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Abstract

Message Passing Interface (MPI) is a popular parallel programming
model for scientific applications. Most high-performance MPI im-
plementations use Rendezvous Protocol for efficient transfer of
large messages. This protocol can be designed using either RDMA
Write or RDMA Read. Usually, this protocol is implemented using
RDMA Write. The RDMA Write based protocol requires a two-
way handshake between the sending and receiving processes. On
the other hand, to achieve low latency, MPI implementations often
provide a polling based progress engine. The two-way handshake
requires the polling progress engine to discover multiple control
messages. This in turn places a restriction on MPI applications that
they should call into the MPI library to make progress. For compute
or 1/O intensive applications, it is not possible to do so. Thus, most
communication progress is made only after the computation or 1/0
is over. This hampers the computation to communication overlap
severely, which can have a detrimental impact on the overall appli-
cation performance. In this paper, we propose several mechanisms
to exploit RDMA Read and selective interrupt based asynchronous
progress to provide better computation/communication overlap on
InfiniBand clusters. Our evaluations reveal that it is possible to
achieve nearly complete computation/communication overlap us-
ing our RDMA Read with Interrupt based Protocol. Additionally,
our schemes yield around 50% better communication progress rate
when computation is overlapped with communication. Further, our
application evaluation with Linpack (HPL) and NAS-SP (Class C)
reveals that MPI_Wait time is reduced by around 30% and 28%,
respectively, for a 32 node InfiniBand cluster. We observe that the
gains obtained in the MPI_Wait time increase as the system size
increases. This indicates that our designs have a strong positive im-
pact on scalability of parallel applications.
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1. Introduction

Cluster based computing systems are becoming popular for a wide
range of scientific applications, owing to their cost-effectiveness.
These systems are typically built from commodity PCs connected
with high speed Local Area Networks (LANS) or System Area Net-
works (SANs). MPI [21] is the de-facto standard in writing par-
allel scientific applications which run on these clusters. MPI pro-
vides hoth point-to-point and collective communication semantics.
Of these, point-to-point communications are used very widely. In
fact, most of the implementations of collective communications are
written on top of basic point-to-point communication functions.
Further, many MPI applications [2, 17] use point-to-point commu-
nication with large messages [29, 28]. Thus, a high performance
MPI point-to-point design for large messages is very critical for
such applications.

For transferring large messages, typically a Rendezvous Proto-
col is used. In this protocol, the sender and the receiver negoti-
ate the buffer availability on both sides before the message trans-
fer actually takes place. For achieving high performance message
passing for large messages, it is critical that message copies are
avoided. The Rendezvous Protocol provides a way to achieve zero-
copy message transfer because sender can know the location of the
receiver’s buffer or vice-versa.

Remote Direct Memory Access (RDMA) is a technique by
which a message can be directly placed in a remote node’s memory
thereby avoiding intermediate copies. InfiniBand [11] is an emerg-
ing high-performance interconnect with RDMA capabilities. It can
provide low latencies (around 4 us) and high bandwidth (around
900 MB/s). Remote memory access can be of two types: RDMA
Write, in which the process sending the message buffer can di-
rectly write into the memory of the receiving process; or RDMA
Read, in which the process receiving the message can directly read
from the sending process’ memory into its own. Either of these
RDMA Write or RDMA Read can be utilized to design the Ren-
dezvous Protocol. The design choice of the RDMA semantics has
impact on computation and communication overlap. Many MPI
applications use non-blocking message passing calls in an attempt
to overlap computation and communication [8, 15]. However, most
contemporary MPI implementations are not able to provide true
overlap between computation and communication even with non-
blocking message passing interface. This is usually detrimental to
the performance of these applications.

In this paper, we analyze in detail the design alternatives in im-
plementing the Rendezvous Protocol using the best of these RDMA
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semantics. We propose a set of novel designs to use RDMA Read
or RDMA Read with Interrupt for implementing the Rendezvous
Protocol. Though our design and evaluation has been done on In-
finiBand, we believe that it is applicable to most RDMA capable
high-performance interconnects. To the best of our knowledge, no
other research work proposes an event-driven RDMA Read based
Rendezvous Protocol. In addition, no other research work has thor-
oughly analyzed these design alternatives in the context of compu-
tation/communication overlap and communication progress.

The new designs have been implemented on MVAPICH [23] *
implementation of MPI over InfiniBand. MVVAPICH is an imple-
mentation of the Abstract Device Interface (ADI) for MPICH [10].
MVAPICH is based on MVICH [16]. Compared to the current
RDMA Write based Rendezvous Protocol, the new RDMA Read
based designs have been able to nearly completely overlap compu-
tation and communication. Additionally, our schemes yield around
50% better communication progress rate when computation is
overlapped with communication. Further, our application evalu-
ation with Linpack (HPL) [7] and NAS-SP (Class C) reveals that
MPI_Wait time is reduced by around 30% and 28%, respectively,
on a 32 node InfiniBand cluster.

The rest of the paper is organized as follows: In section 2, we
provide an overview of the InfiniBand Architecture. In section 3,
we provide an overview of the Existing RDMA Write based Ren-
dezvous Protocol and describe its limitations. In section 4, we
outline the design alternatives for the Rendezvous Protocol using
RDMA Read and interrupts. We evaluate the performance of our
new designs in section 5. We discuss the related work in this area
in section 6. Finally in section 7, we conclude this paper and present
future research directions.

2. Overview of Infi niBand Architecture

The InfiniBand Architecture [11] defines a switched network fabric
for interconnecting processing nodes and 1/0 nodes. It provides a
communication and management infrastructure for inter-processor
communication and 1/0. In an InfiniBand network, hosts are con-
nected to the fabric by Host Channel Adapters (HCAS). InfiniBand
uses a queue-based model. A Queue Pair in InfiniBand consists of
two queues: a send queue and a receive queue. The send queue
holds instructions to transmit data and the receive queue holds in-
structions that describe where received data is to be placed. Com-
munication operations are described in the Work Queue Requests
(WQR), or descriptors, and submitted to the work queue. The com-
pletion of WQRs is reported through Completion Queues (CQs).
Once a work queue element is finished, a completion entry is placed
in the associated completion queue. Applications can check the
completion queue to see if any work queue request has been fin-
ished. InfiniBand also supports different classes of transport ser-
vices. In current products, Reliable Connection (RC) service and
Unreliable Datagram (UD) services are supported.

InfiniBand Architecture supports both channel semantics and
memory semantics. In channel semantics, send/receive operations
are used for communication. In memory semantics, InfiniBand pro-
vides Remote Direct Memory Access (RDMA\) operations, includ-
ing RDMA Write and RDMA Read. RDMA operations are one-
sided and do not incur software overhead at the remote side. This
enables true application bypass message passing. The processor
on the machine can continue its computation task without both-
ering about incoming messages. Thus, RDMA can positively im-
pact the computation and communication overlap. Additionally,
RDMA Write operation can gather multiple data segments together

IMVAPICH open-source software is currently used by more than 310
organizations worldwide to extract the performance of emerging InfiniBand
and other RDMA capable networks.

and write all data into a contiguous buffer at the receiver end.
Gather/Scatter features are very useful to transfer noncontiguous
data. The Gather/Scatter facility not only reduces the startup costs,
but also increases network utilization. RDMA Write with Immedi-
ate data is also supported. With Immediate data, a RDMA Write
operation consumes a receive descriptor and then can generate a
completion entry to notify the remote node of the completion of
the RDMA Write operation.

3. RDMA Write Based Rendezvous Protocol and
its Limitations
MPI protocols can be broadly classified into two types:

1. Eager Protocol: In the Eager protocol, the sender process,
eagerly sends the entire message to the receiver. In order to
achieve this, the receiver needs to provide sufficient buffers to
handle incoming messages. This protocol has minimal startup
overheads and is used to implement low latency message pass-
ing for smaller messages.

2. Rendezvous Protocol: The Rendezvous Protocol negotiates
the buffer availability at the receiver side before the message
is actually transferred. This protocol is used for transferring
large messages when the sender is not sure whether the receiver
actually has the buffer space to hold the entire message.

The Rendezvous protocol negotiates the buffer availability at
the receiver side. However, the actual data can be transferred ei-
ther by using Sockets, RDMA Write or RDMA Read. Though
the socket based implementations achieve the greatest portabil-
ity over various networks, it involves several levels of message
copies. Thus, the Rendezvous Protocol based on sockets cannot
achieve good computation and communication overlap. RDMA
Write based approaches can totally eliminate intermediate copies
and efficiently transfer large messages [23, 22, 24]. RDMA Read
based approaches can enable both zero copy and computation and
communication overlap (as will be shown in the following sec-
tions). Rendezvous protocols may also be used in other middleware
such as GASNet [4].

The RDMA Write based protocol is illustrated in Figure 1(a).
The sending process first sends a control message to the receiver
(RNDZ_START). The receiver replies to the sender using another
control message (RNDZ_REPLY). This reply message contains the
receiving application’s buffer information along with the remote
key to access that memory region. The sending process then sends
the large message directly to the receiver’s application buffer by
using RDMA Write (DATA). Finally, the sending process issues
another control message (FIN) which indicates to the receiver that
the message has been placed in the application buffer.

MPI uses a progress engine to discover incoming messages and
to make progress on outstanding sends. To achieve low latency,
the progress engine senses incoming messages by polling various
memory locations. As can be seen in Figure 1(a), the RDMA Write
based Rendezvous Protocol generates multiple control messages
which have to be discovered by the progress engine. Since the
progress engine is polling based, it requires the application to call
into the MPI library.

However, the MPI applications might be busy doing some com-
putational work or 1/0. In this case the applications cannot make
any call into the MPI library. As a result, the message transfer has
to simply wait until the control messages are discovered. This sce-
nario is illustrated in Figure 1(b). The delayed discovery of im-
portant control messages leads to serialization of the computation
and communication operations. As a result, the overlap potential of
computation and communication is severely hampered as shown.
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4. RendezvousProtocol: Design Alternatives

In this section we discuss in detail various design alternatives for
designing a high-performance Rendezvous Protocol. The main is-
sues for designing this high-performance protocol are: computa-
tion/communication overlap and communication progress.

4.1 RDMA Read / RDMA Write: Which is benefi cial?

In this section, we compare RDMA Read and Write as design al-
ternatives and pick the best one of them. We will compare the
two based on parameters like: communication progress, computa-
tion/communication overlap, number of 1/0 bus transactions, etc.

Typically, small messages are sent over Eager Protocol (which
is copy-based) and larger messages are set over Rendezvous Pro-
tocol. According to the MPI specification, only the sender can
choose the actual protocol efficiently. Particularly, the MPI Spec-
ification [21] states that: “The length of the received message must
be less than or equal to the length of the receive buffer. An over-
flow error occurs if all incoming data does not fit, without trunca-
tion, into the receive buffer. If a message that is shorter than the
receive buffer arrives, then only those locations corresponding to
the (shorter) message are modified.” According to the requirements
imposed by MPI semantics, the receiver may post a much larger
buffer than what the sender chooses to send. Since, the choice of
size of the message actually sent (not posted size), lies with the
sender, the sender can efficiently make a choice of which protocol
to use (Eager or Rendezvous).

Now, we consider the case in which the sender decides to use the
Rendezvous Protocol for the message transfer. Based on program
execution and timing, there can be three cases.

e Sender arrives fi rst: If the sender arrives first at the send call,
it can send the RNDZ_START message immediately. Inside the
RNDZ_START message, it can also embed the virtual address and
memory handle information about the buffer to be sent. It is
to be noted that upon the receipt of this RNDZ_START message,
all the information about the application buffer is available to
the receiving process. Clearly, the receiving process does not
need to send a RNDZ_REPLY message any more. It can simply
perform a RDMA Read from the application buffer location of
the sending process.

o Receiver arrives first: Even if the receiver arrives first at the
receive call, it cannot choose which protocol the message will
be actually sent over. So, it must wait for the sender’s choice of
protocol. The receiver waits for the RNDZ_START message from
the sender. However, once the receiver gets the RNDZ_START

message, it can perform the RDMA Read directly from the
sender buffer, without sending any more RNDZ_REPLY message.

e Sender and receiver arrive at the sametime: In this case, the
sender and the receiver arrive concurrently. However, neither
the sender or the receiver knows whether the other process
has arrived. Hence, in this case, the receiver must wait for
the protocol choice from sender (as stated before), and the
sender must assume that it has arrived first. Hence, again in
this case, the optimal choice would be to have the sender send
a RNDZ_START message to the receiver. As stated above, the
receiving process can simply perform a RDMA Read from the
sender buffer directly.

As per the above three cases, RDMA Read is chosen to re-
duce the number of control messages. Since the number of con-
trol messages is reduced, the total number of 1/0 bus transactions
are reduced too. In addition, since the receiver can progress inde-
pendently of the sender (once the RNDZ_START message is sent),
we can enhance the communication progress. Further, even if the
sender does not call any MPI progress, the data transfer can proceed
over RDMA Read. This leads to much better overlap of computa-
tion with communication, if RDMA Read is used.

Thus, we conclude from the above that: the optimal choice of
data transfer semantics is RDMA Read in all possible combinations
of sender or receiver arriving at the communication point.

4.2 Design Issuesfor RDMA Read Based Rendezvous
Protocol

In this section we describe our proposed design and implementation
of the Rendezvous Protocol using RDMA Read. The basic Ren-
dezvous Protocol over RDMA Read is illustrated in Figure 2(a).
The sending process sends the RNDZ_START message. Upon its dis-
covery, the receiving process issues the DATA message over RDMA
Read. When it is done, it informs the sending process by a FIN
message. But before we can directly utilize RDMA Read, we must
address some design challenges.

Limited Outstanding RDM A Reads:. The number of outstand-
ing RDMA reads on any Queue Pair (QP) is a fixed number de-
cided during the QP creation (typically 8 or 16). This means that
we cannot directly issue a RDMA Read whenever an incoming
RNDZ_START matches a posted receive. Instead, we use a token
bucket for keeping track of the number of RDMA Reads already
issued. Every time a RDMA Read is issued, we decrement the num-
ber of RDMA Read tokens available. If no more tokens are avail-
able, the RDMA Read request is placed in a FIFO queue. When the
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MPI progress engine is active, first requests from this FIFO queue
are processed, before issuing any other RDMA Reads.

Issuing FIN Message: According to InfiniBand specifica-
tion [11], Send or RDMA Write transactions, are not guaranteed to
finish in order with outstanding RDMA Reads. In order to deal with
this, we have to wait for the RDMA Read completion, before we
issue the FIN message (over Send or RDMA Write). Alternatively,
the FIN message can also be posted as a fenced operation. Comple-
tion of a fenced operation means that all outstanding reads on the
particular connection are now complete. However, this fenced op-
eration is not utilized in the current design evaluated in this paper.

The RDMA Read based Rendezvous Protocol can make progress
independent of the sender (after the RNDZ_START message is sent).
Since the sender does not need to explicitly call MPI progress
function, we can achieve good computation/communication over-
lap on the sender side. This can be seen in Figure 2(b). However,
if the receiver does not discover the RNDZ_START message (i.e.
it is busy doing computation), then the RDMA Read will be de-
layed. This effect can be seen in the same Figure 2(b). Hence,
the RDMA Read based Rendezvous Protocol can achieve compu-
tation/communication overlap only at the sender side, not at the
receiver. The solution for this case is discussed in the next section.

4.3 Design Issuesfor RDMA Read with Interrupt Based
Rendezvous Protocol

In this section we describe the design of Rendezvous Protocol us-
ing RDMA Read with interrupt. As we described earlier in this
section, RDMA Read is the best data transfer mechanism when
the sender arrives first. However, if the receiver arrives first, it still
needs to wait for the RNDZ_START message from the sender. In the
meantime, the receiver might be busy computing. The discovery of
this RNDZ_START message is critical to achieving good overlap be-
tween computation and communication. Since this control message
is critical, we can generate an interrupt on its arrival. This message
should be handled by an asynchronous completion handler. The
basic protocol is illustrated in Figure 3(a).

Selective Interrupt: Interrupts are usually associated with var-
ious overheads. Causing too many interrupts can harm the over-
all application performance. We devise a method by which we can
cause a selective interrupt only on the arrival of RNDZ_START mes-
sage and completion of RDMA Read DATA message. The Mellanox
implementation of the Verbs Level API(\VAPI) [20] provides such
a feature. In order to have selective interrupts, two things must
be done. First, the sender has to set a solicit bit in the descriptor
(solicit_event) of the message which is intended to cause the

interrupt. Secondly, the receiver must request for interrupts from
the completion queue by setting VAPI_SOLIC_COMP prior to the ar-
rival of the message.

Interrupt Suppression: Even though we have a selective inter-
rupt scheme, back-to-back RNDZ_START messages should not gen-
erate multiple interrupts. This will harm the overall application per-
formance. For designing this scheme, we disable any interrupts on
the completion queue automatically after the asynchronous event
handler is invoked. The event handler then keeps on polling the
completion queue until there are no more completion descriptors.
Thus, in this design even though back-to-back RNDZ_START mes-
sages might arrive, only one interrupt is generated. Finally, when
there are no more completion descriptors left, the asynchronous
event handler resets the request for interrupts before exiting.

Dynamic Interrupt Requests. The approximate cost of an in-
terrupt is 18 us (experimental platform description is given in Sec-
tion 5). However, the cost of the receiver requesting an interrupt and
clearing it is only 7 us. Our design of RDMA Read with Interrupt,
has such a dynamic scheme, in which the receiving process requests
for interrupts only when pending receives are posted. If no receives
are pending, then the request for interrupts is turned off, and the
MPI goes into polling based progress. Whenever the interrupt is
set, an internal flag indicates this status. On posting of subsequent
receives, this interrupt does not need to be re-requested. Similarly,
when the interrupt is cleared, an internal flag indicates that status
too. This dynamic scheme can reduce the number of interrupts in
the case where the sender arrives first, but the receive application
hasn’t posted the receive as yet.

Hybrid Communication Progress. In this new design, our
asynchronous event handler is invoked by an interrupt. It executes
as a separate thread to the MPI program. As we mentioned in Sec-
tion 3, many MPI implementations are based on a polling progress
engine. This means that whenever a MPI call is issued by the ap-
plication, the MPI implementation checks all communication chan-
nels for incoming messages and makes progress on pending sends.
Hence, we can potentially have two threads of the progress engine
(one polling and the other handling the event) active at the same
time. Thus, we need to provide a thread safe mechanism to imple-
ment this hybrid progress engine. At the same time as providing
thread safety, it should also provide high performance. If there are
no interrupts caused, the overhead imposed by this thread safety
mechanism should be minimal. Figure 3(b) shows the computa-
tion/communication at both the sender and receiver side. In this
figure, the RNDZ_START message causes an interrupt at the receiver.
The RDMA Read DATA message is issued immediately. Hence, the
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computation and communication can be overlapped at both sender
and receiver.

5. Experimental Evaluation

In this section we evaluate our proposed designs for the optimized
Rendezvous Protocol. We compare three schemes, the first one be-
ing the RDMA Write (MVAPICH version 0.9.5) [23], the second
one being the RDMA Read and the third one being RDMA Read
with Interrupt based Rendezvous Protocol. Our evaluation plat-
forms used were of two types:

e Cluster A: 8 SuperMicro SUPER X5DL8-GG nodes with dual
Intel Xeon 3.0 GHz processors. Each node has 512KB L2 cache
and 2GB of main memory. The nodes are connected to the
InfiniBand fabric with 64-bit, 133 MHz PCI-X interface.

e Cluster B: 32 nodes, dual Intel Xeon 2.66 GHz processors.
Each node has 512KB L2 cache and 2GB of main memory. The
nodes are connected to InfiniBand fabric with 64-bit, 133 MHz
PCI-X interface.

All the machines have Mellanox InfiniHost MT23108 Host
Channel Adapters (HCAs). The clusters are connected using a
Mellanox MTS 14400 144 port switch. The Linux kernel ver-
sion used on Cluster A and Cluster B were 2.4.22smp and 2.4.20-
8smp, respectively. The InfiniHost SDK used was 3.2 and the HCA
firmware version was 3.3.

5.1 Computation and Communication Overlap Performance

In this section we evaluate the ability of our designed schemes to
effectively overlap computation and communication. We designed
two micro-benchmarks and carried out the evaluation on Cluster A.

Sender Overlap: In this experiment, we evaluate how well the
sending process is able to overlap computation with communica-
tion. The sender initiates communication using MPI_Isend, then
computes for W us. At the same time, the receiver is just blocking
on a MPI_Recv. After the sender has finished computing, it checks
for completion of the pending sends. The entire operation is timed
at the sender. If the entire operation lasted for 7" s, then the com-
putation to communication overlap ratio is W/T.

Figure 4 shows this ratio versus the computation time. We can
see that for the RDMA Write scheme, the overlap ratio is quite
low. This is because the sender process is unable to receive the
RNDZ_REPLY message due to the computation. On the other hand,
the RDMA Read and RDMA Read with Interrupt schemes show
nearly complete overlap. It is to be noted that for low values of

computation time (W), the value of the ratio is low, since in this
case, the time for communication is dominant.

Receiver Overlap: In this experiment, we evaluate how well
the receiving process is able to overlap computation with commu-
nication. This experiment is similar in nature with the sender over-
lap experiment. In this experiment, the receiver posts a receive us-
ing MPI_Irecv and computes for W us, while the sender blocks
on a MPI_Send. After the computation, the receiver waits for the
communication to complete. The entire time is marked as 7. The
computation to communication ratio is W/T'.

Figure 5 shows this ratio versus the computation time. We can
see that for the RDMA Write and the RDMA Read schemes, the
overlap ratio is quite poor. This is because the receiving process
is unable to issue the RNDZ_REPLY or DATA message due to the
computation. On the other hand, the RDMA Read with Interrupt
scheme show nearly complete overlap, since the arrival of the
RNDZ_START message generates an interrupt and the receiving pro-
cess immediately issues the DATA message. As noted before, for
low values of computation time (1/), the communication time is
dominant, resulting in a low overlap ratio.

The experimental platform is dual SMPs. In the case of RDMA
Read with Interrupt scheme, it may happen that the interrupt han-
dler thread is scheduled on the “idle” processor, thus inflating the
benefits of RDMA Read with Interrupt. In order to eliminate such
an effect, we perform this experiment on a uni-processor kernel
on the same machines. Our experiments reveal that with RDMA
Read with Interrupt, we get 99.5% overlap, whereas with RDMA
Read and RDMA Write we observe only 62.2% and 59% overlap,
respectively, for a IMB message size with 1800 ps computation
time. These results are almost identical with the dual SMP results.
This is because the interrupt handler thread consumes very little
CPU time and is very short lived. It needs to be “awake” only for
a few micro seconds to perform tag matching and post necessary
network transactions only if it is required.

Communication Progress: In this execution, we take consecu-
tive time stamps from the micro-benchmark execution. These time
stamps are recorded just before the application enters the computa-
tion phase, in the MPI_Wait and from inside the MPI library when
the actual communication takes place.

Figure 6(a) shows the progress snapshot during the sender over-
lap test. We observe from this figure, that in the RDMA Write
based Rendezvous Protocol, the computation and communication
are completely serialized. It offers no overlap at all. Whereas, in
the RDMA Read based schemes, the communication happens dur-
ing the application is computing. The RDMA Read based schemes
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can progress 50% faster when transferring messages of 1MB and
computing for 1500 ps.

Similarly, Figure 6(b) shows the progress during the receiver
overlap test. We observe from this figure, that in the RDMA Write
and the RDMA Read based protocol, the computation and commu-
nication are completely serialized. They hardly offer any overlap.
Whereas, in the RDMA Read with Interrupt scheme, the commu-
nication happens during the application is computing. The RDMA
Read with Interrupt schemes can progress around 50% faster when
transferring messages of 1MB and computing for 1500 ps.

5.2 Application level Evaluation

In this section, we evaluate the impact of our RDMA Read and
RDMA Read with Interrupt schemes on application wait times. For
our evaluation, we choose two well known applications - HPL and
NAS-SP (Scalar Pentadiagonal Benchmark). High Performance
Linpack (HPL) is a well known benchmark for distributed mem-
ory computers [7]. It is used to rank the top 500 computers [26]
twice every year. NAS-SP [2] is a CFD simulation which solves
linear equations for the Navier-Stokes equation. We used the Class
C benchmark for our evaluation.

To find out the communication time for these applications, we
use a light-weight MPI profiling library [12], mpiP. This profiling
tool reports the top aggregate MPI calls and the time spent in
each one of them. We collect the aggregate time spent in the
MPI_wWait () function call. This time is spent by the application just
busy waiting for the pending sends and receives to be completed.
Since this time is just wasted by the application waiting for the
network to complete the operations, this represents time which
can possibly be overlapped with computation. Figure 7(a) and 7(b)
show the MPI_Wait times for HPL and NAS-SP (Class C) with
increasing number of processes, respectively.

We observe that the wait time of HPL is reduced by around 30%
for 32 processes by the RDMA Read and RDMA Read with Inter-
rupt designs. Similarly, for the NAS-SP, we can see around 28%
improvement for 36 processes. This is mainly because the RDMA
Write based Rendezvous implementation waits till the MPI_wait ()
to issue the DATA message, and hence cannot achieve good overlap.
In addition, we observe from the figure that the benefits provided
by the new design are scaling with the number of processes. Hence,
our new design is capable of taking better advantage of network
when there is possibility of overlap. In these results we see that
the RDMA Read and RDMA Read with Interrupt perform equally
well. This might be due to the fact that these applications do not
require computation/communication overlap on the receiver side.

6. Related Work

Several researchers have proposed various schemes to achieve bet-
ter MPI communication progress. The aspect of communication
and computation overlap has also received due attention from re-
searchers. In this section we present related work in this area. Sit-
sky and Hayashi [25] propose several methods of communication
progress for the Fujitsu AP1000+. They propose an interrupt driven
message detection approach for better communication progress.
However, they do not consider specific interrupts for efficiently im-
plementing the Rendezvous Protocol and in general their design
considers every incoming message generating an interrupt. Kep-
pitiyagama et al [13, 14] describe asynchronous message progress
mechanism for MPI-NPII which is a network-processor based mes-
sage manager for MPI. Their work highlights the benefits of com-
putation and communication overlap, however it does not deal di-
rectly with optimizing host based Rendezvous Protocols. Tippa-
raju et al [27] suggest the use of a helper thread to achieve effi-
cient one-sided communication supplementing hardware capabil-
ities (especially in the context of non-contiguous data transfer).

However, our work deals with designing a rendezvous protocol
for two-sided communication. Bell and Bonachea [3] develop de-
signs for speeding up one-sided communication for Global Address
Space languages. Their design radically reduces protocol overhead
and achieves zero-copy transfers. However, our work is related to
protocol design for message-passing parallel programs. Amerson
et al [1] describe the communication progress problem with large
message transfer using the Rendezvous Protocol. Their solution
also relies on an interrupt handler based approach. However, they
only consider the RDMA write based semantics and nhot RDMA
read. Brightwell et al [6, 5] have analyzed the impact of overlap
on large scientific applications. They indicate the potential benefits
RDMA read can provide to overlap. However, their study is mainly
an analysis of applications, not an optimization of the Rendezvous
Protocol itself. Macquelin et al [19] proposed a Polling Watchdog
for efficient message handling. They introduced a simple hardware
extension for combining polling and interrupts. Our work is differ-
ent from theirs in the respect that we are analyzing the benefits of
different RDMA semantics to reduce the number of control mes-
sages. Majumder et al [18] have proposed an event based progress
mechanism for LA-MPI [9]. They indicate the benefits of such an
approach to overlap in applications. However, their work is mainly
over TCP/IP and does not consider RDMA read as a part of their
design.

7. Conclusionsand Future Work

In this paper, we have presented new designs which exploit the
RDMA Read and the capability of generating selective interrupts
to implement a high-performance Rendezvous Protocol. We have
evaluated in detail the performance improvement offered by the
new design in several different areas of high performance com-
puting. We have observed that the new designs can achieve nearly
complete computation and communication overlap. Additionally,
our schemes yield a 50% better communication progress rate when
computation is overlapped with communication. Further, our ap-
plication evaluation with Linpack (HPL) and NAS-SP (Class C)
reveals that MPI_Wait time is reduced by around 30% and 28%
respectively for a 36 node InfiniBand cluster. We observe that the
gains obtained in the MPI_Wait time increase as the system size
increases. This indicates that our designs have a strong positive im-
pact on scalability of parallel applications.

We plan on continuing work in this direction. We will evaluate
the benefit offered by the fenced method of sending the FIN mes-
sage, as described in Section 4.2. We want to evaluate the impact
of our proposed schemes on larger scale clusters. \We want to study
a broad variety of applications and evaluate the benefits to them
due to the new scheme. Finally, we want to improve the progress
engine to support blocking mode support and see the impact of run-
ning several processes per node on end application performance.
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