
SCALABLE AND HIGH-PERFORMANCE MPI DESIGN FOR

VERY LARGE INFINIBAND CLUSTERS

DISSERTATION

Presented in Partial Fulfillment of the Requirements for

the Degree Doctor of Philosophy in the

Graduate School of The Ohio State University

By

Sayantan Sur, B. Tech

* * * * *

The Ohio State University

2007

Dissertation Committee:

Prof. D. K. Panda, Adviser

Prof. P. Sadayappan

Prof. S. Parthasarathy

Approved by

Adviser

Graduate Program in
Computer Science and

Engineering

c© Copyright by

Sayantan Sur

2007

ABSTRACT

In the past decade, rapid advances have taken place in the field of computer and network

design enabling us to connect thousands of computers together to form high-performance

clusters. These clusters are used to solve computationally challenging scientific problems.

The Message Passing Interface (MPI) is a popular model to write applications for these

clusters. There are a vast array of scientific applications which use MPI on clusters. As the

applications operate on larger and more complex data, the size of the compute clusters is

scaling higher and higher. Thus, in order to enable the best performance to these scientific

applications, it is very critical for the design of the MPI libraries be extremely scalable and

high-performance.

InfiniBand is a cluster interconnect which is based on open-standards and gaining rapid

acceptance. This dissertation presents novel designs based on the new features offered by

InfiniBand, in order to design scalable and high-performance MPI libraries for large-scale

clusters with tens-of-thousands of nodes. Methods developed in this dissertation have been

applied towards reduction in overall resource consumption, increased overlap of computa-

tion and communication, improved performance of collective operations and finally designing

application-level benchmarks to make efficient use of modern networking technology. Soft-

ware developed as a part of this dissertation is available in MVAPICH, which is a popular

open-source implementation of MPI over InfiniBand and is used by several hundred top

computing sites all around the world.

ii

Dedicated to all my family and friends

iii

ACKNOWLEDGMENTS

I would like to thank my adviser, Prof. D. K. Panda for guiding me throughout the

duration of my PhD study. I’m thankful for all the efforts he took for my dissertation. I

would like to thank him for his friendship and counsel during the past years.

I would like to thank my committee members Prof. P. Sadayappan and Dr. S. Parthasarathy

for their valuable guidance and suggestions.

I’m grateful for financial support by National Science Foundation (NSF) and Department

of Energy (DOE).

I’m thankful to Dr. Bill Gropp, Dr. Rajeev Thakur and Dr. Bill Magro for their support

and guidance during my summer internships.

I’m especially thankful to Dr. Hyun-Wook Jin, who was not only a great mentor, but a

close friend. I’m grateful to have had Dr. Darius Buntinas as a mentor during my first year

of graduate study.

I would like to thank all my senior Nowlab members for their patience and guidance, Dr.

Pavan Balaji, Dr. Jiuxing Liu, Dr. Jiesheng Wu, Dr. Weikuan Yu, Sushmita Kini and Bala.

I would also like to thank all my colleagues Karthik Vaidyanathan, Abhinav Vishnu, Amith

Mamidala, Sundeep Narravula, Gopal Santhanaraman, Savitha Krishnamoorthy, Weihang

Jiang, Wei Huang, Qi Gao, Matt Koop, Lei Chai and Ranjit Noronha. I’m especially grateful

to Matt and Lei and I’m lucky to have collaborated closely with them.

iv

During all these years, I met many people at Ohio State, some of whom are very close

friends, and I’m thankful for all their love and support: Nawab, Bidisha, Borun, Ashwini

and Naveen.

Finally, I would like to thank my family members, Swati (my mom), Santanu (my dad)

and Sohini (my sister). I would not have had made it this far without their love and support.

v

VITA

September 29, 1979 .Born - Calcutta, India.

August 1997 - July 2001 . B.Tech Electrical and Electronics
Engineering, Regional Engineering
College, Calicut, India.

August 2001 - July 2002 .Member of Technical Staff, Sun
Microsystems, India.

August 2002 - June 2003 . Graduate Teaching Associate,
The Ohio State University.

June 2005 - September 2005 . Summer Intern,
Intel Corp, Urbana-Champaign, IL.

June 2006 - September 2006 . Summer Intern,
Argonne National Laboratory,
Chicago, IL.

June 2003 - August 2007 . Graduate Research Associate,
The Ohio State University.

PUBLICATIONS

W. Yu, S. Sur, D. K. Panda, R. T. Aulwes and R. L. Graham, “High Performance Broadcast
Support in LA-MPI over Quadrics”. International Journal of High Performance Computer

Applications, Winter 2005.

M. Koop, S. Sur and D. K. Panda, “Zero-Copy Protocol for MPI using InfiniBand Unreliable
Datagram”, IEEE International Conference on Cluster Computing (Cluster 2007), Austin

TX.

S. Sur, M. Koop, L. Chai and D. K. Panda, “Performance Analysis and Evaluation of
Mellanox ConnectX InfiniBand Architecture with Multi-Core Platforms”, 15th Symposium

on High-Performance Interconnects (HOTI-15), August 2007.

vi

M. Koop, S. Sur, Q. Gao and D. K. Panda, “High Performance MPI Design using Unreliable

Datagram for Ultra-Scale InfiniBand Clusters”, 21st Int’l ACM Conference on Supercom-
puting, June 2007.

S. Sur, M. Koop and D. K. Panda, “High-Performance and Scalable MPI over InfiniBand

with Reduced Memory Usage: An In-Depth Performance Analysis”, SuperComputing (SC),
November 11-17, 2006, Tampa, Florida, USA.

S. Sur, L. Chai, H.-W. Jin and D. K. Panda, “Shared Receive Queue Based Scalable MPI De-

sign for InfiniBand Clusters”, International Parallel and Distributed Processing Symposium
(IPDPS 2006), April 25-29, 2006, Rhodes Island, Greece.

S. Sur, H.-W. Jin, L. Chai and D. K. Panda, “RDMA Read Based Rendezvous Protocol
for MPI over InfiniBand: Design Alternatives and Benefits”, Symposium on Principles and

Practice of Parallel Programming (PPOPP 2006), March 29-31, 2006, Manhattan, New York
City.

S. Sur, U. Bondhugula, A. Mamidala, H.-W. Jin, and D. K. Panda, “High Performance

RDMA Based All-to-all Broadcast for InfiniBand Clusters”, International Conference on
High Performance Computing (HiPC 2005), December 18-21, 2005, Goa, India.

S. Sur, A. Vishnu, H.-W. Jin, W. Huang and D. K. Panda, “Can Memory-Less Network

Adapters Benefit Next-Generation InfiniBand Systems?”, Hot Interconnects Symposium,
August 17-19, 2005, Stanford University, Palo Alto, California.

H.-W. Jin, S. Sur, L. Chai and D. K. Panda, “LiMIC: Support for High-Performance MPI

Intra-Node Communication on Linux Clusters”, International Conference on Parallel Pro-

cessing (ICPP-05), June 14-17, 2005, Oslo, Norway.

L. Chai, S. Sur, H.-W. Jin and D. K. Panda, “Analysis of Design Considerations for Op-
timizing Multi-Channel MPI over InfiniBand”, Workshop on Communication Architecture

for Clusters (CAC 2005); In Conjunction with IPDPS, April 4-8, 2005, Denver, Colorado.

S. Sur, H.-W. Jin, and D.K. Panda, “Efficient and Scalable All-to-All Exchange for InfiniBand-
based Clusters”, International Conference on Parallel Processing (ICPP-04), Aug. 15-18,

2004, Montreal, Quebec, Canada.

W. Yu, S. Sur, D. K. Panda, R. T. Aulwes and R. L. Graham, “High Performance Broadcast
Support in LA-MPI over Quadrics”, In Los Alamos Computer Science Institute Symposium,

(LACSI’03), Santa Fe, New Mexico, October 2003.

vii

FIELDS OF STUDY

Major Field: Computer Science and Engineering

Studies in:

Computer Architecture Prof. D. K. Panda
Computer Networks Prof. D. Xuan
Software Systems Prof. P. Sadayappan

viii

TABLE OF CONTENTS

Page

Abstract . ii

Dedication . iii

Acknowledgments . iv

Vita . vi

List of Tables . xiii

List of Figures . xiv

Chapters:

1. Introduction . 1

1.1 Overview of MPI . 3

1.1.1 Point-to-Point Communication . 4
1.1.2 Collective Communication . 5

1.1.3 MPI Design Issues . 5

1.2 Overview of InfiniBand . 7
1.2.1 Communication Semantics . 9

1.2.2 Transport Services . 10
1.2.3 Shared Receive Queue . 11

1.2.4 Memory Registration . 12
1.2.5 Completion and Event Handling Mechanisms 12

1.3 Problem Statement . 13
1.4 Research Approaches . 16

1.5 Dissertation Overview . 17

ix

2. Improving Computation and Communication Overlap 20

2.1 Background . 21
2.1.1 Overview of Rendezvous Protocol 21

2.1.2 Overview of InfiniBand RDMA-Write and RDMA-Read 22
2.2 Current Approaches and their Limitations 22

2.3 Design Alternatives and Challenges . 23
2.3.1 RDMA Read with Interrupt Based Rendezvous Protocol 26

2.4 Performance Evaluation . 28
2.4.1 Computation and Communication Overlap Performance 29

2.4.2 Application level Evaluation . 34

2.5 Summary . 35

3. Improving Performance of All-to-All Communications 37

3.1 Background . 38

3.1.1 Overview of MPI All-to-All Operation and Existing Algorithms . . 38
3.2 Current Approaches and Limitations . 40

3.3 Proposed design for RDMA based All-to-All 40
3.3.1 Design issues for RDMA Collectives 42

3.3.2 Design for Small Messages: HRWG 43
3.3.3 Design for Large messages: DE . 46

3.4 Performance Evaluation . 48
3.4.1 Evaluation for Small Messages . 48

3.4.2 Evaluation for Larger Messages . 49
3.4.3 Performance Extrapolation for Large Messages 50

3.5 Summary . 52

4. Improving Performance of All-to-All Broadcast 53

4.1 Background . 54
4.1.1 Overview of All-to-All Broadcast and Existing Algorithms 54

4.2 Can RDMA benefit Collective Operations? 56
4.2.1 Bypass intermediate software layers 56

4.2.2 Reduce number of copies . 57
4.2.3 Reduce Rendezvous handshaking overhead 57

4.2.4 Reduce Cost of Multiple Registrations 58
4.3 Proposed Design for All-to-All Broadcast 58

4.3.1 RDMA-based Design for Recursive Doubling 58
4.3.2 RDMA Ring for large messages . 60

4.4 Performance Evaluation . 60

x

4.4.1 Latency benchmark for MPI Allgather 61
4.4.2 MPI Allgather latency with no buffer reuse 62

4.4.3 Matrix Multiplication Application Kernel 63
4.5 Summary . 63

5. Scalable Communication Buffer Management Techniques 67

5.1 Overview of Shared Receive Queues . 69
5.2 Current Approaches and Limitations . 70

5.3 Benefits of using Shared Receive Queues 71
5.4 MPI Design Alternatives using Shared Receive Queues 72

5.4.1 Proposed SRQ Refilling Mechanism 73

5.4.2 Proposed Design of SRQ Limit Threshold 76
5.4.3 Analytical Model for Memory Usage Estimation 78

5.5 Performance Results . 80
5.5.1 Experimental Environment . 80

5.5.2 Startup Memory Utilization . 80
5.5.3 Flow Control . 83

5.5.4 NAS Benchmarks . 84
5.5.5 High Performance Linpack . 86

5.6 Summary . 86

6. In-Depth Scalability Analysis of MPI Design . 88

6.1 Overview of MPI Design . 89

6.1.1 Adaptive RDMA with Send/Receive Channel 91
6.1.2 Adaptive RDMA with SRQ Channel 92

6.1.3 SRQ Channel . 93

6.2 Performance Evaluation Parameters . 93
6.3 Performance Results . 95

6.3.1 NAS Benchmarks . 96
6.3.2 NAMD . 102

6.3.3 High Performance Linpack (HPL) 104
6.3.4 Scalability Analysis . 105

6.4 Summary . 107

7. Optimizing MPI applications: A Case Study With Two HPCC Benchmarks . . 108

7.1 Overview of HPCC Benchmarks . 109

7.1.1 Overview of HPL Benchmark . 109
7.1.2 Overview of RandomAccess Benchmark 111

7.2 Overview of MPI Library Optimizations 112

xi

7.2.1 Optimizations for Computation/Communication Overlap 112
7.2.2 Optimizations to Communication Buffer Management 112

7.3 Modifications to HPCC Benchmarks . 113
7.3.1 Modifications to HPL . 113

7.3.2 Modifications to RandomAccess . 114
7.4 Performance Results . 115

7.4.1 Performance Results for HPL . 115
7.4.2 Performance Results for RandomAccess 117

7.5 Summary . 118

8. Open Source Software Release and its Impact 121

9. Conclusions and Future Research Directions . 123

9.1 Summary of Research Contributions . 123
9.1.1 Improving Computation/Communication Overlap 124

9.1.2 Improving Performance of Collective Operations 124
9.1.3 Scalable Communication Buffer Management Techniques 125

9.1.4 In-Depth Scalability Analysis of MPI Design 125
9.1.5 Optimizing end MPI Applications/Benchmarks 125

9.2 Future Research Directions . 126

Bibliography . 128

xii

LIST OF TABLES

Table Page

1.1 Comparison of IBA Transport Types . 11

6.1 Profiling Results on 64 processes of NAS (Class B), NAMD (apoa1) and HPL 95

6.2 Profiling Results for SuperLU . 100

xiii

LIST OF FIGURES

Figure Page

1.1 InfiniBand Architecture (Courtesy IBTA) . 8

1.2 IBA Communication Stack (Courtesy IBTA) 9

1.3 Problem Space for this Dissertation . 13

2.1 MVAPICH Rendezvous Protocol and its Limitations 24

2.2 RDMA Read Based Rendezvous Protocol . 26

2.3 RDMA Read with Interrupt based Rendezvous Protocol 29

2.4 Sender Communication and Computation Overlap Performance 31

2.5 Receiver Communication and Computation Overlap Performance 31

2.6 Computation and Communication Overlap (Sender) with Time Stamps . . . 32

2.7 Computation and Communication Overlap (Receiver) with Time Stamps . . 32

2.8 Application Level Evaluation for Rendezvous Protocol Designs 35

3.1 Layered Design of Collective Operations and Associated Overheads 41

3.2 Proposed implementation path for Collectives 41

3.3 Buffer arrangement for Hypercube Algorithm 44

3.4 Managing Buffer pointers . 45

xiv

3.5 Direct Eager Mechanism . 47

3.6 Small Message Performance Benefits for All-to-all Personalized Communication 49

3.7 Medium and Large Message Performance Benefits for All-to-all Personalized
Communication . 51

3.8 Performance for 4k message among 1k processes 51

4.1 Recursive Doubling Algorithm for MPI Allgather 55

4.2 Ring Algorithm for MPI Allgather . 56

4.3 MPI Allgather Performance on 16 Processes (Cluster A) 64

4.4 MPI Allgather Performance on 32 Processes (Cluster A) 64

4.5 MPI Allgather Performance on 16 Processes (Cluster B) 64

4.6 Scalability and Registration Cost on Cluster A 65

4.7 Impact of Buffer Registration and Performance of Matrix Multiplication . . . 65

5.1 IBA Transport and Software Services . 69

5.2 Comparison of Buffer Management Models 72

5.3 Explicit ACK mechanism . 74

5.4 Interrupt Based Progress . 75

5.5 SRQ Limit Event Based Design . 76

5.6 LIMIT Thread Wakeup Latency . 77

5.7 Memory Utilization Experiment . 81

5.8 Error Margin of Analytical Model . 82

5.9 Estimation of memory consumption on very large clusters 82

xv

5.10 MPI Waitall Time comparison . 84

5.11 NAS Benchmarks Class A Total Execution Time (BT, LU, SP) 85

5.12 NAS Benchmarks Class A Total Execution Time (CG, EP, FT, IS, MG) . . 85

5.13 High Performance Linpack . 87

6.1 Various Eager Protocol Designs in MVAPICH 91

6.2 Performance of NAS Benchmarks . 97

6.3 Network-Level Message and Volume Profile of NAS Benchmarks 98

6.4 Memory Usage and Performance of SuperLU 101

6.5 Network-Level Message and Volume Profile of SuperLU Datasets 101

6.6 Network-Level Message and Volume Profile of NAMD Datasets 102

6.7 Performance of NAMD (apoa1) . 103

6.8 Performance of HPL . 104

6.9 Message Size Distribution for HPL . 105

6.10 Avg. Low-Watermark Events . 106

7.1 HPL Broadcast Algorithm . 110

7.2 HPL Results with increasing number of processes 116

7.3 HPL Results on 512 processes with increasing problem size 117

7.4 Performance of RandomAccess Benchmark 119

xvi

CHAPTER 1

INTRODUCTION

Modern day existence is enabled by applications such as weather forecasting, Internet

search, e-commerce, drug research, space exploration, data-mining, fluid dynamics simula-

tions, etc. It is almost impossible for us to imagine our daily life without these applications.

All these applications depend upon High-Performance Computing (HPC) systems. These

systems employ up to several thousand computers connected together by modern network-

ing technologies such as Gigabit Ethernet, Myrinet [7], InfiniBand [17] etc., to execute these

applications. Modern HPC systems operate at “Terascale” (1012 calculations per second).

Although computation power available today seems to be plentiful, it is not enough to sa-

tiate the need of demanding applications such as weather forecasting. Due to inadequate

computation power, weather cannot be accurately predicted beyond a few days, resulting in

delayed advisories or bad predictions. One can expect that tomorrow’s applications will be

even more challenging, requiring HPC systems to reach “PetaScale” (1015 calculations per

second).

One of the popular types of parallel computers is called a “Cluster”. Clusters are built out

of commodity components taken off-the-shelf. The high volume of commodity components

brings down the cost of clusters significantly and boosts the cost-to-performance ratio. In

fact, currently 373 of the top 500 most powerful computers in the world [45] are clusters. The

1

adoption of clusters for very high-end computing has also been encouraged by availability

of high-performance interconnects which provide communication support for these clusters.

Recent advances in interconnection technology can boost the size of clusters to tens-of-

thousands of nodes. In order to scale up HPC systems to PetaScale, one of the major

challenges is to provide scalable software environments under which parallel applications

can execute. The Message Passing Interface (MPI) [30] is one of the most popular software

environment for HPC systems, and is used by almost all HPC applications. Thus, it is crucial

that the design and implementation of MPI is scalable, so that the applications utilizing MPI

can also scale accordingly.

InfiniBand [17] is a cluster interconnect which is based on open standards and is gaining

widespread acceptance. It offers several new features which make it desirable for High Per-

formance Computing. MVAPICH [34] is a popular implementation of MPI over InfiniBand

which is used by several hundred of the top computing sites all around the world. The

basic design of MVAPICH was proposed by J. Liu et al [24]. Since the initial design, the

scale of the InfiniBand clusters in production use has grown from a few hundreds-of-nodes

to several thousands of nodes. In fact, InfiniBand clusters with tens-of-thousands of nodes

are being built for use by the end of this year. As the order-of-magnitude of the clusters has

increased, the design of the MPI layer needs to ever more scalable and high-performance. In

this dissertation, we present our studies on how to design a high-performance and scalable

MPI communication layer while leveraging novel features offered by InfiniBand.

The rest of this Chapter is organized as follows. First we provide an overview of MPI

and relevant scalability issues. We then provide an overview of InfiniBand and its modern

networking mechanisms. Following that, we present the problem statement and the research

approaches. Finally, we provide an overview of this dissertation.

2

1.1 Overview of MPI

The message passing model of parallel computing requires explicit communication be-

tween processes involved in the computation. This model has been thought to be one of the

most effective methods to scale a parallel computer up. Message passing was used in early

supercomputers in the 1980s. However, during that period, nearly every supercomputer

had a different way of doing message passing, and applications were not portable from one

parallel computer to the other. To rectify this situation and to pave the way for developing

high-performance scientific applications, efforts were started in the early 1990s to standard-

ize the interface which is used by applications to send and receive messages. The result of

the standardization process is the Message Passing Interface (MPI) [30]. An extension to the

initial specification is also available as MPI2 [31]. MPI provides an application programming

interface (API) for the Fortran, C and C++ languages.

MPI has since established itself as the de-facto standard of parallel computing. Nearly all

scientific computation applications are written using MPI, and many higher-level communi-

cation libraries require MPI. MPI is very portable and has been ported to nearly all parallel

computer architectures. There is a wide variety of quality MPI implementations available

as open-source: MPICH [15], MPICH2 [27], MVAPICH, MVAPICH2 [34], OpenMPI [13].

MPI provides two major modes of communication, point-to-point and collective. In point-

to-point communication, individual pairs of processes are involved in sending and receiving

messages. In collective communication operations, groups of processes are involved in the

data exchange. In this section, we describe the major communication modes offered by MPI

in detail, their semantics and issues in designing scalable and high-performance MPI.

3

1.1.1 Point-to-Point Communication

In an MPI program, two processes can exchange messages using point-to-point commu-

nication primitives. The process wishing to send a message, can send it using a function

MPI Send. The receiving process may retrieve this message with a matching MPI Recv. Mes-

sages are matched by a three-tuple source, tag and context. The “source” indicates the

process where the message originated. The “tag” is a user supplied integer value and can be

used to separate different messages. The “context” is the group of the processes the sending

process belongs to.

MPI Send and MPI Recv are the most commonly used MPI functions. However, there are

variations of these calls. MPI Send and MPI Recv are often called as the “blocking” mode

calls, i.e. the sending and receiving processes block on these calls until the corresponding

operations complete, or the message buffers can be reclaimed by the application. MPI Isend

and MPI Irecv are the asynchronous versions of the send and receive calls. Using these,

the application can initiate send and receive operations while continuing to perform its own

computation. The MPI library will attempt to make progress in the meanwhile and can

complete these operations. In order to finish the asynchronous operations, the application

then needs to call MPI Wait.

The other modes of point-to-point calls are synchronous, buffered and ready. In the syn-

chronous mode, the application is guaranteed that the network/message transfer operations

relating to the send/receive are complete before control returns to the application. This

mode is activated using MPI Ssend and is primarily used for debugging MPI applications

which erroneously have assumed internal MPI buffering. The buffered mode allows appli-

cations to provide explicit memory buffers for communication, so that it doesn’t have to

worry about where the messages may actually be buffered. This is mainly a convenience

4

function and is activated using MPI Bsend. Finally, in the ready mode may be used when

the sending process is sure that a matching receive has been posted. This is an attempt to

optimize network protocols associated with that send/receive operation. However, in most

MPI implementation, the ready send is just mapped to MPI Send for the sake of convenience.

1.1.2 Collective Communication

In addition to the point-to-point communication primitives, MPI offers collective commu-

nication operations. These functions allow a group of processes to perform communication

in a coordinated fashion. Based on the physical network and system topology, these oper-

ations can be then highly optimized by the MPI library. The application using these MPI

functions then need not be aware of specific platform specific parameters in order to optimize

these communication patterns. Examples of collective communication are: MPI Alltoall,

MPI Allgather, MPI Bcast, MPI Reduce, MPI Barrier etc. Thus, the collective operations

not only provide a simple and intuitive interface to application programmers but also give

MPI implementors a greater opportunity to optimize them.

1.1.3 MPI Design Issues

In order to design a high-performance and scalable MPI library, there are many different

design issues to consider. In this section, we provide and overview of the general issues that

need to be dealt with. In the subsequent sections, we will describe them in depth in context

with the InfiniBand Architecture.

Communication Buffer Management

MPI assumes a fully connected model. Under this assumption, applications utilizing

MPI can send/receive messages from each other at any given moment during the execution.

5

In order to transmit messages, the MPI library has to ensure that there is some memory

space at the receiver where incoming messages land. On the receiving side, the MPI library

can then inspect the incoming messages to perform the correct action. The memory space

which must be dedicated to receive messages is often referred to as “communication buffers”.

As the number of processes in the MPI application increases, the amount of buffer space

required by the MPI library should not increase dramatically. On the contrary, some limits

must be enforced on how much memory is consumed by communication buffers based on

how much memory is available at each sending process. Even for process counts in several

tens-of-thousands, memory required must be within reasonable limits.

Flow Control

As mentioned in the previous section, MPI assumes a fully connected model with pro-

cesses sending and receiving messages at will. The MPI library should ensure that incoming

messages do not totally overwhelm the receiving process. In order to achieve this, the MPI

library should impose directly or indirectly some flow control which limits the rate at which

communication buffers are consumed from within the MPI library. As the system size scales,

overhead imposed by flow control should be as low as possible. In addition, good flow con-

trol mechanisms should allow for as much communication to take place as possible before

imposing strict limitations on the rate of incoming messages.

Communication Protocol Design and Progress

Applications using MPI may send or receive arbitrary sized messages. Internally, MPI

uses two major types of protocols. They are called Eager and Rendezvous protocols. In the

eager mode, usually used for small messages, the sending process simply sends the message

over to the remote side, where it is temporarily buffered in the communication buffers. The

6

Rendezvous mode, usually used for larger messages involves a handshake operation before

the actual message is sent. This is done in order to guarantee availability of memory at the

receiver for the entire message. The internal design of these protocols is key to achieving

high-performance and overlap of computation and communication. The overlap indicates

that the MPI application is able to continue computing while the MPI library along with

the network-interface take on the responsibility of transferring the message, i.e. continue to

make progress.

Collective Communication

Most collective operations are blocking operations, i.e. requiring reception of messages

from remote processes. This makes collective operations especially latency sensitive. Ac-

cordingly, applications expect that each collective operation be carefully tuned according to

the specific platform. While designing collective operations for large system sizes, scalable

algorithms and techniques should be employed. There should be as less memory dedicated

as possible and it should be reused as much as possible. Finally, for achieving lowest la-

tency, the collective operations can be based on direct network primitives and not on MPI

point-to-point operations.

1.2 Overview of InfiniBand

The InfiniBand Architecture [17] (IBA) defines a switched network fabric for interconnect-

ing compute and I/O nodes. In an InfiniBand network, compute and I/O nodes are connected

to the fabric using Channel Adapters (CAs). There are two types of CAs: Host Channel

Adapters (HCAs) which connect to the compute nodes and Target Channel Adapters (TCAs)

which connect to the I/O nodes. IBA describes the service interface between a host channel

7

adapter and the operating system by a set of semantics called Verbs. Verbs describe opera-

tions that take place between a CA and its operating system for submitting work requests

to the channel adapter and returning completion status. Figure 1.1 depicts the architecture

of an InfiniBand network.

Figure 1.1: InfiniBand Architecture (Courtesy IBTA)

InfiniBand uses a queue based model. A consumer can queue up a set of instructions that

the hardware executes. This facility is referred to as a Work Queue (WQ). Work queues

are always created in pairs, called a Queue Pair (QP), one for send operations and one

for receive operations. In general, the send work queue holds instructions that cause data

to be transferred between the consumer’s memory and another consumer’s memory, and

the receive work queue holds instructions about where to place data that is received from

another consumer. The completion of WQRs is reported through Completion Queues (CQ).

8

Figure 1.2 shows a Queue Pair connecting two consumers and communication through the

send and the receive queues.

Figure 1.2: IBA Communication Stack (Courtesy IBTA)

1.2.1 Communication Semantics

InfiniBand supports two types of communication semantics. They are called Channel

and Memory semantics. In channel semantics, the sender and the receiver both explicitly

place work requests to their QP. After the sender places the send work request, the hardware

transfers the data in the corresponding memory area to the receiver end. It is to be noted that

the receive work request needs to be present before the sender initiates the data transfer. This

restriction is prevalent in most high-performance networks like Myrinet [32], Quadrics [36]

etc.

In memory semantics, Remote Direct Memory Access (RDMA) operations are used in-

stead of send/receive operations. These RDMA operations are one-sided and do not require

9

any software involvement at the other side. ie. the other side CPU does not have to issue any

work request for the data transfer. Both RDMA Write (write to remote memory location)

and RDMA Read (read from remote memory location) are supported in InfiniBand.

1.2.2 Transport Services

The InfiniBand architecture supports multiple classes of transport services. A queue pair

can be configured with either of these types of transports:

1. Reliable Connection (RC)

2. Reliable Datagram (RD)

3. Unreliable Connection (UC)

4. Unreliable Datagram (UD)

5. Raw Datagram

Transport services RC and UC are connection oriented. They require a QP to be exclusive

to a pair of processes. On the other hand RD and UD are connection-less, i.e. a QP may

be used to communicate with as many pairs of processes as possible. Each QP requires a

particular set of resources. These resources are mainly to store context information and in

case of reliable transports to guarantee reliable, in-order delivery. In general, connection-less

transports require lesser resources than connection-oriented transports. The Raw Datagram

is used to provide compatibility with other types of networks. For example, IPv6 packets

may be tunneled over InfiniBand using this type of transport. The Raw Datagram is out of

scope for this proposal.

Table 1.1 compares the various transports provided by IBA. We note that for m processes

on n nodes and all processes connected, the RC and UC transports require the most number

10

Attribute RC RD UC UD Raw Datagram
Scalability (Number of QPs) m2n m m2n m 1

Corrupt Data Detected Yes Yes Yes Yes Yes
Delivery Guarantee Yes Yes No No No
Data Loss Detection Yes Yes No Yes No

Error Recovery Reliable Reliable Unreliable Unreliable Unreliable

Table 1.1: Comparison of IBA Transport Types

of QPs. On the other hand RD and UD require much lesser QPs. However, to the best of our

knowledge, no InfiniBand hardware currently implements RD. The RC transport provides

reliable in order delivery and detection and is suitable for programming models such as MPI

which require all processes to be logically connected and provide reliable data transfer.

1.2.3 Shared Receive Queue

InfiniBand provides channel communication semantics (as described in Section 1.2.1) in

the form of send and receive operations on a QP. In order to use these operations, it is

necessary that the receive work requests are placed before the send operations are issued.

This ensures that the CA has enough resources to place the data which it receives. However,

this presents a scalability issue when there are multiple QPs communicating. Resources

made available to one QP are wasted if there is no more communication with that remote

process. To handle such a situation, the IBTA specification version 1.2 introduced a new

software service called the Shared Receive Queue. This allows the CA to share receive requests

for several QPs into one FIFO queue. In addition to providing a scalable mechanism to

share receive requests for multiple connections, the SRQ also provides a “Low-watermark”

asynchronous service. If the shared receive requests drop below a preset threshold, then the

11

application (in our case MPI library) may be notified of this event. This event may allow

applications to perform flow-control or other operations based on their requirement.

1.2.4 Memory Registration

InfiniBand requires that all memory that is used for communication be “registered” before

any data is sent or received into it. Registration is a two phase operation in which the pages

are marked unswappable (ie. these will no longer be paged out to disk) and the virtual

addresses of the pages in concern will be sent to the CA. The reason for this requirement

is that when the CA actually performs the communication operation, the data should be

present in the RAM and the CA should know its address.

Registration is usually a high-latency blocking operation. In addition, since the memory

pages registered cannot be swapped out, the application (running on top of MPI) has lesser

physical memory available.

1.2.5 Completion and Event Handling Mechanisms

In InfiniBand, the Completion Queue (CQ) provides an efficient and scalable mechanism

to report completion events to the application. The CQ can provide completion notifications

for both send and receive events as well as many asynchronous events. It supports two modes

of usage: i) Polling ii) Asynchronous. In the Polling mode, the application uses an InfiniBand

verb to poll the memory locations associated with the completion queue. One or many

completion entries may be returned at one go. In the Asynchronous mode, the application

need to continuously poll the CQ to look for completions. The CQ will generate an interrupt

when a completion event is generated. Further, IBA provides a mechanism by which only

“solicited events” may cause interrupts. In this mode, the application can poll the CQ,

however on selected types of completions, an interrupt is generated. This mechanism allows

12

interrupt suppression and thus avoid unnecessary costs (like context-switch) associated with

interrupts.

1.3 Problem Statement

Cluster computing has become mainstream HPC (High-Performance Computing) now,

with 75% of the most powerful parallel computers being clusters. These modern clusters

are equipped with powerful interconnects, such as InfiniBand [17]. Scientific applications

executing on these clusters use primarily MPI as their programming model. As the size of

these clusters continues to increase, it is crucial to design MPI libraries in the most efficient

and scalable manner.

RDMA
WRITE

RDMA
READ SRQ SCATTER

GATHER

EVENT
NOTIFY

SEND/RECV

POINT−TO−POINT COLLECTIVES
MANAGEMENT

RESOURCE
LIGHTWEIGHT

COMMUNICATION
PROFILING

APPLICATION

MPI

PHYSICAL COMMUNICATION NETWORK

(e.g. INFINIBAND)

NETWORKING MECHANISMS

MPI LIBRARY

Figure 1.3: Problem Space for this Dissertation

13

Figure 1.3 shows the scope of this dissertation. In short, we aim to design the point-to-

point and collective components of the MPI libraries to make use of novel network primitives

in order to make better utilization of resources and be most efficient. We intend to under-

stand the resource usage characteristics and communication patterns of MPI applications

not only for optimizing MPI libraries, but also to optimize the end applications/benchmarks

themselves. We present the problem statement in details as follows:

• Can we design point-to-point operations in a manner such as to improve computation

and communication overlap ratio? – The computation and communication overlap

ratio is an indication of the amount of computation an MPI application can perform

while communication operations are pending. Current generation MPI libraries depend

upon the MPI application to invoke communication progress by using MPI routines.

This means that computation and communication cannot proceed in parallel. However,

independent progress of communication operations is critical to achieving good overall

application performance. As far as possible, the performance of the MPI library should

not depend on the application calling MPI routines to make progress. With system

sizes scaling to the tens-of-thousands of processors, application developers are forced

to tackle many complex optimizations. The MPI library should take charge of making

sure communication operations can proceed without direct application involvement.

Enabling independent communication is a tough challenge, as it involves asynchronous

actions to take place while the CPU is busy in computation routines.

• Can the collective operations be designed to leverage modern networking mechanisms

and achieve improved latency and scalability? – MPI applications often utilize collec-

tive communication routines in order to enable the MPI library to optimize performance

based on the system architecture/topology. However, MPI libraries often implement

14

collective operations on top of the point-to-point operations (e.g. MPI Send, MPI Recv,

etc.), adding software overhead and losing the collective operation semantics which

leads to lack of optimization opportunities. Designing collective operations directly

over raw network primitives is a promising approach to removing software overheads.

However, it is a challenge to identify and design the right algorithms and design them

in a scalable and high-performance manner.

• Can we leverage newer features of InfiniBand and design newer communication buffer

organization techniques which have scalable resource usage? – MPI specifies a fully

connected model. Under such a model any process can send or receive from any other

process. The MPI library needs to reserve some memory to handle the exchange of mes-

sages. The amount of communication buffers the MPI library needs should not rapidly

increase with the number of processes in the application. Current generation MPI im-

plementations often allocate communication buffer resources on a per remote process

basis in order to optimize point-to-point communication performance. Although these

approaches provide good performance for small scale clusters, they are simply not vi-

able for larger scale clusters as they require several GigaBytes of memory per process.

The challenge is to devise a mechanism which not only allows high-performance for

small scale clusters, but scales well for very large clusters with tens-of-thousands of

nodes.

• Can the new scalable communication buffer organization achieve similar or better per-

formance than previous designs for a wide variety of MPI applications? – MPI ap-

plications exhibit a wide variety of communication patterns. For every different com-

munication, buffers may be consumed in different ways. The communication buffer

15

mechanism must be able to achieve high-performance under most of the highly likely

communication patterns, while providing scalable buffer usage. A very detailed study

of a variety of MPI applications is required in order to understand the performance

characteristics of the buffer management mechanisms. There are no existing profiling

tools that offer such detailed information, and in order to study these parameters, a

light-weight profiling layer is required inside the MPI library.

• Can we achieve a significantly better understanding of application/benchmark char-

acteristics and requirements, and redesign them according to the strengths of modern

interconnects? – As the system sizes increase to tens-of-thousands of nodes, the scope

to perform optimization is greatest in the MPI application. Many of the existing MPI

codes have been written several years back when the networks didn’t offer novel fea-

tures. Thus, the MPI applications/benchmarks may not be best suited for the modern

generation of networks. It is therefore crucial to understand the behavior of these ap-

plications and benchmarks and provide insights to real application developers about

scalable techniques to employ while writing PetaScale applications.

1.4 Research Approaches

In this section we present our general approaches to the above mentioned issues.

1. Designing rendezvous protocol leveraging RDMA Read to enhance com-

putation and communication overlap – We have designed a novel rendezvous

protocol which achieves nearly complete computation and communication overlap. We

make use the RDMA Read feature offered by InfiniBand and couple it with selective

interrupts for enabling the MPI library to make progress even when the application

cannot call the MPI library.

16

2. Designing scalable collective operations leveraging lower level RDMA and

non-contiguous operations – We have designed RDMA based collective operations

for two of the commonly used MPI collectives: MPI Alltoall and MPI Allgather.

Our approach cuts down on software overheads bypassing several layers directly to

the InfiniBand communication layer and leveraging RDMA and native support for

non-contiguous communication.

3. Designing scalable communication buffer management techniques – We have

designed a scalable technique to manage communication buffers utilizing Shared Re-

ceive Queues. Using our method, communication buffers need not be dedicated per

process, rather, they are used in a FIFO order from a shared pool. We have also

designed an associated flow control method with this management scheme.

4. In-Depth performance analysis of MPI library with reduced memory usage

utilizing internal profiling layers – We have analyzed in detail the performance

characteristics of our overall designs for a wide variety of end MPI applications. We de-

veloped an internal profiling layer to collect information on lower layer events, memory

usage to validate design decisions.

5. Redesigning application level benchmarks to leverage modern networking

capabilities – We have redesigned two widely used HPCC [18] benchmarks, High-

Performance Linpack and RandomAccess, to better utilize modern network and benefit

from advances in MPI design as per the above mentioned work.

1.5 Dissertation Overview

We have presented our research over the next several chapters.

17

In Chapter 2 we take on the challenge of redesigning the Rendezvous Protocol in order

to improve the computation and communication overlap. We leverage the RDMA Read

semantics to reduce the number of intermediate messages required to transmit an MPI level

message. In addition, we utilize the selective interrupt mechanism to insert progress calls

inside the MPI library even though the MPI application may be busy in computation. Using

our design, the MPI library is able to offer almost complete computation and communication

overlap.

In Chapters 3 and 4, we present new designs to take advantage of the advanced fea-

tures offered by InfiniBand in order to achieve scalable and efficient implementation of the

MPI Alltoall and MPI Allgather collectives. We proposed that the implementation of

collectives be done directly on the InfiniBand Verbs Interface rather than using MPI level

point-to-point functions. We evaluate our proposed designs in detail Our experimental re-

sults and analytical models enable us to conclude that our new designs can be more scalable

and efficient than current approaches.

In Chapter 5, we propose a novel Shared Receive Queue based Scalable MPI design.

Our design uses low-watermark interrupts to achieve efficient flow control and utilizes the

memory available to the fullest extent, thus dramatically improving the system scalability.

In addition, we also proposed an analytical model to predict the memory requirement by the

MPI library on very large clusters (to the tune of tens-of-thousands of nodes).

As InfiniBand gains popularity and is included in increasingly larger clusters, having a

scalable MPI library is imperative. Through our evaluation of the NAS Parallel Benchmarks,

SuperLU, NAMD, and HPL in Chapter 6, we explore the impact of reduction of commu-

nication memory on the performance. Our evaluation shows that the latest SRQ design

18

of MVAPICH is able to use a constant amount of internal memory per process with opti-

mal performance, regardless of the number of processes, an order of magnitude lesser than

other Eager protocol designs of MVAPICH. In our experiments, only 5-10MB of communica-

tion memory was required by the SRQ design to attain the best recorded performance level

achievable with MVAPICH.

In Chapter 7, we demonstrate that by revisiting the design of end MPI applications,

we can gain significant performance improvement. The communication patterns of these

applications and benchmarks need to be studied and modified to take the most advantage

out of modern networks and their capabilities. The MPI design parameters can have a

significant impact on the performance characteristics of end applications. With the coupling

of the application modifications with optimized MPI library design, we can improve overall

performance significantly.

19

CHAPTER 2

IMPROVING COMPUTATION AND COMMUNICATION
OVERLAP

MPI provides both blocking and non-blocking semantics of point-to-point communication.

Of these, it is widely accepted that non-blocking semantics offer better performance to end-

applications by allowing overlap of computation and communication. Applications can use

MPI Isend, MPI Irecv to initiate the communication operations and return to computing.

When the application needs the messages, they can call MPI Wait. Most high-performance

MPI implementations are based on polling progress engines, i.e. the sender and receiver

processes must periodically call MPI functions to ensure communication progress. However,

due to certain MPI internal protocols (such as Rendezvous protocol), overlap of computation

and communication may be hampered. If progress calls are not triggered for a long time,

messages may be severely delayed.

In this Chapter, we take on the challenge of redesigning the Rendezvous Protocol in order

to improve the computation and communication overlap. We leverage the RDMA Read

semantics to reduce the number of intermediate messages required to transmit an MPI level

message. In addition, we utilize the selective interrupt mechanism to insert progress calls

inside the MPI library even though the MPI application may be busy in computation. Using

20

our design, the MPI library is able to offer almost complete computation and communication

overlap. Application wait times can be reduced by 30%.

The rest of the chapter is organized as follows. In Section 2.1 we provide necessary

background information for this work. In Section 2.2 we describe current approaches and

their limitations. In Section 2.3, we discuss the design alternatives and the final design

approach. In Section 2.4, we evaluate our design and provide experimental results. Finally,

in Section 2.5 we summarize the results and impact of this work.

2.1 Background

In this section, we provide the necessary background details for this work. First, we

describe the Rendezvous Protocol, then we describe the RDMA Write and RDMA Read

mechanisms of InfiniBand.

2.1.1 Overview of Rendezvous Protocol

The Rendezvous Protocol negotiates the buffer availability at the receiver side before

the message is actually transferred. This protocol is used for transferring large messages

when the sender is not sure whether the receiver actually has the buffer space to hold the

entire message. MVAPICH [34], along with MPICH-GM [33], MPICH-Quadrics [38], utilize

RDMA Write to totally eliminate intermediate message copies and efficiently transfer large

messages.

In this protocol, the sending process sends a START message to the receiver along with

the message envelope (usually, MPI message matching tags). Upon receipt of this message,

the the envelope is buffered. When the matching receive is posted by the receiving MPI

application, the receiver side sends a REPLY message with the location of the receiver user

buffer. Upon discovery of the REPLY message, the sender sends the actual data DATA message

21

to the receiver. This is followed by a FIN message from the sender indicating end of all data.

Thus, the message can be transferred to the receiver. As the data transfer doesn’t start until

matching receives are posted, only buffering of message envelopes are required.

2.1.2 Overview of InfiniBand RDMA-Write and RDMA-Read

InfiniBand offers two types of memory access semantics, RDMA-Write and RDMA-Read.

RDMA stands for Remote Direct Memory Access. Using RDMA, a network-interface can

access the memory of a remote node transparent to the CPU at the remote node. The

CPU is involved only in granting access privileges to the network-interface. Once the access

control is set up, the DMA engines at the network-interface directly access memory without

any further intervention. This enables the CPU to perform more useful computation work,

while leaving networking responsibilities to the NIC. This also aids in reducing the amount

of cache pollution. Since memory need no longer be touched by the CPU, it need not be

brought back into the various levels of caching hierarchy.

In the RDMA-Write mechanism, the sending process is aware of the remote memory

location and has a message to send which fits in the amount of memory available in the

remote memory window. The network-interface takes the message contents from memory and

places them directly in the memory of the remote process. In RDMA-Read, the originating

process can read the remote memory contents with aid from the network-interface at the

remote side.

2.2 Current Approaches and their Limitations

The RDMA Write based protocol is illustrated in Figure 2.1(a). The sending process

first sends a control message to the receiver (RNDZ START). The receiver replies to the sender

22

using another control message (RNDZ REPLY). This reply message contains the receiving ap-

plication’s buffer information along with the remote key to access that memory region. The

sending process then sends the large message directly to the receiver’s application buffer by

using RDMA Write (DATA). Finally, the sending process issues another control message (FIN)

which indicates to the receiver that the message has been placed in the application buffer.

MVAPICH uses a progress engine to discover incoming messages and to make progress

on outstanding sends. To achieve low latency, the progress engine senses incoming messages

by polling various memory locations. As can be seen in Figure 2.1(a), the RDMA Write

based Rendezvous Protocol generates multiple control messages which have to be discovered

by the progress engine. Since the progress engine is polling based, it requires the application

to call into the MVAPICH library.

However, the MPI applications might be busy doing some computational work or I/O.

In this case the applications cannot make any call into the MPI library. As a result, the

message transfer has to simply wait until the control messages are discovered. This scenario

is illustrated in Figure 2.1(b). The delayed discovery of important control messages leads

to serialization of the computation and communication operations. As a result, the overlap

potential of computation and communication is severely hampered as shown.

2.3 Design Alternatives and Challenges

In this section, we compare RDMA Read and Write as design alternatives and pick

the best one of them. We will compare the two based on parameters like: communication

progress, computation/communication overlap, number of I/O bus transactions, etc.

Typically, small messages are sent over Eager Protocol (which is copy-based) and larger

messages are set over Rendezvous Protocol. According to the MPI specification, only the

23

(a) Rendezvous Protocol (b) Rendezvous Protocol Limitations

Figure 2.1: MVAPICH Rendezvous Protocol and its Limitations

sender can choose the actual protocol efficiently. Particularly, the MPI Specification [30]

states that: “The length of the received message must be less than or equal to the length

of the receive buffer. An overflow error occurs if all incoming data does not fit, without

truncation, into the receive buffer. If a message that is shorter than the receive buffer

arrives, then only those locations corresponding to the (shorter) message are modified.”

According to the requirements imposed by MPI semantics, the receiver may post a much

larger buffer than what the sender chooses to send. Since, the choice of size of the message

actually sent (not posted size), lies with the sender, the sender can efficiently make a choice

of which protocol to use (Eager or Rendezvous).

Now, we consider the case in which the sender decides to use the Rendezvous Protocol

for the message transfer. The operation of a RDMA Write based protocol is shown in

Figure 2.1(a) and that based on a RDMA Read protocol is shown in Figure 2.2(a). Based

on program execution and timing, there can be three cases.

24

• Sender arrives first: If the sender arrives first at the send call, it can send the

RNDZ START message immediately. Inside the RNDZ START message, it can also embed

the virtual address and memory handle information about the buffer to be sent. It

is to be noted that upon the receipt of this RNDZ START message, all the information

about the application buffer is available to the receiving process. Clearly, the receiving

process does not need to send a RNDZ REPLY message any more. It can simply perform

a RDMA Read from the application buffer location of the sending process.

• Receiver arrives first: Even if the receiver arrives first at the receive call, it cannot

choose which protocol the message will be actually sent over. So, it must wait for the

sender’s choice of protocol. The receiver waits for the RNDZ START message from the

sender. However, once the receiver gets the RNDZ START message, it can perform the

RDMA Read directly from the sender buffer, without sending any more RNDZ REPLY

message.

• Sender and receiver arrive at the same time: In this case, the sender and

the receiver arrive concurrently. However, neither the sender or the receiver knows

whether the other process has arrived. Hence, in this case, the receiver must wait for

the protocol choice from sender (as stated before), and the sender must assume that

it has arrived first. Hence, again in this case, the optimal choice would be to have

the sender send a RNDZ START message to the receiver. As stated above, the receiving

process can simply perform a RDMA Read from the sender buffer directly.

As per the above three cases, RDMA Read is chosen to reduce the number of control

messages. Since the number of control messages is reduced, the total number of I/O bus

transactions are reduced too. In addition, since the receiver can progress independently of the

25

sender (once the RNDZ START message is sent), we can enhance the communication progress.

Further, even if the sender does not call any MPI progress, the data transfer can proceed

over RDMA Read. This leads to much better overlap of computation with communication,

if RDMA Read is used.

Thus, we conclude from the above that: the optimal choice of data transfer semantics is

RDMA Read in all possible combinations of sender or receiver arriving at the communication

point.

(a) RDMA Read Proto-
col Operation

(b) RDMA Read Computation Overlap

Figure 2.2: RDMA Read Based Rendezvous Protocol

2.3.1 RDMA Read with Interrupt Based Rendezvous Protocol

In this section we describe the design of Rendezvous Protocol using RDMA Read with

interrupt. As we described earlier in this section, RDMA Read is the best data transfer

mechanism when the sender arrives first. However, if the receiver arrives first, it still needs

to wait for the RNDZ START message from the sender. In the meantime, the receiver might

be busy computing. The discovery of this RNDZ START message is critical to achieving good

26

overlap between computation and communication. Since this control message is critical, we

can generate an interrupt on its arrival. This message should be handled by an asynchronous

completion handler. The basic protocol is illustrated in Figure 2.3(a).

Selective Interrupt: Interrupts are usually associated with various overheads. Causing

too many interrupts can harm the overall application performance. We devise a method by

which we can cause a selective interrupt only on the arrival of RNDZ START message and

completion of RDMA Read DATA message. In order to have selective interrupts, two things

must be done. First, the sender has to set a solicit bit in the descriptor (solicit event) of

the message which is intended to cause the interrupt. Secondly, the receiver must request

for interrupts from the completion queue by setting VAPI SOLIC COMP prior to the arrival of

the message.

Interrupt Suppression: Even though we have a selective interrupt scheme, back-to-

back RNDZ START messages should not generate multiple interrupts. This will harm the

overall application performance. For designing this scheme, we disable any interrupts on the

completion queue automatically after the asynchronous event handler is invoked. The event

handler then keeps on polling the completion queue until there are no more completion de-

scriptors. Thus, in this design even though back-to-back RNDZ START messages might arrive,

only one interrupt is generated. Finally, when there are no more completion descriptors left,

the asynchronous event handler resets the request for interrupts before exiting.

Dynamic Interrupt Requests: The approximate cost of an interrupt is 18 µs on our

experimental platform. However, the cost of the receiver requesting an interrupt and clearing

it is only 7 µs. Our design of RDMA Read with Interrupt, has such a dynamic scheme, in

which the receiving process requests for interrupts only when pending receives are posted.

If no receives are pending, then the request for interrupts is turned off, and the MPI goes

27

into polling based progress. Whenever the interrupt is set, an internal flag indicates this

status. On posting of subsequent receives, this interrupt does not need to be re-requested.

Similarly, when the interrupt is cleared, an internal flag indicates that status too. This

dynamic scheme can reduce the number of interrupts in the case where the sender arrives

first, but the receive application hasn’t posted the receive as yet.

Hybrid Communication Progress: In this new design, our asynchronous event han-

dler is invoked by an interrupt. It executes as a separate thread to the MPI program.

Many MPI implementations are based on a polling progress engine, including MVAPICH.

This means that whenever a MPI call is issued by the application, the MPI implementation

checks all communication channels for incoming messages and makes progress on pending

sends. Hence, we can potentially have two threads of the progress engine (one polling and

the other handling the event) active at the same time. Thus, we need to provide a thread

safe mechanism to implement this hybrid progress engine. At the same time as providing

thread safety, it should also provide high performance. If there are no interrupts caused, the

overhead imposed by this thread safety mechanism should be minimal. Figure 2.3(b) shows

the computation/communication at both the sender and receiver side. In this figure, the

RNDZ START message causes an interrupt at the receiver. The RDMA Read DATA message is

issued immediately. Hence, the computation and communication can be overlapped at both

sender and receiver.

2.4 Performance Evaluation

In this section we will present the results we obtained with our proposed RDMA Read

based Rendezvous protocol. We compare three schemes, the first one being the RDMA Write

(MVAPICH version 0.9.5) [34], the second one being the RDMA Read and the third one

28

(a) RDMA Read with Interrupt
Protocol Operation

(b) RDMA Read with Interrupt Computation Overlap

Figure 2.3: RDMA Read with Interrupt based Rendezvous Protocol

being RDMA Read with Interrupt based Rendezvous Protocol. Our evaluation platforms

used were of two types:

• Cluster A: 8 SuperMicro SUPER X5DL8-GG nodes with dual Intel Xeon 3.0 GHz

processors. Each node has 512KB L2 cache and 2GB of main memory. The nodes are

connected to the InfiniBand fabric with 64-bit, 133 MHz PCI-X interface.

• Cluster B: 32 nodes, dual Intel Xeon 2.66 GHz processors. Each node has 512KB L2

cache and 2GB of main memory. The nodes are connected to InfiniBand fabric with

64-bit, 133 MHz PCI-X interface.

2.4.1 Computation and Communication Overlap Performance

In this section we evaluate the ability of our designed schemes to effectively overlap

computation and communication. We designed two micro-benchmarks and carried out the

evaluation on Cluster A.

29

Sender Overlap: In this experiment, we evaluate how well the sending process is able

to overlap computation with communication. The sender initiates communication using

MPI Isend, then computes for W µs. At the same time, the receiver is just blocking on a

MPI Recv. After the sender has finished computing, it checks for completion of the pending

sends. The entire operation is timed at the sender. If the entire operation lasted for T µs,

then the computation to communication overlap ratio is W/T .

Figure 2.4 shows this ratio versus the computation time. We can see that for the RDMA

Write scheme, the overlap ratio is quite low. This is because the sender process is unable

to receive the RNDZ REPLY message due to the computation. On the other hand, the RDMA

Read and RDMA Read with Interrupt schemes show nearly complete overlap. It is to be

noted that for low values of computation time (W), the value of the ratio is low, since in

this case, the time for communication is dominant.

Receiver Overlap: In this experiment, we evaluate how well the receiving process is able

to overlap computation with communication. This experiment is similar in nature with the

sender overlap experiment. In this experiment, the receiver posts a receive using MPI Irecv

and computes for W µs, while the sender blocks on a MPI Send. After the computation, the

receiver waits for the communication to complete. The entire time is marked as T . The

computation to communication ratio is W/T .

Figure 2.5 shows this ratio versus the computation time. We can see that for the RDMA

Write and the RDMA Read schemes, the overlap ratio is quite poor. This is because the

receiving process is unable to issue the RNDZ REPLY or DATA message due to the computation.

On the other hand, the RDMA Read with Interrupt scheme show nearly complete overlap,

since the arrival of the RNDZ START message generates an interrupt and the receiving process

30

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 50 100 150 200 250 300 350 400

O
ve

rl
a

p
 R

a
tio

Computation Time (Microseconds)

RDMA Read with Interrupt
RDMA Read
RDMA Write

(a) Sender Overlap Performance
(64KB)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 100 200 300 400 500 600 700 800

O
ve

rl
a

p
 R

a
tio

Computation Time (Microseconds)

RDMA Read with Interrupt
RDMA Read
RDMA Write

(b) Sender Overlap Performance
(256KB)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 500 1000 1500 2000 2500

O
ve

rl
a

p
 R

a
tio

Computation Time (Microseconds)

RDMA Read with Interrupt
RDMA Read
RDMA Write

(c) Sender Overlap Performance
(1MB)

Figure 2.4: Sender Communication and Computation Overlap Performance

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 50 100 150 200 250 300 350 400 450

O
ve

rl
a

p
 R

a
tio

Computation Time (Microseconds)

RDMA Read with Interrupt
RDMA Read
RDMA Write

(a) Receiver Overlap Performance
(64KB)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 100 200 300 400 500 600 700

O
ve

rl
a

p
 R

a
tio

Computation Time (Microseconds)

RDMA Read with Interrupt
RDMA Read
RDMA Write

(b) Receiver Overlap Performance
(256KB)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 500 1000 1500 2000 2500

O
ve

rl
a

p
 R

a
tio

Computation Time (Microseconds)

RDMA Read with Interrupt
RDMA Read
RDMA Write

(c) Receiver Overlap Performance
(1MB)

Figure 2.5: Receiver Communication and Computation Overlap Performance

31

Figure 2.6: Computation and Communication Overlap (Sender) with Time Stamps

Figure 2.7: Computation and Communication Overlap (Receiver) with Time Stamps

32

immediately issues the DATA message. As noted before, for low values of computation time

(W), the communication time is dominant, resulting in a low overlap ratio.

The experimental platform is dual SMPs. In the case of RDMA Read with Interrupt

scheme, it may happen that the interrupt handler thread is scheduled on the “idle” processor,

thus inflating the benefits of RDMA Read with Interrupt. In order to eliminate such an

effect, we perform this experiment on a uni-processor kernel on the same machines. Our

experiments reveal that with RDMA Read with Interrupt, we get 99.5% overlap, whereas

with RDMA Read and RDMA Write we observe only 62.2% and 59% overlap, respectively,

for a 1MB message size with 1800 µs computation time. These results are almost identical

with the dual SMP results. This is because the interrupt handler thread consumes very little

CPU time and is very short lived. It needs to be “awake” only for a few micro seconds to

perform tag matching and post necessary network transactions only if it is required.

Communication Progress: In this execution, we take consecutive time stamps from

the micro-benchmark execution. These time stamps are recorded just before the application

enters the computation phase, in the MPI Wait and from inside the MPI library when the

actual communication takes place.

Figure 2.6 shows the progress snapshot during the sender overlap test. We observe from

this figure, that in the RDMA Write based Rendezvous Protocol, the computation and

communication are completely serialized. It offers no overlap at all. Whereas, in the RDMA

Read based schemes, the communication happens during the application is computing. The

RDMA Read based schemes can progress 50% faster when transferring messages of 1MB

and computing for 1500 µs.

Similarly, Figure 2.7 shows the progress during the receiver overlap test. We observe from

this figure, that in the RDMA Write and the RDMA Read based protocol, the computation

33

and communication are completely serialized. They hardly offer any overlap. Whereas, in

the RDMA Read with Interrupt scheme, the communication happens during the application

is computing. The RDMA Read with Interrupt schemes can progress around 50% faster

when transferring messages of 1MB and computing for 1500 µs.

2.4.2 Application level Evaluation

In this section, we evaluate the impact of our RDMA Read and RDMA Read with

Interrupt schemes on application wait times. For our evaluation, we choose two well known

applications - HPL and NAS-SP (Scalar Pentadiagonal Benchmark). High Performance

Linpack (HPL) is a well known benchmark for distributed memory computers [2]. It is used

to rank the top 500 computers [45] twice every year. NAS-SP [6] is a CFD simulation which

solves linear equations for the Navier-Stokes equation. We used the Class C benchmark for

our evaluation.

To find out the communication time for these applications, we use a light-weight MPI

profiling library [20], mpiP. This profiling tool reports the top aggregate MPI calls and the

time spent in each one of them. We collect the aggregate time spent in the MPI Wait()

function call. This time is spent by the application just busy waiting for the pending sends

and receives to be completed. Since this time is just wasted by the application waiting for the

network to complete the operations, this represents time which can possibly be overlapped

with computation. Figure 2.8(a) and 2.8(b) show the MPI Wait times for HPL and NAS-SP

(Class C) with increasing number of processes, respectively.

We observe that the wait time of HPL is reduced by around 30% for 32 processes by the

RDMA Read and RDMA Read with Interrupt designs. Similarly, for the NAS-SP, we can

see around 28% improvement for 36 processes. This is mainly because the RDMA Write

34

based Rendezvous implementation waits till the MPI Wait() to issue the DATA message,

and hence cannot achieve good overlap. In addition, we observe from the figure that the

benefits provided by the new design are scaling with the number of processes. Hence, our

new design is capable of taking better advantage of network when there is possibility of

overlap. In these results we see that the RDMA Read and RDMA Read with Interrupt

perform equally well. This might be due to the fact that these applications do not require

computation/communication overlap on the receiver side.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22

 16 24 32

T
im

e
 (

s
e

c
o

n
d

s
)

Number of Processes

RDMA Write
RDMA Read

RDMA Read with Interrupt

(a) MPI Wait Time for HPL

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 16 25 36

T
im

e
 (

s
e
c
o
n
d
s
)

Number of Processes

RDMA Write
RDMA Read

RDMA Read with Interrupt

(b) MPI Wait Time for NAS SP

Figure 2.8: Application Level Evaluation for Rendezvous Protocol Designs

2.5 Summary

In this chapter, we have presented new designs which exploit the RDMA Read and the

capability of generating selective interrupts to implement a high-performance Rendezvous

Protocol. We have evaluated in detail the performance improvement offered by the new

design in several different areas of high performance computing. We have observed that the

35

new designs can achieve nearly complete computation and communication overlap. Addi-

tionally, our schemes yield a 50% better communication progress rate when computation is

overlapped with communication. Further, our application evaluation with Linpack (HPL)

and NAS-SP (Class C) reveals that MPI Wait time is reduced by around 30% and 28% respec-

tively for a 36 node InfiniBand cluster. We observe that the gains obtained in the MPI Wait

time increase as the system size increases. This indicates that our designs have a strong

positive impact on scalability of parallel applications.

36

CHAPTER 3

IMPROVING PERFORMANCE OF ALL-TO-ALL
COMMUNICATIONS

MPI defines collectives which are blocking in nature, including MPI Alltoall. Since

applications will be waiting on the collective communication call to finish before proceeding

with their computation, the latency of the collective operation is a very important metric

for collective performance. In addition, the performance should scale well with the number

of processes. In this Chapter, we describe work which aims to reduce overheads associated

with collective operations and improve their performance scalability.

We approach the problem in two different methods. First, we remove extra software

overheads incurred when MPI collective operations are based on top of MPI point-to-point

operations (e.g. MPI Send, MPI Recv). Rather, we base our design directly on network-level

primitives. Secondly, we exploit novel features offered by the InfiniBand network-interface,

such as native support for non-contiguous communication. Using both these methods, we

can reduce the number of memory copy operations required by each collective operation.

The rest of the Chapter is organized as follows. In Section 3.1, we provide necessary

background information about this work. In Section 3.2, we describe current approaches

and their limitations. This is followed by Section 3.3, where we give details of our proposed

37

solution. In Section 3.4, we evaluate our proposed design and finally in Section 3.5, we

summarize our results from this Chapter.

3.1 Background

In this section we provide an overall background for our work in optimizing the perfor-

mance and scalability of the MPI Alltoall operation.

3.1.1 Overview of MPI All-to-All Operation and Existing Algo-

rithms

In this section, we provide a brief overview of the MPI Alltoall collective function. We

also describe the existing algorithms used in implementing MPI Alltoall and their cost

models.

MPI Alltoall is a commonly used collective for achieving a complete exchange of data

among all participating processes. MPI Alltoall is a blocking operation. The call does not

return until the communication buffer can be reused. MPI Alltoall is used when all the

processes have a fixed length of message to send to each of the other processes. The jth

block of data sent from process i is received by process j and placed in the ith block of the

receive buffer.

There are several different algorithms to efficiently implement MPI Alltoall. We describe

two of the most popular ones: Hypercube based combining algorithm and the Direct Virtual

Ring algorithm.

Hypercube Combining Algorithm

A hypercube is a multidimensional mesh of nodes with exactly two nodes in each di-

mension. A d-dimensional hypercube consists of p = 2d nodes. The All-to-All personalized

38

communication algorithm for a p-node hypercube with store-forward routing is an extension

of the two-dimensional mesh algorithm to log(p) steps. Pairs of nodes exchange data in a

different dimension in each step. In a p node hypercube, there are a set of p/2 links in the

same dimension connecting two sub cubes of p/2 nodes each. At any stage in All-to-All

personalized communication, every node holds p packets of m bytes each. While commu-

nicating in a particular dimension, every node sends p/2 of these packets (consolidated as

one message, or as multiple messages). Thus, mp/2 bytes of data are exchanged along the

bidirectional channels in each of the log p iterations. The resulting total communication

time is:

Thypercube = (ts + 1/2twmp)logp (3.1)

Where,

ts = Message startup time, tw = Time to transfer one byte, m = Message size in bytes, and

p = Number of processes.

Direct Virtual Ring

The direct algorithm is a straightforward way to exchange messages among all the pro-

cesses. It assumes that all the processes have direct links connecting them. The processes

are arranged in a virtual ring. Each process then sends its message to its neighbor. To

avoid all the processes from sending to a single destination, the destinations are scattered

among all of them, by using a modulus operation. Process rank sends its message for process

(rank + i)%p, ∀i, (0 ≤ i ≤ p). So, at every step, each process sends m bytes of data and it

does it for (p − 1) steps. Thus, the total time for an All-to-All exchange is:

39

Tdirect−ring = (p − 1)ts + twm(p − 1) (3.2)

3.2 Current Approaches and Limitations

Collective communications are a very important part of the MPI specification. These

operations allow multiple MPI processes to participate in group communication. The algo-

rithms used for collective communication in MVAPICH are based on the MPICH collective

algorithms [44]. The collective operations are built on top of MPI point-to-point operations.

ie. they follow the layered design structure shown in Figure 3.1(a). This layered design allows

for the collective algorithms to execute on top of point-to-point operations (which are al-

ready based on RDMA). However, this layered design also means that the collective messages

also incur the same overheads associated with point-to-point messages. Figure 3.1(b) illus-

trates this problem when a buffer is copied multiple times internally to perform an efficient

algorithm which may require intermediate aggregation (such as hypercube or tree-based).

In addition, the collective messages (if they are large enough) may be transferred over the

Rendezvous protocol. In such circumstances, each collective message needs to undergo the

Rendezvous handshake which may add unnecessary delays.

3.3 Proposed design for RDMA based All-to-All

In this section, we describe our work in optimizing the latency and scalability of the MPI

All-to-all personalized communication operation. Broadly, we will take the approach shown

in Figure 3.2. We aim to by-pass the layered structure of the current implementation in

favor of a more direct design which leverages the InfiniBand features.

40

Collective

(MPI_Alltoall, MPI_Allgather, MPI_Bcast

MPI_Reduce, MPI_Barrier ...)

Point−to−Point

(MPI_Send, MPI_Recv,

MPI_Isend, MPI_Irecv ...)

MPI
Application

(RDMA, Send/Receive)

InfiniBand Verbs

(a) Layered Design of Collective
Operations

sbuf rbuf

Network

ADI

MPI

User

MPI

ADI

Sender Receiver

sbuf rbuf

User

(b) Copy Overhead due to Layers

Figure 3.1: Layered Design of Collective Operations and Associated Overheads

MPI

Our implementation

Current implementation
Collectives

Pt−to−Pt

ADI

Channel

Interface
Meiko Shmem

InfiniBand Verbs

RDMA−WGRDMA

Figure 3.2: Proposed implementation path for Collectives

41

3.3.1 Design issues for RDMA Collectives

Before we can directly utilize the benefits provided by RDMA for implementing MPI Alltoall,

a few difficulties must be addressed:

Memory Registration and Address Exchange: There can be two design choices,

either we copy over the message at the beginning of the All-to-All communication to specific

pre-registered buffers, or we can perform an address exchange after registering both sender

and receiver buffers. The registration operation is costly and is not feasible for smaller

message sizes. Moreover, on current generation InfiniBand hardware, the address exchange

phase costs around 10µs. On the other hand the copy-based approach avoids on-the-fly

registration and address exchange costs. However, the cost for copying large sized buffers

can be prohibitively high.

Message Arrival Detection: The RDMA Write operation in InfiniBand is totally

transparent to the receiver process. The only way the receiver process can make out whether

data has really arrived in the buffers is by polling the contents of a specific pre-defined

memory location. For achieving this, there needs to be a persistent association of buffers

at the sender and receiver end. Achieving a persistent association is relatively simple when

pre-registered buffers are used. All the processes can implicitly decide on start and end buffer

locations. Prior to the All-to-All communication the processes can reset the last bytes of

the persistent buffers. Marking the completion of a RDMA write for direct application

buffers, which are registered on-the-fly, is impossible using the earlier technique. Here,

there is no unique value of the memory location that the MPI implementation can poll on.

The application may choose to send any data value of its choice. Usually, in such a case,

completion of a RDMA write operation can only be determined by using an explicit ACK.

Hence, specific buffers need to be provided for collecting ACKs.

42

3.3.2 Design for Small Messages: HRWG

For small messages, the message transfer startup time dominates the total cost of the

operation. The message transfer startup time for the Hypercube algorithm is tslogp and for

that of the Direct Virtual Ring algorithm is ts(p− 1). InfiniBand has very high bandwidth

availability (850 MB/s), so the cost of transferring the data twm for a small message is

comparably less. So, our natural choice for smaller messages is the Hypercube algorithm.

We implement the Hypercube algorithm using the RDMA Write Gather feature provided

by InfiniBand. Hence, we call this scheme as HRWG.

Now we look closely at the startup time cost ts. There are various costs associated with

message startup based on the implementation mechanism. If we decide to have a zero copy

implementation, then the address exchange phase will dominate the message startup time.

Also, we would have to pay on-the-fly registration cost. This can be comparably costlier

than copying the data over to a pre-registered buffer. Hence, we choose a copy-based

approach, implementing the Hypercube algorithm for small message sizes. However, our

copy-based mechanism has only 2 data copies bypassing the MPI-level buffer in Figure 3.1(b)

instead of the 4 copies in the point-to-point based implementation.

Buffer Management: We implement a buffer management scheme for the copy-based

approach. In order to detect the arrival of an incoming message, we use memory polling. In

our implementation, the collective communication buffer is created during the communicator

initialization time. All processes in the communicator need to exchange addresses and

memory handles for remote buffers. The collective communication buffer can then be divided

into several parts. This can be done implicitly by all processes. There are two divisions of

the buffer for supporting back-to-back collective calls. Also, we set up persistent associations

with our logp neighbors of the hypercube. Figure 3.3 shows how these buffers are arranged.

43

my_rank XOR 2
d − 1

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

size = mp/2
Tail FlagHead Flag

my_rank XOR 2
d − 2

my_rank XOR 2
d − 3

Buffer 1 Buffer 2

Figure 3.3: Buffer arrangement for Hypercube Algorithm

The collective buffer is zeroed at the beginning. At the start of one All-to-All operation,

the tail flags of the other buffer (for all of the logp peers) are cleared. However, we need to

make sure that the flag cannot be set before the data is delivered. And to do this, we need

to use some knowledge about the implementation of the hardware. In our current platform,

data is delivered in order (the last byte is written last). Thus, the arrival of the tail flag

does ensure that the entire message has arrived.

If a process is involved in an All-to-All operation and is still waiting for its completion,

another process might have entered into a successive, back-to-back All-to-All. We must

guarantee that the buffer space provided for an All-to-All operation will not be over-written

until it is safe to do so. We observe that providing buffering for two back-to-back All-to-Alls

is sufficient to make such a guarantee.

For implementing the Hypercube algorithm, we have to keep track of the buffers in

transit and forward them correctly to the next dimension across which communication will

take place. We can keep track of the buffers to send, by simply observing a pattern of

communication within the hypercube. At every step of communication in the hypercube, a

44

process sends p/2 messages. The number of contiguous buffers from the received buffer-pool

per peer is, 2(d−(d−i)), ∀i in 0 to (d−1). The buffer to be forwarded can be easily found out

by maintaining a set of pointers at the middle of the receive buffers. The number of middle

pointers is equal to the number of contiguous buffers to be forwarded from the persistent

buffer associated with that dimension. After each iteration, the middle pointers can be

moved either backwards or forwards depending on whether the rank of the destination

process is greater than the rank of the sending process and vice-versa. The amount of data

to be sent per middle pointer is recursively halved. Figure 3.4 gives a detailed view of how

the middle pointers are managed.

���
���
���
���

���
���
���
���

Buffers not to be sent out

Middle pointer

Transition of Middle pointer

Buffer sent out

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

Collective Buffer of process 0 of 16 processes.

Figure 3.4: Managing Buffer pointers

Transfer Mechanisms: For transferring the buffers over the network, two different

methods can be adopted. We can either transmit the buffer as one single RDMA or we can

send the buffers individually using multiple RDMA writes. By using RDMA with gather

45

list, we can reduce the message startup time. Hence, we choose the RDMA Write with

Gather for our implementation

3.3.3 Design for Large messages: DE

For large messages, the network latency is the major factor in determining the total time

taken by the All-to-All operation. Hence, we choose the Direct Virtual Ring based algorithm

for implementing MPI Alltoall. We implement the Direct Virtual Ring based algorithm

in an eager manner. We call our scheme Direct Eager (DE).

We must consider message startup costs if we want to achieve a zero-copy implementa-

tion. In order to achieve zero copy, we have to :

• Register the user buffer

• Exchange addresses of the user buffer

• Mark the completion with an explicit ACK

In order to avoid registering parts of the buffer multiple times, as done by the MPI

point-to-point based implementation, we register the entire send buffer as one single buffer.

This avoids generating unnecessary entries in the registration cache and needlessly filling it

up. For long running applications which do a lot of message-passing, this is critical, so as to

minimize the cache miss rate. Now, we take a look at the overall latency for the All-to-All

operation for the Direct Virtual ring based algorithm.

Tdirect−ring = (p − 1)tc−reg + (p − 1)mtw−reg + (p − 1)trndz + twm(p − 1) (3.3)

Where,

46

tc−reg = Constant registration cost
tw−reg = Time to register one page
trndz = Rendezvous exchange cost

In addition to multiple memory registrations, the rendezvous protocol presents a bottle-

neck at each of the (p − 1) steps of the Direct algorithm. Each message transfer has to

be preceded by interaction of both sender and receiver. This takes away the advantage of

RDMA, in that it is no longer truly one sided. The entire MPI Alltoall is then bottleneck-

ed. Instead, we adopted a new Direct Eager mechanism for implementing the All-to-All

operation. In this new scheme, every process sends its receive buffer address to its next

nearest neighbor, then the next one and so on in a ring-like manner. That is, process rank

sends its address to (rank + i)%p. ∀i(0 ≤ i ≤ p). This phase is totally network parallelized

as the addresses and memory handles are RDMA-ed to pre-registered buffers. Then, process

rank waits for address from process (rank + p − 1 − i)%p. ∀i(0 ≤ i ≤ p). We note that

the time spent waiting for the first address is almost negligible since the process i sends

address to j first and j sends data to i first. Hence, we name our scheme as Direct Eager.

Figure 3.5 shows one step the algorithm. This is repeated for ∀i(0 ≤ i ≤ p) steps.

Address Data

i

j

Figure 3.5: Direct Eager Mechanism

47

With this mechanism, the cost for the entire All-to-All operation is,

Tdirect−ring = tc−reg + (p − 1)mtw−reg + twm(p − 1) (3.4)

3.4 Performance Evaluation

In this section, we evaluate performance of our All-to-All communication. We conducted

our experiments on a 16 node cluster. The cluster consists of 8 each of two different types

of machines, I and II.

• I : SuperMicro SUPER P4DL6 node. Dual Intel Xeon 2.4 GHz processors, 512 KB

L2 cache, 512 MB memory, PCI-X 64-bit 133 MHz bus.

• II : SuperMicro SUPER X5DL8-GG node. Dual Intel Xeon 3.0 GHz processors, 512

KB L2 cache, 1 GB memory, PCI-X 64-bit 133 MHz bus.

All the machines had Mellanox InfiniHost MT23108 DualPort 4x HCAs. The nodes

are connected using the Mellanox InfiniScale 24 port switch MTS 2400. The Linux kernel

version used was 2.4.22smp. The InfiniHost SDK version is 3.0.1 and HCA firmware version

is 3.0.1. It is to be noted that performance numbers for 4 and 8 nodes are on machines II.

The All-to-All latency was obtained by executing MPI Alltoall 1000 times with the

same buffer being used for communication. The average of the latencies from all the

nodes was calculated. The calls to MPI Alltoall were synchronized in each iteration using

MPI Barrier.

3.4.1 Evaluation for Small Messages

We implemented the Hypercube algorithm (HRWG) for performing the All-to-All com-

munication for small messages. Figure 3.6(a) compares the performance of the current

48

implementation and the proposed scheme. We observe that the proposed scheme (HRWG)

has a 3.07 factor of improvement over the current implementation. The current implemen-

tation is limited to doing a point-to-point based communication due to the rise in copy-cost

as a result of increase in the number of processes. Figure 3.6(b) shows the scalability of

our implementation. We note that with increasing system size, it is indeed better to have a

combining algorithm than a naive point-to-point based implementation.

 40

 60

 80

 100

 120

 140

 160

 180

 200

 8 16 32 64 128 256 512 1k

L
a

te
n

c
y
 (

u
s
)

Message Size (Bytes)

Current
HRWG

(a) Small Messages on 16 Nodes

 20

 40

 60

 80

 100

 120

 140

 4 8 16

L
a

te
n

c
y
 (

u
s
)

Number of nodes

Current
HRWG

(b) Small Messages (32 Bytes) Scalability

Figure 3.6: Small Message Performance Benefits for All-to-all Personalized Communication

3.4.2 Evaluation for Larger Messages

For medium and large messages we implement the Direct Virtual Ring based algorithm

with the Direct Eager mechanism. For larger messages the current implementation falls

back on a Pair-by-Pair Exchange algorithm implemented on MPI Sendrecv. We observe

that this algorithm is designed mainly with older generation networks where sending large

messages indiscriminately in the fabric would lead to congestion. The current generation

49

InfiniBand switches are entirely non-blocking and provide cross-bar connectivity. Thus, it is

no longer essential for us to fall back on Pair-by-Pair Exchange algorithm. The Direct Eager

mechanism performs better than the current implementation. Figures 3.7(a) and 3.7(b)

show the performance of our implementation compared to the current one. We note

that DE performs better for medium sized messages. This is mainly because the total

cost for rendezvous is comparable to that of the message transfer latency. Figures 3.7(c)

and 3.7(d) show the scalability of our designs. We note that the difference between the

current implementation and the proposed designs is in-fact growing as the number of

processes increases.

3.4.3 Performance Extrapolation for Large Messages

In this section, we try to extrapolate the performance of our Direct Eager mechanism

to find out how much performance improvement we can expect over larger scale clusters.

We note from Equations (3) and (4), the Direct Eager mechanism avoids adding a cost

of rendezvous that is linear according to the number of processes. We expect that this will

show performance improvement when the All-to-All communication happens over a large

cluster. In order to evaluate the benefits clearly, we assume 100% buffer re-use. That

is, we try to eliminate the effects of the MVAPICH cache from the cost model. Including

the cache will not lead to degradation of our implementation, since we use lesser (actually

only one) cache entry per All-to-All communication as compared to (p − 1) for current

implementation. Using our extrapolation, we determine that a performance benefit of 77%

can be obtained for an All-to-All communication of 4k message size among 1k nodes. The

Figure 3.8 shows this extrapolation graph obtained from equations (3) and (4).

50

 200

 400

 600

 800

 1000

 1200

 1400

 1600

2k 4k 8k 16k

L
a

te
n

c
y
 (

u
s
)

Message Size (Bytes)

Current
DE

(a) Medium Messages on 16 Nodes

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

16k 32k 64k 128k

L
a

te
n

c
y
 (

u
s
)

Message Size (Bytes)

Current
DE

(b) Large Messages on 16 Nodes

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 4 8 16

L
a

te
n

c
y
 (

u
s
)

Nodes

Current
DE

(c) Large Messages (4k) Scalability

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 4 8 16

L
a

te
n

c
y
 (

u
s
)

Nodes

Current
DE

(d) Large Messages (128k) Scalability

Figure 3.7: Medium and Large Message Performance Benefits for All-to-all Personalized
Communication

 0

 5000

 10000

 15000

 20000

 25000

 4 8 16 32 64 128 256 512 1k

L
a

te
n

c
y
 (

u
s
)

Nodes

Current
DE

Figure 3.8: Performance for 4k message among 1k processes

51

3.5 Summary

In this Chapter, we presented new designs to take advantage of the advanced fea-

tures offered by InfiniBand in order to achieve scalable and efficient implementation of the

MPI Alltoall collective. We proposed that the implementation of collectives be done di-

rectly on the InfiniBand Verbs Interface rather than using MPI level point-to-point functions.

We evaluated in detail why MPI send receive calls are a hindrance to achieving good per-

formance from collective operations. We detailed our design challenges and proposed two

different schemes for small and large messages, HRWG and DE respectively. Our perfor-

mance evaluation on a 16 node cluster shows that we can get an improvement of upto a

factor of 3.07 for 32 byte messages. We studied the analytical models of our implemen-

tation, and our investigation shows that for a 1k node cluster, we can get a performance

improvement of upto 64% for 4k messages.

52

CHAPTER 4

IMPROVING PERFORMANCE OF ALL-TO-ALL
BROADCAST

The All-to-all broadcast (MPI Allgather) is an important collective operation used in

many applications such as matrix multiplication, lower and upper triangle factorization, solv-

ing differential equations, and basic linear algebra operations. InfiniBand provides powerful

features such as Remote DMA (RDMA) which enables a process to directly access memory

on a remote node. To exploit the benefits of this feature, we design collective operations

directly on top of RDMA. In this Chapter we describe our design of the All-to-all Broadcast

operation over RDMA which allows us to eliminate messaging overheads like extra message

copies, protocol handshake and extra buffer registrations. Our designs utilize the basic choice

of algorithms [44] and extend that for a high performance design over InfiniBand.

The proposed designs improve the latency of MPI Allgather on 32 processes by 30%

for 32 KB message size. Additionally, our RDMA design can improve the performance of

MPI Allgather by a factor of 4.75 on 32 processes for 32 KB message size, under no buffer

reuse conditions. Further, our design can improve the performance of a parallel matrix

multiplication algorithm by 37% on eight processes, while multiplying a 256x256 matrix.

The rest of the Chapter is organized as follows. In Section 4.1, we provide necessary

background details for this work. In Section 4.2, we discuss the motivation for this work. In

53

Section 4.3, we present our design which aim to meet the current challenges. In Section 4.4,

we evaluate our design and present associated results. Finally, in Section 4.5, we summarize

the results from this Chapter.

4.1 Background

In this section we present the necessary background details required for our work in

optimizing the scalability and performance of MPI Allgather operation.

4.1.1 Overview of All-to-All Broadcast and Existing Algorithms

MPI Allgather is an All-to-all broadcast collective operation defined by the MPI stan-

dard [31]. It is used to gather contiguous data from every process in a communicator and dis-

tribute the data from the jth process to the jth receive buffer of each process. MPI Allgather

is a blocking operation (i.e. control does not return to the application until the receive buffers

are ready with data from all processes).

Several algorithms can be used to implement MPI Allgather. Depending on system

parameters and message size, some algorithms may outperform the others. Currently,

MPICH [15] 1.2.6 uses the Recursive Doubling algorithm for power-of-two process num-

bers and up to medium message sizes. For non-power of two processes, it uses the Bruck’s

algorithm [8] for small messages. Finally, the Ring algorithm is used for large messages [44].

In this section, we provide a brief overview of the Recursive Doubling and Ring algorithms.

We will use these algorithms in our RDMA based design.

Recursive Doubling: In this algorithm, pairs of processes exchange their buffer contents.

But in every iteration, the contents collected during all previous iterations are also included

in the exchange. Thus, the collected information recursively doubles. Naturally, the number

of steps needed for this algorithm to complete is log(p), where p is the number of processes.

54

The communication pattern is very dense, and involves one half of the processes exchanging

messages with the other half. On a cluster which does not have constant bisection bandwidth,

this pattern will cause contention. The total communication time of this algorithm is:

Trd = ts ∗ log(p) + (p − 1) ∗ m ∗ tw (4.1)

Where, ts = Message transmission startup time, tw = Time to transfer one byte,

m = Message size in bytes and p = Number of processes.

Ring Algorithm: In this algorithm, the processes exchange messages in a ring-like man-

ner. At each step, a process passes on a message to its neighbor in the ring. The number of

steps needed to complete the operation is (p−1) where p is the number of processes. At each

step, the size of the message sent to the neighbor is same as the MPI Allgather message

size, m. The total communication time of this algorithm is:

Tring = (p − 1) ∗ (ts + m ∗ tw) (4.2)

Figure 4.1: Recursive Doubling Algorithm for MPI Allgather

55

Figure 4.2: Ring Algorithm for MPI Allgather

4.2 Can RDMA benefit Collective Operations?

Using RDMA, a process can directly access the memory locations of some other process,

with no active participation of the remote process. While it is intuitive that this approach

can speed up point-to-point communication, it is not clear how collective communications

can benefit from it. In this section, we present the answer to this question and present the

motivation of using RDMA for collective operations.

4.2.1 Bypass intermediate software layers

Most MPI implementations [15] implement MPI collective operations on top of MPI

point-to-point operations. The MPI point-to-point implementation in turn is based on an-

other layer called the ADI (Abstract Device Interface). This layer provides abstraction

and can be ported to several different interconnects. The communication calls pass through

several software layers before the actual communication takes place adding unnecessary over-

head. On the other hand, if collectives are directly implemented on top of the InfiniBand

RDMA interface, all these intermediate software layers can be bypassed.

56

4.2.2 Reduce number of copies

High-performance MPI implementations, MVAPICH [34], MPICH-GM [33] and MPICH-

QsNet [38] often implement an eager protocol for transferring short and medium-sized mes-

sages. In this eager protocol, the message to be sent is copied into internal MPI buffers and

is directly sent to an internal MPI buffer of the receiver. This causes two copies for each

message transfer. For a collective operation, there are either 2∗ log(p) or 2∗(p−1) sends and

receives (every send has a matching receive). It is clear that as the number of processes in a

collective grows, there are increasingly more and more message copies. Instead, with RDMA

based design, messages can be directly transferred without undergoing several copies.

4.2.3 Reduce Rendezvous handshaking overhead

For transferring large messages, high-performance MPI implementations often implement

the Rendezvous Protocol. In this protocol, the sender sends a RNDZ START message. Upon its

receipt, the receiver replies with RNDZ REPLY containing the memory address of the destina-

tion buffer. Finally, the sending process sends the DATA message directly to the destination

memory buffer and issues a FIN completion message. By using this protocol, zero-copy

message transfer can be achieved.

This protocol imposes bottlenecks for MPI collectives based on point-to-point design. The

processes participating in the collective need to continuously exchange addresses. However,

these address exchanges are redundant. Once the base address of the collective communi-

cation buffer is known, the source process can compute the destination memory address for

each iteration. This computation can be done locally by the sending process by calculating

the array index for the particular algorithm and iteration number. Thus, for each iteration,

RDMA can be directly used without any need for address exchange.

57

4.2.4 Reduce Cost of Multiple Registrations

InfiniBand, like most other RDMA capable interconnects, requires that all communica-

tion buffers be registered with the InfiniBand HCA. This “registration” actually involves

locking of pages into physical memory and updating HCA memory access tables. After

registration, the application receives a “memory handle” with keys which can be used by a

remote process to directly access the memory. Thus, for performing each send or receive,

the memory area needs to be registered.

Collective operations implemented on top of point-to-point calls would need to issue sev-

eral MPI sends or receives to different processes (with different array offsets). This will cause

multiple registration calls. For current generation InfiniBand software/hardware stacks, each

registration has high setup overhead of around 90 µs. Thus, point-to-point implementation

of collectives requires multiple registration calls with significant overhead. However, the

RDMA based design would need only one registration call. The entire buffer passed to the

collective call can be registered in one go. Thus, this will eliminate unnecessary registration

calls.

4.3 Proposed Design for All-to-All Broadcast

In this section we describe our efforts for improving the latency and scalability of the

MPI All-to-all broadcast operation (MPI Allgather) based on RDMA operations. However,

the algorithms are different in this work.

4.3.1 RDMA-based Design for Recursive Doubling

We propose a RDMA based design for Recursive Doubling (RD) algorithm. In RD,

the size of the message exchanged by pairs of nodes doubles each iteration along with the

58

distance between the nodes. If m is the message size contributed by each process, the amount

of data exchanged between two processes increases from m in the first iteration to mp

2
in the

log(p)th iteration. As we have said in previous sections, the optimal method to transfer

short messages is copy based and for longer messages, we need to use zero copy. However,

since in the RD algorithm, the actual message size in each iteration changes, we also have

to dynamically switch between copy based and zero copy protocols to achieve an optimal

design.

Hence, we switch between the two design alternatives at an iteration k (1 ≤ k ≤ log(p))

such that the message size being exchanged, 2k−1m, crosses a fixed threshold MT . The

threshold MT is determined empirically. Hence, message exchanges in the first k from k + 1

through log(p) use a zero copy approach.

For performing the copy based approach, we need to maintain a pre-registered buffer. We

call it “Collective Buffer”. The design issues relating to maintaining this buffer and buffering

schemes are described as follows:

Collective Buffer: This buffer is registered at communicator initialization time. Pro-

cesses exchange addresses of their collective buffers also during that time. Some pre-defined

space in the collective buffer is reserved to store the peer addresses and completion flags

required for zero-copy data transfers. Data sent in any iteration comprises data received in

all previous iterations along with the process’ own message.

Buffering Scheme: In RD, data is always sent from and received to contiguous locations

in either the collective buffer or the user’s receive buffer. Since the amount of data written

to a collective buffer cannot exceed MT , the collective buffer never needs to be more than

2MT which is 8 KB (ignoring space for peer addresses and completion flags) for a single

Allgather call.

59

4.3.2 RDMA Ring for large messages

We implement the Ring algorithm for MPI Allgather over RDMA only for large mes-

sages and large clusters. As observed in [44], large clusters may have better near-neighbor

bandwidth. Under such scenarios, it is beneficial for MPI Allgather to mainly communicate

between neighbors. The Ring algorithm is ideal for such cases. Since we implement this

algorithm for only large messages, we use a complete zero copy approach here. The design

in this case is much simpler. The benefit of the RDMA-based scheme comes from the fact

that we have a single buffer registration and a single address exchange performed by each

node instead of p registrations, and (p − 1) address exchanges in the point-to-point based

design. We use this Ring algorithm for messages larger than 1 MB and process numbers

greater than 32.

4.4 Performance Evaluation

In this section, we evaluate the performance of our RDMA based design for All-to-all

Broadcast. This operation is also called MPI Allgather. We use three cluster configurations

for our tests:

1. Cluster A: 32 Dual Intel Xeon 2.66 GHz nodes with 512 KB L2 cache and 2 GB of

main memory. The nodes are connected to Mellanox MT23108 HCA using PCI-X 133

MHz I/O bus. The nodes are connected to Mellanox 144-port switch (MTS 14400).

2. Cluster B: 16 Dual Intel Xeon 3.6 GHz nodes (EM64T) with 1MB L2 cache and 4

GB of main memory. The nodes are connected to Mellanox MHES18-XT HCA using

PCI-Express (x8) I/O bus.

60

3. Cluster C: 8 Dual Intel Xeon 3.0 GHz nodes with 512 KB L2 cache and 2 GB of main

memory. The nodes are connected to the same InfiniBand network as Cluster A.

We have integrated our RDMA based design in the MVAPICH [34] stack. We refer to

the new design as “MVAPICH-RDMA”. The current implementation of MPI Allgather over

point-to-point is referred to as “MVAPICH-P2P”. Our experiments are classified into three

types. First, we demonstrate the latency of our new RDMA design. Secondly, we investigate

performance of the new design under low buffer re-use conditions. Finally, we evaluate the

impact of our design on a Matrix Multiplication application kernel which uses All-to-all

broadcast.

4.4.1 Latency benchmark for MPI Allgather

In this experiment, we measure the basic latency of our MPI Allgather implementation.

All the processes are synchronized with a barrier and then MPI Allgather is repeated 1000

times, using the same communication buffer. The results are shown in Figures 4.3 and 4.4

for Cluster A and in Figures 4.5 for Cluster B. The results from both Clusters A and B

follow the same trends. The results are explained as follows:

Small Messages: The RDMA based design can avoid the various copy and layering

overheads in different layers of the MPI point-to-point implementation. The results indicate

that latency can be reduced by 17%, 13% and 15% for 16 processes on Cluster A (Fig 4.3(a)),

32 processes on Cluster A (Fig 4.4(a)) and 16 processes on Cluster B (Fig 4.5(a)) for 4 byte

message size, respectively.

Medium Messages: For medium sized messages, the point-to-point based design required

rendezvous address exchange for transferring messages at every step of the algorithm. How-

ever, for the RDMA based MPI Allgather, no such exchange is required. We note that the

61

number of steps increases as the number of processes, and so does the cumulative cost of

address exchange. Our RDMA based design is able to successfully avoid this increasing cost.

The results indicate that latency can be reduced by 23%, 30% and 37% for 16 processes

on Cluster A (Fig 4.3(b)), 32 processes on Cluster A (Fig 4.4(b)) and 16 processes on Cluster

B (Fig: 4.5(b)) for 32 KB message size, respectively.

Large Messages: Large messages are also transferred using the same zero copy technique

used for medium sized messages. Hence, the same address exchange cost can be saved (as

described in the previous case). However, since the message sizes are large, the address

exchange forms a lesser portion of the overall cost of MPI Allgather. The results for large

messages indicate that latency can be reduced by 7%, 6% and 21% for 16 processes on

Cluster A (Fig 4.3(c)), 32 processes on Cluster A (Fig: 4.4(c)) and 16 processes on Cluster

B (Fig 4.5(c)) for 256 KB message size, respectively.

Scalability: We plot the MPI Allgather latency numbers with varying process counts,

for a fixed message size to see the impact of RDMA design on scalability. Figure 4.6(a) shows

the results for 32 KB message size. We observe that as the number of processes increase, the

gap between the point-to-point implementation and RDMA design increases. This is due to

the fact that the RDMA design eliminates the need for address exchange (which increases

as the number of processes).

4.4.2 MPI Allgather latency with no buffer reuse

In the above experiment, we measured the latency of MPI Allgather when utilizing the

same communication buffers for a large number of iterations. The cost of registration was

thus amortized over all the iterations by the registration cache maintained by MVAPICH.

However, it is not necessary that all MPI applications will always reuse their buffers. In the

62

case where applications use MPI Allgather with different buffers, the point-to-point based

design will be forced to register the buffers separately, thus incurring high cost. The cost of

just memory registration is shown in Figure 4.6(b). We observe that memory registration is

in fact quite costly.

In the following experiment, we conduct the same latency test (as mentioned in previous

section), but the buffers used for each iteration are different. Figures 4.7(a) and 4.7(b) show

the results for Clusters A and B, respectively. The RDMA based MPI Allgather performs

4.75 and 3 times better for Cluster A and B for 32 KB message size, respectively.

4.4.3 Matrix Multiplication Application Kernel

In the previous sections, we have seen how the RDMA design impacts the basic latency

of MPI Allgather. In order to evaluate the impact of this performance boost on end-

MPI applications, we build a distributed-memory Matrix Multiplication routine over the

optimized BLAS provided by the Intel Math Kernel Library [19]. We use a simple row-block

decomposition for the data. In each iteration, the matrix multiplication is repeated with

a fresh set of buffers. This application kernel is run on Cluster C using 8 processes. We

observe that using our RDMA design, the application kernel is able to perform 37% better

for an array size of 256x256, as shown in Figure 4.7(c).

4.5 Summary

In this Chapter, we proposed a RDMA based design for the All-to-all Broadcast collec-

tive operation. Our design reduces software overhead, copy costs, protocol handshake – all

required by the implementation of collectives over MPI point-to-point. Performance evalu-

ation of our designs reveals that the latency of MPI Allgather can be reduced by 30% for

32 processes and a message size of 32 KB. Additionally, the latency can be improved by a

63

 0

 10

 20

 30

 40

 50

 4 8 16 32 64 128 256

L
a

te
n

cy
 (

u
s)

Message Size (Bytes)

MVAPICH-P2P
MVAPICH-RDMA

(a) Small Messages

 0

 500

 1000

 1500

 2000

32K16K8K4K

L
a

te
n

cy
 (

u
s)

Message Size (Bytes)

MVAPICH-P2P
MVAPICH-RDMA

(b) Medium Messages

 0

 2000

 4000

 6000

 8000

 10000

 12000

256K128K64K

L
a

te
n

cy
 (

u
s)

Message Size (Bytes)

MVAPICH-P2P
MVAPICH-RDMA

(c) Large Messages

Figure 4.3: MPI Allgather Performance on 16 Processes (Cluster A)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 4 8 16 32 64 128 256

L
a

te
n

cy
 (

u
s)

Message Size (Bytes)

MVAPICH-P2P
MVAPICH-RDMA

(a) Small Messages

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

32K16K8K4K

L
a

te
n

cy
 (

u
s)

Message Size (Bytes)

MVAPICH-P2P
MVAPICH-RDMA

(b) Medium Messages

 0

 5000

 10000

 15000

 20000

 25000

256K128K64K
L

a
te

n
cy

 (
u

s)
Message Size (Bytes)

MVAPICH-P2P
MVAPICH-RDMA

(c) Large Messages

Figure 4.4: MPI Allgather Performance on 32 Processes (Cluster A)

 0

 10

 20

 30

 40

 50

 4 8 16 32 64 128 256

L
a

te
n

cy
 (

u
s)

Message Size (Bytes)

MVAPICH-P2P
MVAPICH-RDMA

(a) Small Messages

 0

 500

 1000

 1500

 2000

32K16K8K4K

L
a

te
n

cy
 (

u
s)

Message Size (Bytes)

MVAPICH-P2P
MVAPICH-RDMA

(b) Medium Messages

 0

 2000

 4000

 6000

 8000

 10000

 12000

256K128K64K

L
a

te
n

cy
 (

u
s)

Message Size (Bytes)

MVAPICH-P2P
MVAPICH-RDMA

(c) Large Messages

Figure 4.5: MPI Allgather Performance on 16 Processes (Cluster B)

64

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 4 8 16 32

L
a

te
n

c
y
 (

u
s
)

Number of Processes

MVAPICH-P2P
MVAPICH-RDMA

(a) Scalability of RDMA Design
for 32 KB message size

 50

 100

 150

 200

 250

 300

 350

 0 20 40 60 80 100 120 140

R
e

g
is

tr
a

ti
o

n
 L

a
te

n
c
y
 (

u
s
)

Number of Pages

registration cost

(b) Cost of Registration

Figure 4.6: Scalability and Registration Cost on Cluster A

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

32K16K8K4K

L
a

te
n

c
y
 (

u
s
)

Message Size (Bytes)

MVAPICH-P2P
MVAPICH-RDMA

(a) No Buffer Reuse (Cluster A)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

512K256K128K64K

L
a

te
n

c
y
 (

u
s
)

Message Size (Bytes)

MVAPICH-P2P
MVAPICH-RDMA

(b) No Buffer Reuse (Cluster B)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

512x512256x256128x12864x6432x3216x16

M
e

g
a

F
lo

p
s

Matrix Size

MVAPICH-P2P
MVAPICH-RDMA

(c) Matrix Multiplication

Figure 4.7: Impact of Buffer Registration and Performance of Matrix Multiplication

65

factor of 4.75 under no buffer reuse conditions for the same process count and message size.

Further, our design can speed up a parallel matrix multiplication algorithm by 37% on 8

processes, while multiplying a 256x256 matrix. The presented designs are expected to yield

benefit for very large InfiniBand clusters.

66

CHAPTER 5

SCALABLE COMMUNICATION BUFFER MANAGEMENT
TECHNIQUES

MVAPICH uses a reliable connection oriented model provided by InfiniBand. This model

provides superior performance on current generation InfiniBand stacks than the unreliable

connection less model as well as providing reliable transport. However, one of the restrictions

of using a connection oriented model is that messages can be received only in buffers which

are already available to the Host Channel Adapter (HCA) or Network Interface Card (NIC).

In order to achieve this, MVAPICH allocates and dedicates buffers for each connection

(the number of connections increases as the number of processes). Although the amount

of buffers allocated per connection can be tuned and MVAPICH has scaled quite well for

contemporary clusters (up to 1000 nodes and beyond), the challenges imposed by the scale

of next generation very large clusters (up to 10,000 nodes and beyond) is quite hard to meet

with the current buffer management model.

The latest InfiniBand standard (Release 1.2) [17] has provided a new feature called Shared

Receive Queues (SRQ) which aims at solving this scalability issue at the HCA level. This

new feature removes the requirement that message buffers be dedicated for each connection.

Using this feature, a process which intends to receive from multiple processes can in fact

67

provide receive buffers in a single queue. The HCA uses these buffers in an FCFS manner

for incoming messages from all processes.

In this Chapter, we carry out detailed analysis of the design alternatives and propose

a high-performance MPI design using SRQ. We propose a novel flow control mechanism

using a “low watermark” based approach. In addition, we design a mechanism which can

help users fine tune our designs on their specific platforms. Further, we come up with an

analytical model which can predict memory usage by the MPI library on clusters of tens-of-

thousands of nodes. Verification of our analytical model reveals that our model is accurate

within 1% error margin. Based on this model, our proposed designs will take only 1/10th the

memory requirement as compared to the default MVAPICH distribution on a cluster sized

at 16,000 nodes. Performance evaluation of our design on our 8-node PCI-Express cluster

shows that our new design was able to provide the same performance as the existing design

utilizing only a fraction of the memory required by the existing design. In comparison to

tuned existing designs, our design showed a 20% and 5% improvement in execution time of

NAS Benchmarks (Class A) LU and SP, respectively. The High Performance Linpack [2]

was able to execute a much larger problem size using our new design, whereas the existing

design ran out of memory.

The rest of the chapter is organized as follows. In Section 5.1, we provide an overview of

Shared Receive Queues in InfiniBand. In Section 5.2 we discuss the current approaches and

their limitations, particularly when scaling to very large clusters. Then in Section 5.3, we

describe the potential benefits of using shared receive queues, followed by design alternatives

and a proposed design in Section 5.4. In Section 5.5, we evaluate our proposed design and

summarize this chapter in Section 5.6.

68

5.1 Overview of Shared Receive Queues

InfiniBand provides several types of transport services: Reliable Connection (RC), Unre-

liable Connection (UC), Reliable Datagram (RD) and Unreliable Datagram (RD). RC and

UC are connection-oriented and require one QP to be connected to exactly one other QP.

On the other hand, RD and UD are connection less and one QP can be used to communicate

with many remote QPs. To the best of our knowledge, Reliable Datagram (RD) transport

has not been implemented by any InfiniBand vendor yet.

On top of these transport services, IBA provides software services. However, all software

services are not defined for all transport types. Figure 5.1 depicts which software service

is defined for which transport, as of IBA specification release 1.2. As shown in the figure,

the send/receive operations are defined for all classes of transport. For connection-oriented

transport, a new type of software service called Shared Receive Queue (SRQ) has been

introduced. This allows the association of many QPs to one receive queue even for connection

oriented transport. Thus, any remote process which is connected by a QP can send a message

which is received in buffers specified in the SRQ.

Reliable
Connection

Unreliable
Connection

Reliable
Datagram

Unreliable
Datagram

Send/Receive
Shared Receive

RDMA Write
RDMA Read

Connection Oriented Connectionless

Software
Service

Transport

Implemented
Not implemented

Figure 5.1: IBA Transport and Software Services

69

5.2 Current Approaches and Limitations

MVAPICH is based on the connection-oriented reliable transport of InfiniBand utilizing

both RDMA and Send/Receive channels. In order to communicate using these channels, it

has to allocate and dedicate buffers to each remote process. This means that the memory con-

sumption grows linearly with the number of processes. Although the number of buffers per

process can be tuned (at runtime), and MVAPICH has scaled well for contemporary Infini-

Band clusters, the next-generation InfiniBand clusters are in the order of tens-of-thousands

of nodes. In order for MVAPICH to scale well for these clusters, the linear growth of memory

requirement with number of processes has to be removed.

Adaptive buffer management is a mechanism by which the MPI can control the amount

of buffers available for each connection during runtime based on message patterns. How-

ever, there are several problems with this mechanism when implemented on top of the

Send/Receive and RDMA channels:

• Send/Receive Channel: This channel allows us to choose how many buffers are

posted on it dynamically. However, buffers once posted on a receive queue cannot

be recalled. Hence, posted buffers on idle connections lead to wasted memory. This

problem exacerbates memory consumption issues in large scale applications that run

for a very long time. In addition, if MVAPICH is very aggressively tuned to run

with low number of buffers per Send/Receive channel, this will lead to performance

degradation. This is because the Send/Receive channel is based on window-based flow

control mechanism [25]. Reducing the window in order to reduce memory consumption

hampers the message passing performance.

70

• RDMA Channel: This channel allows very low-latency message passing. However,

the allocation of buffers for every connection is very rigid. The cyclic window of buffers

needs to be contiguous memory. If not, then another round of address and memory key

exchange (extra overhead) is required. Recalling of RDMA buffers is possible from any

connection, but there is an additional overhead of informing remote nodes about the

reduced memory they have with the receiving process. This process can lead to some

race conditions which have to be eliminated using further expensive atomic operations,

thus, leading to high overheads.

Thus, in order to improve the buffer usage scalability of MPI while preserving high-

performance we need to explore a different communication channel.

5.3 Benefits of using Shared Receive Queues

Since we aim to remove the dependence of number of communication buffers with the

number of MPI processes, we need to look at connection less models. As described in earlier

Sections, InfiniBand provides two kinds of connection less transport. One is Reliable Data-

gram (RD) and the other is Unreliable Datagram (UD). Unfortunately, Reliable Datagram

is not implemented in any InfiniBand stack (to the best of our knowledge), so that rules out

this option. UD can provide the scalable features, but the MPI design would now have to

provide reliability. This will add to the overall cost of message transfers, and may result

in loss of high-performance. In addition, UD does not support RDMA features, which are

needed for zero-copy message transfer, thus further degrading performance.

Shared Receive Queues (SRQ) provides a model to efficiently share receive buffers across

connections whilst maintaining the good performance and reliability of a connection oriented

transport. Thus, the SRQ is a good candidate for achieving scalable buffer management.

71

Buffer Pool
for send/recv

...

...

pre−posted
RDMA

...

...

pre−posted
RDMA

...

...

pre−posted
RDMA

. . .

connection 0 connection 1 connection n

pre−posted pre−postedpre−posted
recv recv recv

(a) Existing MVAPICH Buffer Organiza-
tion

...

recv
pre−posted

for SRQ
Buffer Pool

SRQ
.

.
.

(b) Proposed SRQ Based Buffer
Organization

Figure 5.2: Comparison of Buffer Management Models

Figure 5.2 shows the difference between the buffer organization schemes for MVAPICH

and the new proposed design based on SRQ.

5.4 MPI Design Alternatives using Shared Receive Queues

In this section, we present our research towards a highly resource scalable design of MPI

over InfiniBand. The basic idea is to use the Shared Receive Queue feature and to design

flow control mechanisms around it.

The SRQ mechanism achieves good buffer scalability by exposing the same set of receive

WQEs to all remote processes on a first come first serve (FCFS) basis. However, in this

mechanism, the sending process lacks a critical piece of information: number of available

receive buffers at the receiver. In the absence of this information, the sender can overrun the

available buffers in the SRQ. To achieve optimal message passing performance, it is critical

that this situation is avoided. In the following sections, we propose our novel design which

72

enables the benefits provided by SRQ, while avoiding senders from over-running receive

buffers.

5.4.1 Proposed SRQ Refilling Mechanism

A high-performance MPI design often requires the MPI progress engine to be polling

to achieve the lowest possible point-to-point latency. MVAPICH is thus based on a polling

progress engine. Ideally, we would like to maintain the polling nature of the MPI for the

SRQ based design. However, in this polling based design, MPI can only discover incoming

messages from the network when explicit MPI calls are made. This increases the time

intervals in which MPI can check the state of the SRQ. Moreover, if the MPI application is

busy performing computation or involved in I/O, there can be prolonged periods in which

the state of SRQ is not observed by the MPI. In the meantime, the SRQ might have become

full. In order to efficiently utilize SRQ feature, we must avoid this situation. Broadly, three

design alternatives can be utilized: Explicit acknowledgement from receiver, Interrupt based

progress and Selective interrupt based progress.

• Explicit Acknowledgement from Receiver: In this approach, the sending pro-

cesses can be instructed to refrain from sending messages to a particular receiver un-

less they receive an explicit OK TO SEND message after every k messages. Arrival of

the OK TO SEND message means that the receiver has reserved k buffers in a dedicated

manner for this sender and allows the sender to send k more messages. Where k is a

threshold of messages that can be tuned or selected at runtime. This scheme can avoid

the scenario in which the sender completely fills up the receiver queue with messages.

This scheme is illustrated in Figure 5.3. However, this scheme suffers from a couple of

critical deficiencies:

73

1. Waste of Receive Buffer: Since in this design alternative we reserve k buffers

for a specific sender if the sender does not have more messages to send the memory

resource for the reserved buffers can be wasted. To prevent this problem, if we

reduce the value of k, we cannot achieve high bandwidth because the sender

should wait the OK TO SEND message for every few messages.

2. Early throttling of senders: Even though not all senders may be transmitting

at the same time, a particular sender may send k messages and then be throttled

until the receiver sends the OK TO SEND message. If the receiver is busy because of

a computation, the sender blocks until the receiver operates the progress engine

and sends the OK TO SEND message.

. .
 .

. .
 .

Sender Receiver

k

Buffer Reservation
for the next k sends
from the senderOK_TO_SEND

Figure 5.3: Explicit ACK mechanism

• Interrupt Based Progress: As mentioned earlier in this section, if the MPI appli-

cation is busy performing computation or I/O, it cannot observe the state of the SRQ.

In this design approach, the progress engine of the MPI is modified so as to explic-

itly request an interrupt before returning execution control to the MPI application. If

there is an arrival of a new message, the interrupt handler thread becomes active and

74

processes the message along with refilling the SRQ. Figure 5.4 illustrates this design

alternative.

This approach can effectively avoid the situation where the SRQ is left without any

receive WQEs. However, this approach also has a limitation. There is now an interrupt

on arrival of any new message when the application is busy computing. This can cause

increased overhead and lead to non-optimal performance. In addition, we note that the

arrival of the next message as such is not a critical event. There may be several WQEs

still available in the SRQ. Hence, most of the interrupts caused by this mechanism will

be unnecessary.

Sender Receiver

Interrupt &
Buffer Posting

Figure 5.4: Interrupt Based Progress

• Selective Interrupt Based Progress: In this design alternative, we try to minimize

the number of interrupts to the bare minimum. InfiniBand provides an asynchronous

event associated with a SRQ called SRQ LIMIT REACHED. This asynchronous event is

fired when a low “watermark” threshold (preset by the application) is reached. This

event allows the application to act accordingly. In our case, we can utilize this event to

trigger a thread to post more WQEs in the SRQ. Figure 5.5 demonstrates the sequence

75

of operations. In step 1, the remote processes send messages to the receiver. In step

2, the arrival of a new message causes the SRQ WQE count to drop below the limit

(as shown by the grayed out region of the SRQ). In step 3, the thread designated to

handle this asynchronous event (called LIMIT thread from now on) becomes active.

In step 4, the LIMIT thread posts more WQEs to the SRQ. It should be noted that as

soon as a SRQ WQE is consumed it is directly moved to the completion queue (CQ)

by the HCA driver.

Sender Receiver

Asynchronous Event &

.
.

.

Buffer Posting

SRQ WQE
count drops
below low
watermark

Figure 5.5: SRQ Limit Event Based Design

This design alternative meets our design criteria and causes minimum interference with

the MPI application. Hence, we choose this design alternative for our SRQ based MPI

design.

5.4.2 Proposed Design of SRQ Limit Threshold

As mentioned earlier in this section, we utilize the SRQ LIMIT REACHED asynchronous

event provided by InfiniBand. This event is fired when a preset limit is reached on the SRQ.

In order to achieve an optimal design, we need to make sure that the event is: a) not fired

too often and b) has enough time to post buffers so that SRQ is not left empty.

76

In order to calculate a reasonable low watermark limit, we need to find out the rate at

which the HCA can fill up receive buffers. We can find out this information in a dynamic

manner by querying the HCA. In addition to that, we need to find out the time taken by

the LIMIT thread to become active. For finding out this value, we design an experiment,

as illustrated in Figure 5.6. In this experiment, we measure the round-trip time using SRQ

(marked as t1). The subsequent message triggers the SRQ LIMIT thread which replies back

with a special message. We mark this time as t2. The LIMIT thread wakeup latency is given

by: (t2 − t1). On our platform, this is around 12µs.

Sender Receiver

t2

t1

LIMIT
Thread

Figure 5.6: LIMIT Thread Wakeup Latency

Thus, we can calculate the minimum low watermark limit as:

Watermark =
BW ∗ 103

MinPacketSize
∗ twakeup (5.1)

Where, BW is the maximum bandwidth supported by the HCA is Gb/s, MinPacketSize

is the minimum packet size of MPI messages in bits and twakeup is the time taken by the

LIMIT thread to wake up in microseconds. For our experimental platform, the Watermark

value is 300. In addition to the MPI library, another utility will be distributed which can

77

automatically calculate the value of the Watermark value on the MPI library user’s platform.

The user can then simply plug in this value in the MPI application’s environment, from where

it will be picked up by the MPI library.

5.4.3 Analytical Model for Memory Usage Estimation

In order to fully understand the impact of the memory usage model of our proposed SRQ

based design, we construct an analytical model of the memory consumption by MPI internal

buffers.

There are several components of the memory consumed during startup. The major com-

ponents are memory consumed by the Buffer Pool, RDMA channel, Send/Receive channel

and the memory consumed by the InfiniBand RC connections themselves.

The size of the Buffer Pool is given by the product of the number of buffers in the pool

and the size of each buffer.

Mbp = Npool ∗ Sbuf (5.2)

Where, Mbp is the amount of memory consumed by the Buffer Pool, Npool is the number

of buffers in the pool and Sbuf is the size of each buffer.

The memory consumed by MVAPICH-SR (tuned version of MVAPICH using only Send/Receive

channel) is composed of three parts, the memory consumed by the Buffer Pool and the mem-

ory consumed by each connection and the Send/Receive buffers.

Msr = Mbp + (Mrc + Nsr ∗ Sbuf) ∗ Nconn (5.3)

78

Where, Msr is the amount of memory consumed by MVAPICH-SR, Mrc is the memory

needed for each InfiniBand connection by HCA driver, Nsr is the number of Send/Receive

buffers for each connection and Nconn is the total number of connections.

MVAPICH-RDMA (default version of MVAPICH using both RDMA and Send/Receive

channels) consumes all the memory as MVAPICH-SR and in addition, allocates RDMA

buffers for each connection. The RDMA channel also needs to keep dedicated send buffers

per connection [26]. Hence, the amount of dedicated buffers per connection doubles.

Mrdma = Msr + 2 ∗ Nrdma ∗ Sbuf ∗ Nconn (5.4)

Where, Mrdma is the amount of memory consumed by MVAPICH-RDMA and Nrdma is

the number of RDMA buffers per connection.

Finally, the MVAPICH-SRQ (our proposed SRQ based design) only needs to allocate the

Buffer Pool and a fixed number of buffers for posting to the SRQ.

Msrq = Mbp + Mrc ∗ Nconn + Nsrq ∗ Sbuf (5.5)

Where, Msrq is the memory consumed by MVAPICH-SRQ and Nsrq is the number of

SRQ buffers.

Analyzing Equations 5.3, 5.4 and 5.5, we observe that the memory requirement by

MVAPICH-SRQ is much lesser if the number of connections is very large. We plug in

practical values to the above parameters and analyze the reduction in memory usage while

using a SRQ based design. Our analysis reveals that for a cluster with 16,000 nodes, Mrdma

is around 14 GigaBytes, whereas Msrq is only 1.8 GigaBytes.

79

5.5 Performance Results

In this section we evaluate the memory usage and performance of our MPI with SRQ

design over InfiniBand. We first introduce the experimental environment, and then compare

our design with MVAPICH in terms of memory usage and application performance. We also

show the importance of flow control in using SRQ.

The default configuration of MVAPICH is to use a set of pre-registered RDMA buffers for

small and control messages. In our performance graphs we call this configuration “MVAPICH-

RDMA”. MVAPICH can also be configured to use “Send/Receive” buffers for small and con-

trol messages. We also compared with this configuration, and it is called “MVAPICH-SR” in

the graphs. We have incorporated our design into MVAPICH, and it is called “MVAPICH-

SRQ”.

5.5.1 Experimental Environment

Our test bed cluster consists of 8 dual Intel Xeon 3.2GHz EM64T systems. Each node

is equipped with 512MB of DDR memory and PCI-Express interface. These nodes have

MT25128 Mellanox HCAs with firmware version 5.1.0. The nodes are connected by an

8-port Mellanox InfiniBand switch. The Linux kernel used here is version 2.6.13.1.

5.5.2 Startup Memory Utilization

In this section we analyze the startup memory utilization of our proposed designs as

compared to MVAPICH-RDMA and MVAPICH-SR. In our experiment, the MPI program

starts up and goes to sleep after MPI Init. Then we use the UNIX utility pmap to record the

total memory usage of any one process. The same process is repeated for MVAPICH-RDMA,

MVAPICH-SR and MVAPICH-SRQ. The results are shown in Figure 5.7.

80

 75

 80

 85

 90

 95

 100

 105

 110

 2 4 8 16 32

M
em

or
y

U
se

d
(M

B
)

Number of Processes

MVAPICH-RDMA
MVAPICH-SRQ

MVAPICH-SR

Figure 5.7: Memory Utilization Experiment

Observing Figure 5.7, we can see that MVAPICH-RDMA scheme consumes the most

memory. Since the RDMA buffers are dedicated to each and every connection, the memory

requirement grows linearly as number of processes. On the other hand, the MVAPICH-SR, as

described earlier in this section is a highly-tuned version of MVAPICH using Send/Receive

channel. This uses the same amount of memory as MVAPICH-SRQ. This is because the

number of actual processes running is not enough for the per connection buffer posting to

empty the Buffer Pool. If the number of processes is increased to a few hundred, then

MVAPICH-SR will consume more memory than MVAPICH-SRQ. MVAPICH-SRQ just re-

quires the same Buffer Pool and a fixed number of buffers which are posted on the SRQ.

This number does not grow with the number of processes.

In Section 5.4.3, we have developed an analytical model for predicting the memory con-

sumption by MVAPICH-RDMA, MVAPICH-SR and MVAPICH-SRQ on very large scale

systems. In this section, we will first validate our analytical model and then use this to

extrapolate memory consumption numbers on much larger scale systems.

On our experimental platform and MVAPICH configuration, the values of these param-

eters are: Nrdma = 32, Nsr = 10, Npool = 5000, Sbuf = 12KB, Mrc = 88KB. In addition, we

have measured a constant overhead of 20MB which is contributed by various other libraries

81

(including lower-level InfiniBand libraries) required by MVAPICH. It is to be noted that in

the experiment, Nsr is simply taken from the Buffer Pool, so this factor does not show up.

In Figure 5.8 we show the error margin of our analytical model with the measured data. We

observe that our analytical model is indeed quite accurate.

-0.1

-0.05

 0

 0.05

 0.1

 2 4 8 16 32

E
rr

or
 P

er
ce

nt

Number of Processes

MVAPICH-RDMA
MVAPICH-SRQ

MVAPICH-SR

Figure 5.8: Error Margin of Analytical Model

Now we use this model to predict the memory consumption on much larger scale clusters.

By increasing the number of connections and using the above mentioned parameter values,

we extrapolate the memory consumption for each of the three schemes. The results are

shown in Figure 5.9.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 128 256 512 1024 2048 4096 8192 16384

M
em

or
y

U
se

d
(M

B
)

Number of Processes

MVAPICH-RDMA
MVAPICH-SRQ

MVAPICH-SR

Figure 5.9: Estimation of memory consumption on very large clusters

82

5.5.3 Flow Control

In this section we present the importance of having flow control in using SRQ. We de-

signed a micro-benchmark to illustrate it. The benchmark includes two nodes. The receiver

first posts non-blocking receives (MPI Irecv), and then starts computing. While the receiver

is busy computing, the sender sends a “burst size” number of messages to the receiver. After

the receiver finishes computing, it calls MPI Waitall to finally get all the messages. We

record the time the receiver spends in MPI Waitall as an indication of how well the receiver

can handle the incoming messages while it is computing.

Figure 5.10 shows the experimental results. We used the selective interrupt based ap-

proach for flow control as described in previous sections. We can easily see from the graph

that MVAPICH-SRQ without flow control can handle messages as well as MVAPICH-SRQ

with flow control up to burst size around 250. After that, the line of MVAPICH-SRQ with-

out flow control goes up steeply, which means the performance becomes very bad. As we

discussed in previous sections, without flow control the receiver can only update (refill) the

SRQ when it calls the progress engine. In this benchmark, since the receiver is busy comput-

ing, it has no means to detect the SRQ is full, so the incoming messages get silently dropped.

Only after computation, the receiver can resume to receive messages, but it has already lost

computation/communication overlap and the network traffic becomes messy because of the

sender retries. MVAPICH-SRQ with flow control, however, can handle a large “burst size”

number of messages, and it doesn’t add much overhead. In later sections MVAPICH-SRQ

refers to MVAPICH-SRQ with selective interrupt based flow control.

83

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 50 100 150 200 250 300

W
a
ita

ll
T

im
e
 (

m
s)

Burst Size

MVAPICH-SRQ-no-Flow-Control
MVAPICH-SRQ-Flow-Control

Figure 5.10: MPI Waitall Time comparison

5.5.4 NAS Benchmarks

In this section we present the performance of MVAPICH-SRQ by using NAS Parallel

Benchmarks [6], Class A. We conducted experiments on 16 processes. Figures 5.11 and 5.12

show the total execution time of MVAPICH-RDMA, MVAPICH-SR, and MVAPICH-SRQ.

From these two graphs we can see that for all benchmarks MVAPICH-SRQ performs

almost exactly the same as MVAPICH-RDMA, which means using MVAPICH-SRQ we can

dramatically reduce memory usage while not sacrificing performance at all. Looking at

MVAPICH-SR, however, we can see that for LU, it performs 20% worse than MVAPICH-

SRQ. This is because LU uses a lot of small messages, and in MVAPICH-SR, the sender

will be blocked if it doesn’t have enough credits from the receiver. This is not a problem in

MVAPICH-SRQ, because the sender can always send without any limitations. Similarly we

can see a 5% performance difference between MVAPICH-SR and MVAPICH-SRQ for SP.

Comparing the performance of MVAPICH-SRQ and MVAPICH-SR, we find that al-

though MVAPICH-SR can also reduce memory usage compared with MVAPICH-RDMA, it

leads to performance degradation, so MVAPICH-SRQ is a better solution.

84

0

5

10

15

20

25

30

35

BT LU SP

Benchmarks
T

o
ta

l
E

x
e
c
u
ti
o
n
 T

im
e

(S
e
c
o
n
d
s
)

MVAPICH-RDMA MVAPICH-SR MVAPICH-SRQ

Figure 5.11: NAS Benchmarks Class A Total Execution Time (BT, LU, SP)

0

1

2

3

4

5

6

CG EP FT IS MG

Benchmarks

T
o

ta
l
E

x
e

c
u

ti
o

n
 T

im
e

(S
e

c
o

n
d

s
)

MVAPICH-RDMA MVAPICH-SR MVAPICH-SRQ

Figure 5.12: NAS Benchmarks Class A Total Execution Time (CG, EP, FT, IS, MG)

85

5.5.5 High Performance Linpack

In this section we carry out experiments using the standard High Performance Linpack

(HPL) benchmark [2]. HPL stresses various components of a system including memory

usage. For every system there is a limit for problem size based on the total amount of

physical memory. The benchmark cannot run if the problem size goes beyond the limit.

Figure 5.13 shows the performances of MVAPICH-RDMA, MVAPICH-SR, and MVAPICH-

SRQ, in terms of GFlops.

From this graph we can see that MVAPICH-SR and MVAPICH-SRQ perform comparably

with MVAPICH-RDMA for problem size from 10000 to 15000. For some problem sizes, such

as 11000, 12000, and 13000, MVAPICH-SR and MVAPICH-SRQ perform even 10% better

than MVAPICH-RDMA. This is because MVAPICH-RDMA needs to poll RDMA buffers

of each connection when it makes communication progress. This polling wastes CPU cycles

and pollutes cache content.

It is to be noted that for problem size 16000, the result for MVAPICH-RDMA is missing.

This is because the memory usage of MVAPICH-RDMA itself is so large that the benchmark

doesn’t have enough memory to run. In other words, the problem size limit for MVAPICH-

RDMA is around 15000. MVAPICH-SR and MVAPICH-SRQ, however, continue to give

good performance as the problem size increases. Our system size is not large enough to show

that MVAPICH-SRQ scales better than MVAPICH-SR. On a much larger cluster we will also

be able to show that MVAPICH-SR has a smaller problem size limit than MVAPICH-SRQ.

5.6 Summary

In this chapter, we have proposed a novel Shared Receive Queue based Scalable MPI

design. Our designs have been incorporated into MVAPICH which is a widely used MPI

86

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

16 32 64
 0

 0.5

 1

 1.5

 2

M
e

m
o

ry
 U

sa
g

e
 (

M
B

)

P
e

rf
o

rm
a

n
ce

Number of Processes

ARDMA-SR
ARDMA-SRQ

SRQ

ARDMA-SR Performance
ARDMA-SRQ Performance

SRQ Performance

Figure 5.13: High Performance Linpack

library over InfiniBand. Our design uses low-watermark interrupts to achieve efficient flow

control and utilizes the memory available to the fullest extent, thus dramatically improving

the system scalability. In addition, we also proposed an analytical model to predict the

memory requirement by the MPI library on very large clusters (to the tune of tens-of-

thousands of nodes).

Verification of our analytical model reveals that our model is accurate within 1%. Based

on this model, our proposed designs will take 1/10th the memory requirement as compared

to the default MVAPICH distribution on a cluster sized at 16,000 nodes. Performance eval-

uation of our design shows that our new design was able to provide the same performance as

the existing design utilizing only a fraction of the memory required by the existing design.

In comparison to tuned existing designs our design showed a 20% and 5% improvement in

execution time of NAS Benchmarks (Class A) LU and SP, respectively. The High Perfor-

mance Linpack [2] was able to execute a much larger problem size using our new design,

whereas the existing design ran out of memory.

87

CHAPTER 6

IN-DEPTH SCALABILITY ANALYSIS OF MPI DESIGN

MVAPICH provides various designs to perform message passing [26, 42]. Depending

upon the requirement of the end MPI application and available InfiniBand hardware, differ-

ent designs may be chosen by the user. In addition, all these designs are runtime tunable

with various parameters. Most of these parameters are “hints” to the MPI library of the

user’s intentions. These parameters directly affect the performance, memory usage and other

characteristics of the MPI library. Using these parameters, the MPI library allocates inter-

nal buffers that are used for communication. In addition, depending on the requirements

of the application, more memory may be allocated during its actual execution. These com-

munication buffers represent the majority of the memory consumption of the MPI library.

Allocating more buffers may allow the library to offer better communication performance.

On the other hand, lack of buffers may lead to runtime allocation and management of re-

quired memory (which is costly) and hence degradation of end application performance.

Thus, the following two questions are of great significance to MPI library designers, cluster

system vendors, and the end users:

1. Does aggressively reducing communication buffer memory lead to degradation of end

application performance?

88

2. How much memory can we expect the MPI library to consume during execution of a

typical application, while still providing the best available performance?

To the best of our knowledge, there has been no contemporary study that comprehensively

answers these questions. In this Chapter, we provide answers to the above two questions

by analyzing the internal MPI operations during execution of well known MPI applications

and benchmarks such as NAS Parallel Benchmarks [6], SuperLU [46], NAMD [37], and

HPL [2]. Our analysis reveals that for the NAS Benchmarks (Class B), NAMD, and HPL

on 64 processes, the latest designs of MVAPICH require less than 5MB of internal memory

on average per process and yet deliver the best available performance. For SuperLU, the

memory usage increases to 10MB for the evaluated data sets, but still maintains optimal

performance and a 5 times reduction in memory usage over older MVAPICH designs.

The rest of this chapter is organized as follows. We begin by providing an overview of

the MPI design 6.1. Then we present the performance evaluation parameters and scope 6.2,

followed by the performance results in Section 6.3. Finally, we summarize this chapter in

Section 6.4.

6.1 Overview of MPI Design

MVAPICH [34] is a popular implementation of MPI over InfiniBand. It uses several Infini-

Band services like Send/Receive, RDMA-Write, RDMA-Read, and Shared Receive Queues

to provide high-performance and scalability to end MPI applications. There are two ma-

jor protocols used by MVAPICH. The first is the Eager Protocol, which is used to transfer

small messages. The second protocol used is the Rendezvous Protocol, which is used for

large messages. In order to avoid buffering large messages inside the MPI library, the Ren-

dezvous protocol negotiates the availability of receive buffer by using control messages. After

89

the negotiation phase, the messages are sent directly to receiver user memory with the use

of RDMA. These control messages used by the Rendezvous protocol are small in size and

are sent over the Eager protocol. For more information on the design alternatives of the

Rendezvous protocol, please refer to [43]. Thus, the Eager protocol can be used for MPI

application generated small messages as well as Rendezvous control messages.

The Eager protocol requires the presence of “pre-allocated” communication buffers on

both sender and receiver sides, in order to avoid any runtime costs and achieve low latency.

The Rendezvous protocol does not require any additional buffer space other than the control

messages sent over the Eager protocol. Hence, only the Eager protocol consumes communi-

cation memory in a MPI process. In this Chapter we focus on the requirement and usage of

MPI internal buffers; hence, we will describe the Eager protocol in detail.

MVAPICH provides several implementations for the Eager protocol based on different

designs and utilizing different InfiniBand features. In addition, these eager protocols can be

used and combined to form hybrid protocols with dynamic thresholds. There are three basic

protocols: a) based on per-connection Send/Receive model, b) based on RDMA-Write and

c) based on Shared Receive queue. Combining two protocols at a time, there can be a total

of six protocols, out of which we describe and evaluate three in this Chapter. We leave out

three combinations: Send/Receive + Shared Receive Queue, since the use of shared resources

implies attaching a Queue Pair to a shared queue instead of its per connection receive queue;

RDMA-Write only protocol, since it is inherently unscalable due to the lack of flexibility

to move communication buffers across connections, and; Send/Receive only protocol, since

it is impossible to recall posted buffers to a particular connection, thus leading to inferior

scalability. The remaining three protocol combinations are described below:

90

(a) Adaptive RDMA with
Send/Receive Channel
(with 6 processes using
RDMA)

(b) Adaptive RDMA with
SRQ Channel (with 6 pro-
cesses using RDMA)

(c) SRQ Channel

Figure 6.1: Various Eager Protocol Designs in MVAPICH

6.1.1 Adaptive RDMA with Send/Receive Channel

The RDMA feature of InfiniBand offers very low latency due to the absence of receiver

side software involvement, which is desirable for small messages. The RDMA channel [26] in

MVAPICH provides a design by which the RDMA feature can be fully exploited to deliver

low latency. The use of RDMA requires that communication buffers be made available for

each remote process that may send messages. In order to avoid a memory-scalability problem

when there are thousands of remote processes, this channel has an “adaptive” nature (hence

the name Adaptive RDMA). RDMA channels are not created until after a threshold of

messages (runtime tunable) have been exchanged over the Send/Receive channel. At the

time of communication initialization, only a limited number (typically only two or three) of

buffers are allocated per remote process. These initial buffers are posted on the InfiniBand

Send/Receive channel. Accordingly, all processes initially communicate using the InfiniBand

Send/Receive channel semantics. MVAPICH maintains an internal counter of the number

of messages exchanged by each pair of processes, and if this count increases beyond some

91

threshold (runtime tunable), buffers are allocated and made available to the remote process

over RDMA.

For the sake of brevity, this design will be referred to as ARDMA-SR for the rest of the

Chapter and the connection between a pair of process that uses RDMA for Eager protocol will

be called a RDMA Connection. Figure 6.1(a) illustrates this channel with the dotted lines

showing the limited number of buffers for the Send/Receive channel. The bold lines indicate

that six of the most frequently communicating processes actually communicate over RDMA.

This channel provides reasonably good memory scalability along with the low latency offered

by RDMA.

6.1.2 Adaptive RDMA with SRQ Channel

The Shared Receive Queue (SRQ) is a hardware feature provided by InfiniBand that

allows upper-level software to post receive buffers to only one receive queue. Incoming

messages from all remote processes in the MPI application can then consume buffers from

this queue in a first-come-first-serve (FCFS) basis. This feature allows very efficient sharing of

receive buffers across many InfiniBand connections. Thus, reducing the memory requirement

by an order of magnitude for MPI applications that execute on very large process counts

(up to tens of thousands).

One drawback of the SRQ is that the processes sending messages do not have an accurate

picture of the receiver buffer availability. As such, if senders keep injecting packets into the

network that do not have any destination buffer available, the performance of the application

is degraded. In order to alleviate this situation, we have designed a novel, receiver-driven

flow-control mechanism [42]. The receiving MPI process sets a “low-watermark” for the

SRQ. When the number of available buffers in that queue drops below this threshold, an

92

interrupt is generated by the HCA, which is caught by the MPI library. If there are more

receiver buffers allocated already, then they are posted to the HCA to keep the SRQ full;

however, if no buffers are available, new ones are allocated and posted to the SRQ to fill it.

During communication initialization, all processes have full SRQs and communicate using

these buffers. When a certain number of runtime tunable buffers have been consumed from

the SRQ, RDMA buffers are made available for that remote process. Hence, similar to the

design described in the previous section, this design also achieves scalable memory usage

along with low latency of RDMA. Again, for the sake of brevity, the design will be referred

to as ARDMA-SRQ for the rest of the Chapter.

6.1.3 SRQ Channel

This channel exclusively utilizes the SRQ feature of InfiniBand. It employs the same

receiver-driven flow-control mechanism as described in the previous section. The only dif-

ference in this channel from the previous one is that no RDMA buffers are allocated, even

for frequently communicating pairs of processes. Even though RDMA channels can achieve

lower-latency message passing, they consume more memory. This channel, which is exclu-

sively based on SRQ, may have slightly increased point-to-point latency (only by around

1µs), but can provide very scalable message passing. Figure 6.1(c) illustrates this channel.

For the rest of the Chapter, this design will be simply referred to as SRQ.

6.2 Performance Evaluation Parameters

Much of the data required for our analysis are not obtainable through any other pub-

licly available tools. This is mainly because we aim to analyze information that is specific

and internal to MVAPICH. In addition to this, our analysis requires the size and volume

information of the messages actually sent by the MPI library. Most MPI profiling tools

93

can provide information only about messages that were generated by the MPI application.

As mentioned in previous Sections, large message transfer may in fact involve several small

message transfers as required by the Rendezvous protocol. The information about these

messages is lost if we simply use MPI-level profilers.

In order to obtain an accurate view of the various events occurring inside MVAPICH, we

design an extremely low overhead profiling mechanism internal to MVAPICH. Our profiling

implementation records information inside internal data structures of MVAPICH during the

application execution. All the information is then collected at the root process by MPI Reduce

during MPI Finalize. Since the profiler need only update a few memory locations during

the execution, there is almost no perceivable impact on the performance; e.g. the 0-byte MPI

message latency is unaffected, proving our hypothesis that our profiling introduces almost

negligible overhead. Our profiling mechanism records important information such as:

1. Allocation of communication buffers

2. Message size and data volume profiles

3. Number of processes communicating over RDMA Eager Protocol

4. Number of “low-watermark” events experienced by the SRQ

In addition to our internal profiling of MVAPICH, we used mpiP [20], which is a lightweight,

scalable MPI profiling tool. This tool provides us with information about which MPI calls

were issued by the application. Combining this information (generated by mpiP) with our

internal profiling of MVAPICH, provides an in-depth look into several aspects of the MVA-

PICH designs for the Eager protocol.

94

IS MG CG FT LU BT SP NAMD HPL
Avg. RDMA Connections 6.14 9.0 3.09 0.98 3.92 3.89 1.17 53.15 6.26

Avg. Low-Watermark events 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.03 0.0
Unexpected Messages (%) 2.7 10.2 13.5 11.9 38.1 0.3 0.7 48.2 13.6

Total Messages 1.9e5 3.1e5 2.7e6 3.6e5 5.8e6 1.6e6 4.7e6 3.7e6 7.8e5
MPI Time (%) 47.25 9.16 33.87 37.85 14.23 10.17 11.88 23.54 24.68

Table 6.1: Profiling Results on 64 processes of NAS (Class B), NAMD (apoa1) and HPL

6.3 Performance Results

In this section, we present our analysis of the performance and the memory utilization

of the MPI library while executing several well-known MPI applications and benchmarks.

The Eager protocol designs evaluated are the Adaptive RDMA with Send/Receive (called

ARDMA-SR), Adaptive RDMA with SRQ (called ARDMA-SRQ), and the SRQ channel

(called SRQ).

Our experimental platform is a 64 node dual Opteron 2.4GHz (Processor 250) cluster.

Each node is equipped with 8GB of main memory and PCI-Express interface. The nodes

have MT25204 Mellanox HCAs with firmware version 1.0.1 and the OpenFabrics software

stack. The Linux kernel version used is 2.6.15.

Table 6.1 shows the results of our profiling various applications on 64 processes. Su-

perLU profiling results are presented separately in Table 6.2. The percentage MPI time

is reported by mpiP and the rest of the parameters are given by the MVAPICH internal

profiling. This table will be referred to later as part of our analysis of the results of each

individual benchmark.

95

6.3.1 NAS Benchmarks

The NAS Parallel Benchmarks [6] are a set of programs that are designed to be typical of

several MPI applications, and thus, help in evaluating the performance of parallel machines.

For the purposes of our evaluation, we include all the NAS Benchmarks except the Embar-

rassingly Parallel (EP) benchmark. We excluded this benchmark from our evaluation, since

it has very little MPI communication and as such is of lesser significance when analyzing the

operations inside the MPI library.

Figure 6.2 shows the performance of the NAS Benchmarks (Class B) using all three

designs of the Eager protocol. The number of processes is varied from 16 to 64 for IS,

FT, CG, LU, and MG. The SP and BT benchmarks are run on 49 to 81 processes since

they require the total number of processes to be a square. Each graph has two y-axes.

The left y-axis shows the communication memory used by MVAPICH while executing that

particular benchmark, whereas the right y-axis shows the relative performance achieved by

that benchmark execution. All the performance ratios have been normalized with respect

to the best possible benchmark number obtained by the default configuration of MVAPICH

version 0.9.7. A ratio > 1 indicates better performance than the default configuration of

MVAPICH 0.9.7, while a ratio < 1 indicates worse performance.

The results indicate that the SRQ channel is able to provide almost the same level

of performance as the other two schemes: ARDMA-SR and ARDMA-SRQ. While the SRQ

channel provides almost the same performance, it does so with markedly less communication

memory. In fact, in all the Figures 6.2(a) through 6.2(g), the SRQ channel consumes less

than 5MB of communication buffers.

Memory utilization numbers for benchmarks IS, FT, BT, and SP are shown in Fig-

ures 6.2(a), 6.2(b), 6.2(f), and 6.2(g), respectively. These show an order of magnitude

96

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

16 32 64
 0

 0.5

 1

 1.5

 2

M
e

m
o

ry
 U

s
a

g
e

 (
M

B
)

P
e

rf
o

rm
a

n
c
e

Number of Processes

ARDMA-SR
ARDMA-SRQ

SRQ

ARDMA-SR Performance
ARDMA-SRQ Performance

SRQ Performance

(a) IS Class B

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

16 32 64
 0

 0.5

 1

 1.5

 2

M
e

m
o

ry
 U

s
a

g
e

 (
M

B
)

P
e

rf
o

rm
a

n
c
e

Number of Processes

ARDMA-SR
ARDMA-SRQ

SRQ

ARDMA-SR Performance
ARDMA-SRQ Performance

SRQ Performance

(b) FT Class B

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

16 32 64
 0

 0.5

 1

 1.5

 2

M
e

m
o

ry
 U

s
a

g
e

 (
M

B
)

P
e

rf
o

rm
a

n
c
e

Number of Processes

ARDMA-SR
ARDMA-SRQ

SRQ

ARDMA-SR Performance
ARDMA-SRQ Performance

SRQ Performance

(c) CG Class B

 0

 2

 4

 6

 8

 10

 12

16 32 64
 0

 0.5

 1

 1.5

 2

M
e

m
o

ry
 U

s
a

g
e

 (
M

B
)

P
e

rf
o

rm
a

n
c
e

Number of Processes

ARDMA-SR
ARDMA-SRQ

SRQ

ARDMA-SR Performance
ARDMA-SRQ Performance

SRQ Performance

(d) LU Class B

 0

 2

 4

 6

 8

 10

 12

 14

 16

16 32 64
 0

 0.5

 1

 1.5

 2

M
e

m
o

ry
 U

s
a

g
e

 (
M

B
)

P
e

rf
o

rm
a

n
c
e

Number of Processes

ARDMA-SR
ARDMA-SRQ

SRQ

ARDMA-SR Performance
ARDMA-SRQ Performance

SRQ Performance

(e) MG Class B

 0

 10

 20

 30

 40

 50

 60

49 64 81
 0

 0.5

 1

 1.5

 2

M
e

m
o

ry
 U

s
a

g
e

 (
M

B
)

P
e

rf
o

rm
a

n
c
e

Number of Processes

ARDMA-SR
ARDMA-SRQ

SRQ

ARDMA-SR Performance
ARDMA-SRQ Performance

SRQ Performance

(f) BT Class B

 0

 10

 20

 30

 40

 50

 60

49 64 81
 0

 0.5

 1

 1.5

 2

M
e

m
o

ry
 U

s
a

g
e

 (
M

B
)

P
e

rf
o

rm
a

n
c
e

Number of Processes

ARDMA-SR
ARDMA-SRQ

SRQ

ARDMA-SR Performance
ARDMA-SRQ Performance

SRQ Performance

(g) SP Class B

Figure 6.2: Performance of NAS Benchmarks

97

 0

 20

 40

 60

 80

 100

 120

1M256K64K16k4K1K 256 64

%
 M

e
ss

a
g
e
s

B
e
lo

w

Message Size (Bytes)

LU
IS

MG
CG
FT
SP
BT

(a) Percentage messages below a cer-
tain message size

 0

 20

 40

 60

 80

 100

 120

1M256K64K16k4K1K 256 64

%
 M

e
ss

a
g
e
s

B
e
lo

w

Message Size (Bytes)

LU
IS

MG
CG
FT
SP
BT

(b) Percentage Unexpected messages
below a certain message size

 0

 20

 40

 60

 80

 100

 120

1M256K64K16k4K1K 256 64

%
 D

a
ta

 V
o
lu

m
e
 B

e
lo

w

Message Size (Bytes)

LU
IS

MG
CG
FT
SP
BT

(c) Percentage of Data Volume below
a certain message size

Figure 6.3: Network-Level Message and Volume Profile of NAS Benchmarks

improvement (around 10 times for 64 and 81 process executions) in memory usage when

ARDMA-SR is compared with ARDMA-SRQ or SRQ. However, Table 6.1 shows that the

average number of RDMA connections (Section 6.1.1) is in fact not that high. To answer this

apparent contradiction, we examine the message and volume profile graphs in Figures 6.3(a)

and 6.3(c). By looking at these graphs, we can make out that these benchmarks do the

major part of their communications using very large messages. As explained in previous

Sections, every large message transfer is associated with several smaller messages. These

smaller messages are never sent over RDMA, rather exclusively use the Send/Receive chan-

nel. In order to transfer these small messages, an increasing number of communication

buffers are allocated for the Send/Receive channel. Once the number of messages over the

Send/Receive channel exceeds a certain amount, a much larger communication buffer set

(64 in number) is required to be allocated per remote process for the Send/Receive channel.

This consumes the most memory and exposes an inherent scalability issue even while using

an adaptive protocol. The other NAS Benchmarks LU, MG, and CG show an improvement

in memory usage as well as seen in Figures 6.2(d), 6.2(e), and 6.2(c). The SRQ channel

98

consumes around half the memory required by ARDMA-SR. The difference in memory usage

between ARDMA-SRQ and SRQ can be explained by the number of processes using RDMA.

For example, in the LU benchmark (for 64 processes), there are on an average 3.92 RDMA

connections. According to default MVAPICH 0.9.7 parameters, each RDMA connection

utilizes around 500KB of memory, so analytically, the difference in memory usage between

ARDMA-SRQ and SRQ should be (500 ∗ 3.92)/1024 MB = 1.9 MB. From Figure 6.2(d), we

can observe that the memory usage difference is indeed around 2MB for 64 processes.

SuperLU is a general purpose library for the solution of large systems of linear equations

on high performance machines [46]. SuperLU is offered in three different versions: sequential,

multi-threaded (for shared memory machines), and an MPI version to be used on distributed

memory machines. We used the MPI version, called SuperLU DIST [23] that contains a

set of subroutines to solve a sparse linear system A ∗ X = B. Currently, the program

SuperLU DIST parallelizes the LU factorization and triangular solution routines, which are

the most time consuming.

The communication characteristics of SuperLU have been studied previously by Shalf,

et al [40]. It has a variety of MPI calls which are predominantly MPI Isend, MPI Irecv,

MPI Wait, MPI Bcast, and MPI Alltoall. There are various data sets available for Su-

perLU DIST. In our experiments, we have used garon2.rua and rim.rua from [12].

As seen in Figure 6.5(a), 94.99% of messages are less than 2KB for the garon2 data set

and 94.33% for the rim data set. While most messages are of small size, Figure 6.5(c) shows

a few large messages that comprise most of the data volume.

Figures 6.4(a) and 6.4(b) show the performance and memory usage observed from our

internal library profiling. As in the case of the NAS Benchmarks, the results indicate the

ability of the SRQ channel to provide near-identical performance with significantly lower

99

garon2 rim
Processes 16 32 64 16 32 64

Avg. RDMA Connections 12.44 25.75 40.25 7.25 12.06 14.25
Avg. Low-Watermark events 1.56 0.06 0.12 1.56 0.66 0.64
Unexpected Messages (%) 33.5 22.0 31.6 29.4 24.2 30.0

Total Messages 2.9e5 4.8e5 7.5e5 3.8e5 7.4e5 1.1e6

Table 6.2: Profiling Results for SuperLU

allocation of communication buffers. In the case of the garon2 data set, usage remains

roughly constant between the range of 7 to 9MB. Interestingly, with both data sets the

memory usage for the SRQ design per process is higher for 16 processes than 32 or 64. From

Table 6.2, we observe that using 16 processes, the average number of “low-watermark” events

(when SRQ buffers are low) is approximately 1.5, while 32 and 64 processes have significantly

lower values.

This result suggests a communication pattern with significant bursts of unexpected mes-

sages and additionally that these bursts occur less frequently with a larger number of pro-

cesses. These significant traffic bursts wake a thread to post additional buffers to the shared

received queue, increasing the overall memory usage.

The benefits of the SRQ Eager protocol design are most prominent at a process group

size of 64. We observe from Figures 6.4(a) and 6.4(b) that the communication buffer memory

usage for garon2 is nearly an order of magnitude less than the ARDMA design, yet maintains

the same level of performance. The SRQ results for the rim data set yield similar results, with

a 9 and 4 times improvement over the ARDMA-SR and ARDMA-SRQ designs, respectively,

with near-identical performance. Most importantly, our evaluation shows a near-constant

memory usage per process, regardless of the process group size.

100

 0

 10

 20

 30

 40

 50

 60

 70

16 32 64
 0

 0.5

 1

 1.5

 2

M
em

or
y

U
sa

ge
 (

M
B

)

P
er

fo
rm

an
ce

Number of Processes

ARDMA-SR
ARDMA-SRQ

SRQ

ARDMA-SR Performance
ARDMA-SRQ Performance

SRQ Performance

(a) garon2

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

16 32 64
 0

 0.5

 1

 1.5

 2

M
em

or
y

U
sa

ge
 (

M
B

)

P
er

fo
rm

an
ce

Number of Processes

ARDMA-SR
ARDMA-SRQ

SRQ

ARDMA-SR Performance
ARDMA-SRQ Performance

SRQ Performance

(b) rim

Figure 6.4: Memory Usage and Performance of SuperLU

 0

 20

 40

 60

 80

 100

 120

1M256K64K16K4K1K25664

%
 M

e
ss

a
g
e
s

B
e
lo

w

Message Size (Bytes)

garon2
rim

(a) Percentage messages below a cer-
tain message size

 0

 20

 40

 60

 80

 100

 120

1M256K64K16K4K1K25664

%
 M

e
ss

a
g
e
s

B
e
lo

w

Message Size (Bytes)

garon2
rim

(b) Percentage Unexpected messages
below a certain message size

 0

 20

 40

 60

 80

 100

 120

1M256K64K16K4K1K25664

%
 D

a
ta

 V
o
lu

m
e
 B

e
lo

w

Message Size (Bytes)

garon2
rim

(c) Percentage of Data Volume below
a certain message size

Figure 6.5: Network-Level Message and Volume Profile of SuperLU Datasets

101

6.3.2 NAMD

NAMD is a fully featured, production molecular dynamics program for high performance

simulation of large biomolecular systems [37]. NAMD is based on Charm++ parallel objects,

which is a machine independent parallel programming system. Of the various data sets

available with NAMD, we use the one called apoa1, which models a bloodstream lipoprotein

particle.

The communication characteristics, as reported by mpiP, show the calls are primarily to

MPI Isend, MPI Send, MPI Recv, and MPI Barrier. Our profile of the messages sent by the

MPI library show 50% are under 128 bytes and the remaining 50% are between 128 and 32K

bytes.

 0

 20

 40

 60

 80

 100

 120

1M256K64K16K4K1K25664

%
 M

e
ss

a
g
e
s

B
e
lo

w

Message Size (Bytes)

apoa1

(a) Percentage messages below a cer-
tain message size

 0

 20

 40

 60

 80

 100

 120

1M256K64K16K4K1K25664

%
 M

e
ss

a
g
e
s

B
e
lo

w

Message Size (Bytes)

apoa1

(b) Percentage Unexpected messages
below a certain message size

 0

 20

 40

 60

 80

 100

 120

1M256K64K16K4K1K25664

%
 D

a
ta

 V
o
lu

m
e
 B

e
lo

w

Message Size (Bytes)

apoa1

(c) Percentage of Data Volume below
a certain message size

Figure 6.6: Network-Level Message and Volume Profile of NAMD Datasets

In Figure 6.7 we observe the same trends in performance and memory usage as in previous

applications. For a process group size of 16 the SRQ design uses on average 6.1MB of memory

and drops to 5.5MB and 5.2MB for the 32 and 64 process groups. As in SuperLU, we see the

102

ability of the SRQ Eager protocol design to consume less memory with larger process groups

due to a more balanced application communication pattern between all nodes. However,

even with patterns with short bursts of unexpected traffic, such as the 16 process run, we

observe a 50% improvement in memory usage over both of the ARDMA designs.

 0

 10

 20

 30

 40

 50

 60

 70

16 32 64
 0

 0.5

 1

 1.5

 2

M
em

or
y

U
sa

ge
 (

M
B

)

P
er

fo
rm

an
ce

Number of Processes

ARDMA-SR
ARDMA-SRQ

SRQ

ARDMA-SR Performance
ARDMA-SRQ Performance

SRQ Performance

Figure 6.7: Performance of NAMD (apoa1)

In contrast, the communication buffer usage in the ARDMA-SR design scales linearly

with the number of processes. Table 6.1 shows one of the reasons for this scale. The

number of RDMA connections also scales linearly with the number of processes due to a

balanced communication pattern. This pattern triggers the creation of an RDMA channel

after communicating a set number of messages, as discussed in Section 6.1.1. For 64 processes,

our evaluation shows an average of 53.15 RDMA connections. The ARDMA-SRQ design also

shows a significant increase over the SRQ design in memory usage due to RDMA channels.

The difference in memory usage between the SRQ and ARDMA-SRQ designs is 28MB,

which matches our previous model of the RDMA channel overhead: (RDMA Connections ×

500KB) = 53.15 Connections ×500KB = 26.6MB.

103

6.3.3 High Performance Linpack (HPL)

High Performance Linpack (HPL) is benchmark based on solving systems of linear equa-

tions [2]. It is used as the primary measure for ranking a bi-annual Top 500 list [45] of the

world’s fastest supercomputers.

The communication pattern, as recorded by mpiP, shows the calls are primarily to

MPI Recv, MPI Send, and MPI Irecv. Figure 6.8 shows the performance and communica-

tion buffer memory usage observed for 16, 32, and 64 process runs of HPL. We once again

see a relatively constant rate of performance for all of the Eager design schemes. The SRQ

channel, however, is able to use a constant communication buffer size of less than 5MB for

all evaluated process sizes. Figure 6.9 shows the results of our profiling of the messages sent

by the MPI library. We observe that while 50% of the messages are under 128 bytes, most

of these are control messages for the larger application-level messages.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

16 32 64
 0

 0.5

 1

 1.5

 2

M
em

or
y

U
sa

ge
 (

M
B

)

P
er

fo
rm

an
ce

Number of Processes

ARDMA-SR
ARDMA-SRQ

SRQ

ARDMA-SR Performance
ARDMA-SRQ Performance

SRQ Performance

Figure 6.8: Performance of HPL

104

Referring to Table 6.1 we can see that for 64 processes, on average, only 6.26 RDMA

connections are established. This result explains the approximately 3.5MB difference be-

tween the ARDMA-SRQ and SRQ designs; our model relating to RDMA channel memory

requirements from other sections holds here as well. There is also a marked increase in the

memory usage between the ARDMA-SRQ and ARDMA-SR designs of nearly 35MB for 64

processes. Although Figure 6.9 shows that many messages sent are of medium size, there

are also a significant number of larger messages. As discussed earlier, even large messages

require smaller control messages to be sent over the Send/Receive channel. When many of

these smaller messages are transferred, an increasing number of communication buffers must

be allocated on a per connection basis in the ARDMA-SR design, raising the memory usage

of the MPI library.

 0

 20

 40

 60

 80

 100

 120

1M256K64K16K4K1K25664

%
 M

es
sa

ge
s

B
el

ow

Message Size (Bytes)

HPL

Figure 6.9: Message Size Distribution for HPL

6.3.4 Scalability Analysis

In this section, we combine some of the results obtained by the evaluation of the various

applications and benchmarks in order to observe the scalability of the SRQ channel.

105

We observe from Tables 6.1 and 6.2, that only NAMD and SLU applications have Low-

Watermark events. These events are caused when the SRQ channel is running low on avail-

able receive buffers. After each Low-Watermark event occurs, previously unused receive

buffers can be made available to the network, or more receive buffers may be allocated

if required. This is expected, since both SLU and NAMD have a predominantly small

messages which end up utilizing communication buffers. Figure 6.10 shows the number of

Low-Watermark events for both these applications as the number of processes increases.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 16 32 64

A
vg

. L
ow

-W
at

er
m

ar
k

E
ve

nt
s

Number of Processes

NAMD
SLU.garon2

SLU.rim

Figure 6.10: Avg. Low-Watermark Events

The results indicate an interesting trend – that the average number of interrupts actually

decreases as the system size increases. This implies, that given these application charac-

teristics, as the system size increases, it is expected that no more dynamically allocated

communication memory is required. This trend also explains why addition of more buffers,

as in the case of ARDMA-SR and ARDMA-SRQ does not lead to any “extra” improvement

in application performance. This is because the amount of communication memory allocated

at startup, is almost sufficient for the entire application run and the SRQ channel is able

106

to effectively utilize them. Thus, the SRQ channel is expected to achieve a high degree of

memory-scalability while providing excellent performance on even larger system sizes.

6.4 Summary

As InfiniBand gains popularity and is included in increasingly larger clusters, having a

scalable MPI library is imperative. Through our evaluation of the NAS Parallel Benchmarks,

SuperLU, NAMD, and HPL, we have explored the impact of reduction of communication

memory on the performance. We have shown that all of the schemes in MVAPICH are able

to attain near-identical performance on a variety of applications. Our evaluation showed that

the latest SRQ design of MVAPICH is able to use a constant amount of internal memory

per process with optimal performance, regardless of the number of processes, an order of

magnitude lesser than other Eager protocol designs of MVAPICH. In our experiments, only

5-10MB of communication memory was required by the SRQ design to attain the best

recorded performance level achievable with MVAPICH.

107

CHAPTER 7

OPTIMIZING MPI APPLICATIONS: A CASE STUDY WITH
TWO HPCC BENCHMARKS

The field of parallel computing is rapidly evolving with many different types of parallel

architectures emerging. Evaluation of these architectures is a very big challenge for the

entire High-Performance Computing (HPC) community. Without a thorough evaluation,

the community cannot decide which architectural changes are worthwhile and which are not

desirable. In order to answer this challenge, DARPA [5] has constituted a HPC Challenge

program with the competition based on several benchmarks. These benchmarks are available

from the Innovative Computing Labs at University of Tennessee in the form of the HPCC

Benchmark Suite [18].

As we have seen in the previous Chapters, the MPI design parameters can have a sig-

nificant impact on the performance characteristics of end applications. Moreover, some of

the MPI optimizations leverage certain network strengths. However, in order to maximize

application performance, leveraging modern network features, the design of the communica-

tion sections of MPI applications should be revisited. In this Chapter, we will demonstrate

our optimizations to the communication section of two well known HPCC Benchmarks,

namely, High-Performance Linpack (HPL) and RandomAccess. HPL is designed to expose

108

the maximum computation power of a distributed memory computer, whereas RandomAc-

cess is designed to test the maximal memory and network latency. Since the benchmarks

are well studied and very popular in the HPC community, modifying them to achieve better

performance gives a strong use case to application developers who can then identify similar

communication patterns in their applications and modify them accordingly to improve per-

formance. Evaluation of our modifications reveal that performance of HPL can be improved

by around 10% and performance of RandomAccess can be improved by 10x on our cluster

with 512 processes.

The rest of the Chapter is organized as follows. In Section 7.1, we provide an overview

of the HPCC benchmarks studied in this Chapter. In Section 7.2, we describe the relevant

MPI optimizations from the previous chapters and their implications to end MPI application

design. Then, in Section 7.3, we discuss in detail our modifications to the two benchmarks.

In Section 7.4 we present the results of our performance evaluation and finally in Section 7.5

we conclude this Chapter.

7.1 Overview of HPCC Benchmarks

In this section, we provide an overview of the two HPCC benchmarks, HPL and Ran-

domAccess. In particular, we are interested in the communication characteristics of these

benchmarks.

7.1.1 Overview of HPL Benchmark

The HPL Benchmark [2] aims to measure the “peak” computational power of a dis-

tributed memory computer. The benchmark solves a linear system Ax = B, by performing

LU decomposition. The matrices are distributed onto a two-dimensional P-by-Q grid of pro-

cesses according to the block-cyclic scheme to achieve good load balancing. In this work, we

109

will focus on the communication pattern exhibited by HPL. At every iteration, a “panel” is

factorized by every process in a column and then broadcasted along the row to other panels.

This broadcast is not done using MPI Bcast. In MPI Bcast, all the processes (with exception

of the root) need to wait for incoming message before proceeding. HPL tries to optimize

the broadcast, by doing it in a non-blocking fashion. In every step, a process along the row

sends a message. The next process in the row proceeds with computation as normal and

occasionally calls HPL bcast. HPL bcast looks for incoming messages and if the message has

arrived forwards it along the row to the next process. An example of this process is seen

in Figure 7.1. There are several variation of this algorithm where the root may send two

messages, divide the message, and so on. However, all the algorithms have the same basic

structure, non-blocking poll for incoming messages and forward message on to next process

in the row. In all the variations of the algorithm the process sending the message uses a

blocking MPI Send call, whereas the receiving processes use MPI Iprobe to look for incoming

messages. When the message has arrived, they call MPI Recv to receive the message. De-

pending on whether they are the last process or not, they forward it again using MPI Send.

Thus, HPL implements overlap of computation and communication on the receiver side, but

not on the sender side (where it uses blocking MPI calls).

1 2 3 4 5 6

Figure 7.1: HPL Broadcast Algorithm

110

7.1.2 Overview of RandomAccess Benchmark

The RandomAccess benchmark [18] is an attempt to categorize system performance based

on the rate at which random memory locations can be updated. The benchmark is moti-

vated from the point of view of improving overall system performance, where the pattern of

memory accesses is unpredictable. This characteristic is believed to be representative of end

application performance and development time. It is also an attempt to capture the grow-

ing gap between CPU performance, which has been exponentially increasing as per Moore’s

Law [14], and the slower rate of growth in memory speeds; commonly this phenomenon is

known as the “Memory Wall”.

The RandomAccess benchmark requires only one parameter, n, such that,

n ≤ log2(TotalMem/2). Where, TotalMem is the total memory available in the system in

bytes. The benchmark, then allocates a table T of size 2n, which is distributed uniformly

across the entire system. The benchmark then generates a random sequence of 64-bit in-

tegers. These numbers are generated using a primitive polynomial x63 + x2 + x + 1 over

GF(2). GF(2) is simply the binary digits, 0 and 1. For each random number a[i], the lower

(N − 1) bits, where N is the total number of processes, is used to index into T , say T [j].

Then the value at T [j] is updated to T [j] = T [j] XOR a[i]. In the case T [j] belongs to a

remote process R, the random number a[i] is sent to R and then R applies the update. Thus,

random update to a random memory location is performed.

The benchmark rules permit buffering up to 1024 updates. This “look-ahead” is permit-

ted to enable some amount of pipelining. Each update is inserted into a “bucket” before

being sent out. Once the limit of 1024 updates is reached, the bucket containing the largest

number of updates is sent out, followed by next largest, and so on. When a process receives

a packet, it applies all the updates present in the packet. The entire series of updates is

111

generated and applied by all the processes, and finally a GUPS (Giga Updates Per Second)

metric is calculated. This is the final score which is reported by the benchmark.

Since the RandomAccess benchmark sends messages to almost all the remote processes

and the messages are very small, the performance of this benchmark might be highly depen-

dent upon the implementation of the Eager Protocol and communication buffer management

in MPI libraries. In particular, the more short messages a network and MPI library can han-

dle at a given point, the better the performance on this benchmark.

7.2 Overview of MPI Library Optimizations

In this section, we discuss the relevant MPI optimizations for this work. Based on these

optimizations, the HPCC benchmarks may be modified to take the maximum advantage.

7.2.1 Optimizations for Computation/Communication Overlap

As we discussed in Chapter 2, we have redesigned the MPI Rendezvous Protocol to take

better advantage of the InfiniBand RDMA Read capability. Using this new protocol, we can

achieve nearly complete computation and communication overlap. But in order to leverage

this capability, the MPI application needs to make use non-blocking MPI communication

calls, namely MPI Isend and MPI Irecv. If the MPI application uses blocking calls, then by

the very semantics there is no potential for computation and communication overlap.

7.2.2 Optimizations to Communication Buffer Management

In Chapter 5 we discussed our new design of communication buffer management tech-

nique using InfiniBand Shared Receive Queues. Using this mechanism, there is no need for

dedicating per process buffers to store in-coming messages. Instead, a shared queue is pro-

vided which is directly used by the hardware to place messages in FIFO order. In addition to

112

the change in the buffering mechanism, the flow control method also has been redesigned. In

the new method, the flow control is invoked in a reactive manner. There is no pre-set limit of

how many messages a process can send to its remote partners. Rather, based on how many

messages are arriving, the receiver may decide to allocate more buffers. If the receiver has

no more buffers, the InfiniBand Hardware will back off gracefully and not flood the receiver

with more messages. This reactive method contrasted with the proactive method that is

usually employed by the per process based buffer management techniques (i.e. those using

InfiniBand Send/Receive channel, not Shared Receive Queue). In the proactive method,

if there are no dedicated buffers at the remote end, then even small messages fall back to

the Rendezvous Protocol, which makes progress only when the receiving application posts

a receive. This ruins computation and communication overlap and also inserts several more

steps during the communication process.

7.3 Modifications to HPCC Benchmarks

In this Section, we describe the modifications to the HPCC benchmarks. These modi-

fications are made specifically to leverage the MPI library optimizations mentioned in the

previous Section.

7.3.1 Modifications to HPL

The HPL benchmark typically uses large messages in the HPL bcast communication func-

tion. In order to hide network latency, the benchmark is pipelined. “Panels” are factorized

and they need to be broadcasted along the row of the P-by-Q grid. The benchmark starts

the broadcast and continues to factorize the next panel. By calling HPL bcast in between

computations, progress is achieved on the discovery and forwarding of messages. However,

as mentioned in Section 7.1.1, the benchmark uses MPI Send, which is a blocking call. Thus,

113

even though, the underlying Rendezvous protocol is based on Read semantics, the sender is

effectively blocked waiting for the receiver to arrive and accept the message.

Our modifications are to the HPL bcast function which replaces the blocking MPI Send

call with MPI Isend. With our modifications, every time the sending process calls HPL bcast,

a corresponding MPI Test is issued which checks to see if the message has been sent or not. If

the message send is complete, it returns HPL SUCCESS, otherwise it returns HPL KEEP TESTING.

As long as the result is HPL KEEP TESTING, the benchmark returns to computation and calls

HPL bcast after periodic intervals. Using this method, we can effectively leverage the RDMA

Read semantics. The sending process can continue computing, as the network-interface on

the remote side takes the responsibility of transferring the message. Thus, using this modi-

fication to HPL, we aim to improve the computation and communication overlap ratio.

7.3.2 Modifications to RandomAccess

The RandomAccess benchmark generates 64-bit updates for a table that is distributed

across all the processes. Based on where the updates are applicable, processes send messages

with the updates and receiving processes apply them. The updates are generated randomly

and are expected to be distributed all over the table. The benchmark allows up to 1024

updates to be buffered. As the system size increases, however, the 1024 updates are scattered

more and more throughout the cluster. This leads to making this benchmark being very

sensitive regarding small message latency and concurrency offered by the network.

In the default implementation of the benchmark, there are very conservative assumptions

regarding the concurrency offered by the MPI library and the network. The benchmark

executes the following in a loop. Look for one incoming message, generate an update and

114

buffer, if all 1024 updates are generated – send one message. Profiling this benchmark reveals

that a huge amount of time around 60% is spent just looking for incoming messages.

Our modifications to the benchmark allow for it to generate the full 1024 updates, disperse

the updates and then start looking for messages. In this manner, we intend to make full use of

the concurrency of the network. We have use MPI Isend to send the messages, used multiple

MPI Irecv operations to look for messages incoming from any source and with any tag.

As long as the underlying network and library can support high rate of outgoing/incoming

messages, our version of the benchmark should achieve much higher GUPS rates.

7.4 Performance Results

In this section we present the performance results with our modifications to the HPL and

RandomAccess benchmarks. The system used for the performance evaluation is described

as follows.

Experimental Platform

Our cluster consists of 64 nodes connected with Mellanox InfiniHost III DDR network-

interfaces. A 144-port Qlogic DDR switch is used to connect all the nodes. Each node is a

dual-quad-core with Intel Clovertown processors running at 2.0GHz. The nodes have Open-

Fabrics version 1.2 InfiniBand access layers installed. For all the evaluations, MVAPICH-

0.9.9 is used as the MPI library. This library has all the optimizations (described in Sec-

tion 7.2). These optimizations can be turned on/off during runtime.

7.4.1 Performance Results for HPL

We perform two different types of experiments with HPL. In the first experiment, we

increase the number of processes while adjusting the HPL problem size (N) to a value such

115

that it will occupy close to 80% of the memory available. In the second experiment, we keep

the number of processes fixed at 512 and vary the problem size. For the purposes of this

experiment, all process distribution is made in a cyclic manner.

Figure 7.2 shows the results of the first experiment. The “Default” legend indicates the

GFlops obtained by running the default version of HPL with the default runtime options

of MVAPICH. The “Optimized” legend indicates the modified version of HPL which is run

with MVAPICH runtime option VIADEV RNDV PROTOCOL=RGET. This option turns on RDMA

Read support in MVAPICH. We observe from the results that the modifications have a

strong impact on overall performance as the number of processes increase. Especially, at 512

processes, we can see an improvement of around 10%.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 32 64 128 256 512

G
ig

aF
lo

ps

Number of Processes

Default
Optimized

Figure 7.2: HPL Results with increasing number of processes

Figure 7.3 shows the results of the second experiment, conducted on 512 processes while

increasing the problem size. The legend is as explained above. From these results, we observe

116

that the benefit offered by our benchmark modifications and MPI library optimization is

nearly constant at around 10% as the problem size increases.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 8192 16384 32768 65536 131072

G
ig

aF
lo

ps

Problem Size (N)

Default
Optimized

Figure 7.3: HPL Results on 512 processes with increasing problem size

7.4.2 Performance Results for RandomAccess

In this section, we provide the results of the RandomAccess optimizations. The experi-

ments are strong scaling in nature. We choose 226 as the default global table size for various

number of processes. We have three legends in the following results. The “Default” legend

indicates the standard RandomAccess benchmark run with default MVAPICH parameters.

The “Optimized-SR” legend indicates the optimized version of the benchmark, run with

the InfiniBand send/receive mode. Finally, the “Optimized-SRQ” indicates the optimized

version of the benchmark, run with Shared Receive Queues.

Figure 7.4 shows the results obtained. We distribute the results by the number of pro-

cesses used on each node. From Figures 7.4(a) to 7.4(d), we can observe that the GUPS

117

rate is significantly enhanced by our optimized version of the benchmark, up to 10x. This

is a testament to the fact that modern networks can support very high concurrency and

many outstanding small messages. More importantly, we observe that with the Shared Re-

ceive Queue mode, the performance is sustained at a higher level even when the number

of processes increases up to 256, as per Figure 7.4(d). This is because, with Send/Receive,

the number of credits, as per the point-to-point proactive flow control diminishes, all the

small messages are in-turn sent over the Rendezvous Protocol. The version using Shared

Receive Queues, however does not face this problem because of the reactive flow control

methods. Communication buffers are used only as per the messages coming in and no reser-

vation is made per remote process. Thus, even though the “Optimized-SR” provides much

better performance than the “Default” run of the code, it does not perform as well as the

“Optimized-SRQ”.

7.5 Summary

In this Chapter, we demonstrated that by revisiting the design of end MPI applications,

we can gain significant performance improvement. The communication patterns of these

applications and benchmarks need to be studied and modified to take the most advantage

out of modern networks and their capabilities. As we had seen in the previous Chapters,

the MPI design parameters can have a significant impact on the performance characteristics

of end applications. With the coupling of the application modifications with optimized MPI

library design, we can improve overall performance significantly. In this Chapter, we modified

two well known benchmarks, namely, High-Performance Linpack (HPL) and RandomAccess.

Our modifications coupled with optimized runtime parameters could boost the performance

118

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 2 4 8 16 32

G
U

P
S

Number of Processes (x1)

Default
Optimized-SR

Optimized-SRQ

(a) One process per node

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 4 8 16 32 64

G
U

P
S

Number of Processes (x2)

Default
Optimized-SR

Optimized-SRQ

(b) Two processes per node

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 8 16 32 64 128

G
U

P
S

Number of Processes (x4)

Default
Optimized-SR

Optimized-SRQ

(c) Four processes per node

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 16 32 64 128 256

G
U

P
S

Number of Processes (x8)

Default
Optimized-SR

Optimized-SRQ

(d) Eight processes per node

Figure 7.4: Performance of RandomAccess Benchmark

119

of HPL by around 10% and the performance of RandomAccess by around 10x on our cluster

using 512 processes.

120

CHAPTER 8

OPEN SOURCE SOFTWARE RELEASE AND ITS IMPACT

The work described in this dissertation has been incorporated into our MVAPICH soft-

ware package and is distributed in an open-source manner. The duration of this work has

spanned several release versions of this package, from version 0.9.2 to 0.9.9 (current). Some

additional enhancements may also be included in upcoming version 1.0.

MVAPICH supports many software interfaces, OpenFabrics [35], uDAPL [11], and VAPI [28].

Most of the work described in this dissertation is geared towards the OpenFabrics interface.

MVAPICH also supports 10GigE networks through iWARP support which is integrated in

the OpenFabrics software package. In addition, any network which implements the network

independent uDAPL interface may make use of MVAPICH. Further, MVAPICH supports a

wide variety of target architectures, like IA32, EM64T, X86 64 and IA64.

Since its release in 2002, more than 520 computing sites and organizations have down-

loaded this software. In addition, nearly every InfiniBand vendor and the Open Source

OpenFabrics stack includes this software in their packages. Our software has been used on

some of the most powerful computers, as ranked by Top500 [45]. Examples from the June

2007 rankings include 15th, 5848-core Dell PowerEdge (Intel EM64T) cluster at Texas Ad-

vanced Computing Center/Univ. of Texas (TACC), 19th, 9216-core Appro Quad Opteron

121

dual Core at Lawrence Livermore National Laboratory and 71st, 2200-processors Apple

Xserve 2.3 GHz cluster at Virginia Tech.

122

CHAPTER 9

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

The research in this dissertation has demonstrated the feasibility of scaling MPI ap-

plications successfully to very large InfiniBand clusters with the aid of employing scalable

techniques inside the MPI library. We have described how we can take advantage of In-

finiBand features such as Shared Receive Queues, RDMA with Gather/Scatter capabilities

and Selective Interrupts in order to design a high-performance MPI library. Our work has

involved designing new MPI protocols, Collective communication mechanisms, Communica-

tion buffer management techniques, Flow control, and lightweight communication profiling

layers.

9.1 Summary of Research Contributions

The research in this dissertation aims towards designing highly scalable and high-performance

MPI over InfiniBand. Several of the best designs from the related publications are already

a part of the MVAPICH software package. MVAPICH is very widely used, including the

largest InfiniBand clusters to-date: Sandia Thunderbird at 8960 processors [39], 9216-core

LLNL Peloton, 5848-core TACC Lonestar cluster and 2200 processor Apple X-serve cluster

at Virginia Tech. The work done in this dissertation will enable applications to execute at

even larger scales and achieve the best performance.

123

We note that several of the ideas developed in this dissertation are in-fact are appli-

cable to other high-performance middleware such as parallel file systems [3], other parallel

programming models [4, 1]. Thus, we foresee that the contribution of this proposal will be

significant for the HPC community. Following is a more detailed summary of the research

presented in this dissertation.

9.1.1 Improving Computation/Communication Overlap

In Chapter 2, we have presented new designs which exploit the RDMA Read and the

capability of generating selective interrupts to implement a high-performance Rendezvous

Protocol. We evaluated in detail the performance improvement offered by the new design

in several different areas of high performance computing. We observed that the new designs

can achieve nearly complete computation and communication overlap. The results indicate

that our designs have a strong positive impact on scalability of parallel applications.

9.1.2 Improving Performance of Collective Operations

In Chapters 3 and 4, we presented new designs to take advantage of the advanced fea-

tures offered by InfiniBand in order to achieve scalable and efficient implementation of the

MPI Alltoall and MPI Allgather collectives. We proposed that the implementation of

collectives be done directly on the InfiniBand Verbs Interface rather than using MPI level

point-to-point functions. We evaluated in detail why collective operations may not be opti-

mally designed over simple MPI Send/Receive calls. Our experimental results and analytical

models enable us to conclude that our new designs are more scalable and efficient than cur-

rent approaches.

124

9.1.3 Scalable Communication Buffer Management Techniques

In Chapter 5, we proposed a novel Shared Receive Queue based Scalable MPI design.

Our designs have been incorporated into MVAPICH which is a widely used MPI library

over InfiniBand. Our design uses low-watermark interrupts to achieve efficient flow control

and utilizes the memory available to the fullest extent, thus dramatically improving the

system scalability. In addition, we also proposed an analytical model to predict the memory

requirement by the MPI library on very large clusters (to the tune of tens-of-thousands of

nodes).

9.1.4 In-Depth Scalability Analysis of MPI Design

As InfiniBand gains popularity and is included in increasingly larger clusters, having a

scalable MPI library is imperative. Through our evaluation of the NAS Parallel Bench-

marks, SuperLU, NAMD, and HPL in Chapter 6, we have explored the impact of reduction

of communication memory on the performance. We have shown that all of the schemes in

MVAPICH are able to attain near-identical performance on a variety of applications. Our

evaluation showed that the latest SRQ design of MVAPICH is able to use a constant amount

of internal memory per process with optimal performance, regardless of the number of pro-

cesses, an order of magnitude lesser than other Eager protocol designs of MVAPICH. In our

experiments, only 5-10MB of communication memory was required by the SRQ design to

attain the best recorded performance level achievable with MVAPICH.

9.1.5 Optimizing end MPI Applications/Benchmarks

In Chapter 7, we demonstrated that by revisiting the design of end MPI applications,

we can gain significant performance improvement. The communication patterns of these

applications and benchmarks need to be studied and modified to take the most advantage

125

out of modern networks and their capabilities. The MPI design parameters can have a

significant impact on the performance characteristics of end applications. With the coupling

of the application modifications with optimized MPI library design, we can improve overall

performance significantly.

9.2 Future Research Directions

The high-performance and rich features offered by InfiniBand make it a very attractive

interconnect for large scale system design. In this dissertation, we have shown the methods

one can employ to design a highly scalable MPI communication library over InfiniBand.

However, there are several interesting research topics that are still left to be explored.

Next-Generation Programming Models – One of the challenges to PetaScale com-

puting is programmer productivity. It has been a widely held view that although MPI allows

development of very scalable and high-performance applications, it requires a huge amount

of effort from the part of the programmer. In this regard, DARPA HPCS [10] has initiated a

challenge to come up with next generation programming models which allow much more eas-

ier programming from application developers. Examples of these are X10 [16], Fortress [41]

and Chapel [9]. While boosting programmer productivity, close attention should be paid to

performance. Techniques developed in this dissertation could find applications in the run-

time environments of these new languages. In addition, newer techniques may be designed

according to the specific features offered by these languages.

Reliable Datagram – The Reliable connection mode has so far scaled to tens-of-

thousands of nodes. However, the technique is expected to hit a bottleneck when ultra-

scale clusters are being designed. The very nature of reserving resources (by establishing

connections) before actual communication takes place, is not extremely scalable. This has

126

spurred research in using the Unreliable Datagram in MPI libraries [21, 22]. The results are

very encouraging, and indicate that using datagrams, not only can MPI libraries scale to

hundreds-of-thousands of nodes, but also the performance penalty can be reduced. While

this is encouraging, using unreliable mode of communication places an onerous task on the

programmers of communication libraries. It is a huge challenge to add reliability to all

communication libraries. Also, relying on reliability at the host layer can add several more

issues, like making progress on dropped packets. InfiniBand has a feature called “Reliable

Datagram” which allows the network-interface to provide a datagram interface, but also

take care of reliability. Unfortunately, no InfiniBand vendor has implemented this interface,

citing a not-so-optimal specification. There is a huge scope of doing research in this area and

addressing the short comings of InfiniBand Reliable Datagram and enabling next generation

clusters to scale to hundreds and thousands of nodes.

Leveraging upcoming QoS features of InfiniBand – The next-generation InfiniBand

has several new features pertaining to Quality of Service. ConnectX [29] Architecture, a

new offering from Mellanox Technologies offers several new features. It is now possible to

identify communication channels as, low latency, high bandwidth, best effort, etc. These

new features when coupled with MPI library support and integration with job schedulers

will provide excellent manageability capabilities to very large scale clusters.

127

BIBLIOGRAPHY

[1] Aggregate Remote Memory Copy Interface. http://www.emsl.pnl.gov/docs/parsoft/armci/.

[2] HPL - A Portable Implementation of the High-Performance Linpack Benchmark for

Distributed-Memory Computers. http://www.netlib.org/benchmark/hpl/.

[3] Parallel Virtual File System. http://www.pvfs.org.

[4] Unified Parallel C. http://upc.lbl.gov.

[5] The Defense Advanced Research Projects Agency. The Defense Advanced Research
Projects Agency. http://www.darpa.mil/.

[6] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, D. Dagum, R. A.
Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakr-

ishnan, and S. K. Weeratunga. The NAS parallel benchmarks. volume 5, pages 63–73,
Fall 1991.

[7] N. J. Boden, D. Cohen, et al. Myrinet: A Gigabit-per-Second Local Area Network.
IEEE Micro, pages 29–35, Feb 1995.

[8] J. Bruck, C.-T. Ho, S. Kipnis, E. Upfal, and D. Weathersby. Efficient Algorithms for
All-to-All Communications in Multiport Message-Passing Systems. IEEE Transactions

in Parallel and Distributed Systems, 8(11):1143–1156, November 1997.

[9] Cray, Inc. Chapel Programming Language. http://chapel.cs.washington.edu/.

[10] DARPA. High Productivity Computer Systems. http://www.highproductivity.org/.

[11] DAT Collaborative. Direct Access Transport Layer.
http://www.datcollaborative.org/udapl.html.

[12] T. Davis. University of Florida Sparse Matrix Collection.
http://www.cise.ufl.edu/research/sparse/matrices.

128

[13] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Dongarra,
Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew Lums-

daine, Ralph H. Castain, David J. Daniel, Richard L. Graham, and Timothy S. Woodall.
Open MPI: Goals, concept, and design of a next generation MPI implementation. In

Proceedings, 11th European PVM/MPI Users’ Group Meeting, pages 97–104, Budapest,
Hungary, September 2004.

[14] Gordon Moore. Moore’s Law. http://www.intel.com/technology/mooreslaw/index.htm.

[15] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-Performance, Portable Imple-

mentation of the MPI, Message Passing Interface Standard. Technical report, Argonne
National Laboratory and Mississippi State University.

[16] IBM. The X10 Programming Language. http://www.research.ibm.com/x10/.

[17] InfiniBand Trade Association. InfiniBand Trade Association.
http://www.infinibandta.com.

[18] University of Tennessee Innovative Computing Laboratory. HPC Challenge Benchmark
Suite. http://icl.cs.utk.edu/hpcc/index.html.

[19] Intel Corporation. The Intel Math Kernel Library.
http://www.intel.com/cd/software/products/asmo-na/eng/perflib/mkl/index.htm.

[20] J. Vetter and C. Chambreau. mpiP: Lightweight, Scalable MPI Profiling.
http://www.llnl.gov/CASC/mpip/.

[21] M. Koop, S. Sur, Q. Gao, and D. K. Panda. High Performance MPI Design using
Unreliable Datagram for Ultra-Scale InfiniBand Clusters. In Int’l ACM Conference on

Supercomputing, June 2007.

[22] M. Koop, S. Sur, and D. K. Panda. Zero-Copy Protocol for MPI using InfiniBand
Unreliable Datagram. In IEEE Int’l Conference on Cluster Computing (Cluster), 2007.

[23] X. Li and J. Demmel. SuperLU DIST: A scalable distributed-memory sparse direct
solver for unsymmetric linear systems. ACM Trans. Mathematical Software, 29(2):110

– 140, 2003.

[24] J. Liu. Designing High Performance and Scalable MPI over InfiniBand. PhD disser-

tation, The Ohio State University, Department of Computer Science and Engineering,
September 2004.

[25] J. Liu and D. K. Panda. Implementing Efficient and Scalable Flow Control Schemes in
MPI over InfiniBand. In Workshop on Communication Architecture for Clusters (CAC)

held in conjunction with IPDPS, 2004.

129

[26] J. Liu, J. Wu, , and D. K. Panda. High performance RDMA-based MPI implementation
over InfiniBand. Int’l Journal of Parallel Programming, 32(3), June 2004.

[27] MCS, Argonne National Laboratory. MPICH2. http://www-
unix.mcs.anl.gov/mpi/mpich2/.

[28] Mellanox. Verbs Application Programming Interface (VAPI).
http://www.mellanox.com.

[29] Mellanox Technologies. ConnectX Architecture. http://www.mellanox.com/products/
connectx architecture.php.

[30] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard, Mar
1994.

[31] Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing Interface,
Jul 1997.

[32] Myricom. Myrinet. http://www.myri.com/.

[33] Myricom Inc. Portable MPI Model Implementation over GM, March 2004.

[34] Network-Based Computing Laboratory. MVAPICH: MPI for InfiniBand.
http://nowlab.cse.ohio-state.edu/projects/mpi-iba.

[35] OpenFabrics Alliance. OpenFabrics. http://www.openfabrics.org/, April 2006.

[36] Fabrizio Petrini, Wu chun Feng, Adolfy Hoisie, Salvador Coll, and Eitan Frachten-

berg. The Quadrics Network: High Performance Clustering Technology. IEEE Micro,
22(1):46–57, January-February 2002.

[37] J. C. Phillips, G. Zheng, S. Kumar, and L. V. Kale. NAMD: Biomolecular Simulation

on Thousands of Processors. In Supercomputing, 2002.

[38] Quadrics. MPICH-QsNet. http://www.quadrics.com.

[39] Sandia National Laboratories. Thunderbird Linux Cluster.
http://www.cs.sandia.gov/platforms/Thunderbird.html.

[40] J. Shalf, S. Kamil, L. Oliker, and David Skinner. Analyzing UltraScale Application
Communication Requirements for a Reconfigurable Hybrid Interconnect. In Supercom-

puting, 2005.

[41] Sun Microsystems. Fortress Programming Language. http://fortress.sunsource.net/.

[42] S. Sur, L. Chai, H.-W. Jin, and D. K. Panda. Shared Receive Queue Based Scalable
MPI Design for InfiniBand Clusters. In International Parallel and Distributed Processing

Symposium (IPDPS), 2006.

130

[43] S. Sur, H.-W. Jin, L. Chai, and D. K. Panda. RDMA Read Based Rendezvous Protocol
for MPI over InfiniBand: Design Alternatives and Benefits. In Symposium on Principles

and Practice of Parallel Programming (PPOPP), 2006.

[44] R. Thakur and W. Gropp. Improving the performance of collective operations in mpich.

In Euro PVM/MPI conference, 2003.

[45] The Top 500 Project. The Top 500. http://www.top500.org/.

[46] Xiaoye Sherry Li, James Demmel, John R. Gilbert. SuperLU.
http://crd.lbl.gov/˜xiaoye/SuperLU/.

131

