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Abstract
With the rapid advances in computing technology, there

is an explosion in media that needs to collected, cataloged,
stored and accessed. With the speed of disks not keep-
ing pace with the improvements in processor and network
speed, the ability of network file systems to provide data
to demanding applications at an appropriate rate is dimin-
ishing. In this paper, we propose to enhance the perfor-
mance of network file systems by providing an InterMediate
bank of Cache servers between the client and server called
(IMCa). Whenever possible, file system operations from the
client are serviced from the cache bank. We evaluate IMCa
with a number of different benchmarks. The results of these
experiments demonstrate that the intermediate cache archi-
tecture can reduce the latency of certain operations by upto
82% over the native implementation and upto 86% com-
pared with the Lustre file system. In addition, we also see
an improvement in the performance of data transfer oper-
ations in most cases and for most scenarios. Finally, the
caching hierarchy helps us to achieve better scalability of
file system operations.
Keywords: InfiniBand, System Area Networks, Clusters

1 Introduction
With the dawn of the internet age, the rapid growth of

multi-media and other traffic, there has been a dramatic in-
crease in the amount of data that needs to be stored and
accessed. In addition, commercial and scientific applica-
tions such as data-mining and nuclear simulations generate
and parse vast amounts of data during their runs. To meet
the demand for access to this data, single server file systems
such as NFS [9] and GlusterFS [1] and parallel file systems
such as Lustre [10] over high-bandwidth interconnects like
InfiniBand with high-performance storage disks at the stor-
age servers have become common-place. However, even
with these configurations, the performance of the file sys-
tem under a variety of different workloads is limited by the
access latency to the disk. With a large number of requests
to non-contiguous locations of the disk, the ability of the file
system to cope with these types of requests is severely lim-
ited. In addition, parallel striping of parallel data provides
limited benefit in environments with a lot of small files.
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To reduce the load on the disk and enhance the perfor-
mance of the file system, several different types of caching
strategies and alternatives have been proposed [5, 4]. Gen-
erally, in most file systems, a cache exists at the server side.
It might be part of the distributed file system, such as with
Lustre [10], or it might reside in the underlying file sys-
tem such as with NFS. The server side cache will gener-
ally contain the latest data. The server side cache may be
used to reduce the number of requests hitting the disk, and
also provide enhancements when there is a fair amount of
read/write data sharing. The server side cache is generally
limited in size and shared by a large number of I/O threads.
In addition, the limited size of the cache in-concert with
policies like LRU can reduce the performance of the server
side cache.

In addition to a server side cache, file system protocols
like NFS [9] and Lustre [10] also provide a client side cache.
A client side cache may provide a large benefit in terms of
performance when most of the data is accessed locally, such
as in the case of a user home directory. However, client
side caches introduce cache coherency issues when there is
sharing of data between multiple clients. NFS does not offer
strict cache coherency and uses coarse timeouts to deal with
the issue. Lustre [10] on the other hand uses locking with
the metadata server acting as a lock manger to implement
client cache coherency. Writes are flushed before locks are
released. With a large number of clients, the overhead of
maintaining locks and keeping the client caches coherent
increases. GlusterFS [1] does not provide a client side cache
in the default configuration.

In this paper, we propose, design and evaluate an In-
terMediate Caching architecture (IMCa) between the client
and the server for the GlusterFS [1] file system. We main-
tain a bank of independent cache nodes with a large capac-
ity. The file system is responsible for storing information
from a variety of different operations in the cache. Keep-
ing the information in the cache bank up-to-date is achieved
through a number of different hooks at the client and the
server. Through these hooks, the client attempts to fetch the
information for different operations from the cache, before
trying to get it from the back-end file server.

We expect multiple benefits from using this architecture.
First, the file system clients can expect to retain the bene-
fits of a client side cache with a small penalty bounded by
network round-trip latency. With the advent of low latency,
high-performance networks like InfiniBand which offer low
latency messaging, the penalty associated with this is likely



to be low. Second, since the number of caches is small
in comparison to the number of clients, and these caches
are lockless, keeping the caches coherent is considerably
cheaper. Finally, we expect to reap the benefits of a client
cache without the associated scalability and coherency is-
sues.

Our preliminary evaluations shows that we can improve
the performance of file system operations such as stat by up
to 82% over the native design and upto 86% over a filesys-
tem like Lustre. In addition, we also show that the interme-
diate cache can improve the performance of data transfer
operations with both single and multiple clients. Finally, in
environments with read/write sharing of data, we can see an
overall improvement in file system performance. Finally,
IMCa helps us to achieve better scalability of file system
operations.

The rest of this paper is organized as follows. Section 2
describes the background work. After that, Section 3 tries
to motivate the need for a bank of caches. In Section 4 we
discuss the design issues. Following that, Section 5 presents
the evaluation. Section 6 looks at related work. Finally,
conclusions and future work are presented in Section 7.

2 Background
In this section, we discuss the file system GlusterFS and

the dynamic web-content caching daemon MemCached.

2.1 Introduction to GlusterFS
GlusterFS [1] is a clustered file-system for scaling the

storage capacity of many servers to several peta-bytes. It
aggregates various storage servers or bricks over an inter-
connect such as InfiniBand or TCP/IP into one large par-
allel network file system. GlusterFS in its default config-
uration does not stripe the data, but instead distributes the
namespace across all the servers. Internally, GlusterFS is
based on the concept of translators. Translators may be ap-
plied at either the client or the server. Translators exist for
Read Ahead and Write Behind. In terms of design, a small
portion of GlusterFS is in the kernel and the remaining por-
tion is in userspace. The calls are translated from the ker-
nel VFS to the userspace daemon through the Filesystem in
UserSpace (FUSE).

2.2 Introduction to MemCached
Memcached is an objects based caching system [3] de-

veloped by Danga Interactive for LiveJournal.com. It is tra-
ditionally used to enhance the performance of database ap-
plication or websites with dynamic content that are heavily
loaded. Memcached is usually run as a daemon on spare
nodes. Memcached listens for requests on a user specified
port. The amount of memory used for caching is spec-
ified at startup. Internally, memcached implements Least
Recently Used (LRU) as the cache replacement algorithm.
Memcached uses a lazy expiration algorithm; i.e. objects
are evicted when the cache is full and a request is made to
add an object to the cache, or a request to fetch a data el-
ement from the cache is made and the time for the object
in the cache has expired. Memory management is based

on slab cache allocation to reduce excessive fragmentation.
Memcached currently limits the maximum size of the ob-
ject to be stored to 1MB and the maximum length of the
key to 256 bytes. The Memcache daemon may be accessed
through TCP/IP connections. Clients usually change data
elements in memcached through a T(key, data) tuple. The
API consists of the functions set, replace, delete, prepend
and append. A number of libraries are available for access-
ing memcached daemons; one of them libmemcache is a C
based library [2].

3 Motivation
We now consider the motivation for using intermediate

caching architecture in a file system. We look at some com-
mon problems in file system design that could potentially
be solved through the use of a caching layer.

Single Server Bandwidth Drop With Multiple
Clients. Protocols like NFS/RDMA attempts to offer the
improved bandwidth of networks like InfiniBand to NFS.
However, NFS servers usually store most of the data on
the disk. The server is constrained by the ability of the
disk to match the bandwidth of the network. Since the
disk is usually much slower than the network, the benefit
from using NFS/RDMA is reduced. The effect of this is
shown in Fig. 1(b) and Fig. 1(a), which show the multi-
client IOzone Read throughput with different transports,
namely NFS/RDMA (RDMA), NFS/TCP on InfiniBand
(IPoIB) and finally, NFS/TCP on Gigabit ethernet (GigE).
In Fig. 1(a), 4GB server memory is used; in Fig. 1(b), 8GB
server memory is used. The bandwidth available to the
clients seems to be related to the amount of memory on the
server and falls off as the server runs out of memory and is
forced to fetch data from the disk.
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Fig. 1. Multiple clients IOzone Read Bandwidth with
NFS/RDMA [9]
Parallel I/O Bandwidth From Multiple Servers. Par-

allel I/O attempts to use the aggregate bandwidth of multi-
ple servers. Since the back-end server ultimately uses real
disks, the benefits of parallel I/O bandwidth are ultimately
mitigated especially for multiple streams that access data
spread on different portions of the disk causing increased
disk seeking, reducing performance.

Performance For Small Files. Delivering good perfor-
mance for small files is generally difficult. In data-center
environments a large number of small files are used [7].
Data striping techniques generally used in parallel file sys-
tem are of limited use for small files. Storing files on mul-
tiple independent servers can help reduce contention for



small files, but still exposes these files to the limits of the
disk on these servers.

Cache Coherency Problems. In file system environ-
ments, a client side cache usually provide best performance.
Client caches may be coherent such as with Lustre [10]
or non-coherent, such as with NFS [9]. Non-coherent
client side caches are more scalable but have limited use
in environments with read/write sharing. Coherent client
side cache may be used in environments with sufficient
read/write sharing. However, they have limited scalability.

Server load problems. Reducing the load on the server
is generally crucial to improving the scalability of file sys-
tem protocols. RDMA is generally proposed as a communi-
cation offload technique to reduce the impact of copying in
protocols like TCP/IP. However, RDMA cannot eliminate
other copying overheads such as those across the VFS layer
and other file system related overheads. Using an interme-
diate cache layer may help mitigate the effect of some of
these problems. We will now look at the design and imple-
mentation of a layer of caching nodes.

4 Design of a Cache for File Systems

In this section, we consider the design of the Interme-
diate memory caching (IMCa) architecture for the Glus-
terFS [1] file system. First, we look at the overall block
level architecture of IMCa in Section 4.1. Following that,
we look at the potential non-data file system operations that
could be optimized in Section 4.2. In Section 4.3, we look at
the potential optimizations for data operations. Finally, we
discuss some of the potential advantages and disadvantages
of IMCa in Section 4.4.

4.1 Overall Architecture of Intermediate Memory
Caching (IMCa) Layer

The architecture of IMCa is shown in Fig. 2. The ar-
chitecture consists of three components: CMCache (Client
Memory Cache), MemCached (MCD) array and SMCache
(Server Memory Cache). The first component CMCache
(Client Memory Cache) is located at the GlusterFS client.
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Fig. 2. Overall Architecture of the Intermediate Memory
Caching (IMCa) Layer

Client Memory Cache (CMCache): This is responsi-
ble for intercepting file system operations at the client. It is
implemented as a translator on the GlusterFS client as dis-
cussed in Section 2. Once these operations are intercepted
CMCache determines whether these requests have any in-
teraction with the caching layer or not. If there is no inter-
action, CMCache will propagate the request to the server.
Interactions are generally in two forms. In the first form, it
may be possible to process the request from the client di-
rectly by contacting the MCDs. In this case, CMCache will
contact the MCDs and attempt to directly return the results
for the requests. CMCache communicates with the MCDs
through TCP/IP.

MemCached MCD Array (MCD): This consists of an
array of MemCached daemons running on nodes usually
set aside primarily for IMCa. The daemons may reside on
nodes that have other functions, since MCDs tends to use
limited CPU cycles. To obtain maximum benefit from us-
ing IMCa, the nodes should be able to provide a sufficient
amount of memory to the daemons while they are running.

Server Memory Cache (SMCache): This is the final
component of IMCa. It is located on the GlusterFS server.
SMCache is implemented as a translator at the GlusterFS
server. SMCache is divided into two parts. The first part
of SMCache intercepts the calls coming from GlusterFS
clients. Depending on the type of operation from the Glus-
terFS client, it may either pass the operation directly to the
underlying file system, or perform certain transformations
on it before passing it to the underlying file system. The
GlusterFS file system uses the asynchronous model of pro-
cessing requests as discussed in Section 2. Initially, requests
are issued to the file system and later when they complete,
a callback handler is called that processes these responses
and returns the results back to the client. The second part of
SMCache maintains hooks in the callback handler. These
hooks allow SMCache to intercept the results of different
operations and send them to MCDs if needed. SMCache
communicates with the MCDs using TCP/IP.

4.2 Design for Management File System Opera-
tions in IMCa

We now consider some of the design trade-offs for dif-
ferent management file system operations.

Stat operations: These are included in POSIX seman-
tics. Stat applies to both files and directories. Stat generally
contains information about the file size, create and modify
times, in addition to other information and statistics about
the file. Stat operations are a popular way of determining
updates to a particular file. For example, in a producer-
consumer type of application, a producer will write or ap-
pend to a file. A consumer may look at the modification
time on the file to determine if an update has become avail-
able. This avoids the need and cost for explicit synchro-
nization primitives such as locks. This approach is used in
a number of web and database applications [7]. Since the
data structures for the stat operations are generally stored on
the disk, stat operations usually have considerable latency.
It is natural to consider stat functions for cache based func-
tionality. We have designed a cache based functionality for
stat. At open, MCD is updated with the contents of the stat
structure from the file by SMCache. The key used to lo-



cate a MCD consists of the absolute pathname of the file,
with the string :stat appended to it. SMCache uses the de-
fault CRC32 hashing function in libmemcache [2] to locate
the appropriate MCD. For every read and write operation,
the stat structure in the MCD is replaced with the most re-
cent value of stat by SMCache. CMCache then intercepts
stat operations, attempts to fetch the stat information from
the MCD if available, and return it to the client. If there
is a miss, which might happen if the stat entry was evicted
from the MCD for example, the stat request propagates to
the server.

Create operations: These usually require allocation of
resources on the disk. There is not much potential for cache
based optimizations. Create operations are directly for-
warded from the client to the server without any processing.

Delete operations: These operations usually require re-
moval of items from the disk. The potential for optimiza-
tions with delete operations is limited. Delete operations are
forwarded by the client to the server without any intercep-
tion. When delete operations are encountered, we remove
the data elements from the cache to avoid false positives for
requests from clients.

4.3 Data Transfer Operations

There are two types of file system operations that gener-
ally transfer data; i.e. Read and Write. To implement Read
and Write with IMCa, CMCache intercepts the Read and
Write operations at the client. Before we discuss the pro-
tocols for these operations, we look at the issue of cache
blocking for file system operations.

4.3.1 Need for Blocks in IMCa

Most modern disk based file systems store data as
blocks [6]. Parallel file systems also tend to stripe large
files across a number of data servers using a particular
stripe width. Generally, the larger the block size, the bet-
ter bandwidth utilization from the disk and network subsys-
tems. Smaller block sizes on the other hand tend to favor
lower latency, but also tend to introduce more fragmenta-
tion. IMCa uses a fixed block size to store file system data
in the cache. Since IMCa is designed as a generic caching
layer and should provide good performance for a variety of
different file sizes and workloads; the block size should be
set appropriately keeping these limits in mind. It should be
kept small enough so that small files may be stored more
efficiently. It should also be kept large enough to avoid
excessive fragmentation and reasonable network bandwidth
utilization. MemCached [3] has a maximum upper limit
of 1MB for stored data elements as discussed in Section 2.
This places a natural upper bound on the size of data that
may be stored in the cache. Depending on the blocksize,
IMCa may need to fetch or write additional blocks from/to
the MCDs above and beyond what is requested. This hap-
pens if the beginning or end of the requested data element
is not aligned with the boundary defined by the blocksize.
This is shown in Fig. 3. As a result, data access/update
from/to the MCDs become more expensive. This is dis-
cussed further in Section 4.3.2.

File data segmented
by IMCa blocksize

data

Data Block Boundaries

Requested data
Extra

Fig. 3. Example of blocks requiring additional data trans-
fers in IMCa

4.3.2 Design for Data Transfer Operations:

We now look at the protocols for Read and Write data trans-
fer operations in IMCa. We also consider the supporting
functionality for data transfer operations such as Open and
Close.

Open: On the open, in CMCache, the absolute path of
the file and the file descriptor is stored in a database, so that
this information may be accessed at a later point. At the
server, the MCDs are purged of any data relating to the file
when the Open operation is received.

Read: The algorithm for Read requests in CMCache is
shown in Fig. 4(b). On a Read operation, CMCache ap-
pends the absolute path of the file (which was stored during
the Open) with the offset in the file to generate a key. Since
IMCa is based on a static block size; the size of the Read
data requested from the MCD may be equal to or greater
than the current Read request size. CMCache will generate
keys that consist of the absolute pathname for the file, that
was stored during the open and the offsets from the Read
request, taking into account the IMCa blocksize. CMCache
uses the keys to access the MCDs and fetch the blocks. If
there is a miss for any one of the keys, CMCache will for-
ward the Read request to the GlusterFS server. The cost of a
miss is more expensive in the case of IMCa, since it includes
one or more round-trips to the MCD, before determining
that there might be a miss. The SMCache Read algorithm
is shown in Fig. 4(a). Because of the IMCa block size, the
Read operation may potentially require the server to read
additional data from the underlying file system. Once the
Read operation returns from the filesystem, the server will
append the full file path name with the block offset and up-
date the MCDs with the data. The server may need to send
several blocks to the MCDs servers. Using an additional
thread to update the MCDs at the server may potentially re-
duce the cost of Reads at the server.

Write: Write operations are persistent. This means that
the Write operations must propagate to the server where
they need to be written to the filesystem. CMCache does
not intercept Write operation. At the server, the Write oper-
ation is issued to the file system as shown in Fig. 4(c). When
the write operation completes, Read(s) are issued to the un-
derlying file system by SMCache that cover the Write area,
accounting for the IMCa blocksize. When the data is avail-
able, the Read(s) are sent to the MCDs. Since there may be
multiple overlapping Writes to a particular record and be-
cause of the IMCa requirement of a fixed block-size, neither
CMCache nor SMCache can directly send the Write data to
the MCDs. Write latency may be potentially increased by
the additional update of the MCDs at the server. Using an
additional thread as with Reads can reduce the cost of this
update.
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Fig. 4. Logical Flow for Read and Write operations in IMCa
Close: Closes propagate from the client directly to the

server without any interception. When the close operation
is intercepted by SMCache, it will attempt to discard the
data for the file from the MCDs.

4.4 Potential Advantages/Disadvantages of IMCa

In this section, we discuss the potential advantages and
disadvantages of IMCa.

Fewer Requests Hit the Server: The data server is gen-
erally a point of contention for different requests. In addi-
tion to communication contention, there may be consider-
able contention for the disk. IMCa may help reduce both
these contentions at the server.

Latency for Requests Read From the Cache is Lower:
With considerable percentage of Read sharing as well as
Read/Write sharing patterns, a large number of requests
could potentially be fielded directly from the MCDs. This
might help reduce the latency for these patterns, in addition
to reducing the load on the server.

MCDs are self-managing: Each cache in the MCD im-
plements LRU. As the caches fill up, unused data will au-
tomatically be purged from the MCDs. There is no need to
manage the cache by the client or the server. This reduces
the overhead of IMCa. Additional caching nodes can be
easily added. IMCa can transparently account for failures
in MCDs.

Failures in MCDs do not impact correctness: Writes
are always persistent in IMCa and are written successfully
to the server filesystem before updating the MCDs. Irre-
spective of node failures in the MCDs, correctness is not
impacted.

Additional Nodes Elements Needed Especially For
Caching: MCDs needs an array of nodes on which to run
the daemons. These nodes might be used for other purposes
such as storing file system data or running web services.

Cold Misses Are Expensive: Reads on the client re-
quire one or more accesses to the MCDs depending on the
blocksize and the requested Read size. If any of these ac-
cesses results in a miss, the Read needs to be propagated to

the server. As a result, misses are more expensive than in a
regular file system.

Additional Blocks/Data Transfer Needed: In IMCa
data is stored in blocksizes to act as a tradeoff between
bandwidth, latency, utilization and fragmentation. If the
block size is set too large, small Read requests will be pe-
nalized, requiring additional data to be transferred from the
MCDs. If the block size is set too small, large requests
might require multiple trips to the MCDs to fetch the data.

Overhead and Delayed Updates: IMCa hooks into
both Read/Write functions at the server through SMCache.
Read/Write data from the server needs to be fed to the
MCDs before it is returned to the client in non-threaded
mode. This may result in additional overhead at the server
and updates from the MDCs being delayed.

5 Performance Evaluation

In this section, we attempt to characterize the perfor-
mance of IMCa in terms of latency and throughput of dif-
ferent operations. First, we look at the experimental setup.

5.1 Experimental Setup

We use a 64 node cluster connected with InfiniBand
DDR HCAs. Each node is an 8-core Intel Clover based sys-
tem with 8GB of memory. The GlusterFS server runs on a
node with a configuration identical to that specified above; it
is also equipped with a RAID array of 8-HighPoint Disks on
which all files used in the experiment reside. IP over Infini-
Band (IPoIB) with Reliable Connection (RC) is used as the
communication transport between the GlusterFS server and
client; as well as between the components of IMCa namely
SMCache, CMCache and the MCD array. The MCDs run
on independent nodes and are allowed to use upto 6GB of
main memory. Unless explicitly mentioned, SMCache and
CMCache use a CRC32 hashing function for storing and lo-
cating data blocks on the MCDs. For comparison, we also
use the default configuration of Lustre 1.6.4.3 with a TCP



transport over IPoIB. The Lustre metadata server runs on a
node separate from the data servers (DS).

5.2 Performance of Stat With the Cache

We look at the performance of the stat operation with
IMCa as discussed in Section 4.2.

Stat Benchmark: The benchmark used to measure the
performance of stat consists of two stages. In the first stage
(untimed), a set of 262144 files is created. In the second
stage (timed) of the benchmark, each of the nodes tries to
perform a stat operation on each of the 262144 files. The
total time required to complete all 262144 stats is collected
from each of the nodes and the maximum time among all of
them is reported.

Performance With One MCD: The results from run-
ning this benchmark is shown in Fig. 5. Along the x-axis
the number of nodes is varied. The y-axis shows the time in
seconds. Legend NoCache corresponds to GlusterFS in the
default configuration (no client side cache). Legend MCD
(x) corresponds to GlusterFS with x MemCached daemons
running. From Fig. 5, we can see that without the cache, the
time required to complete the stat operations increases at a
much faster rate than with the cache nodes. With a single
MCD, the time required to complete the stat operations in-
creases at a much slower rate. At 64 clients, with 1 MCD,
there is an 82% reduction in the time required to complete
the stat operations as compared to without the cache. Glus-
terFS with a single MCD outperforms Lustre with 4 DSs by
56% at 64 clients.

Performance With Multiple MCDs: With an increas-
ing number of MCDs, there is a reduction in the time needed
to complete the stat operations. However, with an increas-
ing number of MCDs, there is a diminishing improvement
in performance. For example, at 64 nodes, there is only a
23% reduction in time to complete the stat operation from 4
to 6 MCDs. The statistics from the MCDs show that the
miss rate with increasing MCDs beyond 2 is zero. This
seems to suggest that 2 MCDs provide adequate amount of
cache memory to completely contain the stat data of all the
files from the workload. There is little stress on the MCDs
memory sub-system beyond two MCDs. The overhead of
the communication protocol TCP/IP is alleviated to some
extent by going beyond two MCDs. Using four and six
MCDs provide some benefit as may be seen from Fig. 5. At
64 nodes, using GlusterFS with 6 MCDs, the time required
to complete the stat operation is 86% lower than Lustre with
4 DSs.
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5.3 Latency: Single Client

In this experiment, we measure the latency of performing
read and write operations.

Latency Benchmark: In the first part of the experiment,
data is written to the file in a sequential manner. For a given
record size r, 1024 records of record size r are written se-
quentially to the file. The Write time for that record size is
measured as the average time of the 1024 operations. We
measure the Write time of record sizes from 1 byte to a
maximum record size in multiples of 2. In the second stage
of the benchmark, we go back to the beginning of the file
and perform the same operations for Read operations, vary-
ing the record size from 1 byte to the maximum record size,
with the time for the Read being averaged over 1024 records
for each given record size.

Read Latency with different IMCa block sizes: The
results from the latency benchmark for Read is shown in
Fig. 6(a) and Fig. 6(b). For IMCa, we used block sizes of
256 bytes, 2K and 8K bytes. For the Read latency shown in
Fig. 6(a), for a record size of 1 byte, there is a reduction of
upto 45% in latency using one MCD over using NoCache,
with a block size of 2K, and a 31% reduction in latency
with an 8K IMCa block size. With an IMCa block size of
256, the reduction in Read latency increases to 59%. As
discussed in Section 4, even for a Read operation of 1 byte,
the client needs to fetch a complete block of data from the
MCDs. So, we must fetch data in multiples of the minimum
record size of IMCa. Smaller block sizes help reduce the
latency of smaller Reads, but degrade the performance of
larger Reads, since CMCache must make multiple trips to
the MCDs. This may be seen in Fig. 6(a), where beyond a
record size of 8K, NoCache has lower latency than IMCa
with a block size of 256 and has the lowest latency overall
as the record size is further increased (Fig. 6(b)). Since no
Read at the client results in a miss from the MCDs, no read
requests propagate to the server. We use a block size of 2K
for the remaining experiments.

Comparison with Lustre: We use one and four data
servers with Lustre, denoted by 1DS and 4DS respectively.
Also, we use two different configurations for Lustre, warm
cache (Warm) and cold cache (Cold). For the warm cache
case, the Write phase of the benchmark is followed by
the Read phase of the benchmark without any intermedi-
ate step. For the cold cache case, after the Write phase of
the benchmark, the Lustre client file system is unmounted
and then remounted. This evicts any data from the client
cache. Clearly, the warm cache case denoted by Lustre-
4DS (Warm) provides the lowest Read latency in all cases
(Fig. 6(a)), since Reads are primarily satisfied from the lo-
cal client cache (results for larger record sizes with a warm
cache are not shown). The cold cache forces the client to
fetch the file from the data servers. So, Lustre-1DS (Cold)
and Lustre-4DS (Cold) are closer to IMCa in terms of per-
formance. We discuss these results further in the technical
report version of this paper [8].

Write Latency: The Write latency is shown in Fig. 6(c)
with an IMCa block size of 2K. Write introduces an addi-
tional Read operation in the critical path at the server (Sec-
tion 4). Correspondingly, Write latency with IMCa is worse
than the NoCache case. By offloading the additional Read
to a separate thread, the additional latency of the Read may



be removed from the critical path and the Write latency can
be reduced to the same value as without the cache. IMCa
provides little benefit for Write operations because of the
need for Writes to be persistent (Section 4.3.2). Corre-
spondingly, we do not present the results for Write for the
remaining experiments.
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Fig. 6. Read and Write Latency Numbers With One Client
and 1 MCD.

5.4 Latency: Multiple Clients
The multi-client latency tests starts with a barrier among

all the processes. Once the processes are released from this
barrier, each process performs the latency test (with sepa-
rate files), described in Section 5.3. The Write and Read
latency components as well as each record size for Read
and Write is separated by a barrier. The latency for a partic-
ular record size is the average of the times reported by each
process for the given record size.
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Fig. 7. Read latency with 32 clients and varying number
of MCDs. 4 DSs are used for Lustre.

We present the numbers for the Read latency with 32
clients each running the latency benchmark, while the
MCDs are being varied. These latency numbers are shown
in Fig. 7(a) (Small Record sizes) and Fig. 7(b) (Medium
Record Sizes). From the figure, we can see that there is
reduction of 82% in the latency when four MCDs are intro-
duced over the NoCache case for a 1 byte Read. Clearly,
IMCa provides additional benefit in the case of multiple
clients as compared to the single client case. In addition,

with 32 clients, and a single MCD, statistics taken from the
MCDs show that there are an increasing number of MCD
capacity misses. These capacity misses are reduced by in-
creasing the number of MCDs. The trend of increasing ca-
pacity misses may be seen more clearly while varying the
clients and using a single MCD. These Read latency num-
ber are shown in Fig. 8(a) and Fig. 8(c). The Read latency at
32 clients is higher than with one client and increases with
increase in record size.

We also compare with Lustre at 32 clients (Fig. 7(a),
7(b)). With a cold cache, for small Reads less than 32 bytes,
Lustre (Cold) has lower latency than IMCa (4MCD). After
32 bytes, IMCa (4 MCD) delivers lower latency than Lustre
(Cold). IMCa with 1 and 2 MCDs also provide lower la-
tency than Lustre beyond 8K and 2K respectively. Finally,
Lustre (Warm) again produces the lowest latency overall.
However, the latency for IMCa (4 MCDs) increases at a
slower rate with increasing record size and at 64K, IMCa
(4 MCDs) has lower latency than Lustre (Warm). Simi-
lar trends can also be seen with varying number of clients
(Fig. 8(b), Fig. 8(d)).
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5.5 IOzone Throughput
In this section, we discuss the impact of IMCa on the I/O

bandwidth. One of the benefits of a parallel file system with
multiple data servers over a single server architecture such
as NFS is the striping and advantage of improved aggregate
bandwidth from multiple data streams from multiple data
servers. This is especially true with larger files and larger
record size. Using multiple caches in MCD, it might be pos-
sible to gain the advantage of multiple parallel data servers,
while using a single I/O server. We use IOzone to measure
the Read throughput of a 1GB file, using a 2K block size.
We replace the standard CRC32 hash function used by lib-
memcache [2] with a static modulo function (round-robin)
for distributing the data across the cache servers using a 2K
block size. We measured the IOzone Read throughput with
1, 2 and 4 MCDs. These results are shown in Fig. 9. From
these results, it can be seen that we can achieve a IOzone
Read Throughput of upto 868 MB/s with 8 IOzone threads



and 4 MCDs. This is almost twice the corresponding num-
ber without the cache (417 MB/s) and Lustre-1DS (Cold)
(325 MB/s). Clearly, adding additional Cache servers helps
provide better IOzone Read Throughput.
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5.6 Read/Write Sharing Experiments
To measure the impact of IMCa in an environment where

file data is shared, we modified the latency benchmark de-
scribed in Section 5.3 so that all the nodes use the same
file. In the write phase of the benchmark, only the root
node writes the file data. In the read phase of the bench-
mark, all the processes attempt to read from the file. Again,
as with the multi-client experiments (Section 5.4), the Read
and Write portions, as well the portions for each record size
are separated with barriers.

We measure the read latency, with and without IMCa and
compare with Lustre-1DS (Cold). With IMCa, we use one
MCD. The read latency is shown in Fig. 10. At 32 nodes,
there is a 45% reduction in latency with IMCa over the No-
Cache case. Also, as may be seen from Fig. 10, IMCa pro-
vides benefit, that increases with an increase in the number
of nodes. Since we are using a single MCD, with all the
clients trying to read the data from the MCD in the same or-
der, we see that the time even with IMCa increases linearly.
With a greater number of MCDs, we expect better perfor-
mance. Because of space limitations, we do not present the
numbers for multiple MCDs here (they are available in the
technical report version of this paper [8]). IMCa with 1
MCD provides slightly higher latency compared to Lustre-
1DS (Cold) upto 16 nodes. However, at 32 nodes, IMCa
with 1 MCD has slightly lower latency than Lustre-1DS
(Cold).

6 Related Work
Dahlin, et.al. proposed using client side caching to per-

form cooperative caching [5]. The client caches are tied
together to form a single large file system cache. Our work
differs from their work in that we maintain a layer or bank
of cache server nodes that are independent of the client side
caches. S. Jiang, et.al. [4] proposed enhancements to the
buffer caching algorithms on the file system servers. Our
work is different from their work in that we propose an in-
termediate hierarchy of caching nodes that are independent
of the file system buffer cache.

7 Conclusions and Future Work
In this paper, we have proposed, designed and evaluated

an intermediate architecture of caching nodes (IMCa) for
the GlusterFS file system. The cache consists of a bank of

MemCached server nodes. We have looked at the impact of
the intermediate cache architecture on the performance of a
variety of different file system operations such as stat, Read
and Write latency and throughput. We have also measured
the impact of the caching hierarchy with single and multiple
clients and in scenarios where there is data sharing. Our re-
sults show that the intermediate cache architecture can im-
prove stat performance over only the server node cache by
up to 82% and 86% better than Lustre. In addition, we also
see an improvement in the performance of data transfer op-
erations in most cases and for most scenarios. Finally, the
caching hierarchy helps us to achieve better scalability of
file system operations.

As part of future work, we plan to investigate different
hashing algorithms for distributing the data across the cache
servers. In addition, we would also like to look at how
network mechanisms like Remote Direct Memory Access
(RDMA) in InfiniBand can help reduce the overhead of the
cache bank and also provide stronger coherency. We also
plan on researching how the set of cache servers may be
integrated into a file system such as Lustre, where it can po-
tentially interact with the client and server caches. Finally,
we would also like to study the relative scalability of a co-
herent client side cache and a bank of intermediate cache
nodes.
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