive)
race condition must be detected and resolved properly.

Frp(3b)

Fig. 1. An example race condition caused by an OoO event.

For resolving race conditions, in the following three sec-
tions, we examine two existing strategies and their draw-
backs, and propose a new efficient strategy.

III. INTELLIGENT CACHE COHERENCE PROTOCOL
(I-CC) STRATEGY

The basic idea behind the I-CC strategy is to build
enough intelligence into the cache coherence controller so
that it can detect and revolve all race conditions. Typically,
the network in the target system is logically separated into
request and response networks. Within each logical net-
work, complete freedom is granted in routing a message
from its source to destination. Figure 2(a) illustrates the
network connecting two arbitrary nodes in such a system.
Four parallel paths are shown, with two paths in each of
the two logical networks. This strategy can use simple and
efficient network interfaces with a selection function which
decides whether the request or the response network should
be used for transferring a particular message.

In this strategy, the coherence protocol must detect a
race condition on-the-fly. The popular approach is to de-
note the relevant history of operations on each memory
block using different directory/cache states. By checking
the current state and the type of message, all race condi-
tions can be detected successfully. Once a ‘spoiling’ mes-
sage arrives before the expected ‘authoritative’ message
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Fig. 2. The networks between two nodes in a system using: (a) the
I-CC, (b) the T-FIFO, and (c) the C-FIFO strategies.

(e.g., message 3b bypasses 3a in Fig. 1), the spoiler (mes-
sage 3b) can be buffered or NAKed. Other actions like
reverting to a simpler protocol, or combining transactions
can also be taken to resolve it depending on different per-
formance optimization goals [13]. For a more detailed de-
scription on such cache coherence protocols, readers can
refer to [1], [5], [13]. It is to be noted that OoO events
across memory blocks do not cause any race condition by
virtue of synchronization mechanisms (e.g., release consis-
tency [1], [13]) used in the CC-NUMA systems.

In order to get a rough idea on the complexity of an in-
telligent cache coherence protocol, let us examine the pro-
tocol used in SGI Origin [5] as an example. As reported
in [13], there are 15 requests (including invalidations and
interventions) and 39 responses, 7 directory states!, and
more than 7 cache states used in this protocol?. Compared
to cache coherence protocols that are used in the next two
strategies, this complexity is significantly higher. This is
the main drawback of the I-CC strategy.

Overall, CC-NUMA systems using the I-CC strategy are
expected to deliver high performance because the benefits
of the multiple-path network are aggressively exploited.
Unless race conditions have actually occurred, forward
progress in applications can always be made.

IV. TotAL FIFO CHANNEL (T-FIFO) STRATEGY

The philosophy of the T-FIFO strategy [6] is to build a

powerful network interface (NI) to shield the effect of 00O
arrivals from the rest of the node. The network can use any
path for transferring a message from its source to destina-
tion. The in-order message arrival property, ensured by the
NI, effectively eliminates all race conditions for cache coher-
ence protocols, allowing many simple and efficient (in-order
based) cache coherence protocols (such as those discussed
n [11], [13], [15]) to be used. Figure 2(b) illustrates an
example network with four parallel paths connecting two
arbitrary nodes in a system using the T-FIFO strategy. For
a race condition as shown in Fig. 1, this strategy ensures
that the cache coherence protocol always sees message 3a
before message 3b regardless of which one has arrived at
the NI of node N first.

The T-FIFO strategy demands two key functions from
the NI: a) to detect all occurrences of Q0O arrivals and
b) to remedy every such occurrence into a set of in-order
arrivals. A representative design is to use a sliding win-

Including one state for efficient page migration.

2Many optimizations targeted towards better performance have
been incorporated into the SGI Origin coherence protocol. Other-
wise, these numbers may be slightly smaller.

dow protocol enhanced with reordering capability. Fig-
ure 3 shows the pseudo-code description of such an NI. The
code is self-explaining. Detailed description on the NI de-
sign can be found in [14]. The main enhancement contains
(pairwise) sequence number manipulation for OoO arrival
detection and buffer management for restoring message or-
der.

Sending: Receiving:
gen-seqno(msg) /* r */ receive(msg)
construct(msg) if (out-of-seq(msg)) /* r */
send(msg) reorder-defer(msg) /* 2r */
else { dispatch(msg)
reorder-dispatch()} /* f(r) */
Fig. 3. Pseudo-code description of the NI used in the total FIFO

channel strategy. ‘Dispatch’ means delivering ‘msg’ to the cache
coherence controller. The comments show the time delays for
reordering operations.

Typically, OoO arrivals occur rarely in a system. Not
every Qo0 arrival causes a race condition. However, the
overhead for detecting OoO arrivals slows down every net-
work transaction. This is the main drawback of the T-
FIFO strategy.

V. BLocK CORRELATED FIFO CHANNEL (C-FIFO)
STRATEGY

In this section, we propose a new strategy which uses
simpler cache coherence controllers and inexpensive NIs.
We first develop several key concepts used in this strategy
and then present an efficient implementation.

A. Eliminating Race Conditions

A careful examination can reveal the fact that in a DSM
system, the services of memory operations targeting to the
same memory block must be serialized. For convenience
of discussion, let us define two memory operations to be
block correlated memory operations if their target memory
blocks are the same. We can similarly define block corre-
lated messages and block correlated network transactions.
A race condition is a scenario in which the serialization
order of two block correlated memory operations may be
observed differently by the involved nodes because of OoO
events. Such an OoO event can be defined as a block cor-
related Q00 event. All race conditions are caused by block
correlated OoO events. Because each memory operation is
serviced by a chain of network transactions, to eliminate all
race conditions, a necessary and sufficient condition is that
all block correlated network transactions must maintain
the in-order property while non-correlated network trans-
actions can proceed arbitrarily®. The important perfor-
mance implications of this condition will become clear in
Section VI.

B. Block Correlated FIFO Channel (BCFC)

A block correlated FIFO channel (BCFC) can be defined
as the abstraction of a FIFO channel used for transfer-
3When the order between non-correlated network transactions is

critical, it will be ensured by the synchronization mechanism of the
DSM system.
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ring messages relating to a particular memory block. Ev-
ery memory block has a distinct block correlated FIFO
channel (BCFC) associated with it between each pair of
nodes. The number of BCFCs between two given nodes is
equal to the total number of blocks in the shared address
space. Such BCFCs put no restriction on the arrival or-
der of non-block correlated messages because they travel
in separate BCFCs. Therefore, BCFCs provide a perfect
mechanism for enforcing the necessary and sufficient con-
dition for eliminating race conditions discussed in the pre-
vious subsection.

C. The Strategy and Implementation

We propose to build DSM systems using simple (in-
order based) cache coherence protocols and block corre-
lated FIFO channels (BCFCs). We call such a strategy
the block correlated FIFO channel (C-FIFO) strategy. This
strategy prevents a race condition, such as the one shown
in Fig. 1, from ever occurring because messages 3a and 3b
are block correlated and thus message 3b will never bypass
message 3a.

At a first glance, it seems impractical to implement
BCFCs in a system because of the large number of BCFCs
required. Most current generation networks, such as those
used in IBM SP [10], HAL Mercury [6], and SGI Origin [5],
support only a small number of (physical or logical) parallel
paths (FIFO channels). However, if we map (or collapse)
multiple BCFCs onto a single path, the path can be viewed
as block correlated to a particular set of memory blocks.
Using this mapping idea, a simple implementation of the
C-FIFO strategy becomes realizable. For efficiency pur-
poses, the mapping from BCFCs to parallel paths should
incur a minimum overhead. An ideal mapping function
is the ‘modulo’ operation on the block address associated
with each BCFC. Since the number of parallel paths is typ-
ically small in a system, selecting a path for transferring a
message based on a few least significant bits (wires) of the
block address associated with the message can be done eas-
ily. Figure 2(c) illustrates four block correlated paths (i.e.,
four logical networks) connecting two nodes in a system
using the C-FIFO strategy.

It is clear that the C-FIFO strategy can use cache co-
herence protocols as simple as those used in the T-FIFO
strategy and NIs as efficient as those used in the I-CC
strategy. Figure 4 shows a qualitative comparison of these
strategies. In the next section, we compare and discuss the
performance of these three strategies, quantitatively.

Use of
Multiple Paths
high I-cc
T-FIFO
C-FIFO
*
i
{ high Complexity of
{owli— $ Cache Coherence
VAN Protocol

nigh
Complexity L
of NI N

Fig. 4. A qualitative comparison of alternative strategies for in-
corporating multiple-path networks in DSM systems along three
fundamental design axes. The ‘Use of Multiple Paths’ axis indi-
cates the flexibility for transferring a given message.

VI. PERFORMANCE EVALUATION

This section presents our simulation-based performance
evaluation methodology, simulation results, and discus-
sions.

A. Methodology

The hardware cache coherent multiprocessor we simu-
lated had a generic DSM architecture similar to the FLASH
system [1], supporting release consistency. Each processor
was modeled as a 300 MHz single-issue superscaler, sup-
ported by a 8 KB direct-mapped write-through L1 D-cache
(32 bytes per line), a perfect I-cache, and a 128 KB 2-way
associative write-back L2 cache (256 bytes per line). Co-
alescing write buffers were provided for both L1 and L2
caches (8 entries each). A read miss in L1 cache and L1
write buffer stalled the processor. The memory module was
assumed to support multiple read/write ports, with a 66
ns response time. A directory cache was assumed to elim-
inate any directory access stall. The bandwidth between
node controller and each module (e.g., processor and mem-
ory modules) was assumed to be 1.6 GB/sec.

The system had 64 processing nodes connected via a 5D
hypercube with 2 nodes per switch (like SGI Origin [5]).
The network used the dimensional order (from low to high)
wormbhole routing scheme [7], [8], [13] and supported 2 vir-
tual channels. Each virtual channel was assumed to be 64
bits wide and have an input buffer of 256 bytes and an out-
put buffer of 32 bytes. The network switch was assumed
to operate at 100 MHz, with 20 ns, 10 ns, and 10 ns for
link synchronization, routing, and crossing the crossbar,
respectively. The link propagation was assumed to be 10
ns.

Two compatible cache coherence protocols originally pre-
sented and verified in [15] were used, with extensions for
release consistency. The non-FIFO coherence protocol was
used for the I-CC strategy, while the FIFO coherence pro-
tocol was used for the T-FIFO and the C-FIFO strate-
gies. The occupancy on cache coherence controller for each
network transaction was assumed to be mostly 46.2 ns
(14 processor cycles), with additional 16.5 ns (5 proces-
sor cycles) for each invalidation message. The equal occu-
pancy assumption might favor the I-CC strategy because of
the higher complexity of its coherence protocol. However,
based on our simulation results, this bias does not affect
the overall conclusions of this study.

The basic network interface (NI), as used in the I-CC
strategy, was assumed to take 40 ns for sending or receiv-
ing a message. For the C-FIFO strategy, extra 10 ns was
assumed for selecting a path. For the T-FIFO strategy,
the reordering capability was modeled as shown in Fig. 3.
For simplicity, a delay of r was assumed for performing a
load-modify-store operation on a sequence number and 27
for depositing or removing an 00O message at the NI.

In the simulation experiments, we considered five con-
figurations: one using the I-CC strategy, one using the C-
FIFO strategy, and three using the T-FIFO strategy (de-
noted as T-FIFO-1, T-FIFO-2, and T-FIFO-3). The T-
FIFO-1, T-FIFO-2, and T-FIFO-3 configurations differed
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only in the value of r, which was assumed to be 100 ns,
200 ns, and 300 ns, respectively, corresponding to aggres-
sive, intermediate, and conservative implementations. In
the I-CC configuration, one virtual channel was used for
transferring requests and the other for responses. In the
C-FIFO configuration, one virtual channel was used for
transferring messages related to even addressed blocks and
the other for odd ones. In the T-FIFO-1, T-FIFO-2, and
T-FIFO-3 configurations, both virtual channels were used
with no distinction.

We used six applications — FFT (64K points), MP3D
(50K particles), Radix (1M keys, 1K radix), Barnes (8K
particles, 4 steps), LU (512 by 512 matrix), and Water
(512 molecules, 4 steps) — in our simulation evaluations.
All are real applications or challenging computational ker-
nels ported from the Stanford SPLASH/SPLASH2 bench-
mark suite. These applications were compiled using the
optimization level equivalent to O2 of gce.

B. Results and Discussions

In this section, we evaluate the performance of DSM sys-
tems using the I-CC, T-FIFO, and C-FIFO strategies. We
study the overall execution times of applications, the char-
acteristics of network transactions, the characteristics of
block correlated OoO arrivals and OoO events, and the
impact of several key system parameters.

B.1 Overall Results

The overall execution times of benchmark applications
on different system configurations are shown in Fig. 5.
All times are normalized to that of the I-CC configura-
tion. The times are further broken down into four compo-
nents: the CPU computation busy time (Busy), the mem-
ory read waiting time (Read), the memory write waiting
time (Write), and the synchronization waiting time (Sync).
It can be observed that the C-FIFO configuration always
delivers either the best or very close to the best perfor-
mance among the five evaluated configurations. The actual
performance difference between the C-FIFO configuration
and the best one varies across applications from 0% (in
MP3D) to 2.7% (in Radix). For most applications, this
difference is less than 1%. With the simplicity at the NI
level and at the cache coherence controller level, such a
performance makes the C-FIFO strategy very attractive.

For all applications except Radix, the performance trend
of the five configurations is the same. Namely, the con-
figurations using either the I-CC strategy or the C-FIFO
strategy outperform those using the T-FIFO strategy. The
performance of the I-CC configuration (strategy) and that
of the C-FIFO configuration (strategy) are very compara-
ble. Among the configurations using total FIFO channels,
as expected, the performance decreases for all applications
as the reordering overhead (r) increases.

From the timing breakdowns, it can be observed that
the CPU computation busy time remains almost constant
across all configurations in every application. This is ex-
pected because the configurations (thus the strategies) tar-
get to reduce various waiting times due to communication,
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Fig. 5. The overall execution times of benchmark applications on
different configurations.

not the computation busy time. Two facts can be easily
observed from the breakdowns. First, the computation to
communication ratios are within typical ranges for each
individual application, consistent with results reported by
other research [1], [2]. Second, for all applications except
Radix, the write waiting time is negligible. This correlates
to earlier research on release consistency [13].

B.2 Characteristics of Network Transactions

Figure 6 shows the average latency of network transac-
tion on the five evaluated configurations during the execu-
tion of applications. For most applications, the latency is
significantly higher in the T-FIFO strategy than those in
the I-CC or C-FIFO strategy. This shows that a noticeable
portion of the overhead incurred by the message reorder-
ing at the network interface (NI) lies on the critical path
of every network transaction, especially the uncontented
network transactions.

MP3D Radix
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Fig. 6. The average latency of a network transaction on different
configurations.

It can be observed that a strong correlation exists be-
tween Figs. 5 and 6. This is caused by two reasons: a) the
computation remains almost same across configurations;
and b) the total number of network transactions changes
marginally across configurations, as shown in Table I. This
shows that the average latency of a network transaction has
a strong impact on the overall performance of a CC-NUMA
system. Any new technique for reducing this metric can
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potentially improve the overall system performance signif-
icantly.

TABLE 1
Total number of network transactions (in thousands).

| | FFT | MP3D | Radix | Barnes [ LU | Water |
I-CC 294 5,344 5,862 1,585 | 521 612
C-FIFO 290 5,091 5,857 1,572 | 511 612
T-FIFO-1 292 5,169 5,882 1,604 | 496 610
T-FIFO-2 292 4,823 5,890 1,560 | 484 610
T-FIFO-3 292 4,741 5,870 1,566 | 477 610

Now, let us examine the performance results of Radix in
Fig. 5. As shown in the figure, the C-FIFO configuration
still provides the second best performance. However, the I-
CC configuration is surprisingly outperformed by all other
configurations. This phenomenon can be explained by the
usage of the parallel virtual channels in different configura-
tions. In Radix, especially at the permutation phase when
the local histograms are merged into the global histogram
in the earlier iterations, multiple writers and false shar-
ing generates bursty heavy network traffic. This causes
temporarily congestion in the network. In the T-FIFO-
1, T-FIFO-2, and T-FIFO-3 configurations, the two vir-
tual channels were used equivalently for transferring any
messages. To its contrary, in the I-CC configuration, one
virtual channel was dedicated to transferring request mes-
sages, the other to transferring response messages. Due
to the imbalance between the request and response traffic,
the virtual channels and thus network bandwidth in the
latter configuration are not used as effectively as those in
the former when the network is congested. However, in
the C-FIFO configuration, the usage of the virtual chan-
nels and thus network bandwidth is improved to a certain
extent depending on the temporal distribution of the block
addresses. This result indicates that the T-FIFO and C-
FIFO strategies can adjust better than the I-CC strategy
when severe network congestion occurs.

B.3 Characteristics of Q0O Arrivals and OoO Events

To gain more insights into the severeness of penalty on
the average latency of network transaction exerted by total
FIFO channels, we examined the characteristics of pairwise
out-of-order (O00) arrivals and Q0O events in the most
aggressive T-FIFO-1 configuration. The T-FIFO-2 and
T-FIFO-3 configurations cause worse penalties. Table II
shows the rate of OoO arrivals between two nodes (row
A), the average number of 000 events generated per OoO
arrival (row B), the average rate of block correlated OoO
events per 000 event (row C), and the average number of
block correlated OoO events per message arrival (row D).
It can be observed that the average number of block cor-
related OoO events per message arrival (i.e., the erroneous
outcome of a race condition) is a very small number, in
the order of 1072 or less. Our experimental data for the T-
FIFO-2 and T-FIFO-3 configurations also showed that this
number was even smaller. Such a small value indicates that
the overhead incurred on every message transmission at the
network interface (NI) in the T-FIFO strategy overkills sys-

tem performance.

TABLE II
Summary of out-of-order (OoO) messages per pair of processing
nodes in a total FIFO channel system (T-FIFO-1 configuration).

[ | FFT | MP3D | Radix | Barnes | LU | Water |
A 1.9e-2 2.0e-2 2.6e-2 7.6e-3 3.5e-2 1.0e-2
B | 1.0002 | 1.0006 | 1.0129 1.0000 | 1.0000 | 1.0002
C 0.66 1.0e-3 | 5.6e-2 6.5e-2 0.12 | 1.0e-4
D | 1.3e-2 | 1.9e-5 | 1.5e-3 5.0e-4 | 4.4e-3 | 1.0e-6

The above evaluations were based on a specific set of
implementations. To ensure that the conclusions are not
limited to certain implementations, we also studied the im-
pact of several key design parameters relevant to commu-
nication. In the next subsection, we present results on the
impact of L2 cache line size. Other results such as the
impact of L2 cache size, network topology, and bisection
bandwidth can be found in [14].

B.4 Impact of Smaller 1.2 Cache Line Size

It is well known that varying the cache line size of a
given cache has the bath-tub effect on the overall execu-
tion time. A smaller L2 cache line reduces the average
latency of network transaction and alleviates false sharing
between nodes. On the other hand, the amortized cost per
network transaction is higher. The increased misses at the
L2 cache generate more network transactions. Overall, the
burstiness of network traffic is smoothened. Figure 7 shows
the execution time breakdowns of the I-CC, the C-FIFO,
and the T-FIFO-2 configurations with a L2 cache line of
128 bytes. Compared to the corresponding results with
a line size of 256 bytes, the overall performance improves
in all three configurations for each application. Indirectly,
this trend can be observed from Figs. 5 and 7 based on two
facts: a) the absolute CPU computation busy times barely
changed for each application in all our experiments; and
b) the relative percentages of the CPU computation busy
times increase from Fig. 5 to Fig. 7. It is to be noted that
both SGI Origin [5] and HAL Mercury [6] systems use a L2
cache line of 128 bytes. Interestingly, with this cache line
size, the performance gap among different configurations,
especially the improvement of the C-FIFO configuration
over the T-FIFO configuration, increases. This is because
the reordering overhead becomes more prominent under
reduced overall execution time.

VII. CONCLUSION

In this paper, we have proposed a new, block corre-
lated FIFO channel (C-FIFO) strategy for incorporating
multiple-path networks in scalable DSM systems. This
new strategy combines the advantages and avoids the draw-
backs of two existing strategies, i.e., the intelligent cache
coherence protocol (I-CC) strategy and the total FIFO
channel (T-FIFO) strategy. An efficient implementation
of this new strategy using current technology has also been
presented. Detailed performance evaluations demonstrate
that for most applications, our proposed C-FIFO strategy
outperforms the T-FIFO strategy by a factor of up to 40%
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Fig. 7. Impact of smaller cache line (128 bytes) on the overall exe-
cution times of benchmark applications on three configurations.

and performs almost equal to the I-CC strategy at a much
lower cost.

This study shows that not all network transactions in
DSM systems are equally important at a given time. The
effective latency of network transactions which can con-
tribute to forward progress in applications is crucial for
overall system performance. With the simplicity at the
cache coherence controller level and at the network inter-
face level, the C-FIFO strategy offers a significant cost-
performance advantage over the existing strategies. Cur-
rent and future generation DSM systems can therefore ben-
efit significantly by using this strategy.
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