
INAM2: InfiniBand Network Analysis and Monitoring
with MPI

H. Subramoni, A. M. Augustine, M. Arnold, J. Perkins, X. Lu, K. Hamidouche, and D.
K. Panda

Department of Computer Science and Engineering, The Ohio State University, Columbus, OH
{subramoni.1, augustine.80, arnold.668, perkins.173, lu.932,

hamidouche.2, panda.2}@osu.edu

Abstract. Modern high-end computing is being driven by the tight integration of
several hardware and software components. On the hardware front, there are the
multi-/many-core architectures (including accelerators and co-processors) and
high-end interconnects like InfiniBand that are continually pushing the envelope
of raw performance. On the software side, there are several high performance im-
plementations of popular parallel programming models that are designed to take
advantage of the high-end features offered by the hardware components and de-
liver multi-petaflop level performance to end applications. Together, these com-
ponents allow scientists and engineers to tackle grand challenge problems in their
respective domains.
Understanding and gaining insights into the performance of end applications on
these modern systems is a challenging task. Several researchers and hardware
manufacturers have attempted to tackle this by designing tools to inspect the net-
work level or MPI level activities. However, all existing tools perform the in-
spection in a disjoint fashion and are unable to correlate the data generated by
profiling the network and MPI. This results in a loss of valuable information that
can provide the insights required for understanding the performance of High-
End Computing applications. In this paper, we take up this challenge and design
InfiniBand Network Analysis and Monitoring with MPI - INAM2. INAM2 allows
users to analyze and visualize the communication happening in the network in
conjunction with data obtained from the MPI library. Our experimental analysis
shows that the INAM2 is able to profile and visualize the communication with
very low performance overhead at scale.

1 Introduction and Motivation
Across scientific domains, application scientists are constantly looking to push the enve-
lope by running large-scale, parallel jobs on supercomputing systems. Supercomputing
systems are currently comprised of thousands of compute nodes based on modern multi-
core architectures. Interconnection networks have rapidly evolved to offer low latencies
and high bandwidths to meet the communication requirements of parallel applications.
InfiniBand (IB) has emerged as a popular high performance network interconnect and is
increasingly being used to deploy some of the top supercomputing installations around
the world. The Message Passing Interface (MPI) [27] is a very popular parallel pro-
gramming model for developing parallel scientific applications that run on such high
end supercomputing systems.

As IB clusters and the MPI-based applications that use these clusters have become
increasingly complex, understanding how an HPC application interacts with the un-
derlying IB network and the impact it can have on the performance of the application
becomes ever more challenging. It is critical for the users and administrators of HPC in-
stallations as well as developers of high performance MPI middleware that run on these
HPC installations to clearly understand this interaction. Such understanding will en-
able all involved parties (application developers/users, system administrators and MPI
runtime developers) to maximize the efficiency and performance of the various indi-
vidual components that comprise a modern HPC system and solve the various “grand
challenge” problems. System administrators, application developers and developers of
high performance parallel programming runtimes rely on a plethora of tools to acceler-
ate and simplify the task of analyzing and understanding the various components of an
HPC system.

One of the common questions system administrators tend to get from the users of the
clusters they manage is: Why is my application running slower than usual now? Inter-
action with a concurrent job in the network or network based parallel file system is the
most common cause for this behavior. Several tools exist in literature and as products
which allow system administrators to analyze and inspect the IB fabric (e.g.: Nagios [4],
Ganglia [1], Mellanox Fabric IT [34], INAM [8], BoxFish [10]). However, due to the
lack of interaction with, and knowledge about the MPI library, no existing IB fabric
monitoring tool can correlate network level and MPI level behavior to classify traf-
fic as belonging or being generated by particular MPI primitives (e.g.: Point-to-point,
Collective, RMA). Furthermore, they cannot classify network traffic as belonging to a
particular job due to the lack of interaction with the job scheduler. Such classification
would allow the system administrators to pin point the source of the conflict at a much
finer granularity than what is possible with the existing set of tools.

Current generation high performance MPI runtimes are complicated pieces of soft-
ware with hundreds of performance oriented features and knobs (e.g.: support for dif-
ferent high performance transport protocols, support for different collective communi-
cation algorithms and mechanisms, network topology aware communication, hardware
offloaded communication, network hot spot avoidance). Some of these features have
interdependencies and interactions with others. While the default setting of these fea-
tures will deliver about 80% of the maximum achievable performance in most cases,
careful application specific tuning is required to extract that last 20% of performance.
This requires in-depth understanding of the workings of the MPI library and how it
interacts with the underlying communication fabric. Existing MPI level profiling tools
(like TAU [5], HPCToolkit [18], Intel VTune [13], IPM [2], mpiP [3]) give reasonable
insights into the MPI communication behavior of applications. However, they have no
knowledge about the underlying IB fabric and thus are not able to correlate network
level and MPI level behavior to identify issues such as increased traffic levels on one
link causing performance degradation for an MPI job whose communication is going
over said link. Furthermore, most existing MPI profiling tools are unable to provide
deep insights into the operations of the MPI library due to the lack of an interface that
allows them to interact with the MPI library and identify the behavior of various internal
components. To address this concern, the MPI forum recently proposed the MPI T [26]

2

interface which allows MPI profiling tools to track the performance of various internal
components of the MPI library. Researchers have already begun to take advantage of
this interface to provide optimization and tuning hints to the users [14]. However, these
tools have no knowledge about the underlying IB fabric and thus suffer from the same
drawbacks as other existing MPI tools.

As we can see, there is a gap in the support provided by existing network as well as
MPI level profiling tools which must be filled. Any tool that is able to bridge this gap
will enable end users to correlate the behavior of the IB fabric and the MPI runtime to
gain true insights into the performance being delivered by high performance scientific
applications. These issues lead us to the following broad challenge - How can we de-
sign a tool that enables in-depth understanding of the communication traffic on the
InfiniBand network through tight integration with the MPI runtime?

2 Contributions
In this paper, we take up this challenge and design INAM2 - a low-overhead profiling
and visualization tool that is capable of presenting the profiling information obtained
from the network and the MPI library in conjunction to allow users to gain more insights
than afforded by existing tools that profile/visualize the network and MPI disjointly. We
demonstrate how, through the profiling information provided by INAM2, designers as
well as users of high performance middleware can gain more insights into the commu-
nication characteristics of their runtimes allowing them to further fine tune the perfor-
mance on a per application or per run basis. We show how, through the link analysis
capabilities of INAM2, system administrators can pin point the cause of network perfor-
mance issues to a granularity of a process. Our experimental evaluation shows that the
INAM2 is able to profile and visualize the communication with very little performance
overhead at scale. To summarize, INAM2 provides the following major features:

– Analyze and profile network-level activities with many metrics (data and errors) at
user specified granularity

– Capability to analyze and profile node-level, job-level and process-level activities
for MPI communication (Point-to-Point, Collectives and RMA)

– Capability to profile and report several metrics of MPI processes at node-level, job-
level and process-level at user specified granularity in conjunction with the MPI
runtime

– Capability to analyze and classify the traffic flowing in a physical link into those
belonging to different jobs in conjunction with the MPI runtime

– Capability to visualize the communication map at process level and node level gran-
ularities in conjunction with the MPI runtime

– “Job Page” to display jobs in ascending/descending order of various performance
metrics in conjunction with the MPI runtime

Note that many of the features and capabilities described in this paper are
already publically available as part of OSU INAM package for free download
at http://mvapich.cse.ohio-state.edu/tools/osu-inam/. While we
chose MVAPICH2 for implementing our designs, any MPI runtime can be enhanced to
perform similar data collection and transmission.

3

The rest of the paper is organized as follows. Section 3 gives a brief overview of
InfiniBand MPI over IB. In Section 4 we present the framework and design of INAM2.
We evaluate and analyze the correctness and performance of INAM2 in various scenarios
in Section 5. We present the possible use cases for INAM2 in Section 6. The currently
available related tools are described in Section 7. Finally we summarize the conclusions
and possible future work in Section 8.

3 Background
In this section, we provide the necessary background information for this paper.

3.1 InfiniBand
InfiniBand is a very popular switched interconnect standard being used by almost 47%
of the Top500 Supercomputing systems [33] according to the Nov’15 listing. Infini-
Band Architecture (IBA) [16] defines a switched network fabric for interconnecting
processing nodes and I/O nodes, using a queue-based model. It supports two commu-
nication semantics: Channel Semantics (Send-Receive communication) over Reliable
Connected (RC), Extended Reliable Connected (XRC), Dynamic Connected (DC), and
Unreliable Datagram (UD); and Memory Semantics (Remote Direct Memory Access
communication) over RC, DC and XRC. Both semantics can perform zero-copy trans-
fers from source-to-destination buffers without additional host-level memory copies.
RC is connection-oriented and requires dedicated QP for destination processes while
the connection-less UD transport uses a single QP for all [24, 22]. XRC optimizes QP
allocation by requiring each process to create only one QP per node [23]. DC on the
other hand combines the scalability of UD by providing the capability to use just on DC
end point to communicate with an peer while providing the high-end RDMA/atomic
features available with RC and XRC.

3.2 MPI
Message Passing Interface (MPI) [27], is one of the most popular programming mod-
els for writing parallel applications in cluster computing area. MPI libraries provide
basic communication support for a parallel computing job. In particular, several conve-
nient point-to-point and collective communication operations are provided. High per-
formance MPI implementations are closely tied to the underlying network dynamics
and try to leverage the best communication performance on the given interconnect. In
this paper, we use modified MVAPICH2-X [25] based on the 2.2a release for our eval-
uations. However, our observations in this context are quite general and they should be
applicable to other high performance MPI libraries as well.

3.3 MPI T
The MPI Tools Information Interface (MPI T) provides a standard mechanism for MPI
tool developers to both inspect and tweak the various internal settings and performance
characteristics of MPI libraries. The MPI T interfaces define two types of objects. The
first type of object is the performance variable. Accessing the values of performance
variables allows the software to peak under the hood of the MPI library to determine
the state and how it is being affected by the MPI application. The second type of object
is the control variable. This type of object is tied to a modifiable parameter of the MPI

4

library. Accessing and modifying these will allow the software to change the behavior
of the MPI library. Section 14.3 of the MPI 3 standard describes the MPI T interface in
full detail.

4 Design of INAM2

The overall architecture of InfiniBand Network Analysis and Monitoring with MPI
(INAM2) is presented in Figure 1. It consists of four major design components: (1)
OSU INAM daemon (osuinamd), (2) OSU INAM Database, (3) Java-based Webserver,
and (4) Web-based front end for visualization. We will go into the details of each in the
following sections.

OSU INAM

System Administrators, MPI Developers, Application Scientists

Web-based Front End for Visualization

Java Webserver

OSU INAM Database (MySQL)

osuinamd

InfiniBand Network

IB Fabric Data

SLURM Job Scheduler

SLURM Database

Information

C
o

m
p

u
te

 N
o

d
e

C
o

m
p

u
te

 N
o

d
e

C
o

m
p

u
te

 N
o

d
e

C
o

m
p

u
te

 N
o

d
e

C
o

m
p

u
te

 N
o

d
e

C
o

m
p

u
te

 N
o

d
e

MPI Job Data

H
P

C
 C

lu
st

e
r

Query Job

Fig. 1. Overall framework

4.1 Design of OSU INAM Daemon
The OSU INAM daemon is the hub for all data collection related activities in INAM2.
As we saw in Section 2, one of the major capabilities of INAM2 is its ability to interact
with and extract information from the MPI processes and present data at network level,
job level and process level granularities to the end users. Apart from this, the daemon is
also responsible for discovering the IB fabric and extracting data from various selected
components in the IB fabric. Finally, it is also responsible for pushing all collected data
elements into the OSU INAM database (described in Section 4.2). In order to allow
these tasks to proceed in parallel and not bottleneck each other, we dedicate a thread for
each activity.

MPI Data Collection Thread While existing IB fabric monitoring tools like Nagios,
Ganglia, and Mellanox Fabric IT are capable of displaying the overall state of the fabric,
they’re unable to break down the traffic and classify it at finer granularities (for instance

5

at process level or as point-to-point or collective traffic) which can enable deep under-
standing. While one can theoretically use per virtual lane level counters and force MPI
processes to use different virtual lanes to have process level granularity using existing
tools, this method suffers from a fundamental issue — The IB standard only supports 16
virtual lanes. Given the current and emerging dense many-core nodes where the number
of processes per node can be as high as 71, it becomes hard to perform a one-to-one
mapping between processes and virtual lanes even at the node level. This fundamental
bottleneck is further exacerbated by two mundane issues: 1) very few system adminis-
trators enable the use of multiple virtual lanes in practice on production supercomputing
installations and 2) very few (if any) currently available IB products support per virtual
lane level counters. Another advantage of using such an approach is that it frees us from
the need to query the HCA on the node as the MPI process itself will send us the neces-
sary details when the node is computing and while the node is not in use, we do not care
about it as it is not expected to be contributing network traffic in a significant fashion.

To overcome these limitations, we designed and integrated the MPI data collection
thread into the daemon process. The sole responsibility of this thread is to collect data
specific to each MPI process running on the system and push it to OSU INAM Database.
This allows us to analyze and visualize the data at job level, node level and process
level granularities. We designed the thread to be a listener which accepts data from
remote MPI processes to avoid the single point bottlenecks that can arise from a design
where the thread actively polls each MPI process for data. The thread uses IB based
communication to achieve high performance and low latency. The thread further uses
the interrupt driven mode in IB to reduce CPU utilization by eliminating the need to
continually poll to identify the arrival of new packets.
Design choices for IB transport protocol: As mentioned above, the MPI data collec-
tion thread uses IB to enable high performance and low latency communication. It is
known that IB supports several transport protocols such as Reliable Connected (RC),
Unreliable Datagram (UD), Extended Reliable Connected (XRC), and Dynamic Con-
nected (DC) [23, 24]. Each transport protocol has different cost/performance tradeoffs.
Our previous research has shown that using the UD and DC transport protocols over
others can have significant benefits in terms of scalability and memory footprint [32,
23]. Thus we eliminate RC and XRC from the pool of possible protocols. The choice of
whether to use DC or UD depends on the communication requirements. From the point
of view of the INAM2, the communication requirements are similar to what one would
expect from a high performance stock market application - typically small messages,
high performance, high scalability, low latency and no requirement for absolute relia-
bility. Our previous research has shown that [32], between DC and UD, UD is able to
deliver high performance, high scalability, low latency better than DC when reliability
is not an issue. Thus, we choose the UD protocol as the IB transport protocol for the
MPI data collection thread.

Co-designing the MPI runtime to work with INAM2 As we saw in Section 1, the
MPI T interface provides a convenient method to keep track of various internal states
and metrics of an MPI library. We piggyback on this infrastructure and enhance it
to enable monitoring for several more process level metrics. We introduce support in
MVAPICH2-X [28] to keep track of: 1) CPU utilization of each process including idle

6

time, user time, system time and the rest; 2) memory utilization of each process in-
cluding current and maximum size of virtual memory consumed; 3) inter-node and
intra-node communication buffer utilization including the maximum number of buffers
that were required (high water mark); 4) intra-node bytes sent/received; 5) inter-node
bytes sent/received; 6) total bytes sent / received for collective operations; and 7) total
bytes sent for RMA operations. The MPI runtime collects this information and sends
updates to the MPI data collection thread via UD Queue Pairs (QP) at user specified in-
tervals (default value: 30 seconds). In addition to this, each packet sent has some meta
data information about the process itself like rank, LID/GUID from which it’s sending
the data, time stamp when data was sent, job ID, etc., which will be used later to re-
trieve the data from the database. The MPI data collection thread dumps the UD QP
and Local Identifier (LID) that it is listening on to a file. This location of this file is
passed through environment variables set up by the system administrator to the MPI
runtime. The runtime then uses this information while sending data out to the MPI data
collection thread. While we chose MVAPICH2 for implementing our designs, any MPI
runtime (e.g.: OpenMPI [12]) can be modified to perform similar data collection and
transmission.

Fabric Discovery Thread The Fabric Discovery (FD) thread is responsible for dis-
covering the IB fabric and extracting data from various selected components in the
IB fabric. The fabric discovery has multiple phases. In the first phase, the thread uses
methods similar to what is used by the “ibnetdiscover” utility to identify the various
IB devices present in the network and their current status. The data is stored in an easy
to retrieve format in the database. Once all the devices have been identified, it com-
putes the network path between each pair of hosts and pushes this information into the
database as well. Once this is done, the fabric thread will monitor the network for any
changes at a user specified interval. Then, the FD thread switches over to retrieving the
performance counter information from the network.

Different design choices were explored to retrieve the performance counter informa-
tion from the IB fabric. Using an OpenSM plugin in for the performance manager mod-
ule to extract the performance counter information. However, this method will cause
data to be extracted from all network devices (including the end nodes themselves). As
the MPI data collection thread is already capturing information at a much finer granu-
larity than what can be delivered by the network level counters, it would be prudent to
avoid the useless query to retrieve this information. To avoid this, the FD thread issues
queries to selected components in the network at user specified intervals. In our case,
the selected components would be various switches in the network. By doing this, we
also reduce the amount of high-priority management traffic that is generated on the net-
work. Although the default value for the query interval is 30 seconds, we recommend
that users set it to a lower value as the “Xmit Data” and “Rcv Data” counters are only
32-bit and can easily overflow depending on the volume of data being transferred. On
receiving a response, the FD thread queues up the message in a FIFO queue to the
database thread for eventual insertion into the database.

Database Thread The Database (DB) thread is responsible for receiving information
from the MPI data collection thread as well as the FD thread. When being run for the

7

first time the DB thread will create all the tables in the schema that the given version
of the tool expects. If an earlier version of the tool which used a different table scheme
exists in the same system, it will automatically update them to avoid conflicts and make
life easier for the user.

4.2 Design of OSU INAM Database
The Database design for INAM2 is critical since all necessary data needs to be stored
in and queried from it. A useful and scalable database schema plays a key role for
the system to achieve the flexibility and high-performance needed to scale with large
clusters. Figure 2 shows the design of the INAM2 database. From this figure, we can
see that through nine tables, INAM2 is able to cover all the capabilities as mentioned
in Section 2 and we believe all these tables and fields are necessary to maintain all the
important statistical data for both the InfiniBand network and the MPI processes and
their correlations.

For instance, the fields in the tables of “route”, “links”, “nodes”,
“port data counters”, and “port errors” can hold all the important data for Infini-
Band network infrastructure, like links, nodes, ports and routes. On the other hand, in
order to keep track of MPI process communication characteristics, we utilize the tables
of “process info”, “process comm main”, and “process comm grid” to store MPI
library counters and the communication paths over the links. Through these, INAM2 is
able to analyze and profile node-level, job-level and process-level activities for MPI
Point-to-point, collectives, and RMA communication. Further, this information can
help to profile and report several important parameters/counters of MPI processes at
the node-level, job-level and process-level as well as visualize the communication
map at process-level and node-level granularities. Another example is analyzing and
classifying InfiniBand network traffic flows in a physical link, through tables of “route”,
“link route”, and “links”, we are able to distinguish the traffic into those belonging
to different jobs in conjunction with the MPI runtime. More analysis examples and
scenarios will be discussed in Section 6.

4.3 Design of Java Webserver and Web-based Front-end Visualization
One of the most user-friendly features our INAM2 tool provides is the Web-based visu-
alization. Through INAM2’s Web front-end, system administrators, MPI developers and
end users can easily understand the statistics data of the activities over underlying In-
finiBand network and MPI jobs, which are gathered from the OSU INAM daemon and
acquired from the Slurm job scheduler as shown in Figure 1. This information is orga-
nized and shown through Web pages in a way that can help users to correlate network
level and MPI level behavior and identify the root causes of performance issues.

INAM2 was not only designed for providing functionality, the high-performance de-
sign of the Web server and front-end will provide low latency as well as high through-
put for users’ queries, so that users can profile the network and MPI job performance
during the job execution. As shown in Figure 3, we designed the INAM2 Web server
based on the Spring [15] MVC (Model, View and Controller) architecture which can
be integrated easily with a Java Tomcat server. On the client side, we choose to use
the light-weight JQuery [21] library to send HTTP requests through AJAX [20]. With
the help from JQuery and AJAX, INAM2 pages can send data to and retrieve responses

8

link_route
link_id char(100) N
end_node bigint(20) N+/-

links
link_id bigint(64) PNA
type int(8) N
node1_guid char(20) N
node2_guid char(20) N
node1_port int(8) N
node2_port int(8) N
link_width char(5) D
link_speed char(10) D

nodes
guid bigint(64) PN+/-
guidHex char(20) N
name char(64) N
type int(8) N
lid int(16) N
num_ports int(8) N

port_data_counters
id int(11) PNA
guid bigint(64) N+/-
port int(11) N
xmit_data bigint(64) D+/-
rcv_data bigint(64) D+/-
xmit_pkts bigint(64) D+/-
rcv_pkts bigint(64) D+/-
unicast_xmit_pkts bigint(64) D+/-
unicast_rcv_pkts bigint(64) D+/-
multicast_xmit_pkts bigint(64) D+/-
multicast_rcv_pkts bigint(64) D+/-
added_on timestamp DN

port_errors
id int(11) PNA
guid bigint(64) N+/-
port int(11) N
SymbolErrors bigint(64) D+/-
LinkRecovers bigint(64) D+/-
LinkDowned bigint(64) D+/-
RcvErrors bigint(64) D+/-
RcvRemotePhysErrors bigint(64) D+/-
RcvSwitchRelayErrors bigint(64) D+/-
XmtDiscards bigint(64) D+/-
XmtConstraintErrors bigint(64) D+/-
RcvConstraintErrors bigint(64) D+/-
LinkIntegrityErrors bigint(64) D+/-
ExcBufOverrunErrors bigint(64) D+/-
VL15Dropped bigint(64) D+/-
added_on timestamp DN
Index errors_ts_index(added_on)
Index guidportdate_ind(guid,port,added_on)

process_comm_grid
id int(11) N
lid int(16) N
bytes_sent bigint(64) N+/-

process_comm_main
id int(11) PNA
guid bigint(64) N+/-
host_name char(64) N
process_rank int(16) N
lid int(16) D
jobid int(16) D
cpu_id int(16) D
added_on timestamp DN

process_info
id int(11) PNA
guid bigint(64) N+/-
host_name char(64) N
process_rank int(16) N
lid int(16) D
jobid int(16) D
added_on timestamp DN
xmt_bytes bigint(64) D+/-
rcv_bytes bigint(64) D+/-
xmt_pkts bigint(64) D+/-
rcv_pkts bigint(64) D+/-
coll_bytes_sent bigint(64) D+/-
coll_bytes_rcvd bigint(64) D+/-
rma_bytes_sent bigint(64) D+/-
coll_pkts_sent bigint(64) D+/-
coll_pkts_rcvd bigint(64) D+/-
rma_pkts_sent bigint(64) D+/-
user_time int(8) D
system_time int(8) D
idle_time int(8) D
cpu_id int(8) D
low_pri_user_mode_time int(8) D
io_wait int(8) D
irq int(8) D
soft_irq int(8) D
steal int(8) D
quest int(8) D
mv2_vmsize int(10) D+/-
mv2_vmpeak int(10) D+/-
mv2_vmrss int(10) D+/-
mv2_vmhwm int(10) D+/-
mv2_io_read_bytes bigint(20) D+/-
mv2_io_write_bytes bigint(20) D+/-
vbuf_alloc smallint(5) D+/-
vbuf_used smallint(5) D+/-

ud_vbuf_alloc smallint(5) D+/-
ud_vbuf_used smallint(5) D+/-
smp_bytes_rcvd bigint(20) D+/-
smp_bytes_sent bigint(20) D+/-
smp_eager_buffer_max_use int(10) D+/-
smp_rndv_buffer_max_use int(10) D+/-
smp_eager_total_buffer int(10) D+/-
smp_rndv_total_buffer int(10) D+/-
smp_eager_used_buffer int(10) D+/-
smp_rndv_used_buffer int(10) D+/-

vbuf_used_hwm smallint(5) D+/-

route
srcGuid bigint(64) PN+/-
destGuid bigint(64) PDN+/-
route varchar(1000) D

Fig. 2. Overview of OSU INAM Database Design

9

from the server asynchronously without interfering with the display and behavior of the
existing page. Such a solution will dramatically improve the user experience because it
hides a lot of the data processing and page rendering in the background.

INAM Web Server

Java

Spring MVC Framework
over Tomcat Server

Handler Mapping and Dispatching
Client Web Browser

JQuery Library

INAM Web
Pages HTTP

Request

Controller
(Handle Req.)

Model
(DB Data)

View
(JSP, XML)

HTTP
Response

Fig. 3. Overall of INAM Web Server and Front-end

The overall processing flow is as follows: 1) Whenever a user’s action generates an
HTTP request, it will be sent to the server side by Web browser or JQuery library with
AJAX; 2) Once the Tomcat server receives the request, it is passed to the the Spring
framework who will dispatch the coming request to the corresponding controller based
on the mapping information of URL (in the request) and Controller. The dispatcher has
information about which controller needs to be invoked; 3) The selected controller will
be invoked and it can query the model for some information, in most cases, about some
data in database; 4) Once processing has been done, the Spring framework will get the
response to build the view through JSP, XML, etc; 5) Finally the HTTP response will
be sent back to the browser at the client side. Then the Web page will be get updated.
Note that the whole process is completed very fast since all the data has been stored in
database through the OSU INAM daemon in advance and all the processing steps are
configured and indexed in the database. As indicated earlier, many users’ actions are
handled through AJAX which alleviates the need to reload the page for fresh data.

5 Experimental Results
We describe the results of the various experiments carried out for this paper in this
section.

5.1 Experimental Setup
Each node of our 184 node testbed has eight Intel Xeon cores running at 2.53 Ghz
with 12 MB L3 cache. The cores are organized as two sockets with four cores per
socket. Each node also has 12 GB of memory and Gen2 PCI-Express bus. They are
equipped with MT26428 QDR ConnectX-2 HCAs with PCI-Express interfaces. We
used a Mellanox MTS3610 QDR switch, with 11 leafs, each having 16 ports. Each

10

node is connected to the switch using one QDR link. The HCA, as well as the switches,
use the latest firmware. The operating system used is Red Hat Enterprise Linux Server
release 6.5 (Santiago), with the 2.6.32-431.el6.x86 64 kernel version. Mellanox OFED
version 2.2-1.0.1 is used on all machines.

5.2 Impact of Profiling on Performance of Basic Microbenchmarks and NAS
Parallel Benchmarks

In this section we study the impact the co-design of the MPI runtime with the MPI data
collection thread of INAM2 has on basic communication performance of different point-
to-point as well as collective microbenchmarks and popular application kernels like the
NAS parallel benchmarks [9]. Figure 4a compares the basic point-to-point inter-node
latency obtained with and without the data collection happening in the MPI runtime.
As we can see, the data collection adds less than 1% degradation when compared to
the native performance. In Figure 4b, we depict the inter-node message rate obtained
with the osu mbw mr microbenchmarks using a pair of processes. We see that the data
collection and transmission adds about 6% to 8% overhead for messages less than 4,096
bytes. However, for larger messages, we see no significant impact at all (less than 1%).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 4 16 64 1K 16K 256K 4M

 0

 20

 40

 60

 80

 100

L
at

en
cy

 (
u
s)

P
er

ce
n
ta

g
e

D
eg

ra
d
at

io
n
 (

%
)

Message Size (Bytes)

Default
INAM

2

Degradation

(a) Latency

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 1 4 16 64 1K 16K 256K 4M

 0

 20

 40

 60

 80

 100

M
es

sa
g

e
R

at
e

(M
es

sa
g

es
/s

ec
)

P
er

ce
n
ta

g
e

D
eg

ra
d

at
io

n
 (

%
)

Message Size (Bytes)

Default
INAM

2

Degradation

(b) Message Rate

Fig. 4. Microbenchmark-level point-to-point performance
Figures 5a and 5b depict the performance impact the data collection and transmis-

sion has on some common collective communication patterns such as Broadcast and
Alltoall, respectively. The evaluations were done at a scale of 512 processes. As we
can see, the tool adds less than 5% overhead for Broadcast. For Alltoall, we observe
less than a 5% degradation for messages up to 1,024 bytes. For larger messages the
degradation is mostly around 7% with only 4,096 byte message showing up to 12%
degradation.

Figure 6 compares the performance of the version of the MPI runtime with support
for MPI level data collection with one which does not have the support. As we can see, at
the application level, there is little to no impact on the performance due to the addition
of the data collection and reporting. These are encouraging trends which positively
advocate the use of such tools for end applications on modern supercomputing systems.

6 Discussion on Features of INAM2 and its Impact
In this section, we highlight some of the many features of INAM2 and describe some of
the potential impact it can have on the understanding and performance of applications.

11

 0

 100

 200

 300

 400

 500

 600

 1 4 16 64 1K 16K 256K

 0

 20

 40

 60

 80

 100

L
at

en
cy

 (
u

s)

P
er

ce
n

ta
g

e
D

eg
ra

d
at

io
n
 (

%
)

Message Size (Bytes)

Default
INAM

2

Degradation

(a) Performance of Broadcast

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 1 4 16 64 1K 16K 256K

 0

 20

 40

 60

 80

 100

L
at

en
cy

 (
u

s)

P
er

ce
n

ta
g

e
D

eg
ra

d
at

io
n
 (

%
)

Message Size (Bytes)

Default
INAM

2

Degradation

(b) Performance of Alltoall

Fig. 5. Microbenchmark-level collective performance at 512 processes

 0

 50

 100

 150

 200

 250

 300

CG EP FT IS LU MG

E
x
e
c
u
ti

o
n
 T

im
e
 (

S
e
c
o
n
d

s)

Benchmark

Default
INAM^2

Fig. 6. Performance of class D NAS parallel benchmarks at 512 processes

6.1 Analyzing and Understanding Inter-node Communication Buffer Allocation
and Use

Several high performance implementations of the the MPI programming model allo-
cate a set of internal communication buffers that have been pre-registered with the IB
HCA to enable fast small message communication. MVAPICH2, for instance, has been
extensively tuned to ensure that the number and size of communication buffers is large
enough to maintain good communication performance without significantly increas-
ing the amount of memory consumed for these buffers. The memory footprint is even
more important for these as they are always “pinned” to the physical memory and can-
not be swapped out in case the application requires more memory to do its computa-
tion. However, at the level of end applications, one cannot assure that all the internal
communication buffers that have been pre-allocated and pinned are being used by the
application for communication. We use the INAM2 tool to profile and understand the
communication behavior of the NAS benchmarks and visualize how they use the in-
ternal communication buffers that MVAPICH2 allocates. Once the job has completed
execution, we monitor the high water marker for the internal communication buffer
usage over the lifetime of the job using the “historical job view” that INAM2 offers.
Table 1 shows the results of our analysis. It highlights the number of internal inter-node
communication buffers taken for a 512 process run of class D NAS parallel bench-
marks. The column “Default-Alloc” highlights the number of communication buffers
pre-allocated with the default communication buffer tuning done for MVAPICH2. The
“Default-HWM” column highlights the maximum number of communication buffers
actually used by the application kernel in the default scenario. As we can see, there is

12

a significant waste of communication buffers for several application kernels. With this
insight, we perform application specific tuning and reduce the number of inter-node
communication buffers pre-allocated at initialization time. “Tuned-Alloc” indicates the
number of buffers allocated after we tuned the number of communication buffers with
the insights gained from INAM2. As we can see by comparing the memory taken for
the default and tuned, we are able to save significant amounts of memory without any
impact on the communication performance. Another observation is that the “Tuned-
HWM” value is higher than “Default-HWM” in several cases even when the “Tuned-
Alloc” is much less than “Default-Alloc” indicating better utilization of available com-
munication buffer resources.

Table 1. Comparison of communication buffer utilization for default and tuned scenar-
ios for 512-process class D NAS parallel benchmarks

Benchmark Default-HWM Default-Alloc Default-Communication Tuned-HWM Tuned-Alloc Tuned-Communication
(Max Value) (Max Value) Buffer-Memory (Sum) (MB) (Max Value) (Max Value) Buffer-Memory (Sum) (MB)

CG 1 240 1570.20 2 48 409.33
EP 1 240 1570.20 3 48 348.22
FT 356 544 1735.49 295 320 647.24
LU 161 352 1584.74 152 192 503.76
MG 30 240 1570.20 32 80 561.33

6.2 Identifying and Analyzing Sources of Link Congestion
Existing IB fabric monitoring tools are capable of identifying congested links in the fab-
ric. However, identifying the network “hot spots” alone is not good enough for system
administrators. What they are looking for is the source of the congestion. Unfortunately,
no tool offers the kind of automatic “reverse-lookup” feature that allows one to identify
the various sources (end compute nodes) that could possibly have routes through the
link in question. On a typical network with dynamic routing, doing this would prove
to be a near insurmountable challenge. However, as IB networks are typically statically
routed, it becomes a challenge that can be solved. We tackle and solve this challenge
in INAM2 using the various tables described in Figure 2. Figure 7 depicts how one can
identify the various routes going through the link. As we can see, the different paths
that go through a given link gets highlighted in yellow. We actually go one step further
and provide the capability to analyze and classify the traffic flowing in a physical link
into those belonging to different jobs in conjunction with the MPI runtime allowing
system administrators to identify exactly which job was contributing to the traffic going
over a particular link. Users can view the link utilization by the jobs sending/receiving
data through it in both directions in an absolute (in terms of number of bytes)or relative
sense (as a percentage of total link capacity). Figure 8 depcits how, by selecting a job
id, INAM2 can process level link utilization for the selected job. Sections 4.2 and 4.3
describe how data is fetched from various tables to construct and display this novel
feature.

6.3 Monitoring Jobs Based on Various Metrics
While typical job schedulers list what nodes are being used by which jobs, they do not
list what each individual job is currently doing and how that impacts the different com-
ponents of the HPC system. For instance, if a job is dumping a lot of data to the file

13

Fig. 7. Identifying communication routes going through a given link

Fig. 8. Process level link utilization for a user specified job

14

system due to a checkpoint operation or because it has encountered a segmentation fault
and is currently in the process of dumping cores, it is going to negatively affect all other
processes in the system. Similarly, if a job is performing a network intensive communi-
cation operation, like an Alltoall, all jobs may get affected. Thus, it is in the best interest
of all concerned that such ”high-value” jobs be closely monitored by the system admin-
istrator. To address this concern, we introduce a “Live Job” page in INAM2 which lists
all MPI jobs that are sending data to it through the MPI data collection framework. The
page allows sorting the various jobs in ascending/descending order of the various met-
rics listed in the “process info” table depicted in Figure 2. Figure 9 shows an example
of how this page would look like on a real cluster scenario with various jobs running.
As we can see, each job ID is a hyperlink which takes the user to the “job page” for the
corresponding job so that the user can get more details of what exactly is going on in
the job.

Fig. 9. Live job page to display jobs in ascending/descending order of various perfor-
mance metrics in conjunction with the MPI runtime

6.4 Capability to Profile and Report Several Metrics of MPI Processes at
Different Granularities

One of the dangers of providing users with too much data is the possibility of inundat-
ing them with so much information that the high value data items get lost in the deluge
of less relevant details. Thus, it is always helpful if one can aggregate and display the
information to users so that they are first presented with a high level view first (e.g.:
a cluster level or job level) and then allowed to slowly dig their way into more details
(e.g.: node level or process level views). We provide this exact capability in INAM2.
Although the data from the MPI processes arrive at a process level granularity, once
it has been entered into the database, things can be easily manipulated so that we can
aggregate and display the details at much coarser granularities (e.g.: node level or job
level). Figures 10 and 11 depict examples of the live job-level view of a given job and
node level view of different processes that belong to a job respectively as rendered by
INAM2. Further, INAM2 allows such analysis to be done in a “live” or a “historical”

15

manner. This capability of INAM2 to display historical information can prove very use-
ful to system administrators. For instance, it is quite possible that the system or network
administrator is made aware of an issue “post-mortem”. In such scenarios, the current
IB fabric monitoring tools, which do not have support to store information in databases
for later retrieval, more or less leave the administrators helpless. However, if an admin-
istrator has access to a tool like INAM2 which has the ability to “play back” events
that occurred at a specified time in the past, it provides administrators the flexibility to
inspect events “post-mortem” and identify the culprit(s) that caused the issue.

Fig. 10. Live job level view of a particular job

7 Related Tools
We believe that INAM2 fills a void in the tools space as many do not monitor and corre-
late the impact of particular MPI jobs on the system. In principle, the pre-existing tool
most closely related in design is Lightweight Distributed Metric Service (LDMS) [6] by
Sandia. It strives to be a low overhead system monitoring tool which also correlates jobs
to the impact on the system. LDMS does not monitor the InfiniBand network directly
as INAM2 but does a good job monitoring other resources such as memory or filesystem
I/O.

Another tool suite available is HOlistic Performance System Analysis (HOPSA) [7].
This suite is more focused on application on MPI but is designed in a way where each
application or job may have different metrics monitored which may not allow for a full
system view of how the set of jobs are interacting on the system.

The group at the Texas Advanced Computing Center have also developed a tool
TACC STATS [31] to help them to explore job and system level reports. These reports
help to identify jobs or system components that may need attention based on policies
that they’ve set forth ahead of time. The main difference between this tool and INAM2

16

Fig. 11. Live node level view of different processes that are part of a particular job

is that TACC STATS does their analysis post-mortem whereas we try to make this infor-
mation available in real time.

As mentioned earlier, several tools exist which allow system administrators to an-
alyze and inspect the IB fabric such as Nagios, Ganglia, Mellanox Fabric IT, INAM,
and BoxFish. However, due to lack of in-depth knowledge about the MPI library, no
existing IB fabric monitoring tool can correlate the network level and MPI level be-
havior to classify traffic as being generated by particular MPI primitives. Furthermore,
they cannot classify network traffic as belonging to a particular job due to the lack of
interaction with the job scheduler.

Also mentioned earlier, existing MPI level profiling tools like TAU, HPCToolkit,
Intel VTune, IPM, and mpiP give reasonable insights into the MPI communication be-
havior of applications. However, they have no knowledge about the underlying IB fabric
and thus are not able to correlate network level and MPI level behavior. With INAM2 we
strive to bridge the gap between the system level and MPI level profilers and monitors.

8 Conclusions and Future Work
In this paper, we presented the design of INAM2 - a low-overhead profiling and visual-
ization tool that is capable of presenting the profiling information obtained from the net-
work and the MPI library in conjunction. We demonstrated how, through the profiling
information provided by INAM2, designers as well as users of high performance mid-
dleware can gain more insights into the communication characteristics of their runtimes
allowing them to further fine tune the performance on a per application or per run basis.
We showed how, through the link analysis capabilities of INAM2, system administrators
can pin point the cause of network performance issues to a granularity of a process.
Several features of INAM2 presented in this paper are already publically available in the
released versions of the OSU INAM package which can be downloaded for free from

17

http://mvapich.cse.ohio-state.edu/tools/osu-inam/. We plan to
release the remaining features in upcoming releases of the OSU INAM. While the MPI
data collection was designed and implemented using MVAPICH2-X, note that the same
techniques are equally applicable to other MPI stacks.

As part of future work, we plan to incorporate support for additional MPI T counters
in conjunction with the MPI library. We would also like to extend INAM2 to be capable
of profiling and analyzing communication taking place to and from GPGPUs. Further,
we would like to add the capability to profile various PGAS programing languages such
as OpenSHMEM [29], UPC [35] and CAF [11] as well as different BigData frameworks
like Apache Hadoop [17], MapReduce [19] and Spark [30].

9 Acknowledgements
We would like to thank Michael Knox from Cray and John Hanks from KAUST for
their feedback on the OSU INAM package and thus enabling us to fix several bugs and
performance issues.

References

1. Ganglia Cluster Management System. http://ganglia.sourceforge.net/.
2. Integrated Performance Monitoring (IPM). http://ipm-hpc.sourceforge.net/.
3. mpiP: Lightweight, Scalable MPI Profiling. http://www.llnl.gov/CASC/mpip/.
4. Nagios. http://www.nagios.org/.
5. A. D. Malony and S. Shende. Performance Technology for Complex Parallel and Distributed

Systems. In Proc. DAPSYS 2000, G. Kotsis and P. Kacsuk (Eds), pages 37–46, 2000.
6. A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos, J. Fullop, A. Gentile, S. Monk,

N. Naksinehaboon, J. Ogden, M. Rajan, M. Showerman, J. Stevenson, N. Taerat, and
T. Tucker. The Lightweight Distributed Metric Service: A Scalable Infrastructure for Con-
tinuous Monitoring of Large Scale Computing Systems and Applications. In Proceedings
of the International Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’14, pages 154–165, Piscataway, NJ, USA, 2014. IEEE Press.

7. HOPSA – Holistic Performance System Analysis. http://www.vi-hps.org/
projects/hopsa/overview.

8. OSU InfiniBand Network Analysis and Monitoring. http://mvapich.cse.
ohio-state.edu/tools/osu-inam/.

9. D. H. Bailey, E. Barszcz, L. Dagum, and H.D. Simon. NAS Parallel Benchmark Results.
Technical Report 94-006, RNR, 1994.

10. PAVE Software Boxfish. https://computation.llnl.gov/project/
performance-analysis-through-visualization/software.php.

11. Coarray Fortran (CAF). http://caf.rice.edu/.
12. Open MPI : Open Source High Performance Computing. http://www.open-mpi.org.
13. Intel Corporation. Intel VTune Amplifier. https://software.intel.com/en-us/

intel-vtune-amplifier-xe.
14. E. Gallardo, J. Vienne, L. Fialho, P. Teller and J. Browne. MPI Advisor: A Minimal Overhead

MPI Performance Tuning Tool. In EuroMPI 2015, 2015.
15. Spring Framework. http://projects.spring.io/spring-framework/.
16. G. Pfister. Aspects of the InfiniBand Architecture. In 2001 IEEE International Conference

on Cluster Computing (CLUSTER), page 369. IEEE Computer Society, 2001.
17. Apache Hadoop. https://hadoop.apache.org/.

18

18. HPCToolkit. http://hpctoolkit.org/.
19. J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. In

Proceedings of the 6th Conference on Symposium on Opearting Systems Design & Imple-
mentation - Volume 6, OSDI’04, pages 10–10, Berkeley, CA, USA, 2004. USENIX Associ-
ation.

20. Asynchronous JavaScript and XML. http://www.w3schools.com/Ajax/ajax_
intro.asp.

21. Jquery. https://jquery.com/.
22. M. Koop, T. Jones, and D. K Panda. MVAPICH-Aptus: Scalable High-performance Multi-

transport MPI over InfiniBand. In IPDPS’08, pages 1–12, 2008.
23. M. Koop, J. Sridhar, and D. K. Panda. Scalable MPI Design over InfiniBand using eX-

tended Reliable Connection. IEEE Int’l Conference on Cluster Computing (Cluster 2008),
September 2008.

24. M. Koop, S. Sur, Q. Gao, and D. K. Panda. High Performance MPI Design using Unreliable
Datagram for Ultra-scale InfiniBand Clusters. In ICS ’07: Proceedings of the 21st annual
international conference on Supercomputing, pages 180–189, New York, NY, USA, 2007.
ACM.

25. J. Liu, W. Jiang, P. Wyckoff, D. K. Panda, D. Ashton, D. Buntinas, W. Gropp, and B. Toonen.
Design and Implementation of MPICH2 over InfiniBand with RDMA Support. In Proceed-
ings of Int’l Parallel and Distributed Processing Symposium (IPDPS ’04), April 2004.

26. M. Schulz. MPIT: A New Interface for Performance Tools in MPI
3. http://cscads.rice.edu/workshops/summer-2010/
slides/performance-tools/2010-08-cscads-mpit.pdf.

27. Message Passing Interface Forum. MPI: A Message-Passing Interface Standard, Mar 1994.
28. MVAPICH2-X: Unified MPI+PGAS Communication Runtime over OpenFabrics/Gen2 for

Exascale Systems. http://mvapich.cse.ohio-state.edu/.
29. OpenSHMEM. http://openshmem.org/site/.
30. Apache Spark. http://spark.apache.org/.
31. TACC STATS. https://www.tacc.utexas.edu/research-development/

tacc-projects/tacc-stats.
32. H. Subramoni, K. Hamidouche, A. Venkatesh, S. Chakraborty, and D. K Panda. Designing

MPI Library with Dynamic Connected Transport (DCT) of InfiniBand: Early Experiences.
In Supercomputing, volume 8488 of Lecture Notes in Computer Science, pages 278–295.
Springer International Publishing, 2014.

33. Top 500 Supercomputers. http://www.top500.org/statistics/list/.
34. Mellanox Technologies. Mellanox Integrated Switch Management Solution. http://

www.mellanox.com/page/ib_fabricit_efm_management.
35. Unified Parallel C (UPC). http://upc.lbl.gov/.

19

