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Abstract—High Performance Computing (HPC) systems are
becoming increasingly complex and are also associated with
very high operational costs. The cloud computing paradigm,
coupled with modern Virtual Machine (VM) technology offers
attractive techniques to easily manage large scale systems,
while significantly bringing down the cost of computation,
memory and storage. However, running HPC applications
on cloud systems still remains a major challenge. One of
the biggest hurdles in realizing this objective is the perfor-
mance offered by virtualized computing environments, more
specifically, virtualized I/O devices. Since HPC applications
and communication middlewares rely heavily on advanced
features offered by modern high performance interconnects
such as InfiniBand, the performance of virtualized InfiniBand
interfaces is crucial. Emerging hardware-based solutions, such
as the Single Root I/O Virtualization (SR-IOV), offer an at-
tractive alternative when compared to existing software-based
solutions. The benefits of SR-IOV have been widely studied
for GigE and 10GigE networks. However, with InfiniBand
networks being increasingly adopted in the cloud computing
domain, it is critical to fully understand the performance
benefits of SR-IOV in InfiniBand network; especially for
exploring the performance characteristics and trade-offs of
HPC communication middlewares (such as Message Passing
Interface (MPI), Partitioned Global Address Space (PGAS))
and applications. To the best of our knowledge, this is the
first paper that offers an in-depth analysis on SR-IOV with
InfiniBand. Our experimental evaluations show that for the
performance of MPI and PGAS point-to-point communication
benchmarks over SR-IOV with InfiniBand is comparable to
that of the native InfiniBand hardware; for most message
lengths. However, we observe that the performance of MPI
collective operations over SR-IOV with InfiniBand is inferior to
native (non-virtualized) mode. We also evaluate the trade-offs
of various VM to CPU mapping policies on modern multi-core
architectures and present our experiences.
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I. INTRODUCTION

Over the years, the cloud computing paradigm has be-

come increasingly popular. In this paradigm, organizations

offer computing, storage resources, and infrastructure as a

service based on a subscription-based access. Customers

can utilize such resources for their computing needs and

are charged based on their usage. Modern Virtual Ma-

chine (VM) technology offers attractive techniques to easily

manage various hardware/software components, along with

guaranteeing security, performance isolation, consolidation

and live migration [1]. Coupled with emerging virtualization

technology, the cloud computing paradigm has reduced

the cost of computation and storage by several orders of

magnitude.

However, running HPC applications on cloud systems still

remains a major challenge. One of the biggest hurdles in

realizing this objective is the lower performance offered

by virtualized computing environments. Recently introduced

hardware and software techniques [2], [3], [4] have signif-

icantly narrowed the performance gap between VMs and

native hardware for CPU and memory virtualization. How-

ever, improving the performance of virtualized I/O devices

still remains a challenge, especially for high speed network-

ing devices. Since many applications and communication

middlewares (such as Message Passing Interface (MPI) [5]

and Partitioned Global Address Space (PGAS) [6]) in the

HPC domain rely extensively on features offered by modern

interconnects, the performance of virtualized I/O devices are

likely to be the key driver in the adoption of virtualized cloud

computing systems for HPC applications.

HPC systems are increasingly being deployed with mod-

ern interconnects such as InfiniBand [7]. Currently, more

than 44% of the fastest supercomputing systems rely on

InfiniBand for their I/O and networking requirements [8]. In-

finiBand offers the Remote Direct Memory Access (RDMA)

feature to deliver low latency and high bandwidth to commu-

nication middlewares and scientific applications. Moreover,

InfiniBand adapters can also be used to run applications

that use TCP/IP over the InfiniBand network in the IP-

over-InfiniBand (IPoIB) mode [9]. Owing to these reasons,

InfiniBand is also being increasingly used to deploy Cloud

computing systems.

State-of-the-art I/O virtualization solutions can be broadly

classified as software-based and hardware-based approaches.

In software-based approaches, several software components

such as guest VMs, a virtual machine monitor (VMM)

and possibly a special I/O VM, work together to pro-

vide virtualized I/O access points to VMs without special

hardware support [10], [11]. In these approaches, physical

devices on the host cannot be accessed directly by the guest

VMs and each I/O operation is virtualized by the multiple

software components. Such solutions suffer from significant

performance degradation when compared to native high

performance network interfaces because of overheads such

as context/control switches and memory copies. However,

hardware-based I/O virtualization approaches can potentially

achieve higher performance by allowing direct hardware

access from within a guest VM [12]. In these approaches,

performance-critical I/O operations can be carried out in a

guest VM by interacting with the hardware directly instead



of involving the VMM or special VMs. Recently, the in-

dustry has released several standards which specify native

I/O virtualization (IOV) capabilities in PCI Express (PCIe)

adapters. These include Single-Root IOV (SR-IOV) [13] and

Multi-Root IOV (MR-IOV) [14].

In SR-IOV, a PCIe device presents itself as multiple virtual

devices and each virtual device can be dedicated to a single

VM. MR-IOV enables sharing of PCIe device resources be-

tween different physical servers. Recent studies have demon-

strated that SR-IOV is significantly better than software-

based solutions for GigE and 10GigE networks [15], [16],

[17], [18]. However, considering that InfiniBand networks

are also being adopted by Cloud computing systems leads

us to a broad question: Is SR-IOV support for InfiniBand

networks, ready for “Prime-Time” HPC workloads?

II. MOTIVATION

The performance characteristics of the InfiniBand native

hardware have been thoroughly evaluated by the HPC com-

munity. However, the trade-offs of using InfiniBand in a

virtualized environment with SR-IOV support have not been

demonstrated. InfiniBand networks offer two main commu-

nication modes: memory (RDMA) and channel semantics.

Additionally, InfiniBand networks offer two main progress

modes: polling and blocking. While high performance com-

munication libraries usually use polling mode for better

communication latencies [19], the blocking mode might

be preferable when multiple VMs share the same phys-

ical InfiniBand adapter. The network interrupt overheads

experienced by middlewares running across different VMs

can significantly impact the overall performance of parallel

applications. With the emergence of multi-core architectures,

multiple VMs can be scheduled on one compute node with

different subscription policies, either one VM per core, one

VM per CPU Socket (NUMA-node), or one VM per com-

pute node. For HPC applications the performance trade-offs

of such VM subscription policies are not obvious. Moreover,

in order to facilitate the adoption of the SR-IOV technology

in main-stream HPC, it is also imperative to analyze the

performance characteristics of running parallel applications

based on MPI and PGAS in a virtualized environment. In

this paper, we offer an in-depth study of these important

challenges to understand the performance characteristics and

trade-offs of using SR-IOV with state-of-the-art InfiniBand

networks for HPC communication middlewares and appli-

cations. To summarize, we address the following critical

problems:

1) InfiniBand networks offer various transport mecha-

nisms and communication modes. What are the per-

formance characteristics and trade-offs of using the

SR-IOV mechanism, when compared to native (non-

virtualized) InfiniBand hardware?

2) MPI and PGAS runtimes offer various point-to-

point and collective communication primitives that are

widely used in scientific applications. What is the

performance of such operations when used with SR-

IOV in InfiniBand cluster?

3) On multi-core architectures, VMs can be run with

various subscription policies. Can we quantify the

impact of such policies on the performance of HPC

communication middlewares?

4) Finally, can we offer insights into the performance

characteristics of scientific application benchmarks in

the environment of SR-IOV capable InfiniBand?

Our experimental evaluations show that for the perfor-

mance of MPI and PGAS point-to-point communication

benchmarks over SR-IOV with InfiniBand is comparable to

that of the native InfiniBand hardware, for medium and large

message lengths. However, we observe that the performance

of MPI collective operations over SR-IOV with InfiniBand is

inferior when compared to the native designs. We also study

the trade-offs of various VM to CPU mapping policies on

modern multi-core architectures.

III. BACKGROUND

In this section, we provide an overview of SR-IOV,

InfiniBand and HPC Cloud Computing middlewares.

A. Single Root I/O virtualization (SR-IOV)

Single Root IOV (SR-IOV) specifies native I/O Virtualiza-

tion (IOV) capabilities in the PCI Express (PCIe) adapters.

SR-IOV is applicable when a PCIe interface works in a sin-

gle server environment and allows a single physical device,

or a Physical Function (PF), to present itself as multiple

virtual devices, or Virtual Functions (VFs) (Figure 1). Each

virtual device can be dedicated to a single VM through the

PCI pass-through; which, allows each VM to directly access

the corresponding VF. Hence, SR-IOV is a hardware-based

approach to realize I/O virtualization. Moreover, VFs are

designed to be based on the existing non-virtualized PFs;

hence, the drivers that currently drive the current adapters

can also be used to drive the VFs in a portable fashion.

B. InfiniBand

InfiniBand [7] is an industry standard switched fabric that

is designed for interconnecting nodes in HEC clusters. It

is a high-speed, general purpose I/O interconnect that is

widely used by scientific computing centers world-wide.

The recently released TOP-500 [8] rankings (November

2012) reveal that more than 44% of the computing systems

use InfiniBand as their primary interconnect. InfiniBand is

also gaining ground in the commercial domain. InfiniBand

offers the RDMA feature, which can be used by communi-

cation middlewares to minimize communication overheads

through zero-copy communication semantics. In addition,

InfiniBand also offers basic Send/Recv channel semantics.

Furthermore, InfiniBand adapters can also be used to run

applications that use TCP/IP over the InfiniBand network

in the IPoIB mode [9]. In addition, InfiniBand networks
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Figure 1. Overview of SR-IOV

also offer polling and event based progress modes. HPC

communication libraries typically use the polling mode to

minimize communication overheads, but such an approach

requires the CPUs to constantly poll various completion

queues. On the other hand, the blocking progress mode

suspends the execution of a process that is waiting for

specific network events and generates an interrupt when the

specific condition is satisfied. This mode may lead to poorer

communication performance, but it can free up CPU cycles.

C. HPC Cloud Computing Middlewares

1) Message Passing Interface (MPI): MPI has been the

de-facto programming model for developing HPC appli-

cations. MPI offers various point-to-point, one-sided and

collective communication primitives that are widely used

across parallel applications. MPI has evolved over the years

to include many features to improve performance of parallel

applications. The current MPI-3 specification offers various

attractive new features including non-blocking collectives

and improved support for one-sided operations. MVAPICH2

is a high-performance implementation of the MPI standard

over InfiniBand, RoCE, and iWARP [19]. It is widely used

across more than 2,000 organizations world-wide and is

powering various supercomputer systems, including the 7th

ranked TACC Stampede system. MVAPICH2 takes advan-

tage of various hardware features offered by the InfiniBand

network interface to deliver best performance, at large

scales [20], [21], [22], [23].

2) Partitioned Global Address Space (PGAS): While MPI

has been very successful with regular, iterative applications,

emerging PGAS models offer an attractive alternative to

develop irregular applications. PGAS models offer both per-

formance and programmer productivity. PGAS models can

either be language-based, such as Unified Parallel C (UPC),

or library-based, such as OpenSHMEM. UPC runtimes

have also been optimized to take advantage of InfiniBand

networks [7] to achieve high performance and scalability.

However, since PGAS models are still emerging and lack

the performance and scalability offered by MPI runtimes,

it is unlikely that entire parallel applications will be re-

written with PGAS models. Instead, it is widely believed

that next generation applications will be “Hybrid,” relying on

both MPI and PGAS models, and take advantage of unified

communication runtimes [24]. The MVAPICH2-X software

stack [19] provides flexibility to write and use such Hybrid

programming models.

IV. SCHEMES TO ANALYZE SR-IOV CAPABILITIES

In this section, we discuss the various aspects of using

InfiniBand in a virtualized environment. We also explore

different dimensions for evaluating the performance charac-

teristics and trade-offs of using SR-IOV with InfiniBand for

HPC communication middlewares and applications. Exper-

iment results for each of these dimensions are presented in

Section V.

InfiniBand Communication Modes: In Section III-B, we

discussed the various features offered by current generation

InfiniBand network adapters. The performance and scala-

bility features of these modes have been widely evaluated

on native hardware. In Section V-B, we analyze the trade-

offs of using virtualization technology with SR-IOV sup-

port. Specifically, we evaluate the performance of RDMA,

Send/Recv, and IPoIB modes on SR-IOV and compare

them to the performance obtained on native (non-virtualized)

hardware. These are the primitives that are used for imple-

menting different communication middlewares such as MPI

and UPC.

Polling vs. Event modes in InfiniBand: InfiniBand offers

two modes for getting completion events: polling and event

based. In polling mode, user application continuously polls

the completion queue (CQ). This mode is usually good for

applications with many cores, and each core can continu-

ously poll to ensure communication progress. The second

mode is based on events, where the user application can

register for completion events. High performance libraries

such as MVAPICH2 provide both of these modes and

enables application developers to choose progress mode

based on communication characteristics. In a virtualization

environment, CPU cores are likely to be oversubscribed, ie,

a host node can have more Virtual Machines (VM) than

CPU cores. In such environment, the event based mode

is most optimal. Therefore, the performance of blocking

versus polling modes and their impact on virtual machine

deployment needs to be evaluated.

HPC Communication Middlewares: As discussed in Sec-

tion III-C, MPI and PGAS programming models are com-

monly used to develop scientific parallel applications. Com-

munication libraries that implement MPI, PGAS specifi-

cations are typically highly optimized to take advantage



of the various features offered by the low-level hardware

and network interface. In Section V-C, we evaluate the

performance of various communication primitives in both

MPI and UPC communication runtimes with SR-IOV and

compare that against the performance achieved on native-

hardware.

Virtual Machine Configurations and Scalability on

Multi-Core Architectures: On multi-core architectures,

more than one parallel job can be efficiently scheduled

concurrently to achieve improved utilization of processor

and network resources [25]. In such scenarios, using virtu-

alization technology can lead to easier system management

to offer performance isolation; but, the performance charac-

teristics can vary significantly based on VM configurations.

We evaluate the performance characteristics and trade-offs

of scheduling more than one VM per node. Specifically, we

evaluate various VM to CPU mapping patterns such as one

VM per core, one VM per CPU Socket (NUMA-node), and

one VM per compute node. Across these configurations, we

evaluate the performance of various communication oper-

ations defined in the MPI standard. We present a detailed

evaluation of these parameters in Section V-E. We also

study VM scalability characteristics - the impact of running

multiple VMs in a physical node - with SR-IOV and present

our performance evaluations in Section V-F.

V. PERFORMANCE EVALUATION

A. Experiment Setup

Our experimental testbed consists of four compute nodes

featuring the Intel Sandy Bridge-EP platform. Each node

has dual Intel Xeon E5-2670 2.6GHz eight-core processors

with a 20 MB L3 shared cache. Each compute node has

32 GB of main memory and, the platform is equipped

with one PCIe 3.0 slot. We use RedHat Enterprise Edition

6.1 (RHEL6) with kernel 2.6.32-131.0.15.el6.x86 64 as the

operating system on these nodes. We have compiled various

applications used in this study with gcc 4.4.6 compiler. In

addition, we use the Mellanox OpenFabrics Enterprise Edi-

tion (MLNX OFED) SRIOV-ALPHA-3.3.0-2.0.0008 [26] to

provide the InfiniBand interface with SR-IOV support. All

the nodes are equipped with Mellanox ConnectX-3 FDR

cards (56 Gbps). The compute nodes are connected to a

Mellanox FDR switch SX6036 for all experiments. We used

KVM [11] as the Virtual Machine Monitor (VMM).

We have used IB-Verbs benchmarks and NetPerf [27]

for IB-Verbs level and socket level experiments. All MPI

experiments were run using MVAPICH2 1.9a2 and the UPC

experiments were run using MVAPICH2-X 1.9a2 [19]. We

report results that were averaged across multiple runs to

ensure fair comparisons.

B. InfiniBand Network Level Evaluations

In this section, we present the performance evaluation

results of SR-IOV compared to native mode. In native mode,

we ran the experiments using two different physical nodes.

Similarly, in virtual machine mode, the two VMs were

placed in two neighboring physical nodes. We evaluated

network level performance using IB-Verbs benchmarks, and

IPoIB performance using the Netperf benchmark. The results

are illustrated in Figure 3.

As indicated in Section III-B, InfiniBand has send-recv

and memory semantics (RDMA). We present the send-recv

performance of IB-Verbs in Figure 2(a). Here, we can see

a big difference for small messages. The latency results for

2 byte message size for native and SR-IOV modes are 0.87

and 1.53µs, respectively. However, for larger message sizes,

the difference becomes nominal. Latency results for the 4 KB

message size are 2.82 and 2.87µs. We investigated this

further and compared the device capabilities of physical and

virtual NICs. We found out that the max_inline_size

for virtual NIC is 0 bytes, while it is 400 bytes for

the physical NIC. This explains the difference in perfor-

mance for message sizes less than 400 bytes. Further, we

also evaluated the performance of the native mode with

max_inline_size set to 0. These results are indicated

as ‘Native (Max Inline=0)’. We can see that the difference

for smaller message size is very minimal compared to the

SR-IOV mode.

Figure 2(b) represents the RDMA write performance

results. The results are similar to that of send-recv latency.

For a 2 byte message size, the latency results observed for

native and SR-IOV modes were 0.83 and 1.39µs. The impact

of max_inline_size is also evident in this case. Without

this optimization, native mode performance is similar to that

of SR-IOV mode.

IP over InfiniBand (IPoIB) results are presented in Fig-

ure 2(c). As discussed in Section III-B, socket applications

can directly take advantage of InfiniBand using IPoIB.

We used the Netperf [27] benchmark to evaluate IPoIB

performance. The native mode IPoIB latency for a 1 byte

message was 25.653µs. With virtualization using SR-IOV,

the latency observed was 53.74µs. This is more than 2×
difference in performance. We believe that the TCP stack

overheads are significant in virtualized mode.

C. MPI and UPC Level Evaluations

We also evaluated the MPI and UPC level performance

with SR-IOV using OSU Microbenchmarks [28]. MPI la-

tency and bandwidth results are depicted in Figures 3(a) and

3(b). The MPI latency for a 1 byte message was observed as

1.02 and 1.39µs for native and SR-IOV modes, respectively.

We used MVAPICH2-1.9a2 for our evaluations. MVAPICH2

employs ‘RDMA-Fast Path’ [29] optimization for small

message sizes; which, uses RDMA write for small message

sizes, so it matches with the IB-verbs level RDMA write

latency. Also, it can be observed that the native and SR-

IOV lines in Figures 3(a) converge earlier than in the pure

IB-verbs case (Figure 2(b)). This is because the inline size

optimization for MVAPICH2 is set as 128 bytes.
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Figure 3. MPI and UPC Level Evaluations

UPC level experiments are presented in Figure 3(c). We

evaluated upc_memget operation in this experiment. These

operations directly rely on RDMA Read operations. The

1 byte latency for upc_memget operation was observed as

1.81 and 2.16µs, for native and SR-IOV mode, respectively.

This indicates that there is a significant performance gap for

RDMA Read operation between native and SR-IOV modes.

D. Impact of Polling vs. Event Modes

As discussed in Section III-B, InfiniBand completion

events can be handled in two modes: polling and block-

ing based. In polling mode, a user thread continuously

polls the InfiniBand Completion Queue (CQ) for events. In

the blocking mode, the user thread registers for receiving

completion events and gets suspended when it invokes the

ibv_get_cq_event function. On receipt of an event,

the network interface generates an interrupt to signal the

thread and it can get scheduled depending on the OS

scheduling policies. Hence, the blocking mode may incur

higher overheads due to interrupt and scheduling latencies.

In these set of experiments, we evaluate the performance

impact of polling versus blocking based modes for SR-IOV.

Figure 4(a) presents the latency results at InfiniBand verbs

level under polling and blocking based schemes; we present

both native and SR-IOV results here. For the native mode,

the 1 byte latencies for polling and blocking based schemes

are 0.83 and 6.19µs, respectively. But in the SR-IOV mode,

the latency results are significantly higher with the blocking

scheme. The latency results obtained in SR-IOV mode for

1 byte message size with polling and blocking schemes are

1.53 and 28.43µs. We believe that this is because of a lack

of optimization related to serving the interrupts from the

network interface within the SR-IOV firmware.

Furthermore, we evaluated MPI latency and bandwidth

under these two schemes. The results are depicted in Fig-

ure 4(b) and 4(c). We used ‘MV2 USE BLOCKING=1’

option in MVAPICH2 for enabling the blocking mode. In

MVAPICH2 when the blocking mode is enabled, each pro-

cess polls the completion queues for a fixed number of itera-

tions and then invokes the ibv_get_cq_event function.

If the required completion events are received within these

number of iterations, then we skip the ibv get cq event()

function. Due to this design, we observe that the host

level latency using default and ‘MV2 USE BLOCKING=1’

option are 1.02 and 1.46µs, respectively. In SR-IOV mode,

these results are 1.39 and 1.89µs. MPI bandwidth eval-

uation reveals that polling modes with both native and

SR-IOV achieve near to peak bandwidth: 6,283.36 and

6,283.36 MB/s. For the blocking mode, the results for native

and SR-IOV modes are 6,108.05 and 6,060.96 MB/s. How-

ever, as we increase the number of processes it is more likely



 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

4K1K 256 64 16 4

L
a

te
n

c
y
 (

u
s
)

Message size (Bytes)

Native Polling
Native Event

SR-IOV Polling
SR-IOV Event

(a) IB-Verbs Latency

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

4K1K 256 64 16 4 1

L
a

te
n

c
y
 (

u
s
)

Message size (Bytes)

Native Polling
Native Event

SR-IOV Polling
SR-IOV Event

(b) MPI Latency

 0

 1000

 2000

 3000

 4000

 5000

 6000

 1  4  16  64  256 1K 4K

B
a

n
d

w
id

th
 (

M
ill

io
n

 B
y
te

s
 /

 S
e

c
o

n
d

)

Message size (Bytes)

Native Polling
Native Event

SR-IOV Polling
SR-IOV Event

(c) MPI Bandwidth

Figure 4. Impact of Polling vs. Event Modes

that the MPI processes invoke the ibv_get_cq_event

function and this can invariably affect the communication

performance.

E. Impact of Virtual Machine Configurations

VM deployment configuration has a significant impact on

performance. Various modes for deployment are possible,

such as VM per host CPU core, VM per host CPU socket,

and VM per host node. In this section, we present the

evaluation results of these configurations for SR-IOV. We

evaluate the performance of MPI collectives using these con-

figurations. We chose MPI AlltoAll, MPI AllReduce, and

MPI Bcast as representatives for common communication

patterns across HPC applications.

MVAPICH2 uses hierarchical shared-memory based de-

signs to optimize the intra-node phases of the MPI Bcast

and the MPI Allreduce operations. The MPI Alltoall op-

eration is implemented directly over basic point-to-point

operations. We compare the performance of these MPI

collectives using OSU microbenchmarks [28] for both SR-

IOV and native modes. In SR-IOV mode, we consider the

following configurations - VM per host CPU core, VM per

host CPU socket and VM per host node. For native mode, we

present results with and without shared memory optimiza-

tions. Performance results are presented in Figures 5(a), (b)

and (c).

In these experiments, we kept the number of processes

same in all the three modes as 32. We used four physical

nodes for these experiments, each with 2 sockets. For

example, in 1 VM per node mode, each VM hosted 8 pro-

cesses. Similarly, in 1 VM per socket mode, each node was

configured with 2 VMs, and each VM hosted 4 processes.

For 1 VM per core, each node was configured with 8 VMs,

and each VM hosted 1 process. We configured the VMs

with same number of cores as the number of processes that

it has to run. Thus, for 1 VM per node, 1 VM per socket

and 1 VM per core cases, each VM has 8, 4 and 1 cores,

respectively. We also disabled the intra-node shared memory

communication in the MPI library for the virtualized modes,

so that the comparisons were fair.

The performance evaluation results are presented in Fig-

ure 5. In all the three collectives, we observe that 1 VM per

node case provides lowest latency. For MPI-Alltoall with

message size 8 KB, the latencies observed were 651.16,

609.99 and 556.335µs for VM per core, VM per socket

and VM per node, respectively. MPI-Bcast results with

8 KB message size for these modes are 31.34, 25.98 and

22.20µs. A similar trend was observed with MPI-AllReduce

(22.20µs for 8 KB message size). Notably these results are

without intra-node shared memory communication. Thus,

these results can further be improved if the 1 VM per node

case uses shared memory for intra-node communication. We

also compare these results with that of native mode (with

and without intra-node shared memory support). In native

mode (shared memory enabled), the latency results for MPI-

Alltoall, MPI-Bcast and MPI-AllReduce for 8 KB message

size are 405.96, 8.67 and 28.20µs. These trends indicate

that there is a huge performance difference between native

and virtualized modes for collective operations, even with

advanced virtualization features such as SR-IOV.

F. Impact of Virtual Machine Scalability

In this section, we present the impact of virtual machine

scalability on performance. We present the weak scalability

results by using the MPI Graph500 [30] benchmark. The

Graph500 benchmark is a Breadth First Search (BFS) bench-

mark, which reports the BFS traversal time for a given input

graph size. In our experiments, we use a graph with 4 million

vertices and 64 million edges. We keep the same graph size

and increased the number of virtual machines per node, and

with four nodes.

The experiment results are presented in Figure 6. The

execution time for BFS traversal is reported in Y-axis and

number of Virtual Machines (VMs) per node is reported on

X-axis. With increase in number of VMs per node, the total

number of participating processes also increases. As it can be

observed from the figure, the execution time reduces as we

increase the number of VMs per node. But, with 16 VMs per

node the execution time increases, even though the number

of participating processes increase. The 16 VMs per node
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is ‘fully-subscribed’ mode, as each host node has 16 CPU

cores. We compare these results with the native mode. In this

configuration, we used four physical nodes and changed the

number of processes per node from 1 to 16. We can see

that there is significant difference in performance between

native and SR-IOV modes. With 16 processes per node, the

execution decreases further as compared to 8 processes per

node. But for SR-IOV, the execution time increases for 16

VMs per node as compared to 8 VMs per node. These results

reveal performance degradation at fully-subscribed mode.

VI. RELATED WORK

Recent studies about I/O virtualization mainly focus on

two categories: one adopts a software-based approach and

the other is hardware-based. For example, articles [31]

and [32] show network performance evaluation of software-

based approaches in Xen. Studies [15], [16], [18] have

demonstrated that SR-IOV is significantly better than

software-based solutions for 10GigE networks. In [15],

the authors provide a detailed performance evaluation on

the environment of SR-IOV capable 10GigE Ethernet in

KVM. They have studied several important factors that

affect network performance in both virtualized and native

systems. Authors in [16] have conducted experiments to

compare SR-IOV performance with a paravirtualized net-

work driver. The results show that SR-IOV can achieve

high performance, high scalability, and with a low CPU

overhead at the same time. Article [18] has addressed two

important issues: redundant interrupts and single-threaded

NAPI, which affect performance and scalability of SR-IOV

with 10GigE network. Their results also demonstrate that

SR-IOV approach can achieve high performance I/O in a

KVM-based virtualized environment. Further, studies [33],

[34], [35], [36] with Xen demonstrated the ability to achieve

near-native performance in VM-based environment for HPC.

As discussed in the above section, current research on SR-

IOV mainly pays attention to the environment of 10GigE

network. However, SR-IOV has been introduced for Infini-

Band recently. Therefore, it is very important for researchers

and engineers to fully understand the performance benefits

of SR-IOV in InfiniBand network. This paper concentrates

on this scenario, which is different from other works. In this

paper, we provide a detail performance evaluation of both

IB-level primitives and MPI/UPC-Level benchmarks.

VII. CONCLUSIONS

In this work, we presented our initial evaluation results

of using SR-IOV with InfiniBand. We explored the different

dimensions for evaluating the performance aspects such as

InfiniBand communication modes, communication progress

modes and virtual machine configuration modes. Based on

these dimensions, we presented the performance character-

istics of MPI and UPC communication runtimes.

Our experimental evaluations showed that for the per-

formance of MPI and PGAS point-to-point communication

benchmarks over SR-IOV with InfiniBand is comparable

to that of the native InfiniBand hardware, for medium

and large message lengths. However, we observed that the

performance of MPI collective operations over SR-IOV with

InfiniBand is inferior when compared to the native designs.
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