Performance Analysis and Evaluation of Mellanox ConnectX InfiniBand
Architecture with Multi-Core Platforms *

Sayantan Sur Matthew J. Koop

Lei Chai Dhabaleswar K. Panda

Network-Based Computing Laboratory
Department of Computer Science and Engineering
The Ohio State University
{surs, koop, chail, panda} @cse.ohio-state.edu

Abstract

InfiniBand is an emerging networking technology that
is gaining rapid acceptance in the HPC domain. Cur-
rently, several systems in the Top500 list use InfiniBand
as their primary interconnect, with more being planned
for near future. The fundamental architecture of the sys-
tems are undergoing a sea-change due to the advent of
commodity multi-core computing. Due to the increase
in the number of processes in each compute node, the
network interface is expected to handle more communi-
cation traffic as compared to older dual or quad SMP
systems. Thus, the network architecture should provide
scalable performance as the number of processing cores
increase.

ConnectX is the fourth generation InfiniBand adapter
from Mellanox Technologies. Its novel architecture en-
hances the scalability and performance of InfiniBand
on multi-core clusters. In this paper, we carry out an
in-depth performance analysis of ConnectX architec-
ture comparing it with the third generation InfiniHost
III architecture on the Intel Bensley platform with Dual
Clovertown processors. Our analysis reveals that the
aggregate bandwidth for small and medium sized mes-
sages can be increased by a factor of 10 as compared to
the third generation InfiniHost III adapters. Similarly,
RDMA-Write and RDMA-Read latencies for 1-byte mes-
sages can be reduced by a factor of 6 and 3, respectively,
even when all cores are communicating simultaneously.
Evaluation with communication kernel Halo reveals a
performance benefit of a factor of 2 to 5. Finally, the

*This research is supported in part by Department of En-
ergy’s grant #DE-FC02-06ER25749 and #DE-FC02-06ER25755;
NSF grants #CNS-0403342 and #CCF-0702675; grants from Intel,
Mellanox, Cisco, Sun Microsystems, and Linux Networx; Equipment
donations from Intel, Mellanox, AMD, Advanced Clustering, IBM,
Appro, Microway, PathScale, Silverstorm and Sun Microsystems.

performance of LAMMPS, a molecular dynamics simu-
lator, is improved by 10% for the in.rhodo benchmark.

1 Introduction

High-Performance computing has witnessed a tremen-
dous growth and acceptance over the last decade pri-
marily due to the availability of “Commodity Clus-
ters”. Commodity clusters leverage high volume off-
the-shelf market products to provide very good cost-
performance ratios. The performance of these clusters
hinges upon the networking technology which intercon-
nects the compute and I/O nodes. The InfiniBand Ar-
chitecture [8] is an industry standard interconnection
technology which aims to provide low-latency and high-
bandwidth communication. Current generation Infini-
Band products (InfiniHost III), from Mellanox [1] pro-
vide low latency (2us) and high bandwidth (1400 MBps
unidirectional).

Over the past several years, it has been shown that
power consumption and heat dissipation issues restrict
the clock frequencies in modern microprocessors. The
only feasible way the computation power of a processor
can keep on increasing as per Moore’s Law [6], is by
increasing the number of processing cores on the chip.
Modern processors from Intel, AMD, Sun and IBM have
multiple cores on a chip. Thus, the architecture of the
compute nodes has been fundamentally altered. Modern
commodity clusters have appeared which employ multi-
core processors. The communication requirements of
“multi-core nodes” (having multiple multi-core chips)
are different from the more common two/four way SMP
machines which were common in commodity clusters.
One critical difference being that many processes can
potentially communicate with remote processes using

the same network interface. The design of the network
interface is thus crucial for achieving high and balanced
performance across all the cores of a multi-core node.

The ConnectX Architecture [10] is a new InfiniBand
network interface from Mellanox. It succeeds the Infini-
Host III architecture which is one of the most widely de-
ployed InfiniBand Host Channel Adapter (HCA). In this
paper, we carry out an in-depth performance analysis of
ConnectX architecture comparing it with the third gen-
eration InfiniHost III architecture on the Intel Bensley
platform with Dual Clovertown processors. Our analy-
sis reveals that the aggregate bandwidth for small and
medium sized messages can be increased by a factor
of 10 as compared to the third generation InfiniHost III
adapters. Similarly, RDMA-Write and RDMA-Read la-
tencies for 1-byte messages can be reduced by a factor
of 6 and 3, respectively, even when all cores are com-
municating simultaneously. Evaluation with communi-
cation kernel Halo reveals a performance benefit of a
factor of 2 to 5. Finally, the performance of LAMMPS,
amolecular dynamics simulator, is improved by 10% for
the in.rhodo benchmark.

The remaining part of the paper is organized as fol-
lows: In Section 2 we provide an overview of the new
ConnectX architecture. We present a performance eval-
uation of this new architecture compared with the older
generation InfiniHost IIT architecture in Section 3. In
Section 4 we discuss related work in this area. Finally,
we conclude the paper in Section 5.

2 Overview of the ConnectX Architecture

ConnectX is the fourth generation InfiniBand Host
Channel Adapter (HCA) from Mellanox Technolo-
gies [1]. It uses PCI-Express v2.0, backwards compat-
ible with v1.1, to connect to the host. It provides two
network ports to connect to the network fabric. Each
port can be independently configured to be used either
as 4X InfiniBand or 10 Gigabit Ethernet. This indepen-
dent configuration is made possible due to the layered
architecture of the HCA. The architecture of the HCA
is shown in Figure 1. In this paper, however, we do not
evaluate the performance characteristics of the 10 Giga-
bit Ethernet mode; instead we focus completely on the
InfiniBand implementation of ConnectX. To the best of
our knowledge, the 10 GigE mode is not yet enabled by
the ConnectX firmware and drivers.

The ConnectX architecture is designed to improve the
processing rate of incoming packets. Compared to the
previous InfiniHost III architecture, it has more ad-
vanced packet processing capabilities. In order to ef-
fectively use these capabilities, ConnectX has advanced
scheduling engines which can assign processing duties

th

PCI-Express Interface

i

Hardware Flow Quality of
Transport Interfaces/ Service
Engine Virtual Endpoi Mgmt
Congestion Status
RDMA/Send Stateless Control
Requestor/ Off'!oad Interface
Responder Engines SMA/GSA

i !

Network Network
Port 1 Port 2

P f 4

Figure 1. ConnectX HCA Architecture,
courtesy Mellanox [10]

(like protocol processing, data integrity checks, etc.) to
idle processing elements. The scheduling of packet pro-
cessing is done directly in hardware, without firmware
involvement in the critical path. These enhancements
to the ConnectX architecture are expected to improve
its performance on multi-core nodes when multiple pro-
cesses are communicating at the same time, generating
many simultaneous network messages.

The ConnectX architecture also features advanced pro-
cessing capabilities for Work Queue Elements (WQEs).
This capability is reflected in a reduced latency differ-
ence between RDMA Write and Send/Receive transport
modes. The difference between the two modes on Con-
nectX is just 0.2us, as opposed to 1.15us on the ear-
lier InfiniHost III architecture. This enhancement is ex-
pected to improve the performance of Shared Receive
Queue (SRQ) which enables scalable buffer manage-
ment in the Reliable Connected (RC) mode. SRQs are
widely used in high-performance MPI implementations
over InfiniBand [12, 5].

The ConnectX architecture even goes beyond the In-
finiBand specification to enable an “Enhanced Infini-
Band” mode which alleviates a major concern about
memory scalability of Reliable Connected (RC) trans-
port on very large scale multi-core clusters. This mode
is called Scalable Reliable Connected transport (SRC).
Normally, connection oriented transports require O(n?)
connections (for the entire parallel application), where
n is the number of processes. The advent of multi-core
architecture has allowed many processes to be located
inside one node. The SRC transport leverages this fact
to reduce the total number of reliable connections re-
quired across different nodes. Using this SRC transport,
it is sufficient to just have one connection between a set
of processes on one node to another set of processes on
aremote node. This is made possible due to a slight pro-
tocol change. In SRC, the sender side can specify the

destination SRQ in the packet. The receiver is then able
to de-multiplex packets to the correct SRQ. In addition,
the sending processes on one node can share the same
send queue of the SRC. Thus, just one connection be-
tween two nodes suffices to connect all processes within
them using a Reliable Connection. ! ConnectX has a
host of other features, and due to space constraints, we
could not describe all of them. Readers are encouraged
to peruse [10] for a list and usage of various features of
ConnectX.

3 Experimental Evaluation

In this section we describe our experimental evaluation
of the ConnectX architecture. Our experiments are pri-
marily designed to determine how the new ConnectX
architecture performs on multi-core platforms as com-
pared to the older InfiniHost III architecture. We begin
our evaluation with InfiniBand-level micro-benchmark
study. We have re-designed the publicly available per-
formance benchmarks “perftest” in the OpenFabrics
stack [13] to work with multiple pairs of processes
across different nodes. We study the performance of
both RDMA-Write and RDMA-Read with increasing
number of pairs of communicating processes on each
node. Then we move on to evaluation with the commu-
nication kernels (Halo) [15] and a molecular dynamics
simulator (LAMMPS) [14].

Evaluation Platform: Our evaluation cluster consists
of a four-node Intel Bensley platform. We use dual Intel
Clovertown 2.33GHz, quad-core processors. The nodes
have 4GB of main memory (FBDIMMs). The platform
is equipped with three x8 PCI-Express slots. In one slot
we have the new Mellanox ConnectX cards which op-
erate at DDR speed (20Gbps signalling rate), and in the
other slot we have a InfiniHost III dual-port MT25218
card. This card also operates at DDR speed. Both the
cards are connected to different, yet identical MTS2400,
Mellanox 24-port InfiniBand switches. The InfiniHost
I card has firmware version 5.2.0 and OpenFabrics
1.1 distribution. The ConnectX card (MT25408) has
firmware version 2.0.139 and operates with new Open-
Fabrics drivers which are based on OpenFabrics 1.2 dis-
tribution. The kernel version used was 2.6.20-rc5 and
the distribution is RedHat AS4(U4).

3.1 Multi-Pair Write Latency

In this test, we measure the RDMA-Write latency at the
InfiniBand verbs level (Gen?2 interface) as the number of
communicating pairs between multi-core platforms in-
crease. The OpenFabrics stack provides a single pair

IThis feature is not enabled in the first generation firmware for
ConnectX. Accordingly, we did not evaluate the performance and
memory reduction of this mode in this paper.

RDMA-Write latency benchmark, called “ib_rdma _lat”.
We re-designed this test to run on multiple processes
by using the MPI interface. Each process starts up and
uses MPI calls to synchronize and exchange connection
information. To eliminate the possibility of the MPI
transactions having any impact on the experiment, we
used MPICH-1.2.7 [7] over a standard fast-ethernet net-
work card. In multi-pair tests, it is very important to
have very fine-grain synchronization between the pairs
of processes in one node. This is to make sure that
when each process issues the InfiniBand send, the other
processes are sending at the same exact time; otherwise
contention effects are not measured. To achieve this, we
used System V shared memory. A leader process on a
node creates the shared memory segment to which ev-
ery process attaches. This shared region is then used to
synchronize all the processes at a fine grain.

The results of the multi-pair write latency test are
shown in Figures 2(a), 2(b) and 2(c). We observe
from Figure 2(a) that the InfiniHost III architecture can-
not provide very good latency as the number of com-
municating pairs on a node increases. This test does
not involve a lot of Queue-Pairs (QPs). At maximum
only eight are used and there is sufficient memory at
the network interface for caching all eight QP contexts.
Hence, the possibility of QP cache context misses is
ruled out. The InfiniHost III adapter as such is capa-
ble of providing lower latencies when only one pair of
processes is communicating, thus the basic processing
of transport related activities should not be the bottle-
neck either. It appears to us that the reason for increased
latencies for multiple pairs communicating could be due
to either slow or serial processing of incoming WQEs
(Work Queue Elements) by the InfiniHost III architec-
ture.

Figure 2(b) on the other hand shows that the ConnectX
architecture is able to provide almost the same latency
for small messages for up to 8-pairs of communicat-
ing processes. The basic improvement in latency stems
from the fact that in ConnectX architecture, it is possi-
ble to include the WQE inside the doorbell. The door-
bell informs the network interface of incoming requests
and is sent using PIO (Programmed Input/Output). For
very small messages, the data is itself included inside
the WQE, this technique is called “inlining”. In sum-
mary, in the ConnectX architecture, the WQE includes
the message data (for small messages), and is sent using
PIO over to the network interface. Thus, in the critical
path, there are no DMA operations for very small mes-
sages. This is in contrast to InfiniHost III, which sup-
ports “inline” messages, but the WQE itself has to be
DMA’d from host memory after the doorbell request is
received by the network interface.

As the number of pairs increase (from one to eight), we
observe that the latency does not increase for the Con-
nectX architecture. This may be attributed to faster or
more parallelized methods of handling incoming WQEs
by the network interface. At 256 bytes, with 8-pairs
communicating, we see a jump in the latency. For 128
bytes, the multi-pair latency is 1.86 us, whereas for 256
bytes it is 5.87 us. For 256 byte messages, although the
message data is “inline”, the size of the WQE exceeds
the PIO limit, the doorbell does not include the WQE.
Upon receiving the doorbell, the network interface has
to simultaneously fetch eight WQEs using DMA. This
limit for using PIO for WQEs can be configured ac-
cording to the application behavior. Latency sensitive
applications using mainly small messages may benefit
from using PIO over DMA. We believe that the number
of outstanding reads (which actually execute in parallel)
on the PCI Express bus might be limited on the specific
chip-set used in our experiments, leading to this jump.
For this test, the PCI bus had 256 byte payload (config-
urable in the BIOS). When we changed this setting to
128 byte payload + coalescing (in the BIOS), we saw
that the jump in latency for 256 bytes was muted, to 4.0
us. Thus, we believe that this jump might be related to
the specific chip-set used, and not with the ConnectX
architecture itself.

Overall, the ConnectX architecture provides over 6
times improvement for messages below 256 bytes over
the InfiniHost III architecture on multi-core nodes using
8-pairs communicating simultaneously.

3.2 Multi-Pair Read Latency

In this test we measure the impact on Read latency
with increasing number of communicating partners on
a multi-core platform. The basic test is the same as the
write test as mentioned in Section 3.1. Only, instead of
RDMA-Write operations, RDMA-Read operations are
performed. The results of this experiment are shown
in Figures 2(d), 2(e) and 2(f). We observe from Fig-
ure 2(d) that the Read latency on the InfiniHost III ar-
chitecture is high (6us). In case of ConnectX, it is much
lower (1.8us) as shown in Figure 2(e). As mentioned
in the previous section, much of the latency improve-
ment comes from the fact that WQEs are now included
inside the doorbell, eliminating the need for initiating
DMAs in the critical path (on the sender side). How-
ever, on the receiver side, one DMA is still required to
fetch the user data from main memory. Thus, RDMA
Reads are a bit more expensive than RDMA Writes (for
small messages). With ConnectX, the Read latencies
for two-pairs is nearly the same as that for one-pair.
However, the latencies do increase with the number of
pairs. This may be attributed to the fact that the chip-
set may not execute in parallel as many reads on the

bus as issued by ConnectX, as mentioned in the pre-
vious section. We analyzed the ConnectX firmware
configuration (file: fw-25408-rel.mlx, parameter:
pcie max_outstanding_read_requests), and found
that by default, the firmware issues up to 16 concurrent
outstanding reads on the PCle bus. It is left up to the
specific chip-set to execute as many in parallel as pos-
sible, which in our system seems to be limited to lower
than eight.

Overall, ConnectX outperforms InfiniHost III by a fac-
tor of 3 for message sizes 1-512 bytes when multiple
pairs of processes are communicating.

3.3 Multi-Pair Aggregate Write Bandwidth

In this test, we measure the effect on maximum aggre-
gate RDMA-Write bandwidth as the number of commu-
nicating pairs on a multi-core platform increases. This
test is re-designed along the same lines as described in
Section 3.1. As before, this test was derived from the
OpenFabrics “ib_rdma_bw” test. Figures 2(g), 2(h) and
2(i) show the results of this experiment. We observe
that the aggregate bandwidth obtained by InfiniHost III
decreases by almost 4 times when the number of com-
municating pairs increases to 8. However, with Con-
nectX architecture, the aggregate bandwidth is not im-
pacted at all as the number of communicating pairs in-
creases. From our results it is clear that even one pair of
communicating processes can achieve close to the max-
imum bandwidth possible, this is a very encouraging re-
sult. The encapsulation of WQEs inside the doorbells
and the use of PIO is the reason scalable performance
can be achieved with multiple pairs communicating at
the same time. As the processors get faster and the I/O
bus speeds increase, PIO for small messages is much
more efficient than setting up DMA. In addition, Con-
nectX uses much more efficient scheduling and paral-
lelized scheduling engines to quickly schedule incoming
WQESs and process them. Comparing with the Infini-
Host IIT adapter (Figure 2(i)), there is around 10 times
improvement in aggregate bandwidth for 256-byte mes-
sages.

3.4 Halo Benchmark

The Halo Benchmark [15] simulates an NLOM (Naval
Research Laboratories, Layered Ocean Model) 2-D ex-
change for a N by N sub domains {N =0,---,1024}.
The authors of this benchmark indicate that the per-
formance of this benchmark is indicative of the suit-
ability of a particular platform for executing layered
ocean model (NLOM) codes. The benchmark is partic-
ularly latency sensitive. The Halo benchmark is writ-
ten using MPI, thus to execute this benchmark, we
used MVAPICH [12], which is an open-source MPI
implementation over InfiniBand. MVAPICH is based

1lpair
1 2-pairs
4-pairs
12 8-pairs
5 10 B B B o (&) =] o] &}
Q
]
= 8
>
o
c
2 6
3 T

1 2 4 8 16 32 64 128 256 512
Message Size (bytes)

(a) Multi-Write-Latency on InfiniHost ITI

1lpair‘—07‘
20 [2-pairs -
4-pairs ¥
8-pairs
15 BB G B B G g B
o
Q
[}
2 * g
? 10 KoK Koo ¥
o
T
- x * i "
5
0
1 2 4 8 16 32 64 128 256 512

Message Size (bytes)
(d) Multi-Read-Latency on InfiniHost I1I

1400 ——
1-pair ——
2-pairs -
1200 F 4-pairs %
8-pairs &

1000

800

600

Bandwidth (MB/sec)

400

200

16 64 256 1K 4K 16K 64K 256K 1M
. . Message_Size (bytes) .
(g) Multi-Write-Bandwidth on InfiniHost III

0 B
1 4

14 1lpair R ' ' ' ' ' " ConnectX - 8 Pairs —— '
2-pairs InfiniHost 11l - 8 Pairs
4-pairs ¥ 10
12 8-pairs —&
5 10 5 8
8 8
S) L
g ¢ z 6
5 p 5
g 6 B g
4 4 4
2
0 0
1 2 4 8 16 32 64 128 256 512 1 2 4 8 16 32 64 128 256 512
Message Size (bytes) Message Size (bytes)
(b) Multi-Write-Latency on ConnectX (c) Multi-Write-Latency Comparison (8-pairs)

1lpair AT " ConnectX - 8 Pairs ——
20 F 2-pairs X 20 InfiniHost 11l - 8 Pairs -
4-pairs ¥
8-pairs
~ 15 ~ 15F
[$) [$)
[) Q
8]
2 2
> >
2 10 2 10
Qo Qo
© T
- -
5 B G B B G B G B) 5 [e e
ey S k%
0 | | | | 0
1 2 4 8 16 32 64 128 256 512 1 2 4 8 16 32 64 128 256 512
Message Size (bytes) Message Size (bytes)
(e) Multi-Read-Latency on ConnectX (f) Multi-Read-Latency Comparison (8-pairs)

1400 P — o
1-pair ——
2-pairs -
1200 [4-pairs
8-pairs
S 1000
9
g 800
£
i)
3 600
o
5
o 400
200 i1
0 S SR
1 4 16 64 256 1K 4K 16K 64K 256K 1M

Message Size (bytes)
(h) Multi-Write-Bandwidth on ConnectX

Bandwidth (MB/sec)

1400 T T T T T T L
1200
1000
800
600
400
200 X
ConnectX - 8 Pairs —+—
X" InfiniHost lll - 8 Pairs ---x---
0 ey RS 9Pl 7
1 4 16 64 256 1K 4K 16K 64K 256K 1M
Message Size (bytes)

(i) Multi-Write-Bandwidth Comparison (8-
pairs)

Figure 2. Performance Comparison on Multi-Pair Communication Benchmarks

on MVICH [9] and MPICH [7]. MVAPICH is cur-
rently used by more than 525 organizations around the
world. MVAPICH-0.9.9-beta2 was used for this evalu-
ation. The MPI processes were distributed in a cyclic
manner. This means that every alternate process is on a
different node. The four process runs are in a 4x1 con-
figuration, where four is the number of nodes and one
process per node. The eight process runs are in 4x2 con-
figuration and so on.

The results of our experiments are shown in Fig-
ures 3(a) and 3(b). Figure 3(a) shows the performance
of Halo on 32 processes with increasing number of tiles.
The tile size corresponds to the size of the messages
sent. The performance of ConnectX is relative to that
of InfiniHost III. All bars in the figures are normalized
to 1.0 for InfiniHost III. We observe that for small num-
ber of tiles, the performance is 5 times better than that
of InfiniHost III. In the scalability graph 3(b), we fix the
number of tiles to two and increase the number of pro-
cesses. In this figure we can observe that due to the low
latency of ConnectX, it achieves a factor of 2 to 5 better
performance than InfiniHost III.

3.5 LAMMPS Benchmark

Large-scale Atomic/Molecular Massively Parallel Sim-
ulator (LAMMPS) [14] is a classical molecular dy-
namics simulator from Sandia National Laboratories.
There are several benchmark datasets available from
the LAMMPS website which the authors indicate, are
meant to span a range of simulation styles and compu-
tational expense for molecular-level interaction forces.
LAMMPS reports the “Loop Time” for a particular
benchmark as a measure of CPU time required to sim-
ulate a set of interactions. In our experimental anal-
ysis, we used the Rhodospin protein benchmark from
the LAMMPS website. As indicated in Section 3.4
MVAPICH-0.9.9-beta2 was used for this evaluation and
the similar process distribution. The results of our ex-
periments are shown in Figure 3(c). This benchmark has
significant amount of computation, so the performance
of InfiniHost III and ConnectX is almost similar for up to
8 processes. For 16 processes, however, ConnectX out-
performs InfiniHost III by almost 10%. This is explained
by the factor of 10 difference in aggregate bandwidth for
small and medium messages for 8-pair communication
as seen in Figure 2(i).

4 Related Work

In this section we discuss related work in this area.
QLogic (previously PathScale) are the makers of In-
finiPath, another type of InfiniBand adapter. InfiniPath
was evaluated in [3] by Dickman et al. and in [2] by
Brightwell et al. The InfiniPath adapter also claims to

have superior performance on multi-core systems. How-
ever, the fundamental technology is different from what
is used in either InfiniHost III or ConnectX. InfiniPath
relies on spending host CPU cycles to achieve good per-
formance. In other words it is an “On-load” architecture,
as opposed to InfiniHost III and ConnectX which are
“Offloaded” architectures. In this study we only focus
on comparing two adapters, InfiniHost III and ConnectX
which are both Offload architectures. Myrinet MPICH-
MX [11] is another alternative to InfiniBand. Their
unique approach of “partial-offload” results in very good
latency and bandwidth. However, to the best of our
knowledge, MX does not expose a lower-level one sided
messaging model to applications. Applications must be
written using an MPI like interface (MX) which includes
message tag matching (required for MPI). In [4], Doer-
fler et al. showed that MPICH-MX has low overhead for
a posted send and receive. Greater “application avail-
ability” was also reported in the same study. In this pa-
per, we compare the performance of the InfiniHost III
and ConnectX architectures at both network and MPI
levels specifically on multi-core architectures.

5 Conclusion

In this paper, we present an in-depth network-level per-
formance evaluation of the new Mellanox ConnectX ar-
chitecture on multi-core platforms. Through our exper-
iments and analysis, we show that the ConnectX archi-
tecture is very well suited for modern multi-core plat-
forms. With the increasing number of cores inside a
node, there is a need for the network-interface to pro-
vide balanced and scalable performance to all commu-
nicating processes. The ConnectX architecture provides
excellent performance on multi-core platforms through
more advanced processing capabilities and fine-grain
scheduling of transport related operations on the pro-
cessing units. In addition, it supports an “Enhanced In-
finiBand” mode which proposes, although yet to be en-
abled by firmware, a new transport called Scalable Re-
liable Connection (SRC) which aims to alleviate major
concerns about memory scalability in large-scale multi-
core clusters.

Our analysis and comparison with InfiniHost III archi-
tecture reveals that on the Intel Bensley platform with
dual Clovertown processors, aggregate bandwidth pro-
vided by ConnectX for small and medium sized mes-
sages can be increased by a factor of 10 as compared
to the third generation InfiniHost IIT architecture. Sim-
ilarly, RDMA-Write and RDMA-Read latencies for 1-
byte messages can be reduced by a factor of 6 and 3,
respectively, even when all cores are communicating si-
multaneously. Evaluation with communication kernel
Halo reveals a performance benefit of a factor of 2 to 5.

12 InfiniHost Il == ConnectX 12 InfiniHost Il ==
1 1
£ g
£ 08f £ 08
K K
206 206
[©
£ £
S 04 K 04
02 0.2
— 0
2 4 8 16 32 64 128 256 5121024 2 4
Tiles

(a) Normalized Halo Performance on 32 Pro-
cesses

8

ConnectX) 12

16

Processes

(b) Halo Scalability (Tiles = 2)

InfiniHost Ill ===

ConnectX)

0.8

0.6

0.4

Normalized Time

0.2

32 2 4 8 16
Number of Processors

(c) LAMMPS (in.rhodo)

Figure 3. Halo and LAMMPS Performance Comparison

Finally, the performance of LAMMPS, a molecular dy-
namics simulator, is improved by 10% for the in.rhodo
benchmark. As future work, we intend to evaluate the
ConnectX architecture thoroughly at the MPI level on a
larger scale cluster. As the various features of ConnectX
are enabled through firmware, we aim to evaluate them
for their performance characteristics on modern clusters
and propose MPI level design changes to best take ad-
vantage of them.

6 Acknowledgements

We would like to thank Mr. Gilad Shainer from Mel-
lanox Technologies for having many informative techni-
cal discussions regarding ConnectX with us. We would
also like to thank fellow members of the Network-Based
Computing Laboratory: Abhinav Vishnu, Wei Huang,
Qi Gao, Amith Mamidala, Gopal Santhanaraman, Sun-
deep Narravula and Karthikeyan Vaidyanathan for en-
gaging in thought provoking discussions and help with
setting up machines and debugging system related is-
sues. Finally, we would like to thank the anonymous re-
viewers for their constructive criticism and helpful com-
ments.

References

[1] Mellanox Technologies. http://www.mellanox.com.

[2] R. Brightwell, D. Doerfler, and K. D. Underwood. A
Preliminary Analysis of the InfiniPath and XD1 Network
Interfaces. In Workshop on Communication Architecture
for Clusters, held in conjunction with IPDPS, 2006.

[3] L. Dickman, G. Lindahl, D. Olson, J. Rubin, and
J. Broughton. PathScale InfiniPath: A First Look. In
13th Symposium on High Performance Interconnects
(HOTI), Palo Alto, CA, 2005. IEEE Computer Society
Press.

[4] D. Doerfler and R. Brightwell. Measuring MPI Send
and Receive Overhead and Application Availability in

[5

—

[6

—_

[7

—

[8

—

[9

—

(10]
(11]

[12]

[13]

[14]

[15]

High Performance Network Interfaces. In /3th Euro-

pean PVM/MPI Users’ Group Meeting, Bonn, Germany,

2006.

E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J.
Dongarra, J. M. Squyres, V. Sahay, P. Kambadur, B. Bar-

rett, A. Lumsdaine, R. H. Castain, D. J. Daniel, R. L.
Graham, and T. S. Woodall. Open MPI: Goals, concept,

and design of a next generation MPI implementation.

In Proceedings, 11th European PVM/MPI Users’ Group
Meeting, pages 97-104, Budapest, Hungary, September
2004.

Gordon Moore. Moore’s Law.
http://www.intel.com/technology/mooreslaw/index.htm.

W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-
Performance, Portable Implementation of the MPI, Mes-

sage Passing Interface Standard. Technical report, Ar-
gonne National Laboratory and Mississippi State Uni-
versity.

InfiniBand Trade Association. InfiniBand Architecture
Specification. http://www.infinibandta.com.

Lawrence Berkeley National Laboratory.
MVICH: MPI for Virtual Interface Architecture.
http://www.nersc.gov/research/FTG/mvich/ index.html,
August 2001.

Mellanox Technologies. ConnectX Architecture.
http://www.mellanox.com/products/connectx _architecture.php.
Myricom Inc. MPICH-MX.
http://www.myri.com/scs/download-mpichmx.html.
Network-Based Computing Laboratory. MVA-
PICH: MPI for InfiniBand. http://nowlab.cse.ohio-
state.edu/projects/mpi-iba.

OpenFabrics Alliance.
http://www.openfabrics.org/, April 2006.
S. J. Plimpton. Fast Parallel Algorithms for Short-
Range Molecular Dynamics. Journal of Computational
Physics, 117:1-19, 1995.

A. J. Wallcraft. The HALO Benchmark.
http://www.navo.hpc.mil/Navigator/Fall99_Feature.html.

OpenFabrics.

