
Designing High Performance DSM Systems using InfiniBand Features
�

Ranjit Noronha and Dhabaleswar K. Panda

Dept. of Computer and Information Science
The Ohio State University

Columbus, OH 43210
{noronha,panda}@cis.ohio-state.edu

Abstract
Software DSM systems do not perform well because of

the combined effects of increase in communication, slow
networks and the large overhead associated with processing
the coherence protocol. Modern interconnects like Myrinet,
Quadrics and InfiniBand offer reliable, low latency (around
5.0 � s point-to-point), and high-bandwidth (upto 10.0 Gbps
in 4X InfiniBand). These networks also support efficient
memory- based communication primitives like RDMA-Read
and RDMA-Write which allow remote reading and writing
of data respectively without receiver intervention. These
supports can be leveraged to reduce overhead in a software
DSM system. In this paper we propose a new scheme NEW-
GENDSM with two components ARDMAR and DRAW for
page fetching and diffing respectively. These components
employ RDMA and atomic operations to efficiently imple-
ment the coherency scheme. The scheme NEWGENDSM
evaluated on an 8-node InfiniBand cluster using SPLASH-2
and TreadMarks applications shows better parallel speedup
and scalability.

Keywords: DSM Systems, Cache coherency protocol, In-
finiBand, System Area Networks

1 Introduction

Clusters have been widely deployed for providing low-
cost high performance computing for a wide-range of ap-
plications. There is a wide variety of high-end network-
ing technologies available to connect the machines within
a cluster. Technologies like Myrinet [10], Quadrics [4]
and InfiniBand [2] offer point-to-point latency of the or-
der of 5.0 � s for small messages and very high unidi-
rectional bandwidth of the order of 10 Gigabits per sec-
ond (with InfiniBand 4X) for large messages. In addi-
tion to the basic communication primitives, these networks
offer a variety of services and operations. For example,
Myrinet and Quadrics have a programmable network inter-
face card. InfiniBand and Myrinet support hardware-based
remote atomic operations [11]. All these networks also
support Remote Data Memory Access (RDMA) operations.
RDMA allows a process to read or write a location in the

�
This research is supported in part by Department of Energy’s Grant

#DE-FC02-01ER25506, and National Science Foundation’s grants #CCR-
0204429 and #CCR-0311542.

memory space of another process over the network. RDMA
operations do not require involvement from the receiver, an
important consideration when designing scalable software.

Though considerable research has focused on the de-
velopment of Software Distributed Shared Memory Sys-
tems [23, 15, 9], SDSM systems such as TreadMarks [16, 7]
and implementations of HLRC [14, 22] have not been found
to be scalable. These SDSM system are communication in-
tensive, and depend critically on performance of network-
ing technologies like Fast Ethernet, Giganet [12] and the
earlier generation of Myrinet [10]. Heavy-weight protocols
like TCP could not keep up with the communication rate of
SDSM’s [20]. Modern networks are fast out-pacing the ca-
pacity of processors to keep them filled to capacity. These
modern networks might not only impact the performance
of SDSM systems but allow one to explore new previously
inconceivable protocols for SDSM.

Communication in SDSM can largely be char-
acterized by the client-server request-response
model shown in Figure 1. This form of com-
munication is inefficient in a modern day setup.

Node 2Node 1

Send
Request

Receive
Response

Send
Response

Interrupt
SIGIO

Request
Handler

Figure 1. DSM client server
communication model.

The client cannot
continue com-
putation till the
server responds.
In addition,
application com-
putation at the
server is halted
while servicing
the request. With
increasing cluster
size, the server
may on an av-
erage process multiple requests from a large number of
clients. This increases application processing time. Worse
the delay at the client is not only communication latency,
but also a non-negligible queuing time at the server.
These overheads have a direct impact on the scalability of
SDSM’s. Is there an alternative to the request-response
communication model, which can take advantage of

modern primitives in high performance networks ?
Modern day interconnects allow the user to read and

write data elements from another process’s user space using
RDMA operations. Remote atomic operations allow one to
maintain datums in a coherent state. These operations do
not require receiver based intervention. They can be used
to move protocol processing into the client. In this paper
we take the first step towards removing such asynchronous
protocol processing with InfiniBand mechanisms and study-
ing the associated performance benefits. Page fetching and
diff creation in SDSM’s are traditionally performed using
the asynchronous handler. A request message is sent to the
manager or home node of the page. The home node then
sends a response back to the requester with the page con-
tents. For diff’s, the modified page is compared with its
clean copy called a twin, and a run-length encoding of the
differences is sent to the server or home node. The server
or home node then applies these diff’s to the page. There
is clearly unnecessary copying and overhead involved here.
Can these overhead be reduced using network based primi-
tives like RDMA and atomic operations ?

We have proposed a new scheme NEWGENDSM to
replace traditional asynchronous model of protocol pro-
cessing with a synchronous model. The two components
of NEWGENDSM are ARDMAR and DRAW. ARDMAR
uses the RDMA Read operation in InfiniBand to directly
read the page from the memory space of the remote process.
DRAW uses RDMA Write to directly apply diffs’s to the
home page at synchronization points. Coherency is main-
tained through the combination of a light weight thread and
the InfiniBand remote atomic operation compare and swap.
This new protocol is evaluated with both micro-benchmarks
and application-level benchmarks. Application-level evalu-
ation shows an improvement of up to 1.63 in running time
on 8 nodes.

The rest of this paper is organized as follows. Section
2 describes the implementation of HLRC and its main fea-
tures along with an overview of the networking intercon-
nect InfiniBand. Section 3 presents design possibilities of
HLRC with InfiniBand mechanisms. Section 4 explores
the design issues and alternatives used while implementing
the page fetch and diffing using RDMA Read and network
level atomic operations. Section 5 evaluates the design us-
ing micro-benchmarks and various applications. Section 7
presents conclusions and future directions.

2 Background Information

In this section we discuss the basic concepts behind the
SDSM package HLRC with an emphasis on its communica-
tion model primitives. We also take a look at the InfiniBand
standard with a focus on the main communication opera-
tions provided by this interconnection technology.

2.1 Overview of HLRC

Since the development of the first sequentially consis-
tency SDSM system IVY [17], there has been a large
body of research into the issues with SDSM. Unfortunately,
SDSM has not been found to be scalable, largely because of
the effects of protocol and communication overhead. The
lazy release consistency model was the next advance, which
postponed coherence activities to synchronization points,
reducing the amount of communication. The home based
lazy release consistency protocol (HLRC) [14] improved
upon LRC by assigning pages to homes, with a home node
being updated with modifications at every synchronization
point.

HLRC reduced not only the communication associated
with non-home based protocols, but also the memory foot-
print. In HLRC every page and lock is assigned a home
node. At every synchronization point, the diffs for a partic-
ular page are sent to the home node and the memory for the
diffs are released. A home node can be assigned in a variety
of ways; the default behavior is that the default home of the
page assigns it to the node that first requests that page.

An implementation of HLRC [22] over the Virtual In-
terface Architecture (VIA) [5] (HLRC-VIA) was carried on
GigaNet [1]. The implementation of HLRC-VIA was multi-
threaded. The application thread would compute while an
associated signal handler would take care of coherence ac-
tivity on a page fault or miss. A separate thread would listen
for incoming requests from other remote processes such as
page fetches and lock requests. HLRC-VIA makes use of
the RDMA constructs provided by VIA. Request messages
or messages for services are sent via RDMA Write with im-
mediate data. This generates an asynchronous request at
the receiver which then processes and responds to this re-
quest by either forwarding this request to some other nodes
or itself satisfying the request through several RDMA Write
operations. The requester meanwhile polls a particular lo-
cation in memory (to which the remote server writes using
RDMA Write) to see whether the request has completed.
In this paper we use a version of HLRC-VIA modified to
work over the InfiniBand fabric. The next section briefly
discusses the InfiniBand architecture.

2.2 Overview of InfiniBand

The InfiniBand standard is a framework for a System
Area Network for connecting processing and I/O nodes. It
defines various communication and management functions
that are necessary to operate the interconnection fabric. In-
finiBand uses a switched, channel-based interconnection
fabric, which allows for higher bandwidth, more reliability
and better QoS support. Interface to the fabric is through a
Host Channel Adapter (HCA) on the processing node and
a Target Channel Adapter (TCA) on the I/O node. Seman-

2

tics of various operations are defined via InfiniBand Verbs.
The Mellanox implementation of the InfiniBand Verbs API
called VAPI [3] supports the basic send-receive model and
the RDMA operations read and write. There is also sup-
port for atomic operations and multicast. More details on
InfiniBand can be obtained from [2].

3 HLRC Design Possibilities with InfiniBand
Mechanisms

Let us now examine the potential for integrating network
based support into HLRC. HLRC duplicates activities either
already provided or which could be done with less overhead
by network level services in InfiniBand. Figure 2 shows
some of the matches between InfiniBand level primitives
and HLRC protocol activities. More specifically the fol-
lowing should be possible :

� Asynchronous handling could be eliminated through
the combination of atomic operations and RDMA
Read support. Page fetching operations could poten-
tially benefit from this type of support.

� Diff propagation in HLRC uses RDMA Write with
immediate data which requires activation of the asyn-
chronous handler. Diff processing can be potentially
eliminated by performing RDMA Read operations. In
this design, whenever a particular portion of a page is
needed, it can be fetched from the current owner by is-
suing an RDMA Read operation. The owner does not
have to be interrupted to perform this operation.

� Write notice and Barrier notification propagate via
RDMA Write. Since these go to all other nodes, hard-
ware based multicast could provide an efficient basis
for this operation. This could potentially reduce sig-
nificantly the amount of traffic needed for synchroniza-
tion in an SDSM system.

� Locking could be achieved through the use of remote
atomic operations. This could potentially benefit ap-
plications which frequently use locks; as the need to
frequently process lock requests at the manager node
and the last owner is eliminated.

� Asynchronous request messages could potentially
propagate via higher priority service levels achieving
better response time.

In this paper we focus on the first 2 options; eliminating
asynchronous handling through the combination of atomic
operations and RDMA Read while executing a page fetch
operation and diff propagation through RDMA Write. Since
other features (such as reliable multicast and service levels)
are not yet completely operational in current generation In-
finiBand hardware, we plan on investigating other enhance-
ments in the future.

notice
WriteDiffs Locks

Network Substrate

InfiniBand

Network Features

HLRC

Processor
Protocol
Async

Levels
Service

Operations
AtomicMulticast

Write
RDMA

Read
RDMA

Receive
Send

Page fetchBarrier

Figure 2. The SDSM primitives which could benefit from
network support

4 Design of the NEWGENDSM protocol

In this section we discuss the design of our proposed pro-
tocol termed as NEWGENDSM. We start out by examining
the existing protocol termed ASYNC. Following that is a
description of the design of NEWGENDSM and then fi-
nally we examine some of the benefits that could accrue
from NEWGENDSM.

4.1 Base ASYNC protocol

ASYNC employs the home based lazy release consis-
tency protocol. In this protocol every page and lock is as-
signed a home by the protocol. All requests for accesses to
a page or a lock go to the home node. Similarly all updates
for a page and a lock go to the home node. In ASYNC
updates or diffs for a page propagate to the home node
at synchronization points such as a lock release or a bar-
rier. We now examine page fetching and diffing in ASYNC.

page 2
Request for

Interrupt
generated

Page forwarded

Request
forwarded

Interrupt Generated
Home (page 2) = 1

using RDMA
Write

Computation
Continue

Node 2 (default home
 for page 2)

Interrupt Generated
Home (page 2) = 1

Node 1Node 0

Figure 3. The original ASYNC proto-
col on a page fetch (for an example
scenario)

4.1.1 Page
fetching in
ASYNC

First con-
sider a page
fetch opera-
tion. Figure
3 shows
the protocol
activity
required by
ASYNC for
an example
scenario.
Initially all
pages are assigned default home nodes. Let us assume
that the default home for page two is node two. Now node
one first requests page two from node two by sending it

3

a message (RDMA Write with immediate data) which
is processed by the asynchronous protocol handler. The
handler on node two appoints node one as the home node
and updates its data structures. It then finishes servicing
the request by sending a reply to node one (RDMA Write).
Node one on receiving this reply updates its data structures
and continues computing. Now when node zero requests
this page for the first time by sending a request to the
default home node one, node two forwards this request to
node one, which in turn processes the request and replies to
node zero with the correct version of the page. We define
page fetch time or page time as the elapsed time between
sending a page request and actually receiving the page.

4.1.2 Diffing in ASYNC

Now we go through the protocol steps when computing and
applying diffs. As shown in Figure 4 node zero arrives at
a synchronization point such as a barrier or a lock. At this
point, node zero must propagate all updates it has made to
all pages to the home node. Assume node zero has mod-
ified pages X and Y. It computes the diff which is a run-
length encoded string of the differences between the orig-
inal page and the modified page. Following that it sends
these differences to the home node one through RDMA
Write followed by a message containing the time-stamp.

Synchronization point
Node 1 (Home)

Diff for page X

Timestamp

ACK

Diff for page Y

ACK

Node 0

Diff
Compute

 Apply diff

Diff
Compute

Figure 4. The original ASYNC proto-
col on a diff (for an example scenario)

The home
node then
applies
these diffs.
It then
sends an
ACK back
to node
zero, which
acts as a
signal to
node zero
that the
buffer on
node one, which were used to receive the diffs to page X
have been freed up and may be reused. Node zero now
computes the diffs for page Y and sends them to node one
and so on. Multiple buffers at the receiver may be used to
speedup the process. We will now see how parts of this
protocol can be enhanced with the features available in
InfiniBand.

4.2 NEWGENDSM protocol

In this section we discuss our proposed scheme NEW-
GENDSM. NEWGENDSM consists of two component;
ARDMAR (Atomic and RDMA Read) and DRAW (Diff
with RDMA Write). ARDMAR uses the InfiniBand op-
erations atomic operation Compare and Swap and RDMA

Read for page fetching and synchronization. DRAW uses
RDMA Write for diffing. First we describe ARDMAR fol-
lowed by DRAW.

4.2.1 ARDMAR

In this section we describe the design of ARDMAR which
is shown in Figure 5 for an example scenario. The Atomic
operation compare and swap have been combined with the
RDMA Read operation to completely eliminate the asyn-
chronous protocol processing. Let us assume the same pat-
tern of requests for a page as shown in Figure 3. Here as-
sume that node one wants to access page two for the first
time. Let home � (x) denote the last known value for the
home of page x at node n. Initial values for home � (x) are
-1 at the default home node (indicating that a home has not
been assigned) and x mod (number of nodes) at a non-home
node. Initially home � (2) = -1. Let us denote an issued
atomic compare and swap operation as CMPSWAP(node,
address, compare with value, swap with value) where ad-
dress points to some location in node. Node 1 issues an
atomic compare and swap CMPSWAP(2,home � (2),-1,1).
The compare succeeds and now home � (2) = 1. Now on
completion of the atomic operation, node 1 knows that it
is the home node (home � (2) = 1) and can continue com-
putation after appropriately setting the appropriate memory
protections on the page.

Now assume that node zero wants to access page two
for the first time. It also issues an atomic compare and
swap operation CMPSWAP(2,home � (2),-1,0) which fails
since home � (2) = 1. Simultaneous with the atomic compare
and swap, node zero also issues an RDMA Read to read
in home � (2). The atomic compare and swap having failed
node zero looks at the location read in by the RDMA Read.

Node 0 Node 1 Node 2

Home (page 2)= −1

Home (page 2)= 1

Home(page 2)=1

CMP_AND_SWAP

RDMA Read
(page, version)

Till correct
version obtained

CMP_AND_SWAP

(default home
 for page 2)

Register memory
region

Figure 5. The proposed protocol ARD-
MAR (for the example scenario)

This lo-
cation tells
node zero
that the
actual home
is now node
one. Node
zero now
issues two
simultane-
ous RDMA
Reads. The
first RDMA
Read brings
in the version of the page, while the second RDMA Read
brings in the actual page. If the version does not match,
both RDMA’s are reissued until the correct version is
obtained.

4

4.2.2 DRAW

Let us look at the design of DRAW. Figure 6 shows the
protocol activity. DRAW uses RDMA Write to directly
write the diffs to the page on the destination node. Again
consider the diff creation and application activity shown
in Figure 4. DRAW moves most of the diffing activity
into node zero as shown in Figure 6. Assume that node
zero has now initiated computing the diff at the synchro-
nization point. Let modified(X,n) refer to the n’th posi-
tion in page X. Let clean(X,n) refer to the n’th position in
the twin of X where twin refers to a clean copy of page
X. Let buffer(t,n) refer to the n’th position in communi-
cation buffer t. Let RWRITE(source,dest,t,s,len) denote an
RDMA Write descriptor initiated at node source bound for
node dest, using buffer t, starting at location s and of length
len. Let us assume further that modified(X,i..j) differ from
clean(X,i..j). In this case, DRAW copies modified(X,i..j)
into buffer(t,i..j) and creates RWRITE(0,1,t,i,j-i). Simi-
larly, assume that modified(Y,b..f) differ from clean(y,b..f).
DRAW copies modified(Y,b..f) into buffer(t+1,b..f) and cre-
ates RWRITE(0,1,t+1,b,f-b). Now if pages X and Y
are the only modified pages, at node zero DRAW issues
RWRITE(0,1,t,i,j-i) and RWRITE(0,1,t+1,b,f-b). In addi-
tion, a message containing the timestamps of pages X and
Y is also sent. At node one, on receiving the messages con-
taining the timestamps, DRAW updates the timestamps for
pages X and Y.

4.3 Potential Benefits

NEWGENDSM could provide significant ben-
efit to applications programmed with SDSM
protocols both directly as well as indirectly.

Diff for page X

Diff for page Y

Synchronization point

Aggregate Timestamp

Update TimeStamp

Node 1 (Home)Node 0

Compute
Diff

Compute
Diff

Figure 6. The proposed protocol
DRAW (for the example scenario)

Applications
cannot com-
pute while
the handler
is being
serviced.
Removing
the asyn-
chronous
handler
allows more
CPU re-
sources to
be allocated
to the application. Asynchronous handling forces requests
to be serialized, increasing response times. ARDMAR
allows for requests to be serviced in parallel improving
throughput. Page copying at the home node is also
eliminated.

The benefit from DRAW is two-fold. On the one hand

diff application at the home node is eliminated. This sig-
nificantly cuts down on asynchronous handler time at the
home node. This is akin to the benefits from a 0-copy pro-
tocol. Also diffs for all the modified pages can be sent to the
home node in a single operation. This allows us to proceed
at a much faster rate, since we don’t need to wait for the
ACK from the destination node for every page diffed. Fi-
nally, we do not need diff receive buffers at the destination
node, reducing memory consumption.

5 Performance Evaluation
This section evaluates the performance of the ARD-

MAR, DRAW and NEWGENDSM with respect to
ASYNC. Evaluation is in terms of overall execution time,
page fetch time, lock time, and barrier times (which
includes diff time) discussed in the following sections.
First we describe the hardware setup. Following that the
implementation is evaluated in terms of various micro-
benchmarks. The application level evaluation is presented.
Following that the effect of ARDMAR on page fetch time
and asynchronous protocol processing are studied.

5.1 Experimental Test Bed
The experiments were run on an 8 nodes cluster con-

nected through an InfiniScale MT43132 Eight 4x Port
InfiniBand Switch. The HCAs are Mellanox InfiniHost
MT23108 DualPort 4X HCA’s. Each of the machines is
a SuperMicro SUPER P4DL6 having a dual Pentium Xeon
2.4 GHz processors with 512 MB of main memory and a
133 MHz PCI-X bus. The SMP version of Linux 2.4.7-10
is the kernel running on each of these machines.

5.2 Micro-benchmark level evaluation
ARDMAR and ASYNC are both evaluated using the page

fetch micro-benchmark modified from the original ver-
sion implemented for the TreadMarks SDSM package [16].
Page fetch time is the elapsed interval between sending a re-
quest for a page and actually getting the page. It is measured
as follows. The first node (master node) initially touches
each of 1024 pages so that the home node is assigned to
it. Following that each of the remaining nodes reads one
word from each of the 1024 pages. This results in all the
1024 pages being read from the first node. As the number
of nodes increases the contention for a page at the master
node increases. The time of the second phase is measured.
Figure 7 shows these results. ASYNC performs slightly bet-
ter than ARDMAR at two and four nodes. ARDMAR per-
forms better then ASYNC at eight nodes. DRAW and ASYNC
are evaluated using a modified diff micro-benchmark also
from the the TreadMarks SDSM package. The modifica-
tions take into account the home based nature of the SDSM
protocol. Diff time can be measured in terms of two compo-
nents, namely Diff creation time and Diff application time.
Diff creation time encompasses the time needed to compare

5

0

20

40

60

80

100

120

140

160

2 3 4 5 6 7 8

P
ag

e
fe

tc
h

tim
e

(u
se

c)

Number of nodes

Page microbenchmark

ASYNC
ARDMAR

Figure 7. Performance results
for the Page micro-benchmark.
Time required to fetch a page
from a given node when all the
remaining nodes are contend-
ing for it.

a dirty page to
its clean twin
and create a
run-length en-
coding of the
differences, plus
the time to post a
descriptor to send
these differences.
Diff application
time is the time
spent in the
asynchronous
handler at the
receiver to apply
the differences to the page.

Figure 8. Performance results
for the Diff micro-benchmark.

Two nodes
are used in the
evaluation. Node
zero initially
touches 1024
pages so that the
home is assigned
to it. Following
that node one
either changes
a single byte in
each of the pages
(small) or all the
bytes in every
page (large).
Finally a barrier
is executed. The
time to compute the diff at node one is measured (Compute
time). At node zero, time spent in the asynchronous handler
is measured (Apply time). Figure 8 shows these results.
DRAW consistently outperforms ASYNC in terms of both
Compute time as well as Apply time. When DRAW is
replaced by ASYNC, Compute time decreased by 2.47 and
2.29 in the case of small and large diffs respectively. Apply
time decreased by 3.32 and 3.73 in the case of small and
large diffs respectively.

5.3 Application level evaluation

In this section we evaluate our implementation us-
ing four different applications; Barnes-HUT (Barnes),
Traveling Salesman Problem (TSP), Radix sort (Radix),
three dimensional FFT (3Dfft). Out of these applica-
tions Barnes and RS have been taken from the SPLASH-
2 benchmark suite [25] while TSP and 3Dfft have
been taken from the TreadMarks [16] SDSM package.

Application Parameter Size

Barnes Bodies 32678
TSP Tour size 20 (large)
RS num of keys 2621440
3Dfft Grid size 128

Figure 9. Application sizes

The appli-
cation sizes
used are
shown in
Figure 9.
All other
parameters
were kept the same as originally described in the [25, 16].
We will now discuss the performance numbers for the
different applications.

5.3.1 Parallel Speedups

Figure 10 shows the parallel speedups for the differ-
ent applications with eight nodes. ARDMAR shows
better parallel speedup than ASYNC for Barnes and
3Dfft. DRAW exhibits better parallel speedup than
ASYNC for all applications. NEWGENDSM shows
better speedup for Barnes, 3Dfft and RS. RS with
NEWGENDSM is 1.63 times faster than ASYNC.

Figure 10. Application parallel
speedup.

5.3.2 Effect on
execution time

The breakdown
in execution time
for the different
applications with
eight nodes are
shown in Figure
11. Computation
time is the time
spent in applica-
tion processing.
Protocol time is
the time spent in executing the DSM coherency protocol.
Page time is the time spent waiting for a page request to
be serviced described in more detail in section 5.3.3. Lock
time is the time spent in waiting for a lock. Barrier wait
time is the time spent waiting for everybody else to arrive
at the barrier. Barrier compute time is the time spent in
creating diffs and sending write notices. Both of these are
described in more detail in section 5.3.4. From this figure
it be can seen that page time increases for ARDMAR in
all applications compared to ASYNC except for Barnes.
This is to be expected because of the synchronous nature
of the protocol. Surprisingly, page fetch time and lock
acquire time decreases for DRAW and NEWGENDSM in
all cases. This is an indirect effect of the reduced load on
the asynchronous protocol handler, discussed in the next
section.
5.3.3 Effect on asynchronous protocol handling and

page fetching time
Figure 12 shows the average time spent in the handler across
all applications using ASYNC, ARDMAR, DRAW and NEW-

6

Figure 11. Breakdown of execution time for different applications.

GENDSM. In all cases asynchronous handler time using
ARDMAR, DRAW and NEWGENDSM is significantly re-
duced. This shows that page and diff copying is a signif-
icant overhead in the asynchronous request handler. Elim-
inating these overheads frees up CPU time. It also allows
faster turnaround for other asynchronous requests such as
lock acquires. This reduces turn-around time and improves
scalability.

5.3.4 Effect on diff time
Finally we discuss the effect on diff time. Diff time as de-
scribed earlier has two components, namely Diff Compute
time and Diff apply time. Diff compute time appears as a
component of Barrier compute time shown in Figure 11.

Figure 12. Asynchronous han-
dler time.

The barrier is
split into three
phases. The first
phase computes
and sends the
diffs to the home
node. The second
phase sends the
write notices to
everybody and
applies the write
notices from
everybody. The
third phase con-
sists of sending
an acknowledg-
ment to everybo
dy. Diff compute
time is more or less the same for ASYNC, DRAW and
ARDMAR as shown in Figure 11. There is a correlation
between the number of diffs applied and the time spent
in the asynchronous handler. Barnes and 3Dfft create
a large number of diffs. Correspondingly, handler time
is substantially and reduce overhead. NEWGENDSM

performs worse than DRAW in the case of TSP and
Radix. This is because an aggregate time-stamp is sent
for all pages after the diff’s for those pages are sent to
the home node. Pipelining can improve the performance
of NEWGENDSM. This can be achieved by sending the
timestamps for the page immediately after the diff. This
will reduce the time by which the latest version of the page
becomes available. Correspondingly this will reduce the
wait time for processes waiting for a particular version of a
page.

6 Related Work
Ever since the proposal for the first SDSM system

IVY [17] there has been considerable research conducted
into the SDSM systems. However SDSM was not found to
be scalable. The benefits of implementing HLRC over low
level protocol like VIA was examined in [22]. Also imple-
menting a SDSM package like Treadmarks directly over a
low level protocol like VIA or GM over Myrinet, was shown
to substantially reduces wait times and improves scalability
in [8, 20]. Special network mechanisms were not employed
in these implementations. A study of the effect of remov-
ing the interrupt handler in HLRC (GeNIMA) through the
use of NIC support on Myrinet is discussed in [6]. Four
different techniques, namely remote deposit for direct diff
application, remote fetch for page fetching and Network
Interface Locks (coherency information stored at the NIC)
were implemented. Our work differs in that native atomic
support provided by InfiniBand has been added to enhance
the base protocol and the benefits have been studied in cur-
rent generation clusters with InfiniBand. A comparison of
benefits of using network based support as opposed to a mi-
gratory home protocol in the Cashmere SDSM system was
studied in [23]. Four different techniques; Network Total
Ordering, Broadcast and Remote-Write were studied. The
interconnect used in this study was memory channel. Inte-
grating network based get operations into the sequentially
consistent DSZOOM SDSM over the SCI interface is dis-

7

cussed in [21]. Cache entries are locked using atomic fetch
and set operations before being modified by remote put op-
erations. We use a lazy release consistency (LRC) model
rather than a sequentially consistent model. Network inter-
face support was used to perform virtual memory mapped
communication in addition to DMA based communication
along with protected, low-latency user-level message pass-
ing in the SHRIMP project [18]. We have used RDMA
rather than virtual memory mapped support, which does
not involve reprogramming the NIC. A proposal for using
active-memory support for SDSM systems to achieve soft-
ware DSM with hardware DSM performance is discussed
in [13] . [24] explores the effect of kernel level access
to InfiniBand primitives on SDSM performance. Other re-
search in SDSM has focused on changing the SDSM proto-
col rather than using network support. Reducing the effect
of false sharing is discussed in [19].

7 Conclusions and Future Work
In this work we have examined the impact of reduc-

ing the need for asynchronous protocol processing in a
home based SDSM system. This was achieved through
the deployment of network based support in the form of
atomic operations; RDMA-Read and RDMA-Write avail-
able with modern interconnects like InfiniBand. These sup-
ports were deployed in a new protocol NEWGENDSM.
NEWGENDSM with components ARDMAR and DRAW
for page fetching and diffing respectively was evaluated us-
ing micro-benchmarks and applications. Micro-benchmark
evaluation showed that with increasing system size and net-
work load, the response time of RDMA-Read is better as
compared to an asynchronous protocol processor. RDMA-
Write helps realize a zero-copy protocol improving perfor-
mance. Application level evaluation were also performed.
An improvement of up to 1.63 in the execution time of the
application was observed.

Significant improvements to the protocol can be still
be made. Remapping read only areas of the kernel page
data structures into application space would avoid the need
for a system call. RDMA Read operations on InfiniBand
could also help in reducing the effects of false-sharing and
achieve finer granularity. This can be achieved by restart-
ing the computation early during a page fetch, when only
the needed portion of a page has arrived. Barrier could po-
tentially benefit from integration with the native InfiniBand
multicast support. Locking could potentially show better
performance using atomic operations. We are currently ex-
ploring these issues.
References

[1] Giganet. www.giganet.com.
[2] Infiniband Trade Association. www.infinibandta.org.
[3] Mellanox Technologies. www.mellanox.com.
[4] Quadrics Ltd. www.quadrics.com.
[5] Virtual Interface Architecture Specification.

http://www.viarch.org.

[6] C. L. A. Bilas and J. Singh. Using Network Interface Sup-
port to Avoid Asynchronous Protocol Processing in Shared
Virtual Memory Systems. International Symposium on
Computer Architecture, May 1999.

[7] C. Amza, A. Cox, et al. Treadmarks: Shared Memory
Computing on networks of workstations. IEEE Computer,
29(2):18-28, feb 1996.

[8] M. Banikazemi, J. Liu, . K. Panda, and P. Sadayappan. Im-
plementing TreadMarks over VIA on Myrinet and Gigabit
Ethernet: Challenges Design Experience and Performance
Evaluation. Int’l Conference on Parallel Processing, sep
2001.

[9] J. Bjoerndalen, O. J. Anshus, B. Vinter, and T. Larsen. Com-
paring the performance of the pastset distributed memory
system using TCP/IP and M-VIA. The Second International
Workshop on Software Distributed Shared Memory, 1995.

[10] N. J. Boden, D. Cohen, et al. Myrinet: A Gigabit-per-
Second Local Area Network. IEEE Micro, pages 29–35,
Feb 1995.

[11] D. Buntinas, D. K. Panda, and W. Gropp. NIC-Based
Atomic Operations on Myrinet/GM. SAN-1 Workshop, held
in conjuction with High Performance Computer Architecture
(HPCA), 2002.

[12] H. Frazier and H. Johnson. Gigabit Ethernet: From 100 to
1000 Mbps.

[13] M. Heinrich and E. Speight. Providing Hardware DSM Per-
formance at Software DSM Cost. Technical Report No. CSL-
TR-2000-1008, Cornell University, Ithaca, NY, November
2000.

[14] L. Iftode. Home Based Shared Virtual Memory. PhD Thesis,
Technical Report TR-583-98, Princeton University, 1998.

[15] A. Itzkovitz, A. Schuster, and Y. Talmor. Harnessing the
power of fast low-latency networks for software dsms. The
First Workshop in Software Distributed Shared Memory,
1999.

[16] P. Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel.
TreadMarks: Distributed Shared Memory on Standard
Workstations and Operating Systems. In Proceedings of the
1994 Winter Usenix Conference, Jan. 1994.

[17] K. Li. IVY: A Shared Virtual Memory System for Parallel
Computing. In Proceedings of the International Conference
on Parallel Processing, pages 94–101, Los Alamitos, CA,
1988.

[18] M.A. Blumrich, C. Dubnicki, E.W. Felten, Kai Li, M.R.
Mesarina. Two Virutal Memory Mapped Network Interface
Designs. Proc. of the Hot Interconnects Symp., 1994.

[19] L. Monnerat and R. Bianchini. Efficiently Adapting to Shar-
ing Patterns in Software DSMs. High-Performance Com-
puter Architecture (HPCA), Feburary 1997.

[20] R. Noronha and D. K. Panda. Implementing TreadMarks
over GM on Myrinet: Challenges, Design Experience and
Performance Evaluation. Workshop on Communication Ar-
chitecture for Clusters (CAC’03), held in conjuction with
IPDPS ’03, April 2003.

[21] Z. Radovic and E. Hagerstern. Implementing Low Latency
Distrbuted Software-Based Shared Memory. Workshop on
Memory Performance Issues, held in conjuction with ISCA
’01, feb 1996.

[22] M. Rangarajan and L. Iftode. Software Distributed Shared
Memory over Virtual Interface Architectur: Implementation
and Performance. Proc. of the Annual Linux Showcase, Ex-
treme Linux Workshop, Atlanta, October 2000.

[23] R. Stets, S. Dwarkadas, L. Kontothanassis, U. Rencu-
zogullari, and M. L. Scott. The Effect of Network Total Or-
der, Broadcast, and Remote-Write Capability on Network-
Based Shared Memory Computing. In International Sympo-
sium on High-Performance Computer Architecture, 2000.

[24] T. Birk, L. Liss and A. Schuster. Efficient Exploitation of
Kernel Access to InfiniBand: a Software DSM Example.
Hot Interconnects, August 2003.

[25] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 Programs: Characterization and Method-
ological Considerations. In International Symposium on
Computer Architecture, pages 24–36, 1995.

8

