
DESIGNING HIGH PERFORMANCE AND SCALABLE

DISTRIBUTED DATACENTER SERVICES OVER

MODERN INTERCONNECTS

DISSERTATION

Presented in Partial Fulfillment of the Requirements for

the Degree Doctor of Philosophy in the

Graduate School of The Ohio State University

By

Sundeep Narravula, B.Tech, MS

* * * * *

The Ohio State University

2008

Dissertation Committee:

Prof. D. K. Panda, Adviser

Prof. P. Sadayappan

Prof. F. Qin

Approved by

Adviser

Graduate Program in
Computer Science and

Engineering

c© Copyright by

Sundeep Narravula

2008

ABSTRACT

Modern interconnects like InfiniBand and 10 Gigabit Ethernet have introduced

a range of novel features while delivering excellent performance. Due to their high

performance to cost ratios, increasing number of datacenters are being deployed in

clusters and cluster-of-cluster scenarios connected with these modern interconnects.

However, the extent to which the current deployments manage to benefit from these

interconnects is often far below the achievable levels.

In order to extract the possible benefits that the capabilities of modern intercon-

nects can deliver, selective redesigning of performance critical components needs to

be done. Such redesigning needs to take the characteristics of datacenter applications

into account. Further, performance critical operations common to multiple datacen-

ter applications like caching, resource management, etc. need to be identified and

redesigned utilizing the features of modern interconnects. These operations can be

designed and implemented as system services such that they can be provided in a

consolidated platform for all other datacenter applications and services to utilize.

In this thesis we explore various techniques to leverage the advanced features of

modern interconnects to design these distributed system services. We identify a set

of services with high performance requirements that have wide utility in datacenters

scenarios. In particular, we identify distributed lock management, global memory

aggregation and large scale data-transfers as performance critical operations that

ii

need to be carefully redesigned in order to maximize the benefits using of modern

interconnects. We further explore the use of these primitive operations and RDMA

capabilities of modern interconnects to design highly efficient caching schemes which

are critical to most datacenters. We present these components in a layered framework

such that applications can leverage the benefits of these services through pre-defined

interfaces. We present detailed experimental results demonstrating the benefits of

our approaches.

iii

Dedicated to all my family and friends

iv

ACKNOWLEDGMENTS

I would like to thank my adviser, Prof. D. K. Panda for guiding me throughout

the duration of my study. I would like to thank him for his friendly advice during

the past years.

I would like to thank my committee members Prof. P. Sadayappan and Prof.

F. Qin for their valuable guidance and suggestions. I am grateful to Prof. S.

Parthasarathy and Dr. Jin for their support and guidance at various stages of my

study.

I would like to thank all my nowlab colleagues, past and present, Karthik, Jin,

Savitha, Ping, Hari, Greg, Amith, Gopal, Abhinav, Wei, Lei, Sayantan, Ranjit, Wei-

hang, Qi, Matt, Adam, Prachi, Sita, Jaidev, Tejus, Rahul, Ouyang, Jonathan, Jiux-

ing, Jiesheng, Weikuan, Sushmitha and Bala.

I am lucky to have collaborated with Karthik, Savitha and Jin in our initial

datacenter projects and I am grateful for the countless hours of work and fun we have

had together. I’m especially thankful to Amith, Gopal, Vishnu and Jin and I’m very

glad to have collaborated closely with them on various projects.

I would also like to thank my roommates at OSU Amith, Aravind, Aromal, Devi,

Jeeth, Naveen and Srinivas for their friendship and support.

v

Finally, I would like to thank my family, Snehalatha (my mom), Nagarjuna (my

dad) and my favorite cousins. I would not have had made it this far without their

love and support.

vi

VITA

June 30th, 1981 . Born - Hyderabad, India.

July 1998 - June 2002 . B. Tech, Indian Institute of Technology
- Madras, Chennai, India.

May 2001 - July 2001 .Summer Intern,
Microsoft IDC, Hyderabad, India.

August 2002 - August 2008 Graduate Teaching/Research Asso-
ciate,
The Ohio State University.

PUBLICATIONS

S. Narravula, H. Subramoni, P. Lai, R. Noronha and D. K. Panda, “Performance

of HPC Middleware over InfiniBand WAN”, Int’l Conference on Parallel Processing
(ICPP ’08), September 2008.

K. Vaidyanathan, P. Lai, S. Narravula and D. K. Panda, “Optimized Distributed Data

Sharing Substrate for Multi-Core Commodity Clusters: A Comprehensive Study with
Applications”, IEEE International Symposium on Cluster Computing and the Grid,

May 2008.

P. Lai, S. Narravula, K. Vaidyanathan and D. K. Panda, “Advanced RDMA-based
Admission Control for Modern Data-Centers”, IEEE International Symposium on

Cluster Computing and the Grid, May 2008.

S. Narravula, A. R. Mamidala, A. Vishnu, G. Santhanaraman, and D. K. Panda,
“High Performance MPI over iWARP: Early Experiences”, Int’l Conference on Par-

allel Processing (ICPP ’07), September 2007.

vii

G. Santhanaraman, S. Narravula, and D. K. Panda, “Designing Passive Synchroniza-
tion for MPI-2 One-Sided Communication to Maximize Overlap”, IEEE International

Parallel and Distributed Processing Symposium (IPDPS ’08), April, 2008.

A. Vishnu, M. Koop, A. Moody, A. Mamidala, S. Narravula, and D. K. Panda,
“Topology Agnostic Network Hot-Spot Avoidance with InfiniBand”, Journal of Con-

currency and Computation: Practice and Experience, 2007.

G. Santhanaraman, S. Narravula, A. R. Mamidala, and D. K. Panda, “MPI-2 One
Sided Usage and Implementation for Read Modify Write operations: A case study

with HPCC”, EUROPVM/MPI ’07.

S. Narravula, A. Mamidala, A. Vishnu, K. Vaidyanathan and D. K. Panda, “High

Performance Distributed Lock Management Services using Network-based Remote
Atomic Operations”, IEEE International Symposium on Cluster Computing and the

Grid (CCGrid), May 2007.

A. Vishnu, M. Koop, A. Moody, A. Mamidala, S. Narravula, and D. K. Panda, “Hot-
Spot Avoidance With Multi-Pathing Over InfiniBand: An MPI Perspective”, IEEE

International Symposium on Cluster Computing and the Grid (CCGrid), May 2007.

A. Vishnu, A. Mamidala, S. Narravula, and D. K. Panda, “Automatic Path Migra-
tion over InfiniBand: Early Experiences”, Third International Workshop on System

Management Techniques, Processes, and Services (SMTPS ’07), held in conjunction
with IPDPS ’07, March 2007.

K. Vaidyanathan, S. Narravula, P. Balaji and D. K. Panda, “Designing Efficient

Systems Services and Primitives for Next-Generation Data-Centers”, Workshop on

NSF Next Generation Software (NGS ’07) Program; held in conjuction with IPDPS,
Greece, March 2007, Long Beach, CA.

A. Mamidala, S. Narravula, A. Vishnu, G. Santhanaraman, and D. K. Panda “Using

Connection-Oriented vs. Connection-Less Transport for Performance and Scalability
of Collective and One-sided operations: Trade-offs and Impact”, ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming (PPOPP ’07), March
2007.

K. Vaidyanathan, S. Narravula and D. K. Panda, “DDSS: A Low-Overhead Dis-

tributed Data Sharing Substrate for Cluster-Based Data-Centers over Modern Inter-
connects”, IEEE International Symposium on High Performance Computing, Decem-

ber 2006.

viii

H. -W. Jin, S. Narravula, K. Vaidyanathan and D. K. Panda, “NemC: A Network

Emulator for Cluster-of-Clusters”, IEEE International Conference on Communication
and Networks, October 2006.

S. Narravula, H. -W. Jin, K. Vaidyanathan and D. K. Panda, “Designing Efficient

Cooperative Caching Schemes for Multi-Tier Data-Centers over RDMA-enabled Net-
works”, IEEE International Symposium on Cluster Computing and the Grid, May

2006.

P. Balaji, K. Vaidyanathan, S. Narravula, H. -W. Jin, and D. K. Panda, “Designing
Next-Generation Data-Centers with Advanced Communication Protocols and Sys-

tems Services”, Workshop on NSF Next Generation Software (NGS ’06) Program;

held in conjuction with IPDPS, Greece, April 2006.

H. -W. Jin, S. Narravula, G. Brown, K. Vaidyanathan, P. Balaji and D. K. Panda,
“Performance Evaluation of RDMA over IP: A Case Study with the Ammasso Gi-

gabit Ethernet NIC”, Workshop on High Performance Interconnects for Distributed
Computing, July 2005.

S. Narravula, P. Balaji, K. Vaidyanathan, H. -W. Jin and D. K. Panda, “Architecture

for Caching Responses with Multiple Dynamic Dependencies in Multi-Tier Data-
Centers over InfiniBand”, IEEE International Symposium on Cluster Computing and

the Grid, May 2005.

P. Balaji, S. Narravula, K. Vaidyanathan, H. -W. Jin and D. K. Panda, “On the
Provision of Prioritization and Soft QoS in Dynamically Reconfigurable Shared Data-

Centers over InfiniBand”, IEEE International Symposium on Performance Analysis

of Systems and Software, March 2005.

P. Balaji, K. Vaidyanathan, S. Narravula, K. Savitha, H. -W. Jin and D. K. Panda,
“Exploiting Remote Memory Operations to Design Efficient Reconfiguration for Shared

Data-Centers over InfiniBand”, Workshop on Remote Direct Memory Access (RDMA):
Applications, Implementations and Technologies, September 2004.

P. Balaji, S. Narravula, K. Vaidyanathan, S. Krishnamoorthy, J. Wu and D. K.

Panda, “Sockets Direct Procotol over InfiniBand in Clusters: Is it Beneficial?”, IEEE
International Symposium on Performance Analysis of Systems and Software, March

2004.

ix

S. Narravula, P. Balaji, K. Vaidyanathan, S. Krishnamoorthy, J. Wu and D. K.
Panda, “Supporting Strong Coherency for Active Caches in Multi-Tier Data-Centers

over InfiniBand”, Workshop on System Area Networks, February 2004.

FIELDS OF STUDY

Major Field: Computer Science and Engineering

Studies in:

Computer Architecture Prof. D. K. Panda
Software Systems Prof. S. Parthasarathy
Computer Networking Prof. P. Sinha

x

TABLE OF CONTENTS

Page

Abstract . ii

Dedication . iv

Acknowledgments . v

Vita . vii

List of Tables . xv

List of Figures . xvi

Chapters:

1. Introduction . 1

2. Background and Motivation . 4

2.1 RDMA Enabled Interconnects . 4

2.1.1 RDMA Communication Model 4

2.1.2 InfiniBand Architecture . 6
2.1.3 Internet Wide Area RDMA Protocol 8

2.1.4 WAN Interconnects . 9
2.2 Overview of Web Datacenters . 11

2.2.1 Multi-Tiered Architectures 11
2.2.2 Web Applications . 12

2.3 Web Caching . 13
2.3.1 Web Cache Consistency . 15

2.3.2 Web Cache Coherence . 16

xi

3. Problem Statement . 19

3.1 Open Challenges and Issues . 20
3.2 Objectives . 23

3.3 Proposed Framework . 25
3.4 Dissertation Overview . 27

4. Network-based Distributed Lock Manager 29

4.1 Background and Related Work . 29
4.1.1 External Module-based Design 31

4.2 Design of the Proposed Network-based Distributed Lock Manager . 33

4.2.1 Exclusive Locking Protocol 34
4.2.2 Shared Locking Protocol . 36

4.2.3 Shared Locking followed by Exclusive locking 38
4.2.4 Exclusive Locking followed by Shared Locking 39

4.3 Experimental Evaluation . 40
4.3.1 Microbenchmarks . 41

4.3.2 Detailed Performance Evaluation 43
4.3.3 Cascading Unlock/Lock delay 45

4.3.4 Benchmark with Shared Locking Trace 46
4.4 Summary . 46

5. Dynamic Content Caches with Strong Cache Coherency 48

5.1 Background and Related Work . 49
5.2 Design of Dynamic Content Caching 50

5.2.1 Strong Coherency Model over RDMA-enabled Interconnects 56

5.2.2 Potential Benefits of RDMA-based Design 57
5.3 Experimental Evaluation . 59

5.3.1 Microbenchmarks . 59
5.3.2 Strong Cache Coherence . 61

5.4 Summary . 65

6. Dynamic Content Caching for Complex Objects 67

6.1 Background and Related Work . 67

6.2 Caching Documents with Multiple Dependencies 70
6.2.1 Multi-Dependency Maintenance 72

6.2.2 Protocol for Coherent Invalidations 74
6.2.3 Impact of Multiple Dependencies on Caching 76

6.3 Experimental Evaluation . 77

xii

6.3.1 Microbenchmarks . 78
6.3.2 Coherent Active Caching 80

6.3.3 Overall Performance and Analysis 80
6.3.4 Effect on Load . 84

6.4 Summary . 85

7. Efficient Multi-Tier Cooperative Caching 86

7.1 Background and Related Work . 86

7.2 Efficient Cooperative Caching . 88
7.2.1 Basic RDMA based Cooperative Cache 90

7.2.2 Cooperative Cache Without Redundancy 92

7.2.3 Multi-Tier Aggregate Cooperative Cache 93
7.2.4 Hybrid Cooperative Cache 95

7.3 Performance Evaluation . 95
7.3.1 Basic Performance Analysis 97

7.3.2 Additional Overheads for Cooperative Caching 99
7.3.3 Detailed Data-Center Throughput Analysis 100

7.4 Summary . 102

8. WAN Framework . 103

8.1 Background and Motivation . 103

8.2 Network Emulator for Cluster-of-Cluster Scenarios 105
8.2.1 Background and Related Work 105

8.2.2 Design and Implementation of NemC 107
8.3 Evaluation of iWARP protocols . 112

8.3.1 Overview of Ammasso Gigabit Ethernet NIC 113

8.3.2 Communication Latency . 114
8.3.3 Computation and Communication Overlap 115

8.3.4 Communication Progress 116
8.3.5 CPU Resource Requirements 119

8.3.6 Unification of Communication Interface 120
8.3.7 Evaluation of the Chelsio 10 Gigabit Ethernet Adapter . . . 121

8.4 Evaluation of InfiniBand WAN . 123
8.4.1 Evaluation Methodology . 123

8.4.2 Verbs-level Performance . 124
8.4.3 Performance of TCP/IPoIB over WAN 126

8.5 Summary . 129

xiii

9. Advanced Data Transfer Service . 130

9.1 Background and Related Work . 130
9.1.1 File Transfer Protocol . 132

9.2 Proposed Advanced Data Transfer Service 135
9.2.1 Design Alternatives . 135

9.2.2 Overview of the Proposed ADTS Architecture 136
9.3 Design of FTP over ADTS . 140

9.4 Performance Evaluation . 141
9.4.1 Performance of FTP in LAN Scenarios 142

9.4.2 Performance of FTP in WAN Scenarios 144

9.4.3 CPU Utilization . 146
9.4.4 Performance of Multiple File Transfers 148

9.5 Summary . 151

10. Conclusions and Future Research Directions 152

10.1 Summary of Research Contributions 152

10.1.1 Distributed Lock Management using Remote Atomic Opera-
tions . 153

10.1.2 Dynamic Content Caching with Strong Cache Coherency . . 154
10.1.3 Dynamic Content Caching for Complex Objects 154

10.1.4 Efficient Multi-Tier Cooperative Caching 154
10.1.5 WAN Framework and High Performance Protocols over WAN 155

10.1.6 Efficient Data Transfers over WAN 155
10.2 Future Research Directions . 156

10.2.1 Zero-copy WAN protocols for HTTP 156

10.2.2 Caching and Content Dissemination with Internet Proxies . 157
10.2.3 Exploiting Network QoS features to Boost Performance . . 157

Bibliography . 159

xiv

LIST OF TABLES

Table Page

4.1 Communication Primitives: Latency 41

4.2 Cost Models . 43

5.1 IPC message rules for Dynamic Content Caching 55

7.1 Working Set and Cache Sizes for Various Configurations 96

7.2 Maximum number of messages required (control-messages/data-messages) 99

xv

LIST OF FIGURES

Figure Page

2.1 InfiniBand Architecture (Courtesy InfiniBand Specifications) 7

2.2 RDMAP Layering (Courtesy: RDMA Protocol Specification Draft [71]) 8

2.3 Cluster-of-Clusters Connected with Obsidian Longbow XRs 10

2.4 A Typical Multi-Tier Data-Center (Courtesy CSP Architecture [75]) . 12

3.1 Proposed Framework for Datacenter Services over Modern Interconnects 26

4.1 Proposed Distributed Lock Manager 30

4.2 External Module-based Services . 32

4.3 An Example Scenario of the DLM Protocol - N-CoSED 33

4.4 Locking protocols: (a) Exclusive only (b) Shared Only 35

4.5 Locking protocols: (a) Shared followed by Exclusive (b) Exclusive fol-
lowed by Shared . 37

4.6 Basic Locking Operations’ Latency: (a) Polling (b) Notification . . . 42

4.7 Timing breakup of lock operations . 42

4.8 Lock Cascading Effect: (a) Shared Lock Cascade (b) Exclusive Lock
Cascade . 44

4.9 Benchmark with Shared Locking Trace 47

xvi

5.1 Proposed Dynamic Content Caching with Strong Coherency 48

5.2 Strong Cache Coherence Protocol for Dynamic Content Caches 51

5.3 Interaction between Data-Center Servers and Caching Coherency Mod-
ules . 54

5.4 Strong Cache Coherency Protocol: InfiniBand based Optimizations . 58

5.5 Micro-Benchmarks: (a) Latency, (b) Bandwidth 60

5.6 Data-Centers Performance Analysis for Dynamic Content Caching . . 60

5.7 Data-Center Throughput: (a) Zipf Distribution, (b) WorldCup Trace 62

5.8 Data-Center Response Time Breakup: (a) 0 Compute Threads, (b)
200 Compute Threads . 64

6.1 Proposed Dynamic Content Caching with Complex Objects 68

6.2 RDMA based Strong Cache Coherence 72

6.3 Protocol for Coherent Invalidations 75

6.4 Micro-Benchmarks for RDMA Read and IPoIB: (a) Latency and (b)

Bandwidth . 76

6.5 Performance of IPoIB and RDMA Read with background threads: (a)

Latency and (b) Bandwidth . 79

6.6 Performance of Data-Center with Increasing Update Rate: (a) Through-
put and (b) Response Time . 80

6.7 Cache Misses With Increasing Update Rate 81

6.8 Effect of Cache Size for Trace 6 . 81

6.9 Effect of Varying Dependencies on Overall Performance 83

6.10 Effect of Load . 84

xvii

7.1 Proposed Multi-Tier Cooperative Caching 88

7.2 Cooperative Caching Without Redundancy 93

7.3 Multi-Tier Aggregate Cooperative Caching 94

7.4 Data-Center Throughput: (a) Two Proxy Nodes (b) Eight Proxy Nodes 98

7.5 Performance Improvement: (a) Two Proxy Nodes (b) Eight Proxy Nodes 98

7.6 Bookkeeping and Lookup delay . 99

8.1 Typical Cluster-of-Clusters Environment 105

8.2 Overall Design of NemC . 108

8.3 Experimental WAN Setup: A Simplistic View 112

8.4 Protocol Stacks on Ammasso Gigabit Ethernet NIC 113

8.5 Communication Latency: (a) Varying Message Size and (b) Varying

Network Delay . 115

8.6 Pseudo Code for Benchmarks: (a) Overlap Test and (b) Communica-
tion Progress Test . 117

8.7 Overlap Ratio: (a) Varying Computation Time and (b) Varying Net-

work Delay . 118

8.8 Communication Progress: Data Fetching Latency (a) Varying Load

and (b) Varying Network Delay . 118

8.9 Impact on Application Execution Time: (a) Varying Message Size and
(b) Varying Network Delay . 119

8.10 Communication Latency within a LAN with varying Message Sizes . 120

8.11 Verbs level Performance of 10 GE/iWARP: (a) Latency and (b) Band-

width . 122

8.12 Verbs level Throughput over IB WAN using (a) UD (b) RC 124

xviii

8.13 IPoIB-UD throughput: (a) single stream (b) parallel streams 126

8.14 IPoIB-RC throughput over WAN: (a) Single Stream (b) Parallel Streams

126

9.1 Basic FTP Model (Courtesy: RFC 959 [69]) 134

9.2 Overview of the Proposed ADTS Architecture 137

9.3 FTP File Transfer Time in LAN: (a) FTP (get) and (b) FTP (put) . 142

9.4 FTP File Transfer Time in WAN (get): (a) 32 MBytes and (b) 256

MBytes . 143

9.5 Peak Network Bandwidth with Increasing WAN Delay 146

9.6 InfiniBand RC Bandwidth with Increasing WAN Delay 147

9.7 End Node CPU Utilization (a) Server; (b) Client 147

9.8 Site Content Replication using FTP 149

9.9 Benefits of ADTS Optimizations . 150

xix

CHAPTER 1

INTRODUCTION

Internet has been growing at a tremendous pace and web applications have now

become ubiquitous. The nature of this growth is multi-fold. Unprecedented increases

in number of users, amount of data and the complexity of web-applications have

created a critical need for efficient server architectures.

Cluster based datacenters have become the defacto standard method for deploy-

ing these web-serving applications. The basic technique currently employed to handle

the raising complexity of web applications is to logically partition the datacenter into

multiple tiers. Each tier handles a portion of the request processing. In this architec-

ture, the number of resources available at each tier are increased as needed in order

to handle the increasing volume of web requests. While this method can alleviate

the problems to certain extent, the overall effectiveness is often limited. Additional

issues like communication/cooperation among the increasing number of servers of-

ten imposes a serious limitation in this context. In particular, operations that span

multiple nodes tend to limit the scalability and performance of a datacenter. These

problems are further magnified for the emerging WAN-based distributed datacenter

and cluster-of-cluster scenarios.

1

On the other hand, datacenter applications usually involve a small subset of ba-

sic operations that often involve cooperation among multiple nodes. For example,

file-systems, proxy servers and data-base servers often perform data-caching or file-

caching and resource managers, file-systems and data-base servers routinely perform

locking of files and resources, etc. These operations like caching and distributed lock-

ing apply to almost all datacenter deployment scenarios and have been researched

on significantly. Providing such operations as system services or primitives is highly

desirable and can be extremely beneficial to the designing of datacenter applications.

Further, the performance and scalability of such services are critical for building next

generation datacenters catering to the enormous application requirements.

In this context, introduction of modern high performance interconnects like In-

finiBand and 10 Gigabit Ethernet (iWARP) provide several advanced features like

Remote Direct Memory Access (RDMA) and Remote Memory Atomic Operations

that can be leveraged to improve the datacenter performance significantly. The dat-

acenter services can be optimized significantly and scaled using the features provided

by these modern interconnects. The growing popularity of clusters with modern net-

work interconnects coupled with the ever increasing demands for higher performance

and scalability of datacenters leads to the the critical challenge of effectively harness-

ing the capabilities of the modern interconnects in order to improve the performance

of current and next generation datacenters.

In this thesis, we identify distributed lock management, global memory aggre-

gation, large scale data transfers, dynamic and cooperative caching as basic primi-

tives that are widely used performance critical operation in modern datacenters. We

2

present efficient designs for datacenter services and primitives that leverage the ca-

pabilities of emerging modern interconnects in order to provide the performance and

scalability required for handling the needs of the next generation Web applications.

Broadly, we summarize our domain into the following:

1. Datacenter Service Primitives: How well can basic primitives such as distributed

lock management, large scale data transfers and global memory aggregation be

designed to boost the performance of higher level datacenter functions?

2. Web Caching Services: Can we design effective caching schemes utilizing RDMA

and other interconnect features available to provide dynamic content caching

and cooperative caching to effectively scale the overall datacenter performance?

3. Protocols over WAN: Can these high performance designs be adapted to cluster-

of-cluster scenarios by leveraging WAN capabilities of IB and iWARP enabled

Ethernet networks? What are the key issues involved? And what kind of

protocols are better suited to WAN interconnections?

The domain objectives described above all involve multiple challenges. These

need to be achieved in the light of the various constraints imposed by traditional dat-

acenter applications, the networking mechanisms and the performance requirements.

We intend to study and investigate these challenges to design efficient and scalable

datacenter services.

To demonstrate the effectiveness of our various designs, we utilize InfiniBand

and 10 Gigabit Ethernet (iWARP) and incorporate our designs to work with widely

popular open source datacenter applications like Apache, PHP and MySQL.

3

CHAPTER 2

BACKGROUND AND MOTIVATION

In this section, we present a brief background on modern RDMA enabled inter-

connects, cluster-based multi-tier data-centers and web-caching.

2.1 RDMA Enabled Interconnects

Many of the modern interconnects such as InfiniBand, 10 Gigabit Ethernet/iWARP,

etc. provide a wide range of enhanced features. In these networks, an abstraction

interface for adapter is specified in the form of RDMA Verbs. InfiniBand and iWARP

support both channel and memory semantics. Several features like Remote Memory

Direct Access (RDMA), Remote Atomic Operations, WAN capability, QoS support,

NIC level virtualization, etc. are supported by modern adapters.

2.1.1 RDMA Communication Model

RDMA Verbs specification supports two types of communication semantics: Chan-

nel Semantics (Send-Receive communication model) and memory semantics (RDMA

communication model).

In channel semantics, every send request has a corresponding receive request at

the remote end. Thus there is one-to-one correspondence between every send and

4

receive operation. Failure to post a receive descriptor on the remote node results in

the message being dropped and if the connection is reliable, it might even result in

the breaking of the connection.

In memory semantics, Remote Direct Memory Access (RDMA) operations are

used. These operations are transparent at the remote end since they do not require

a receive descriptor to be posted. In this semantics, the send request itself contains

both the virtual address for the local transmit buffer as well as that for the receive

buffer on the remote end.

Most entries in the WQR are common for both the Send-Receive model as well

as the RDMA model, except an additional remote buffer virtual address which has

to be specified for RDMA operations.

There are two kinds of RDMA operations: RDMA Write and RDMA Read. In

an RDMA write operation, the initiator directly writes data into the remote node’s

user buffer. Similarly, in an RDMA Read operation, the initiator reads data from the

remote node’s user buffer.

Apart from improved performance, RDMA operations have two notable advan-

tages that enable highly efficient designs. First, it is one-sided communication, that is

completely transparent to the peer side. Therefore, the initiator can initiate RDMA

operations at its own will. Eliminating involvement of the peer side can overcome the

communication performance degradation due to CPU workload of the peer side. This

also avoids any interrupt of the peer side processing. Second, RDMA operations pro-

vide a “shared-memory illusion”. This further enables the design of novel distributed

algorithms.

5

2.1.2 InfiniBand Architecture

InfiniBand Architecture (IBA) is an industry standard that defines a System Area

Network (SAN) to design clusters offering low latency and high bandwidth. In a

typical IBA cluster, switched serial links connect the processing nodes and the I/O

nodes. The compute nodes are connected to the IBA fabric by means of Host Channel

Adapters (HCAs). IBA defines a semantic interface called as Verbs for the consumer

applications to communicate with the HCAs.

IBA mainly aims at reducing the system processing overhead by decreasing the

number of copies associated with a message transfer and removing the kernel from the

critical message passing path. This is achieved by providing the consumer applications

direct and protected access to the HCA. The specifications for Verbs includes a queue-

based interface, known as a Queue Pair (QP), to issue requests to the HCA. Figure

2.1 illustrates the InfiniBand Architecture model.

Each Queue Pair is a communication endpoint. A Queue Pair (QP) consists of

the send queue and the receive queue. Two QPs on different nodes can be connected

to each other to form a logical bi-directional communication channel. An application

can have multiple QPs. Communication requests are initiated by posting Work Queue

Requests (WQRs) to these queues. Each WQR is associated with one or more pre-

registered buffers from which data is either transfered (for a send WQR) or received

(receive WQR). The application can either choose the request to be a Signaled (SG)

request or an Un-Signaled request (USG). When the HCA completes the processing

of a signaled request, it places an entry called the Completion Queue Entry (CQE) in

the Completion Queue (CQ). The consumer application can poll on the CQ associated

with the work request to check for completion. There is also the feature of triggering

6

Send Rcv

Q
P

Send Rcv

Q
P

CQE CQE

PHY Layer

Link Layer

Network
Layer

Transport
Layer

PHY Layer

Link Layer

Network
Layer

Transport
Layer

Operations,etc
Consumer Transactions,

(IBA Operations)
Consumer Consumer

Transport

WQE

Adapter
Channel

Port Port Port

Packet Relay

Port

Physical link Physical link

(Symbols)(Symbols)

Packet

IBA Operations

(IBA Packets)

IBA Packets

Packet Packet

C
h
an

n
el

 A
d
ap

te
r

Fabric

Figure 2.1: InfiniBand Architecture (Courtesy InfiniBand Specifications)

event handlers whenever a completion occurs. For Un-signaled request, no kind of

completion event is returned to the user. However, depending on the implementation,

the driver cleans up the the Work Queue Request from the appropriate Queue Pair

on completion.

Remote Atomic Operations

InfiniBand provides remote atomic operations, such as Compare and Swap and

Fetch and Add, that can be used for providing efficient synchronization among the

nodes. The advantage of such operations is that the atomicity of these is handled

by the NIC. i.e. the synchronization operation does not need a host level agent to

perform the actual work. InfiniBand standard currently supports these operations

on 64 bit fields. Newer InfiniBand NICs plan to extend these operations to larger

data-types [2].

7

2.1.3 Internet Wide Area RDMA Protocol

The iWARP protocol defines RDMA operations over Ethernet networks [32]. Fig-

ure 2.2 shows the basic protocol layering for iWARP detailed in its specification [32].

For iWARP, the basic message transport is undertaken by the TCP layer. Since TCP

itself is a stream protocol and does not respect message boundaries, an additional

MPA layer is introduced to enforce this. SCTP [78] is also proposed to be used in-

stead of TCP+MPA. The actual zero-copy capability is enabled by the Direct Data

Placement (DDP) Layer. The RDMA features provided by DDP are exported to the

upper level protocol by the RDMAP layer. It is to be noted that the ordering of data

within a single data-transfer is not guaranteed by the specifications of these layers.

However, adapters often do guarantee this as an option.

Upper Layer Protocol (ULP)

RDMAP

DDP Protocol

MPA

TCP

SCTP

Figure 2.2: RDMAP Layering (Courtesy: RDMA Protocol Specification Draft [71])

The iWARP protocol comprising of RDMAP, DDP, MPA and TCP layers as

shown in Figure 2.2 are intended to be implemented in hardware for RNICs resulting

in significant performance improvements over the traditional TCP/IP stacks.

8

The iWARP supports two types of communication semantics: Channel Semantics

(Send-Receive communication model) and Memory Semantics (RDMA communica-

tion model). Remote Direct Memory Access (RDMA) [45] operations allow processes

to access the memory of a remote node process without the remote node CPU in-

tervention. These operations are transparent at the remote end since they do not

require the remote end to be involved in the communication. Therefore, an RDMA

operation has to specify both the memory address for the local buffer as well as that

for the remote buffer. There are two kinds of RDMA operations: RDMA Write and

RDMA Read. In an RDMA write operation, the initiator directly writes data into the

remote node’s memory. Similarly, in an RDMA Read operation, the initiator reads

data from the remote node’s memory.

The basic communication is achieved over connected end points known as the

Queue Pairs (QPs). Each QP consists of a send queue and a receive queue. To enable

data transfers, each QP needs to be setup and its state needs to be transitioned into

the connected state. The communicating process initiates a data transfer by posting

a descriptor. The descriptor typically holds all the required information for the data

transfer like source/destination buffer pointers, type of transfer, etc. In case of RDMA

operations, the descriptor also contains the remote buffer information.

2.1.4 WAN Interconnects

With the advent of InfiniBand WAN, both IB and 10GE/iWARP are now capable

of communication over WAN distances. While 10GE/iWARP NICs are naturally

capable of WAN communication due to the usage of TCP/IP in the iWARP protocol

stack, IB communication needs additional infrastructure for such capabilities.

9

Figure 2.3: Cluster-of-Clusters Connected with Obsidian Longbow XRs

InfiniBand Range Extension: Multiple vendors including Obsidian and Net

provide IB WAN capability. Obsidian Longbows [33] primarily provide range exten-

sion for InfiniBand fabrics over modern 10 Gigabits/s Wide Area Networks (WAN).

The Obsidian Longbows work in pairs establishing point-to-point links between clus-

ters with one Longbow at each end of the link. Figure 2.3 shows a typical deploy-

ment of the IB WAN routers. The Longbows communicate using IPv6 Packets over

SONET, ATM, 10 Gigabit Ethernet and dark fiber applications. The Longbows can

essentially support IB traffic at SDR rates (8 Gbps).

The Obsidian Longbow XR routers also provide a highly useful feature of adding

delay to packets transmitted over the WAN link. Each of the Longbows provide a

Web interface to specify delay. The packets are then delayed for the specified time

before and after traversing over the WAN link. This added delay can indirectly be

used as a measure of emulated distance. i.e. this essentially corresponds to the wire

delay of about 5 us for each km of wire length. We leverage this feature to emulate

cluster-of-clusters with varying degrees of separation in the following experiments.

10

2.2 Overview of Web Datacenters

Internet based clients typically connect to web applications over WAN. Due to

the cost benefits offered by modern cluster-based architectures, they have become

the defacto standard for hosting these applications. These applications present an

incredibly diverse set of characteristics and requirements. They can vary from serv-

ing of simple image to performing a complex operation involving multiple dynamic

backend objects. Catering to this diversity and the need for high performance, web

servers have evolved into multi-tier architectures with the capability of providing flex-

ibility, performance, availability and scalability. In this section, we describe the main

characteristics of these web datacenters.

2.2.1 Multi-Tiered Architectures

A typical data-center architecture consists of multiple tightly interacting layers

known as tiers. Each tier can contain multiple physical nodes. Figure 2.4 shows

a typical Multi-Tier Data-Center. Requests from clients are load-balanced by the

edge services tier on to the nodes in the proxy tier. This tier mainly does caching of

content generated by the other back-end tiers. The other functionalities of this tier

can include data-center security and balancing the request load sent to the back-end

based on certain pre-defined algorithms.

The second tier consists of two kinds of servers. First, those which host static

content such as documents, images, music files and others which do not change with

time. These servers are typically referred to as web-servers. Second, those which

compute results based on the query itself and return the computed data in the form

of a static document to the users. These servers, referred to as application servers,

11

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

������
������
������
������
������

������
������
������
������
������������
������
������
������

�
�
�
�
�

�
�
�
�
�

������
������
������
������
������

������
������
������
������
������������
������
������
������

�
�
�
�
�

�
�
�
�
�

������
������
������
������
������

������
������
������
������
������������
������
������
������

�
�
�
�
�

�
�
�
�
�

������
������
������
������
������

������
������
������
������
������������
������
������
������

�
�
�
�
�

�
�
�
�
�

������
������
������
������
������

������
������
������
������
������������
������
������
������

�
�
�
�
�

�
�
�
�
�

������
������
������
������

�
�
�
�
�

�
�
�
�
�

������
������
������
������
������

������
������
������
������
������������
������
������
������

�
�
�
�
�

�
�
�
�
�

������
������
������
������
������

������
������
������
������
������������
������
������
������

�
�
�
�
�

�
�
�
�
�

������
������
������
������
������

������
������
������
������
������������
������
������
������

�
�
�
�
�

�
�
�
�
�

������
������
������
������
������

������
������
������
������
������������
������
������
������

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
��������
��������
��������

��������
��������
��������

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
��������
��������
��������

��������
��������
�������� ���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������

�
�
�
�
�

�
�
�
�
�

������
������
������
������
������

������
������
������
������
������

��������
��������
��������

��������
��������
��������

Internet

Network
Enterprise

Applications Applications

Services
Edge

Front−end
Mid−tier Back−end

Applications

Figure 2.4: A Typical Multi-Tier Data-Center (Courtesy CSP Architecture [75])

usually handle compute intensive queries which involve transaction processing and

implement the data-center business logic.

The last tier consists of database servers. These servers hold a persistent state of

the databases and data repositories. These servers could either be compute intensive

or I/O intensive based on the query format. Queries involving non key searches can

be more I/O intensive requiring large data fetches into memory. For more complex

queries, such as those which involve joins or sorting of tables, these servers can be

more compute intensive.

2.2.2 Web Applications

Web applications primarily communicate with the clients over WAN using TCP/IP

transport protocol. As mentioned earlier, the characteristics of these applications vary

significantly from each other. Large file accesses can be IO bound whereas encryption

12

requirements can lead to high CPU usage. Further, these are designed to handle large

scale parallelism. Many applications such as the popular Apache [42] and MySQL

[5], are designed as multi-threaded or multi-process servers to handle the expected

parallelism.

2.3 Web Caching

In this section we describe a brief outline of web-caching and the basic coherency

and consistency issues that it presents.

It has been well acknowledged in the research community that in order to provide

or design a data-center environment which is efficient and offers high performance, one

of the critical issues that needs to be addressed is the effective reuse of cache content

stored away from the origin server. This has been strongly backed up by researchers

who have come up with several approaches to cache more and more data at the various

tiers of a multi-tier data-center. Traditionally, frequently accessed static content was

cached at the front tiers to allow users a quicker access to these documents. In the

past few years, researchers have come up with approaches of caching certain dynamic

content at the front tiers as well [26].

In the current generation web content, many cache eviction events and uncachable

resources are driven by two server application goals: First, providing clients with a

recent or coherent view of the state of the application (i.e., information that is not

too old); Secondly, providing clients with a self-consistent view of the application’s

state as it changes (i.e., once the client has been told that something has happened,

that client should never be told anything to the contrary).

13

The web does not behave like a distributed file system (DFS) or distributed shared

memory (DSM) system; among the dissimilarities are: (1) the lack of a write semantic

in common use - while the HTTP protocol does include a PUT event which is in

some ways comparable to a write, it is rarely used. The most common write-like

operation is POST which can have completely arbitrary semantics and scope. This

generality implies, in the general case, an inability to batch user induced updates. (2)

The complexity of addressing particular content - URLs or web addresses do not in

fact address units of contents per se, but rather address generic objects (resources)

which produce content using completely opaque processes. (3) The absence of any

protocol-layer persistent state or notion of transactions to identify related, batched

or macro-operations. These issues are further illuminated by Mogul in [60].

In a DSM or DFS world, the mapping from write events to eventual changes in

the canonical system state is clearly defined. In the web, non-safe requests from

users can have arbitrary application-defined semantics with arbitrary scopes of effect

completely unknowable from the parameters of a request, or even from the properties

of a response. For this reason, the definitions of consistency and coherence used in

the DFS/DSM literature do not fit the needs of systems like the data-center; instead,

we use definitions more akin to those in the distributed database literature.

Depending on the type of data being considered, it is necessary to provide certain

guarantees with respect to the view of the data that each node in the data-center

and the users get. These constraints on the view of data vary depending on the

application requiring the data.

Consistency: Cache consistency refers to a property of the responses produced

by a single logical cache, such that no response served from the cache will reflect older

14

state of the server than that reflected by previously served responses, i.e., a consistent

cache provides its clients with non-decreasing views of the server’s state.

Coherence: Cache coherence refers to the average staleness of the documents

present in the cache, i.e., the time elapsed between the current time and the time

of the last update of the document in the back-end. A cache is said to be strong

coherent if its average staleness is zero, i.e., a client would get the same response

whether a request is answered from cache or from the back-end.

2.3.1 Web Cache Consistency

In a multi-tier data-center environment many nodes can access data at the same

time (concurrency). Data consistency provides each user with a consistent view of the

data, including all visible (committed) changes made by the user’s own updates and

the updates of other users. That is, either all the nodes see a completed update or no

node sees an update. Hence, for strong consistency, stale view of data is permissible,

but partially updated view is not.

Several different levels of consistency are used based on the nature of data being

used and its consistency requirements. For example, for a web site that reports

football scores, it may be acceptable for one user to see a score, different from the

scores as seen by some other users, within some frame of time. There are a number

of methods to implement this kind of weak or lazy consistency models.

The Time-to-Live (TTL) approach, also known as the ∆-consistency approach,

proposed with the HTTP/1.1 specification, is a popular weak consistency (and weak

coherence) model currently being used. This approach associates a TTL period with

each cached document. On a request for this document from the client, the front-end

15

node is allowed to reply back from their cache as long as they are within this TTL

period, i.e., before the TTL period expires. This guarantees that document cannot

be more stale than that specified by the TTL period, i.e., this approach guarantees

that staleness of the documents is bounded by the TTL value specified.

Researchers have proposed several variations of the TTL approach including Adap-

tive TTL [30] and MONARCH [58] to allow either dynamically varying TTL val-

ues (as in Adaptive TTL) or document category based TTL classification (as in

MONARCH). There has also been considerable amount of work on Strong Consis-

tency algorithms [19, 18].

2.3.2 Web Cache Coherence

Typically, when a request arrives at the proxy node, the cache is first checked

to determine whether the file was previously requested and cached. If it is, it is

considered a cache hit and the user is served with the cached file. Otherwise the

request is forwarded to its corresponding server in the back-end of the data-center.

The maximal hit ratio in proxy caches is about 50% [76]. Majority of the cache

misses are primarily due to the dynamic nature of web requests. Caching dynamic

content pages is much more challenging than static content because the cached object

is related to data at the back-end tiers. This data may be updated, thus invalidating

the cached object and resulting in a cache miss. The problem of how to provide

consistent caching for dynamic content has been well studied and researchers have

proposed several weak as well as strong cache consistency algorithms [19, 18, 84].

However, the problem of maintaining cache coherence has not been studied as much.

16

There are two popularly used coherency models in the current web: immediate or

strong coherence and bounded staleness.

The bounded staleness approach is similar to the previously discussed TTL based

approach. Though this approach is efficient with respect to the number of cache hits,

etc., it only provides a weak cache coherence model. On the other hand, immediate

coherence provides a strong cache coherence.

With immediate coherence, caches are forbidden from returning a response other

than that which would be returned were the origin server contacted. This guarantees

semantic transparency, provides Strong Cache Coherence, and as a side-effect also

guarantees Strong Cache Consistency. There are two widely used approaches to

support immediate coherence. The first approach is pre-expiring all entities (forcing

all caches to re-validate with the origin server on every request). This scheme is

similar to a no-cache scheme. The second approach, known as client-polling, requires

the front-end nodes to inquire from the back-end server if its cache is valid on every

cache hit. This cuts down on the cost of transferring the file to the front end on every

request even in cases when it had not been updated.

The no-caching approach to maintain immediate coherence has several disadvan-

tages:

• Each request has to be processed at the home node tier, ruling out any caching

at the other tiers

• The propagation of these requests to the back-end home node over traditional

protocols can be very expensive

17

• For data which does not change frequently, the amount of computation and

communication overhead incurred to maintain strong coherence could be very

high, requiring more resources

These disadvantages are overcome to some extent by the client-polling mechanism.

In this approach, the proxy server, on getting a request, checks its local cache for the

availability of the required document. If it is not found, the request is forwarded to

the appropriate application server in the inner tier and there is no cache coherence

issue involved at this tier. If the data is found in the cache, the proxy server checks the

coherence status of the cached object by contacting the back-end server(s). If there

were updates made to the dependent data, the cached document is discarded and the

request is forwarded to the application server tier for processing. The updated object

is now cached for future use. Even though this method involves contacting the back-

end for every request, it benefits from the fact that the actual data processing and

data transfer is only required when the data is updated at the back-end. This scheme

can potentially have significant benefits when the back-end data is not updated very

frequently. However, this scheme has its own set of disadvantages, mainly based on

the traditional networking protocols:

• Every data document is typically associated with a home-node in the data-center

back-end. Frequent accesses to a document can result in all the front-end nodes

sending in coherence status requests to the same nodes potentially forming a

hot-spot at this node.

• Traditional protocols require the back-end nodes to be interrupted for every

cache validation event generated by the front-end.

18

CHAPTER 3

PROBLEM STATEMENT

Cluster-based architectures have been envisioned as one of the main platforms for

handling large scale web applications and their massive requirements. With signif-

icant increase in volume of data, number of users and application complexity, the

performance and scalability of such systems has become critical.

Modern interconnects like InfiniBand and 10 Gigabit Ethernet have introduced

a range of novel features while delivering excellent performance. Increasing number

of cluster-based datacenters are being deployed with these modern interconnects due

to their high performance-to-cost ratios. Further, due to the added WAN capabili-

ties of these high performance networks, datacenter deployments in cluster-of-cluster

scenarios is becoming a promising option. However, the extent to which the cur-

rent deployments manage to benefit from these interconnects is often far below the

achievable levels.

In order to maximize the potential benefits that the advanced capabilities of these

modern interconnects can deliver, selective redesigning of performance critical dat-

acenter components is needed. Any such redesigning will need to take the typical

characteristics of datacenter applications into account. Performance critical opera-

tions common to multiple datacenter applications like caching, resource management,

19

etc. need to be identified and redesigned utilizing the features of modern intercon-

nects. These operations can be designed and implemented as system services in a

consolidated framework such that all other datacenter applications and services can

utilize them effectively. So the main challenge that we address in this thesis is:

How can we effectively utilize the novel capabilities of modern intercon-
nects to design efficient and scalable services for cluster-based datacenters

and demonstrate the potential performance benefits thereof?

3.1 Open Challenges and Issues

Traditionally datacenters include applications that are very diverse in nature. Not

only it is common that each datacenter typically has multiple applications running

concurrently to provide the required services, but also the kinds of services that these

applications provide vary a lot. Several aspects ranging from the type of workloads,

the amount of data handled, the level of security required, interaction with legacy

codes and systems, concurrency of operations, QoS requirements, etc., all significantly

vary from deployment to deployment. The datacenter workloads themselves can vary

in terms of complexity of requests, rate at which requests arrive, size of responses,

etc. making the datacenters a very diverse environment. Further, many of the legacy

applications have been developed over time and due to the sheer volume of such legacy

application code, it is not practical to undertake any large scale redesigning.

While many of the characteristics of datacenters differ among the different de-

ployments, there are two main similarities as well: (i) the applications are typically

based on TCP/IP for all communications and (ii) the applications are largely multi-

threaded and usually have a significant number of threads running. These aspects

20

have had a tremendous influence on traditional datacenter application designs and

based on the current trends they are likely to do so in future.

While modern interconnects provide a range of novel features with high perfor-

mance, the above mentioned requirements of traditional datacenters present a very

difficult set of constraints that need to be addressed in order to efficiently utilize the

capabilities of high performance interconnects. In this context, we plan to design a set

of common datacenter services using a multi-layered approach providing a common

framework for leveraging the benefits of modern networks to deliver higher datacenter

performances.

To present our case, we identify dynamic and cooperative caching, large scale data

transfers, distributed lock management and global memory aggregation as a set of

distributed datacenter services with high performance requirements and have wide

utility in datacenters scenarios. These services as described below have high perfor-

mance requirements and have wide applicability in modern datacenters. Common

applications like web-servers, data-base servers, file-systems, resource managers, etc.

can benefit significantly from improved performance of these ubiquitous datacenter

services.

• Caching has become an essential component of current datacenters. Currently,

web and proxy servers, file-systems, data-bases, etc. all routinely perform

caching where possible, implementing their own specific solutions for this pur-

pose. Due to the performance costs associated with traditional design ap-

proaches dynamically changing data is usually either not cached or cached to a

very limited extent (such as in the case of data-bases). Further, such caching is

often done independently on each node leading to a large scale fragmentation

21

of caching resources. Addressing these caching requirements is a considerable

challenge.

• Distributed lock management forms an important component with very high

performance requirements in many applications due to the fact that locking

operations are often in the critical path of application logic. i.e. locks are

usually in place blocking and unblocking the progress of the application. Ap-

plications sharing data or resources in a distributed scenario need the services

of a distributed lock manager. Examples of such scenarios include, cooperative

caching, resource management, distributed data-bases, etc. Since these opera-

tions are most often used in critical execution paths high performance is of vital

importance.

• Due to the ubiquitous nature of large scale data transfers in datacenters, they

remain critical to the overall performance of these systems. Operations such

as data staging, data backup, replication, etc. all require efficient mechanisms

for transferring large amounts of data, often across WAN links. Further, it

is highly desirable to achieve good performance for such data transfers with

minimal overhead on the end nodes.

• Memory requirements of various nodes in datacenters can vary significantly

based on the application hosted on the node and over time. Effective pooling

of such memory resources can benefit applications with large memory require-

ments. In particular, components like remote memory swap devices and coop-

erative caching can utilize such memory to boost the performances of higher

level applications. Pooling of available memory at the lowest level by means of

22

a global memory aggregating service can lead to the most effective consolidation

strategies across a datacenter.

While several different designs for these services have been proposed in the past,

redesigning these efficiently in light of the capabilities of modern interconnects and

technologies is a challenging task and providing them as a part of system-level services

is very valuable to higher level applications. Further, exploring the design space and

understanding the trade-offs involved in this context is extremely important for the

design of the next generation Web applications and datacenter architectures.

3.2 Objectives

In order to address the issues listed above and to demonstrate the benefits of

the novel capabilities of modern interconnects in the context of current and next

generation datacenters, we propose a multi-layered set of datacenter services utilizing

the features of modern interconnects. We divide the main objectives involved into

the following:

• Can we design efficient distributed locking services leveraging the RDMA and

remote atomic operations provided by InfiniBand? A lot of datacenter applica-

tions utilize both shared and exclusive locking modes very frequently. Designing

an efficient system service with fair load distribution, better load resilience and

minimal costs in the critical path is extremely desired.

In addition, can we design an efficient all purpose global memory aggregator?

Also, how efficiently can we pool memory resources across the datacenter such

that free resources can be most effectively consolidated? What kind of allocation

23

and placement policies would such an aggregation of memory resources require

for maximum utility of such a memory pool and can the overheads of such an

aggregation be minimized on other applications? Finally, can we provide the

proposed services in a scalable manner?

• Can we design an efficient coherency protocol for caches that can support strong

cache coherency while delivering a high performance and high load resiliency?

How effectively can this protocol be designed in the context of modern inter-

connects and how significant would the quantitative benefits of such a design

be?

Further, the basic dynamic content caching protocol designs need to be extended

to scenarios with complex data dependencies. For example, modern dynamic

web-pages are usually made up of multiple smaller dynamic components. Can

we leverage the higher performance and advanced features that modern inter-

connects provide to redesign protocols that can handle the increased complexity

of modern cache entities that include multiple dynamic sub-objects?

In addition, can the basic caching and cooperative caching protocols be extended

to RDMA based modern interconnects such that the effective total memory us-

age be improved significantly? Based on the trade-offs involved, what kind of

policies and schemes be supported such that performance benefits are maxi-

mized?

Further, what are the scalability implication of such designs? How effectively

can these be deployed in large scale datacenter scenarios?

24

• Can we deign an advanced data transfer service that achieves efficient large

scale data transfers across LAN and WAN links? What are the fundamental

issues involved in optimizing such data transfers? Can we design such high

performance capabilities while minimizing the overheads on the host systems?

What are the fundamental trade-offs in this context?

With the increasing number of cluster-of-cluster scenarios, can the above de-

signs be extended to WAN based protocols? What are the trade-offs involved?

What kind of new flow control and communication protocols are beneficial for

managing efficient performance on these WAN links? What are the fundamental

limitations?

We intend to address the above challenges and design these components in a

layered architecture such that applications can leverage the benefits of these services

through pre-defined interfaces. Further, the services themselves would be able to

benefit from other services provided.

3.3 Proposed Framework

Figure 3.1 provides an overview of all the above mentioned components. In the

figure, the white-shaded components form existing datacenters. The components we

proposed in this thesis are dark shaded. We divide the services into higher-layer

services including (i) Dynamic Content Caching, (ii) Multi-Dependency Dynamic

Content Caching and (iii) Cooperative Caching and lower-layer services including (i)

Distributed Lock Manager, (ii) Global Memory Aggregator and (iii) Advanced Data

Transfer Service. These services are designed in the context of modern interconnects.

25

The WAN framework extends the InfiniBand and 10GE/iWARP capabilities (and

services designed using them) across longer WAN links.

Application Adaptation Layer

Data−Center

Services

InfiniBand WAN Ethernet WAN

Existing Data−Center Applications (Apache, MySQL, PHP, etc.) Data−Center

Applications

Aggregator

Global Memory

Lock Manager

Distributed

Dynamic Content

Caching Caching

Multi Dependency
Cooperative Caching

Data−Transfer

Advanced

Service

Interconnect Capability Mapping Interface

Interconnects
ModernInfiniBand 10 GE/iWARP

WAN Framework

Figure 3.1: Proposed Framework for Datacenter Services over Modern Interconnects

Applications invoke these services through an application adaptation layer that

traps service requests into the service layers and returns responses to the applica-

tions. This applications adaptation layer is intended to provide access to the services

while keeping the application changes minimal. The Interconnect Capability Map-

ping Interface provides a uniform mechanism of access to network capabilities for the

proposed services.

26

3.4 Dissertation Overview

In this section, we present the overview of the dissertation. Detailed designs and

evaluations are presented in the following chapters.

In Chapter 4, we present a novel approach to efficient distributed lock manage-

ment. We utilize the remote atomic operations provided by InfiniBand to provide

one-sided mechanisms to enable both shared mode locking and exclusive mode lock-

ing. We discuss limitations of existing approaches and the benefits of our designs.

By distributing the lock management related workload appropriately, we achieve fair

load balancing among participating nodes. Further, we demonstrate the advantages

of our design with detailed evaluation.

In Chapter 5, we present a highly efficient mechanism for dynamic content caching.

We extensively utilize RDMA Read operations to obtain cache validity information in

real-time to enable strong cache coherence required for several modern applications.

Our results demonstrate an order of magnitude improvement of performance over ex-

isting approaches. Further, we also demonstrate excellent scalability of our approach

under loaded conditions that datacenters often encounter.

In Chapter 6, we present an extended approach for dynamic content caching in

order to handle complex web-objects. Modern applications often generate complex

objects with multiple dynamic components. We discuss the issues involved in provid-

ing strong cache coherency for such complex objects. We present an extended protocol

that enables such capability for current and next-generation datacenter applications.

In Chapter 7, we study the various alternatives for enabling cooperative caching

of web objects. In particular, we discuss several optimizations to maximize system

resource usage and overall performance. We evaluate the effect of selective automated

27

replication of cached data to achieve maximum performance benefits. Further, we

explore the possibility of utilizing system-wide free resources for caching in terms of

possible benefits and involved overheads.

In Chapter 8, we present an evaluation framework of high performance commu-

nications over WAN. We study the various mechanisms for emulating WAN charac-

teristics for performing accurate higher level evaluations. We study the performance

characteristics of both IB WAN and iWARP using a multitude of hardware and

software environments. Based on our analysis of such environments, we isolate the

benefits and overheads of high performance protocols when used over WAN.

In Chapter 9, we present the design of high performance data transfer capabili-

ties across IB WAN. We explore the possibility of using zero-copy communications,

including RDMA, for WAN data transfers. We study the tradeoffs involved in such

communications.

In Chapter 10, we present our conclusions and describe topics for future research.

28

CHAPTER 4

NETWORK-BASED DISTRIBUTED LOCK MANAGER

Effective cooperation among the multiple processes distributed across the nodes

is needed in a typical data-center environment where common pools of data and

resources like files, memory, CPU, etc. are shared across multiple processes. This re-

quirement is even more pronounced for clusters spanning several thousands of nodes.

Highly efficient distributed locking services are imperative for such clustered envi-

ronments. In this chapter, we present our novel network based distributed locking

protocol.

4.1 Background and Related Work

While traditional locking approaches provide basic mechanisms for this coop-

eration, high performance, load resiliency and good distribution of lock manage-

ment workload are key issues that need immediate addressing. Existing approaches

[35, 10, 34, 49, 57] handle these requirements either by distributing the per-lock work-

load (i.e. one server manages all operations for a predefined set of locks) and/or by

distributing each individual lock’s workload (i.e. a group of servers share the workload

by distributing the queue management for the locks). While the former is popularly

used to distribute load, it is limited to a high granularity of workload distribution.

29

Data−Center

ServicesLock ManagerDistributed

Cooperative
CachingCaching

Dependency

Caching
Content

Dynamic Multi−TierMulti−

Network
MechanismsRDMA Remote Atomics

Interconnects
ModernInfiniBand 10 Gigabit Ethernet/iWARP

Existing Data−Center Applications (Apache, MySQL, PHP, etc.) Data−Center

Applications

Aggregator

Interconnect Capability Mapping Interface

Global Memory

Application Adaptation Layer

ADTS

Figure 4.1: Proposed Distributed Lock Manager

Further, some locks can have significantly higher workload as compared to others and

thereby possibly causing an unbalanced overall load.

The second approach of distributed queue management has been proposed by

researchers for load-sharing fairness and better distribution of workload. In such ap-

proaches, employing two-sided communication protocols in data-center environments

is inefficient as shown by our earlier studies [62]. Devulapalli. et. al. [35], have

proposed a distributed queue based locking protocol which avoids two-sided commu-

nication operations in the locking critical path. This approach only supports locking

of resources in exclusive access mode. However, supporting all popular resource ac-

cess patterns needs two modes of locking: (i) Exclusive mode locking and (ii) Shared

mode locking. Lack of efficient support for shared mode locking precludes the use of

these locking services in common high performance data-center scenarios like multiple

30

concurrent readers for a file (in file system caching), or multiple concurrent readers for

a data-base table, etc. Hence the distributed lock management needs to be designed

taking into account all of these issues.

In the rest of the chapter, we describe the various design aspects of our RMA based

complete DLM locking services. Section 4.1.1 describes the common implementation

framework for our system. Section 4.2 describes the design details of our locking

designs.

4.1.1 External Module-based Design

The DLM works in a client-server model to provide locking services. In our design

we have the DLM server daemons running on all the nodes in the cluster. These

daemons coordinate over InfiniBand using OpenFabrics Gen2 interface [43] to provide

the required functionality. Figure 4.2 shows the basic setup on each node. The

applications (i.e. clients) contact their local daemons using IPC message queues to

make lock/unlock requests. These requests are processed by the local daemons and

the response is sent back to the application appropriately. Since typical data-center

applications have multiple (often transient) threads and processes running on each

node, this approach of having one DLM server daemon on each node provides optimal

sharing of DLM resources while providing good performance. These DLM processes

are assigned rank ids (starting from one) based on their order of joining the DLM

group.

The DLM maintains the information on each lock with an associated key. These

keys and related lock information is partitioned among the participating nodes; i.e.

each key has a homenode that represents the default location of the locking state

31

Cluster Node

IPC
Modules

To Other

Application

Threads

External
Module

for
Locking
Services

Gen2

Figure 4.2: External Module-based Services

information for that lock (and the keys themselves are randomly distributed among

all the nodes).

In order to support these operations, we have three threads in each of our design:

(i) Inter-node communication thread, (ii) IPC thread and (ii) Heartbeat thread. The

inter-node communication thread blocks on gen2-level receive calls. The IPC thread

performs the majority of the work. It receives IPC messages from application pro-

cesses (lock/unlock requests) and it also receives messages from the other threads as

needed. The heartbeat thread is responsible for maintaining the work queues on each

node. This thread can also be extended to facilitate deadlock detection and recovery.

This issue is orthogonal to our current scope and is not dealt in the current research.

In our design we use one-sided RDMA atomics in the critical locking path. Fur-

ther, we distribute the locking workload among the nodes involved in the locking

operations. Hence our design maintains basic fairness among the cluster nodes.

32

4.2 Design of the Proposed Network-based Distributed Lock
Manager

In this section, we describe the various aspects of our high performance design

for providing shared and exclusive locking using network based atomic operations.

In particular, we provide the details of the various protocols and data-structures we

use in order to accomplish this. This section is organized as the following. First, we

explain the organization of the data-structures used in protocols. We then explain the

Network-based Combined Shared/Exclusive Distributed Lock Design (N-CoShED)

protocol proposed in this chapter.

1

Exclusive
Lock REQ

Exclusive
Lock REQ

3

Exclusive
Lock REQ

Shared

Lock
Requests

Shared

Lock
Requests

6

Node_3

Node_2

Node_1

Queue

Tail

2

4

5

Home Node

Figure 4.3: An Example Scenario of the DLM Protocol - N-CoSED

Global Shared Data-Structures: The primary data element used in our proposed

DLM design is a 64-bit value. The required attributes of this value is that it should

be globally visible and accessible (i.e. RDMA Atomics are enabled on this memory

33

field) by all the participating processes. Each 64-bit value used for lock management

is divided equally into two regions: Exclusive region and Shared region, each making

up 32-bits. These fields are initialized to zero at the start and the details of the the

usage are described in the following subsections.

We now explain the combined distributed locking protocol for shared and exclusive

locks. To simplify understanding, we break this protocol into four broad cases:(i) Only

Exclusive locks are issued, (ii) Only Shared locks are issued, (iii) Exclusive locks are

issued following Shared locks and (iv) Shared locks are issued following Exclusive

locks.

Figure 4.3 shows a sample snapshot of the state of the distributed queue for locks

in our design. The circled numbers label the lock request arrows to show the order in

which the queue locks are granted. The three nodes shown have exclusive lock requests

and each of them have a few shared lock requests queued that will be granted after

they are done with the exclusive lock.

4.2.1 Exclusive Locking Protocol

In this section we outline the locking and unlocking procedures when only exclusive

locks are issued. As explained above a 64-bit value (on the home node) is used for

each lock in the protocol. For exclusive locking, only the first 32 bits of the 64-bit

value are used. The following steps detail the exclusive lock/unlock operation. Figure

4.4(a) shows an example of this case.

• Locking Protocol:

Step 1. To acquire the lock the requesting client process issues an atomic

compare-and-swap operation to the home node. In this operation, two values

34

X 0

X 0

0 0

1 0

1 0

X 0

3 0

3 0

1 0

0 0

1 0

Node 3Node 1

0 0

1 0

Request

Exclusive Lock

Exclusive Lock

Node 2(Home Node)

Granted if (X == 0)

Cmp Val:

Swap Val:

Cmp Val:

Swap Val:

Ret Val:

Ret Val:

Lock Request

Lock Grant

Lock Grant

Unlock

Swap Val:

Cmp Val:

Ret Val:

0 0

0 0

0 1

0 1

0 1

0 1

0 2

Node 3Node 1

Request

Node 2(Home Node)

Ret Val:

Add Val:
Shared Lock

Shared Lock

Granted

Request

Shared Lock

Shared Lock

Granted

Add Val:

Ret Val:

Lock Release

Lock Release

UnLock

UnLock

Figure 4.4: Locking protocols: (a) Exclusive only (b) Shared Only

are provided by this process, the swap value and the compare value. The swap

value is a 64-bit value whose first 32 bits correspond to the rank of the issuing

process and the next 32 bits are zeros [rank : 0]. The compare value [0 : 0] is

passed for comparison with the value at the home node. If this value equals the

value at the home node, the compare operation succeeds and the value at the

home node is swapped with the supplied swap value. If the comparison fails

then the swapping does not take place. The issuing process is returned with the

original 64-bit value of the home node after the atomic operation completes.

Step 2. If the exclusive region of the returned value corresponds to zero, it

indicates that no process is currently owning the lock. The process can safely

acquire the lock in this circumstance.

Step 3. If the value is not zero, then the exclusive region of the returned value

corresponds to the rank of the process at the end of the distributed queue

35

waiting for the lock. In this case, the issued atomic comparison would have

failed and the entire atomic operation has to retried. However, this time the

exclusive region of the compare value [current tail : 0] is set to the rank of

the last process waiting in the queue. Once the atomic operation succeeds, the

local DLM process sends a separate lock request message (using Send/Recv) to

the last process waiting for the lock. The rank of this process can be extracted

from the 64-bit returned value of the atomic operation. This approach is largely

adequate for performance reasons since this operation is not in critical path.

• Unlocking Protocol:

Step 1. After the process finishes up with the lock, it checks whether it has

any pending requests received from other processes. If there is a pending lock

request, it sends a message to this process indicating that it can go ahead and

acquire the lock. This process is the next in the distributed queue waiting for

the lock.

Step 2. If there are no pending lock requests, the given process is the last in

the queue and it resets the 64-bit value at the home-node to zero for both the

exclusive and shared regions.

4.2.2 Shared Locking Protocol

In this section we explain the protocol steps when only requests for the shared

lock are issued. In this part of the protocol, the shared region portion of the 64-bit

value is employed which makes up the last 32 bits. The basic principle employed

is that the shared region is atomically incremented using Fetch-and-Add operation

every time a shared lock request arrives at the home node. Thus, at any given time

36

the count in the shared region represents the number of shared lock requests arrived

at the home node. The following are the detailed steps involved.

0 0

1 0

1 0

0 0

1 0

0 1

0 1

0 1

0 1

0 1

1 0

Node 3Node 1

0 0

Request

Exclusive Lock

Exclusive Lock

Node 2(Home Node)

Cmp Val:

Swap Val:

Cmp Val:

Swap Val:

Ret Val:

Ret Val:

Lock Grant

Unlock

Swap Val:

Cmp Val:

Ret Val:

Not Granted

1 0

Lock Grant

Lock Request

Lock Release

3 0

3 1

3 1

0 0

X 0

Node 3Node 1

Request

Node 2(Home Node)

Granted if (X == 0)

Ret Val:

Lock Grant

Unlock

Add Val:

Lock Request

Lock Grant

Unlock Request

Swap Val:

Cmp Val:

0 0

Shared Lock

Shared Lock

0 1

Figure 4.5: Locking protocols: (a) Shared followed by Exclusive (b) Exclusive followed
by Shared

• Locking Protocol:

Step 1. The process acquiring the shared lock initiates an atomic fetch-and-add

increment operation on the 64-bit value at the home node. Please note that in

effect, the operation is performed on the shared region of the value. The first

32 bits are not modified.

Step 2. If the exclusive portion of the returned value corresponds to zero then

the shared lock can be safely acquired.

Step 3. If the exclusive portion of the returned value contains a non-zero value,

it implies that some other process has issued an exclusive lock request prior to

37

the shared lock request on the lines of the exclusive locking protocol described

earlier. We explain this scenario in detail in the following sections.

• Unlocking Protocol:

Step 1. The process after acquiring the shared lock issues a lock release message

to the home node.

Step 2. Once all the lock release messages from the shared lock owners have

arrived, the shared region is re-set to zero atomically by the home node.

4.2.3 Shared Locking followed by Exclusive locking

We now outline the steps when an exclusive lock request arrives after the shared

locks have been issued. In this case, the value at the home node reads the following.

The first 32 bits corresponding to the exclusive portion would be zero followed by the

next 32 bits which contain the count of the shared locks issued so far. The process

acquiring the exclusive lock issues an atomic compare-and-swap operation on the 64-

bit value at the home node as described in the above exclusive protocol section. The

following steps occur during the operation. Figure 4.5(a) shows the basic steps.

• Locking Protocol:

Step 1. Similar to the exclusive locking protocol, the issuing client process

initiates an atomic compare-and-swap operation with the home node. Since

shared locks have been issued, the atomic operation fails for this request. This

is because the value in the home node does not match with the compare value

supplied which is equal to zero. The atomic operation is retried with the new

compare value set to the returned value of the previous operation.

38

Step 2. Once the retried atomic operation succeeds, the 64-bit value at the

home node is swapped with a new value where the shared region is re-set to

zero and the exclusive region contains rank of the current issuing process.

Step 3. The issuing process then gets the number of shared locks issued so far

from the last 32 bits of the returned value. It also obtains the value of the first

32 bits which is the exclusive region. In our case, since we are assuming that

only shared locks have been issued so far this value is zero. It then sends an

exclusive lock acquire message to the home node. It also sends the count of

the number of shared locks to this process. This count helps the home node

keep track of the shared locks issued so far and hence needs to wait for all these

unlock messages before forwarding the lock to the node requesting the exclusive

lock.

Step 4. The exclusive lock is acquired only when the home node process receives

the shared lock release messages from all the outstanding shared lock holders

in which case it grants the exclusive lock request.

The case of subsequent exclusive lock requests is the same as described in the

exclusive locking protocol section outlined above. Unlock procedures are similar to

the earlier cases.

4.2.4 Exclusive Locking followed by Shared Locking

The following are the sequence of operations when shared locks are issued after

exclusive locks. Figure 4.5(b) shows an example scenario.

• Locking Protocol:

39

Step 1. The issuing client process initiates a fetch-and-add atomic operation in

the same fashion described in the locking protocol for shared locks. However,

the value of exclusive region in the returned value may not match with the rank

of the home process. This is because the exclusive region contains the rank of

the last process waiting for exclusive lock in the queue.

Step 2. The shared lock requests are sent to the last process waiting for the

exclusive lock. This is obtained from the exclusive portion of the returned value

of Fetch-and-Add operation.

Step 3. The shared lock is granted only after the last process waiting for the

exclusive lock is finished with the lock.

The same procedure is followed for any shared lock issued after the exclusive locks.

4.3 Experimental Evaluation

In this section, we present an in-depth experimental evaluation of our Network-

based Combined Shared/Exclusive Distributed Lock Management (N-CoSED). We

compare our results with existing algorithms (i) Send/Receive-based Centralized

Server Locking (SRSL) and (ii) Distributed Queue-based Non-Shared Locking (DQNL)

[35].

All these designs are implemented over InfiniBand’s OpenFabrics-Gen2 interface

[43]. Message exchange was implemented over IBA’s Send/Receive primitives. The

one-sided RDMA operations were used (compare-and-swap and fetch-and-add) for all

the one-sided operations for DQNL and N-CoSED.

For our experiments we used the a 32-node Intel Xeon cluster. Each node of

our testbed has two 3.6 GHz Intel processor and 2 GB main memory. The CPUs

40

Primitive Polling (us) Notification (us)

Send/Recv 4.07 11.18
RDMA CS 5.78 12.97
RDMA FA 5.77 12.96

Table 4.1: Communication Primitives: Latency

support the EM64T technology and run in 64 bit mode. The nodes are equipped

with MT25208 HCAs with PCI Express interfaces. A Flextronics 144-port DDR

switch is used to connect all the nodes. OFED 1.1.1 software distribution was used.

4.3.1 Microbenchmarks

The basic latencies observed for each of the InfiniBand’s primitives used in our ex-

periments are shown in Table 4.1 . The latencies of each of these is measured in polling

and notification mode. The three primitives shown are send/recv, RDMA compare-

and-swap (RDMA CS) and RDMA fetch-and-add (RDMA FA). For the send/recv

operation we have used a message size of 128 bytes.

As clearly seen from the numbers, the polling approach leads to significantly better

latencies. However, the polling-based techniques consume many CPU cycles and

hence are not suitable in typical clustered data-center scenarios.

In addition to network based primitives, a DLM needs an intra-node messaging

primitive as explained in Section 4.1.1. In our experiments we use System V IPC

message queues. The choice is orthogonal to our current scope of research. We

observe a latency of 2.9 microseconds for communicating with IPC message queues

for a 64 byte message. The cost for initiating such a request is observed to be 1.1

microseconds. It is to be noted that while the network primitives operate in both

41

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

Excl - Lock Excl - Unlock Shrd - Lock Shrd - Unlock

L
a
te

n
c
y
 (

u
s
)

SRSL DQNL N-CoSED

0.00

5.00

10.00

15.00

20.00

25.00

30.00

Excl - Lock Excl - Unlock Shrd - Lock Shrd - Unlock

L
a
te

n
c
y
 (

u
s
)

SRSL DQNL N-CoSED

Figure 4.6: Basic Locking Operations’ Latency: (a) Polling (b) Notification

polling and notification mode, the intra-node messaging is used only in notification

mode. This is because multiple processes that require locking services usually exist

on a single node and the situation of having all of these processes polling practically

block the node from doing any useful computation and needs to be avoided.

0

5

10

15

20

25

30

SRSL-Poll DQNL-Poll N-CoSED

Poll

SRSL-

Notification

DQNL-

Notification

N-CoSED

Notification

L
a
te

n
c
y
 (

u
s
)

Lock-Request IPC Network Lock-Response -IPC Addl

Figure 4.7: Timing breakup of lock operations

All the locking mechanisms dealing with the distributed locking service daemon,

the total lock/unlock latency is divided into two parts: (i) the intra-node messaging

latency and (ii) the lock wait + network messaging. While various distributed locking

schemes differ significantly in the second component, the first component is usually

42

Scheme Lock Unlock

SRSL 2 ∗ TSend + 2 ∗ TIPC TIPC−Initiate

DQNL TRDMAAtomic + 2 ∗ TIPC TIPC−Initiate

N-CoSED TRDMAAtomic + 2 ∗ TIPC TIPC−Initiate

Table 4.2: Cost Models

common to all the different designs and hence can be eliminated for the sake of

comparing the performance across different designs.

4.3.2 Detailed Performance Evaluation

In this section, we compare the locking performance of the various lock/unlock

operations involved across the three schemes: SRSL, DQNL and N-CoSED.

Figure 4.6 shows the average latency of the basic locking operations as seen by the

applications. In this experiment, we have only one outstanding lock/unlock request

(serial locking) for a given resource at any given point of time. Both polling and

notification modes are shown.

As seen in Figure 4.6(a) for polling based latencies, basic locking latency for

SRSL is 16.0 microseconds and is identical for shared and exclusive mode locking.

This basically includes work related to two Send/Recv messages of IBA, two IPC

messages plus book keeping. The DQNL and N-CoSED schemes perform identically

for serial locking and show a lower latency of 14.02 microseconds. As shown in Figure

4.7 the main benefit here is from the fact that two network send/recv operations are

replaced by one RDMA atomic operation.

43

Figure 4.6(b) shows the same latencies in notification mode. The lock latencies for

DQNL and N-CoSED show an average latency of 19.6 microseconds whereas SRSL

shows a latency of 27.37 microseconds.

The more interesting aspect to note is that in case of polling based approach the

SRSL lock latency is 14% more than the RDMA based DQNL and N-CoSED, while

in the notification case the SRSL latency is 39.6% higher than the the RDMA based

designs. As shown in Figure 4.7 this higher increase of latency for SRSL is in the

network communication part which is due to the fact that it requires notifications

for each of the two send/recv messages needed for it. On the other hand the RDMA

based schemes incur only one notification. Hence the RDMA based schemes offer

better basic latencies for locking over two sided schemes.

The basic unlocking latency seen by any process is just about 1.1 microseconds.

This is because for unlock operations the applications just initiate the unlock oper-

ation by sending the command over messages queues. This actual unlock operation

latency is hidden from the process issuing the unlock operation. Table 4.2 shows the

cost models for each of the operations.

0

50

100

150

200

250

1 2 4 8 16

Number of waiting processes

L
a

te
n

c
y
 (

u
s
)

SRSL DQNL N-CoSED

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

1 2 4 8 16

Number of waiting processes

L
a

te
n

c
y
 (

u
s
)

SRSL DQNL N-CoSED

Figure 4.8: Lock Cascading Effect: (a) Shared Lock Cascade (b) Exclusive Lock
Cascade

44

4.3.3 Cascading Unlock/Lock delay

While the basic unlock latency seen by any unlocking process is minimal, the

actual cost of this operation is seen by processes next in line waiting for the lock to

be issued. This aspect is equally important since this directly impacts the delay seen

by all processes waiting for locks. The two extreme cases of locking scenarios are

considered: (i) All processes waiting for exclusive locks and (ii) all waiting processes

are waiting for shared locks. In this experiment, a number of processes wait in the

queue for a lock currently held in exclusive mode, once the lock is released it is

propagated and each of the processes in the queue unlock the resource as soon as

they are granted the lock. This test intends to measure the propagation delay of

these locks.

In Figure 4.8(a), the basic latency seen by DQNL increases at a significantly higher

rate as compared to SRSL and N-CoSED. This is due to the fact that DQNL is as

such incapable of supporting shared locks and grants these in a serialized manner

only, whereas the other two schemes release all the shared locks in one go. It is to be

noted that all the shared lock holders are immediately releasing the locks in this test.

This effect is heightened when the lock holding time of each of the shared lock holders

increases. As compared to N-CoSED, DQNL and SRSL incur 317% and 25% higher

latencies, respectively. The difference in SRSL and N-CoSED is the extra message

SRSL required from the last lock holder to the home-node server before the release

can be made.

The increase in the latency for the N-CoSED scheme for longer wait queues is

due to the contention at the local NIC for sending out multiple lock release messages

45

using Send/Recv messages. This problem can be addressed by the use of multicast

or other optimized collective communication operations [54].

Figure 4.8(b) captures this lock cascading effect by measuring the net exclusive

lock latency seen by a set of processes waiting in a queue. The latency for propagation

of exclusive locks is similar for both DQNL and N-CoSED, each of which incurs the

cost of one IB Send/Recv message per process in the queue. On the other hand, the

SRSL scheme incurs two Send/Recv messages per unlock/lock operation since all the

operations have to go the server before they can be forwarded. In all these cases,

N-CoSED performs the best.

4.3.4 Benchmark with Shared Locking Trace

In this section we detail our experiment in which we evaluate our shared locking

protocol with the world cup caching trace. In this benchmark several participating

nodes perform shared locking operations according to the caching trace. We mea-

sure the rate of locking with increasing number of participating nodes. Figure 4.9

shows that our mechanism for shared locking can sustain heavy loads simulated with

the world cup trace quite easily. The performance scales linearly with number of

participating nodes.

4.4 Summary

The massive increase in cluster based computing requirements has necessitated the

used of highly efficient DLMs. In this chapter, we have presented a novel distributed

locking protocol utilizing the advanced network level one-sided operations provided

by InfiniBand. Our approach arguments the existing approaches by eliminating the

need for two sided communication protocols in the critical path for locking operations.

46

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 10 20 30 40 50 60 70

M
ill

io
n
 L

o
c
k
s
/S

e
c

Number of Hosts

N-CoSED

Figure 4.9: Benchmark with Shared Locking Trace

Further, we have also demonstrated that our approach provides significantly higher

performance in scenarios needing both shared and exclusive mode access to resources.

Since our design distributes the lock management load largely on some of the nodes

using the lock, basic fairness is maintained.

Our experimental results have shown that we can achieve 39% better locking

latency as compared to basic send/recv based locking schemes. In addition, we have

also demonstrated that our design provides excellent shared locking support using

RDMA FA. This support is not provided by existing RDMA based approaches. In

this regard we have demonstrated the performance of our design which can perform

an order of magnitude better than the basic RDMA CS based locking proposed is

prior approaches [35].

47

CHAPTER 5

DYNAMIC CONTENT CACHES WITH STRONG CACHE
COHERENCY

In this chapter, we describe the architecture we use to support strong cache coher-

ence. We first provide the basic design of the architecture for any generic protocol.

Next, we point out several optimizations possible in the design using the various

features provided by InfiniBand. Figure 5.1 shows the overview of our approach.

Data−Center

Services

Caching
Content

Dynamic

Lock Manager

Distributed
Aggregator

Global Memory

Remote Atomics Network
Mechanisms

Interconnects
ModernInfiniBand 10 Gigabit Ethernet/iWARP

Existing Data−Center Applications (Apache, MySQL, PHP, etc.) Data−Center

Applications

Application Adaptation Layer

Cooperative
CachingCaching

Dependency
Multi−TierMulti−

Interconnect Capability Mapping Interface

ADTS

RDMA

Figure 5.1: Proposed Dynamic Content Caching with Strong Coherency

48

5.1 Background and Related Work

With ever increasing on-line businesses and services and the growing popularity of

personalized Internet services, dynamic content is becoming increasingly common [26,

84, 76]. This includes documents that change upon every access, documents that are

query results, documents that embody client-specific information, etc. Large-scale

dynamic workloads pose interesting challenges in building the next-generation data-

centers [84, 75, 39, 79]. Significant computation and communication may be required

to generate and deliver dynamic content. Performance and scalability issues need to

be addressed for such workloads.

Reducing computation and communication overhead is crucial to improving the

performance and scalability of data-centers. Caching dynamic content, typically

known as Active Caching [26] at various tiers of a multi-tier data-center is a well

known method to reduce the computation and communication overheads. However,

it has its own challenges: issues such as cache consistency and cache coherence become

more prominent. In the state-of-art data-center environment, these issues are handled

based on the type of data being cached. For dynamic data, for which relaxed consis-

tency or coherency is permissible, several methods like TTL [41], Adaptive TTL [30],

and Invalidation [51] have been proposed. However, for data like stock quotes or air-

line reservation, where old quotes or old airline availability values are not acceptable,

strong consistency and coherency is essential.

Providing strong consistency and coherency is a necessity for Active Caching in

many web applications, such as on-line banking and transaction processing. In the

current data-center environment, two popular approaches are used. The first approach

is pre-expiring all entities (forcing data to be re-fetched from the origin server on every

49

request). This scheme is similar to a no-cache scheme. The second approach, known

as Client-Polling, requires the front-end nodes to inquire from the back-end server if

its cache entry is valid on every cache hit. Both approaches are very costly, increasing

the client response time and the processing overhead at the back-end servers. The

costs are mainly associated with the high CPU overhead in the traditional network

protocols due to memory copy, context switches, and interrupts [75, 39, 15]. Further,

the involvement of both sides for communication (two-sided communication) results

in performance of these approaches heavily relying on the CPU load on both commu-

nication sides. For example, a busy back-end server can slow down the communication

required to maintain strong cache coherence significantly.

In this chapter, we focus on leveraging the advanced features provided by Modern

Interconnects to support strong coherency for caching dynamic content in a multi-

tier data-center environment. In particular, we study mechanisms to take advantage

of InfiniBand’s features to provide strong cache consistency and coherency with low

overhead and to provide scalable dynamic content caching. We detail our designs and

demonstrate the obtained benefits in the following sections.

5.2 Design of Dynamic Content Caching

As mentioned earlier, there are two popular approaches to ensure cache coher-

ence: Client-Polling and No-Caching. In this chapter, we focus on the Client-Polling

approach to demonstrate the potential benefits of InfiniBand in supporting strong

cache coherence.

While the HTTP specification allows a cache-coherent client-polling architecture

(by specifying a TTL value of NULL and using the ‘‘get-if-modified-since’’

50

HTTP request to perform the polling operation), it has several issues: (1) This scheme

is specific to sockets and cannot be used with other programming interfaces such as

InfiniBand’s native Verbs layers (e.g.: VAPI), (2) In cases where persistent connec-

tions are not possible (HTTP/1.0 based requests, secure transactions, etc), connec-

tion setup time between the nodes in the data-center environment tends to take up

a significant portion of the client response time, especially for small documents.

In the light of these issues, we present an alternative architecture to perform

Client-Polling. Figure 5.2 demonstrates the basic coherency architecture used in this

chapter. The main idea of this architecture is to introduce external helper modules

that work along with the various servers in the data-center environment to ensure

cache coherence. The external module used is described in Section 4.1.1. All issues

related to cache coherence are handled by these modules and are obscured from the

data-center servers. It is to be noted that the data-center servers require very minimal

changes to be compatible with these modules.

Coherency status

 Proxy

 Server

 App
 Server

 Data

Repository

A
p

p
M

o
d

u
le

D
ata R

ep
M

o
d

u
le

A
p

p
S

erv
er

S
erv

er

D
atab

ase

 Query

 Query

 Coherency Status

Coherency status

 reply

 reply

Actual Request

Response

Response

Coherency status

Actual Request

Client Request

Cache Hit

Response

P
ro

x
y

 S
erv

er

P
ro

x
y

 M
o

d
u

le

Figure 5.2: Strong Cache Coherence Protocol for Dynamic Content Caches

51

The design consists of a module on each physical node in the data-center envi-

ronment associated with the server running on the node, i.e., each proxy node has

a proxy module, each application server node has an associated application module,

etc. The proxy module assists the proxy server with validation of the cache on every

request. The application module, on the other hand, deals with a number of things

including: (a) Keeping track of all updates on the documents it owns, (b) Locking

appropriate files to allow a multiple-reader-single-writer based access priority to files,

(c) Updating the appropriate documents during update requests, (d) Providing the

proxy module with the appropriate version number of the requested file, etc. Fig-

ure 5.3 demonstrates the functionality of the different modules and their interactions.

Proxy Module

On every request, the proxy server contacts the proxy module through IPC to

validate the cached object(s) associated with the request. The proxy module does the

actual verification of the document with the application module on the appropriate

application server. If the cached value is valid, the proxy server is allowed to proceed

by replying to the client’s request from cache. If the cache is invalid, the proxy module

simply deletes the corresponding cache entry and allows the proxy server to proceed.

Since the document is now not in cache, the proxy server contacts the appropriate

application server for the document. This ensures that the cache remains coherent.

Application Module

The application module is slightly more complicated than the proxy module. It

uses multiple threads to allow both updates and read accesses on the documents in

a multiple-reader-single-writer based access pattern. This is handled by having a

52

separate thread for handling updates (referred to as the update thread here on). The

main thread blocks for IPC requests from both the application server and the update

thread. The application server requests to read a file while an update thread requests

to update a file. The main thread of the application module, maintains two queues to

ensure that the file is not accessed by a writer (update thread) while the application

server is reading it (to transmit it to the proxy server) and vice-versa.

On receiving a request from the proxy, the application server contacts the ap-

plication module through an IPC call requesting for access to the required docu-

ment (IPC READ REQUEST). If there are no ongoing updates to the document,

the application module sends back an IPC message giving it access to the document

(IPC READ PROCEED), and queues the request ID in its Read Queue (RQ) . Once

the application server is done with reading the document, it sends the application

module another IPC message informing it about the end of the access to the docu-

ment (IPC READ DONE). The application module, then deletes the corresponding

entry from its Read Queue.

When a document is to be updated (either due to an update server interaction or

an update query from the user), the update request is handled by the update thread.

On getting an update request, the update thread initiates an IPC message to the

application module (IPC UPDATE REQUEST). The application module on seeing

this, checks its Read Queue. If the Read Queue is empty, it immediately sends an IPC

message (IPC UPDATE PROCEED) to the update thread and queues the request ID

in its Update Queue (UQ). On the other hand, if the Read Queue is not empty, the up-

date request is still queued in the Update Queue, but the IPC UPDATE PROCEED

message is not sent back to the update thread (forcing it to hold the update), until

53

read
 Queue Queue

update

Proxy module

Proxy server
Application Module

Tier2

Application Server

Version Control thread

Update Thread

Update server

Tier3Tier 1

asynchronous update

IP
C

IPC READ REQ

IPC READ PROCEED

IP
C

 U
P

D
A

T
E

 R
E

Q
IP

C
 U

P
D

A
T

E
 P

R
O

C
E

E
D

IP
C

 U
P

D
A

T
E

 D
O

N
E

IPC READ DONE

Figure 5.3: Interaction between Data-Center Servers and Caching Coherency Modules

the Read Queue becomes empty. In either case, no further read requests from the ap-

plication server are allowed to proceed; instead the application module queues them

in its Update Queue, after the update request. Once the update thread has completed

the update, it sends an IPC UPDATE DONE message to the update module. At this

time, the application module deletes the update request entry from its Update Queue,

sends IPC READ PROCEED messages for every read request queued in the Update

Queue and queues these read requests in the Read Queue, to indicate that these are

the current readers of the document.

It is to be noted that if the Update Queue is not empty, the first request queued

will be an update request and all other requests in the queue will be read requests.

Further, if the Read Queue is empty, the update is currently in progress. Table 5.1

tries to summarize this information. The key for the table is as follows: IRR –

54

TYPE RQ State UQ State Rule
IRR E E 1. Send IPC READ PROCEED to proxy

2. Enqueue Read Request in RQ
IRR NE E 1. Send IPC READ PROCEED to proxy

2. Enqueue Read Request in RQ
IRR E NE 1. Enqueue Read Request in UQ
IRR NE NE Enqueue the Read Request in the UQ
IRD E NE Erroneous State. Not Possible.
IRD NE E 1. Dequeue one entry from RQ
IRD NE NE 1. Dequeue one entry from RQ

2. If RQ is now empty, Send
IPC UPDATE PROCEED to head of UQ

IUR E E 1. Enqueue Update Request in UQ
2. Send IPC UPDATE PROCEED

IUR E NE Erroneous state. Not Possible
IUR NE E 1. Enqueue Update Request in UQ
IUR NE NE Erroneous State. Not possible
IUD E E Erroneous State. Not possible
IUD E NE 1. Dequeue Update Request from UQ

2. For all Read Requests in UQ:
- Dequeue Read Requests from UQ
- Send IPC READ PROCEED
- Enqueue in RQ

IUD NE NE Erroneous State. Not Possible.

Table 5.1: IPC message rules for Dynamic Content Caching

55

IPC READ REQUEST, IRD – IPC READ DONE, IUR – IPC UPDATE DONE,

IUD – IPC UPDATE DONE, E – Empty and NE – Not Empty.

5.2.1 Strong Coherency Model over RDMA-enabled Inter-

connects

In this section, we point out several optimizations possible in the design described,

using the advanced features provided by InfiniBand. In Section 4.3 we provide the

performance achieved by the InfiniBand-optimized architecture.

As described earlier, on every request the proxy module needs to validate the

cache corresponding to the document requested. In traditional protocols such as

TCP/IP, this requires the proxy module to send a version request message to the

version thread1, followed by the version thread explicitly sending the version number

back to the proxy module. This involves the overhead of the TCP/IP protocol stack

for the communication in both directions. Several researchers have provided solutions

such as SDP to get rid of the overhead associated with the TCP/IP protocol stack

while maintaining the sockets API. However, the more important concern in this case

is the processing required at the version thread (e.g. searching for the index of the

requested file and returning the current version number).

Application servers typically tend to perform several computation intensive tasks

including executing CGI scripts, Java applets, etc. This results in a tremendously

high CPU requirement for the main application server itself. Allowing an additional

version thread to satisfy version requests from the proxy modules results in a high

CPU usage for the module itself. Additionally, the large amount of computation

1Version Thread is a separate thread spawned by the application module to handle version re-
quests from the proxy module

56

carried out on the node by the application server results in significant degradation

in performance for the version thread and other application modules running on

the node. This results in a delay in the version verification leading to an overall

degradation of the system performance.

In this scenario, it would be of great benefit to have a one-sided communication

operation where the proxy module can directly check the current version number

without interrupting the version thread. InfiniBand provides the RDMA read oper-

ation which allows the initiator node to directly read data from the remote node’s

memory. This feature of InfiniBand makes it an ideal choice for this scenario. In

our implementation, we rely on the RDMA read operation for the proxy module to

get information about the current version number of the required file. Figure 5.4

demonstrates the InfiniBand-Optimized coherency architecture.

5.2.2 Potential Benefits of RDMA-based Design

Using RDMA operations to design and implement client polling scheme in data-

center servers over InfiniBand has several potential benefits.

Improving response latency: RDMA operations over InfiniBand provide very low

latency of about 5.5µs and a high bandwidth up to 840Mbytes per second. Protocol

communication overhead to provide strong coherence is minimal. This can improve

response latency.

Increasing system throughput: RDMA operations have very low CPU overhead

in both sides. This leaves more CPU free for the data center nodes to perform

other processing, particularly on the back-end servers. This benefit becomes more

57

attractive when a large amount of dynamic content is generated and significant com-

putation is needed in the data-center nodes. Therefore, clients can benefit from active

caching with strong coherence guarantee at little cost. The system throughput can

be improved significantly in many cases.

Enhanced robustness to load: The load of data center servers with support of

dynamic web services is very bursty and unpredictable [76, 82]. Performance of pro-

tocols to maintain strong cache coherency over traditional network protocols can be

degraded significantly when the server load is high. This is because both sides should

get involved in communication and afford considerable CPU to perform communica-

tion operations. However, for protocols based on RDMA operations, the peer side

is transparent to and nearly out of the communication procedure. Little overhead is

paid on the peer server side. Thus, the performance of dynamic content caching with

strong coherence based on RDMA operations is mostly resilient and well-conditioned

to load.

Coherency status

 Proxy

 Server

 App
 Server

 Data

Repository

A
p
p

M
o
d
u
le

D
ata R

ep
M

o
d
u
le

A
p
p

S
erv

er

S
erv

er

D
atab

ase

 Coherency Status

Actual Request

Response

Response

Coherency status

Actual Request

Client Request

Cache Hit

Response

P
ro

x
y
 S

erv
er

P
ro

x
y
 M

o
d
u
le

RDMA Write

RDMA Write

RDMA Read

Figure 5.4: Strong Cache Coherency Protocol: InfiniBand based Optimizations

58

5.3 Experimental Evaluation

In this section, we first show the micro-benchmark level performance given by

VAPI, SDP and IPoIB. Next, we analyze the performance of a cache-coherent 2-tier

data-center environment. Cache coherence is achieved using the Client-Polling based

approach in the architecture described in Section 2.3.

All our experiments used a cluster system consisting of 8 nodes built around Super-

Micro SUPER P4DL6 motherboards and GC chipsets which include 64-bit 133 MHz

PCI-X interfaces. Each node has two Intel Xeon 2.4 GHz processors with a 512 kB L2

cache and a 400 MHz front side bus. The machines are connected with Mellanox In-

finiHost MT23108 DualPort 4x HCA adapter through an InfiniScale MT43132 Eight

4x Port InfiniBand Switch. The Mellanox InfiniHost HCA SDK version is thca-x86-

0.2.0-build-001. The adapter firmware version is fw-23108-rel-1 18 0000. We used the

Linux 2.4.7-10 kernel.

5.3.1 Microbenchmarks

In this section, we compare the ideal case performance achievable by IPoIB and

InfiniBand VAPI using a number of micro-benchmark tests.

Figure 5.5 a shows the one-way latency achieved by IPoIB, VAPI Send-Receive,

RDMA Write, RDMA Read and SDP for various message sizes. Send-Receive achieves

a latency of around 7.5µs for 4 byte messages compared to a 30µs achieved by IPoIB,

27µs achieved by SDP and 5.5µs and 10.5µs achieved by RDMA Write and RDMA

Read, respectively. Further, with increasing message sizes, the difference between the

latency achieved by native VAPI, SDP and IPoIB tends to increase.

59

Latency

0

20

40

60

80

100

120

140

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Message Size

L
a
te

n
c
y
 (

u
s
)

Send/Recv

RDMA Write

RDMA Read

IPoIB

SDP

Bandwidth

0

100

200

300

400

500

600

700

800

900

4 16 64 256 1024 4096 16384 65536

Message Size

B
a

n
d

w
id

th
 (

M
B

p
s

)

Send/Recv

RDMA Write

RDMA Read

IPoIB

SDP

Figure 5.5: Micro-Benchmarks: (a) Latency, (b) Bandwidth

Figure 5.5b shows the uni-directional bandwidth achieved by IPoIB, VAPI Send-

Receive and RDMA communication models and SDP. VAPI Send-Receive and both

RDMA models perform comparably with a peak throughput of up to 840Mbytes/s

compared to the 169Mbytes/s achieved by IPoIB and 500Mbytes/s achieved by SDP.

We see that VAPI is able to transfer data at a much higher rate as compared to

IPoIB and SDP. This improvement in both the latency and the bandwidth for VAPI

compared to the other protocols is mainly attributed to the zero-copy communication

in all VAPI communication models.

Datacenter: Response Time

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90 100 200

Number of Compute Threads

R
e
s
p
o
n
s
e
 t
im

e
 (

m
s
)

NoCache IPoIB VAPI SDP

DataCenter: Throughput

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60 70 80 90 100 200

Number of Compute Threads

T
ra

n
s
a

c
ti
o

n
s
 p

e
r

s
e

c
o

n
d

 (
T

P
S

)

No Cache IPoIB VAPI SDP

Figure 5.6: Data-Centers Performance Analysis for Dynamic Content Caching

60

5.3.2 Strong Cache Coherence

In this section, we analyze the performance of a cache-coherent 2-tier data-center

environment consisting of three proxy nodes and one application server running

Apache-1.3.12. Cache coherency was achieved using the Client-Polling based ap-

proach described in Section 2.3. We used three client nodes, each running three

threads, to fire requests to the proxy servers.

Three kinds of traces were used for the results. The first trace consists of a single

8Kbyte file. This trace shows the ideal case performance achievable with the highest

possibility of cache hits, except when the document is updated at the back-end. The

second trace consists of 20 files of sizes varying from 200bytes to 1Mbytes. The

access frequencies for these files follow a Zipf distribution [86]. The third trace is

a 20,000 request subset of the WorldCup trace [13]. For all experiments, accessed

documents were randomly updated by a separate update server with a delay of one

second between the updates.

The HTTP client was implemented as a multi-threaded parallel application with

each thread independently firing requests at the proxy servers. Each thread could

either be executed on the same physical node or on a different physical nodes. The

architecture and execution model is similar to the WebStone workload generator [59].

As mentioned earlier, application servers are typically compute intensive mainly

due to their support to several compute intensive applications such as CGI script

execution, Java applets, etc. This typically spawns several compute threads on the

application server node using up the CPU resources. To emulate this kind of behavior,

we run a number of compute threads on the application server in our experiments.

61

Figure 5.6a shows the client response time for the first trace (consisting of a

single 8Kbyte file). The x-axis shows the number of compute threads running on the

application server node. The figure shows an evaluation of the proposed architecture

implemented using IPoIB, SDP and VAPI and compares it with the response time

obtained in the absence of a caching mechanism. We can see that the proposed

architecture performs equally well for all three (IPoIB, SDP and VAPI) for a low

number of compute threads; All three achieve an improvement of a factor of 1.5 over

the no-cache case. This shows that two-sided communication is not a huge bottleneck

in the module as such when the application server is not heavily loaded.

Throughput: ZipF distribution

0

100

200

300

400

500

600

700

800

0 10 20 30 40 50 60 70 80 90 100 200

Number of Compute Threads

T
ra

n
s
a

c
ti
o

n
s
 p

e
r

S
e

c
o

n
d

 (
T

P
S

)

No Cache IPoIB VAPI SDP

ThroughPut: World Cup Trace

0

500

1000

1500

2000

2500

3000

0 10 20 30 40 50 60 70 80 90 100 200

Number of Compute Threads

T
ra

n
s
a
c
ti
o
n
s
 P

e
r

S
e
c
o
n
d
 (

T
P

S
)

NoCache IPoIB VAPI SDP

Figure 5.7: Data-Center Throughput: (a) Zipf Distribution, (b) WorldCup Trace

As the number of compute threads increases, we see a considerable degradation

in the performance in the no-cache case as well as the Socket-based implementations

using IPoIB and SDP. The degradation in the no-cache case is quite expected, since

all the requests for documents are forwarded to the back-end. Having a high compute

load on the back-end would slow down the application server’s replies to the proxy

requests.

62

The degradation in the performance for the Client-Polling architecture with IPoIB

and SDP is attributed to the two sided communication of these protocols and the

context switches taking place due to the large number of threads. This results in a

significant amount of time being spent by the application modules just to get access

to the system CPU. It is to be noted that the version thread needs to get access to

the system CPU on every request in order to reply back to the proxy module’s version

number requests.

On the other hand, the Client-Polling architecture with VAPI does not show any

significant drop in performance. This is attributed to the one-sided RDMA operations

supported by InfiniBand. For example, the version number retrieval from the version

thread is done by the proxy module using a RDMA Read. That is, the version thread

does not have to get access to the system CPU; the proxy thread can retrieve the

version number information for the requested document without any involvement of

the version thread. These observations are re-verified by the response time breakup

provided in Figure 5.8.

Figure 5.6b shows the throughput achieved by the data-center for the proposed

architecture with IPoIB, SDP, VAPI and the no-cache cases. Again, we observe

that the architecture performs equally well for both Socket based implementations

(IPoIB and SDP) as well as VAPI for a low number of compute threads with an

improvement of a factor of 1.67 compared to the no-cache case. As the number of

threads increases, we see a significant drop in the performance for both IPoIB and SDP

based client-polling implementations as well as the no-cache case, unlike the VAPI-

based client-polling model, which remains almost unchanged. This is attributed to

the same reason as that in the response time test, i.e., no-cache and Socket based

63

client-polling mechanisms (IPoIB and SDP) rely on a remote process to assist them.

The throughput achieved by the WorldCup trace (Figure 5.7b) and the trace with

Zipf distribution (Figure 5.7a) also follow the same pattern as above. With a large

number of compute threads already competing for the CPU, the wait time for this

remote process to acquire the CPU can be quite high, resulting in this degradation

of performance. To demonstrate this, we look at the component wise break-up of the

response time.

Response Time Splitup - 0 Compute Threads

0

1

2

3

4

5

6

7

8

Client
Communication

Proxy
Processing

Module
Processing

Backend version
check

T
im

e
 (

m
s
)

IPoIB

SDP

VAPI

Response Time Splitup - 200 Compute Threads

0

1

2

3

4

5

6

7

8

Client
Communication

Proxy
Processing

Module
Processing

Backend version
check

T
im

e
 (

m
s
)

IPoIB

SDP

VAPI

Figure 5.8: Data-Center Response Time Breakup: (a) 0 Compute Threads, (b) 200
Compute Threads

Figure 5.8a shows the component wise break-up of the response time observed by

the client for each stage in the request and the response paths, using our proposed

architecture on IPoIB, SDP and VAPI, when the backend has no compute threads

and is thus not loaded. In the response time breakup, the legends Module Processing,

and Backend Version Check are specific to our architecture. We can see that these

components together add up to less than 10% of the total time. This shows that the

computation and communication costs of the module as such do not add too much

overhead on the client’s response time.

64

Figure 5.8b on the other hand, shows the component wise break-up of the re-

sponse time with a heavily loaded backend server (with 200 compute threads). In

this case, the module overhead increases significantly for IPoIB and SDP, comprising

almost 70% of the response time seen by the client, while the VAPI module overhead

remains unchanged by the increase in load. This indifference is attributed to the

one-sided communication used by VAPI (RDMA Read) to perform a version check

at the backend. This shows that for two-sided protocols such as IPoIB and SDP, the

main overhead is the context switch time associated with the multiple applications

running on the application server which skews this time (by adding significant wait

times to the modules for acquiring the CPU).

5.4 Summary

Caching content at various tiers of a multi-tier data-center is a well known method

to reduce the computation and communication overhead. In the current web, many

cache policies and uncachable resources are driven by two server application goals:

Cache Coherence and Cache Consistency. The problem of how to provide consis-

tent caching for dynamic content has been well studied and researchers have pro-

posed several weak as well as strong consistency algorithms. However, the problem of

maintaining cache coherence has not been studied as much. Further, providing such

capabilities in a standardized manner needs consideration.

In this chapter, we proposed an architecture for achieving strong cache coher-

ence based on the previously proposed client-polling mechanism for multi-tier data-

centers. The architecture as such could be used with any protocol layer; we also

proposed optimizations to better implement it over InfiniBand by taking advantage

65

of one sided operations such as RDMA. We evaluated this architecture using three

protocol platforms: (i) TCP/IP over InfiniBand (IPoIB), (ii) Sockets Direct Protocol

over InfiniBand (SDP) and (iii) the native InfiniBand Verbs layer (VAPI) and com-

pared it with the performance of the no-caching based coherence mechanism. Our

experimental results show that the InfiniBand-optimized architecture can achieve an

improvement of upto a factor of two for the response time and nearly an order of

magnitude for the throughput achieved by the TCP/IP based architecture, the SDP

based architecture and the no-cache based coherence scheme. The results also demon-

strate that the implementation based on RDMA communication mechanism can offer

better performance robustness to the load of the data-center servers.

66

CHAPTER 6

DYNAMIC CONTENT CACHING FOR COMPLEX
OBJECTS

In this chapter, we describe all aspects of our design to handle complex dynamic

objects. We detail each of the requirements along with the corresponding design

solution. We broadly divide this section into three parts: (i) Section 6.2: The basic

protocol for the cache coherency, (ii) Section 6.2.2: Application server interaction

and (iii) Section 6.2.3: The study of the effect of multiple dependencies on cached

documents.

6.1 Background and Related Work

Online services such as personalized services, e-commerce based services, etc. have

recently increased several folds in volume. Scenarios like online banking, auctions,

etc. are constantly adding to the complexity of content being served on the Internet.

The responses generated for these can change depending on the request and are

typically known as dynamic or active content. Multi-tier data-centers process these

complex requests by breaking-up the request processing into several stages with each

data-center tier handling a different stage of request processing. With the current

67

Data−Center

Services

Lock Manager

Distributed
Aggregator

Global Memory

Remote Atomics Network
Mechanisms

Interconnects
ModernInfiniBand 10 Gigabit Ethernet/iWARP

Caching

Dependency
Multi−

Caching
Content

Dynamic

Existing Data−Center Applications (Apache, MySQL, PHP, etc.) Data−Center

Applications

Application Adaptation Layer

Cooperative
Caching

Multi−Tier

Interconnect Capability Mapping Interface

ADTS

RDMA

Figure 6.1: Proposed Dynamic Content Caching with Complex Objects

processing needs and growth trends in mind, the scalability of data-centers has become

an important issue.

Traditionally, caching has been an important technique to improve scalability and

performance of data-centers. However, simple caching methods are clearly not ap-

plicable for dynamic content caching. Documents of dynamic nature are typically

generated by processing one or more data objects stored in the back-end database,

i.e., these documents are dependent on several persistent data objects. These per-

sistent data objects can also be a part of multiple dynamic documents. So in effect

these documents and data objects have several many to many mappings between

them. Thus, any change to one individual object can potentially affect the validity

of multiple cached requests.

In the previous chapter, we have presented a simple architecture that supports

strong cache coherency for proxy caches. However, the previous scenario is optimized

68

for file level granularity for coherency, i.e., each update affects a single object which

corresponding to each cached request. However, most data-centers allow and support

more complex web documents comprising of multiple dynamic objects. These addi-

tional issues necessitate more intricate protocols to enable dynamic content caching

and make the design of strongly coherent caches extremely challenging. Further, since

an updated object can potentially be a part of multiple documents across several

servers, superior server coordination protocols take a central role in these designs.

Several researchers have focused on the aspect of dynamic content caching. Pop-

ular approaches like TTL [41], Adaptive TTL [30], MONARCH [58], etc. deal with

lazy consistency and coherency caches. These cannot handle strong cache coherency.

Approaches like [18, 19] deal with strong cache consistency. Other approaches like get-

if-modified-since specified in [41] can handle coherent changes to the original source

file, but are not designed to handle highly dynamic data. These essentially will cause

the file to be re-created for each request negating the benefits of caching. Solutions

proposed in [24] handle the strong cache coherency but use two-sided communication

and are less resilient to load.

In this chapter, we present an extended architecture to support strong cache co-

herency service for dynamic content caches. Our architecture is designed to handle

caching of responses composed of multiple dynamic dependencies. We propose a

complete architecture to handle two issues: (i) caching documents with multiple de-

pendencies and (ii) being resilient to load on servers. We also study the effect of

varying dependencies on these cached responses. The following sections detail our

proposed designs.

69

Cachable Requests: Data-center serving dynamic data, usually have HTTP

requests that may be reads (select based queries to the database) or writes (update

or insert based queries to the database). While read based queries are cachable,

writes cannot be cached at the proxies. Since, caching the popular documents gives

the maximum benefits, its a popular practice to cache these. Most simple caching

schemes work on this principle. Similarly, in our design, a certain number of top most

frequent requests are marked down for caching. Naturally, caching more requests leads

to better performance but requires higher system resources. The actual number of

requests that are cached are chosen based on the availability of resources. Based on

these constraints, for each request the proxy server decides if the request is cachable.

And if it is cachable, the proxy decides if caching that particular request is beneficial

enough. Significant amount of research has been done on cache replacement policies

[36, 48, 73]. Our work is complimentary to these and can leverage those benefits

easily.

6.2 Caching Documents with Multiple Dependencies

In our approach we divide the entire operation into two parts based on the tier

functionalities. Proxy servers that maintain the cache need to validate the cache

entity for each request. The application servers need to maintain the current version

of the cached entity for the proxies to perform validations. We use the external

module-based design described in Section 4.1.1 for providing these services.

RDMA based Strong Cache Coherence:

70

Caches in our design are located on the proxy server nodes. On each request,

the primary issues for a proxy are as follows: (i) Is this request cachable? (ii) Is the

response currently cached? and (iii) Is this cached response valid?

These services are provided to the proxy server by our module running on the

proxy node. The apache proxy server is installed with a small handler that contacts

the local module with an IPC-Verify message and waits on the IPC queue for a

response. The module responds with a use cache or do not use cache depending on

the choices. If the request is not cachable or if the cache is not present or invalid,

the module responds with do not use cache. And if the request is cachable, cache is

present and valid, the module responds with use cache.

The module verifies the validity of the cached entry by contacting the home node

application server module which keeps track of the current version for this particular

cache file. InfiniBand’s one sided operation (RDMA Read) is used to obtain the

current version from the shared version table on the home node application server

thereby avoiding interrupts at that application server. Figure 6.2 shows the basic

protocol. The information on cachability and presence of cache are available locally

on each proxy.

Each proxy maintains a version number for each of the cached entries. The same

cache files also have a current version number maintained on the home node applica-

tion server modules. When necessary, the application server modules increment their

cache version numbers. For each proxy verify message, if the application server cache

file version number and the proxy’s local cache file version number match, then it

implies that the cache file is current and can be used to serve the request. This basic

protocol was proposed in our previous work [62].

71

Client
Request

Cache
Hit

Client
Response

RDMA Read

Version Check

Response

Actual Request

Application Server

Module
Proxy Module

Figure 6.2: RDMA based Strong Cache Coherence

6.2.1 Multi-Dependency Maintenance

All cache misses from the proxies are serviced by application servers. Since all

accesses to the database need to be routed through an application server and since an

application server (unlike a proxy) has the capability to analyze and process database

level queries, we handle all coherency issues at this tier.

An application server module needs to cater to two cases: (i) version reads from

the proxy server and (ii) version updates from local and other application servers.

The main work of the application server module lies in updating the shared version

table readable by the proxy server modules based on the updates that occur to the

data in the system.

As mentioned, a single cached request contains multiple dynamic objects which

can get updated. For any version updates to take place, it is necessary to know the

following: (i) Which updates affect which dynamic objects? and (ii) Which dynamic

72

objects affect which cache files? Since, typically dynamic objects are generated as

results of queries to a database, knowledge of the database records that a query

depends on is sufficient to answer the above.

There are three cases that arise in this context: (i) The application server under-

stands the database schema, constraints, each query and its response thereby knowing

all the dependencies of a given request, (ii) Each query response contains enough in-

formation (e.g. list of all database keys) to find out the dependencies or (iii) The

application server is incapable of gauging any dependencies (possibly for cases with

very complex database constraints). The first two cases can be handled in the same

manner by the application server module since the dependencies for all requests can

be obtained. The third case needs a different method. We present the following

two sample schemes to handle these cases. It is to be noted that these schemes are

merely simple schemes to show proof of concept. These can be further optimized or

be replaced by complex schemes to handle these cases.

Scheme - Invalidate All: For cases where the application servers are incapable

of getting any dependency information, the application servers modules can invalidate

the entire cache for any update to the system. This makes sure that no update is

hidden from the clients. But this also leads to a significant number of false invalida-

tions. However, the worst performance by this scheme is lower bounded by the base

case with no caching.

Scheme - Dependency List: In cases where all the dependencies of the required

queries are known, the application server module maintains a list of dependencies for

each cached request (for which it is a home node) along with the version table. In case

the application server module is notified of any update to the system, it checks these

73

lists for any dependencies matching the update. All cache files that have at least one

updated dependency are then invalidated by incrementing the version number on the

shared version table. This scheme is very efficient in terms of the number of false

invalidations but involves slightly higher overhead as compared to the Invalidate All

scheme.

6.2.2 Protocol for Coherent Invalidations

In addition to the issues seen above, requests comprising multiple dynamic objects

in them involve additional issues. For example, two different cache files with different

home nodes might have a common dependency. So, any update to this dependency

needs to be sent to both these home nodes. Similarly, the application server modules

need to communicate all updates with all other application server modules. And the

update can be forwarded to the database for execution only after all the application

server modules invalidate all the dependent cache files.

Figure 6.3 shows the interaction between the application servers and the database

for each update. As shown, the application server on getting an update, broadcasts

the same to all the other application server modules. These modules then perform

their local invalidations depending on the scheme chosen (Invalidate All or Depen-

dency List search). After the invalidations, the modules send an acknowledgment to

the original server, which forwards the request to the database and continues with

the rest as normal.

In our design, we use VAPI-SEND/VAPI-RECEIVE for the initial broadcasts.

The acknowledgments are accumulated by the original process using VAPI-ATOMIC-

FETCH-AND-ADD : poll : yield cycle. For each application server module, an

74

Application
Server

Application
Server

Application
Server

Database
 Server

HTTP
Request

DB Query (TCP)

Notification

Update

HTTP
Response

DB Response

Ack (Atomic)

(Vapi Send)

 Search and
Coherant
invalidate

Local

Figure 6.3: Protocol for Coherent Invalidations

acknowledgment collection variable is defined and set to zero for each update. All

the other application server modules perform a VAPI-ATOMIC-FETCH-AND-ADD

incrementing the value of this variable by one. The original server module checks

this ack collection variable to see if all the remaining modules have performed this

operation. If the value of the ack collection variable is less than the number of other

servers, then the original application server module process yields the CPU to other

processes in the system using the system call sched yield(). This kind of polling cycle

makes sure that the module process does not waste any CPU resources that other

processes on that node could have used.

75

6.2.3 Impact of Multiple Dependencies on Caching

We have seen that there is significant complexity in managing multiple depen-

dencies per cache file on strong coherency caching. In addition, having multiple

dependencies also affect the overall cache. Typically, caching is expected to yield

maximum benefits when the number of updates is low and the benefits of caching are

linked with the number of updates in all calculations.

Figure 6.4: Micro-Benchmarks for RDMA Read and IPoIB: (a) Latency and (b)
Bandwidth

However, the actual value that affects caching is the number of invalidations that

occur to the cached entries. The main difference between the number of invalidations

and the number of updates to an object is the magnification factor for updates. This

magnification factor represents the average number of dependencies per cached entry.

Hence, the cache effectiveness is dependent on the product of system update rate and

average dependency magnification factor.

In our design each application server module maintains its own set of cache file

versions and the corresponding dependency lists. So, for each update, the number of

messages between the application servers is not affected by this magnification factor.

Each application server module is just notified once for each update, and all the

76

invalidations on that node are taken care of locally by the corresponding module.

However, the overall cache hit ratio remains directly affected by this factor.

6.3 Experimental Evaluation

In this section, we describe our experimental testbed and a set of relevant micro-

benchmark results followed by overall data-center results.

Experimental Testbed: For all our experiments we used two clusters whose

descriptions are as follows:

Cluster 1: A cluster system consisting of 8 nodes built around SuperMicro

SUPER P4DL6 motherboards and GC chipsets which include 64-bit 133 MHz PCI-X

interfaces. Each node has two Intel Xeon 2.4 GHz processors with a 512 kB L2 cache

and a 400 MHz front side bus and 512 MB of main memory. We used the RedHat 9.0

Linux distribution.

Cluster 2: A cluster system consisting of 8 nodes built around SuperMicro

SUPER X5DL8-GG motherboards with ServerWorks GC LE chipsets which include

64-bit 133 MHz PCI-X interfaces. Each node has two Intel Xeon 3.0 GHz processors

with a 512 kB L2 cache and a 533 MHz front side bus and 512 MB of main memory.

We used the RedHat 9.0 Linux distribution.

The following interconnect was used to connect all the nodes in Clusters 1 and 2.

Interconnect: InfiniBand network with Mellanox InfiniHost MT23108 DualPort

4x HCA adapter through an InfiniScale MT43132 twenty-four 4x Port completely

non-blocking InfiniBand Switch. The Mellanox InfiniHost HCA SDK version is thca-

x86-3.2-rc17. The adapter firmware version is fw-23108-rel-3 00 0002. The IPoIB

77

driver for the InfiniBand adapters was provided by Mellanox Incorporation as a part

of the Golden CD release 0.5.0.

Cluster 1 was used for all the client programs and Cluster 2 was used for the

data-center servers. In our experiments, we used apache servers 2.0.48 as proxy

servers, apache 2.0.48 with PHP 4.3.7 as application servers and MySQL 4.1 [5] as

the database. Our system was configured with five proxy servers, two application

servers and one database server.

6.3.1 Microbenchmarks

We show the basic micro-benchmarks that characterize our experimental testbed.

We present the latency, bandwidth and CPU utilizations for the communication prim-

itives used in our design. Figure 6.4 shows the performance achieved by VAPI RDMA

read and TCP/IP over InfiniBand (IPoIB).

The latency achieved by the VAPI RDMA Read communication model and IPoIB

(round-trip latency) for various message sizes is shown in Figure 6.4a. RDMA Read,

using the polling based approach, achieves a latency of 11.89µs for 1 byte messages

compared to the 53.8µs achieved by IPoIB. The event based approach, however,

achieves a latency of 23.97µs. Further, with increasing message sizes, the difference

between the latency achieved by VAPI and IPoIB tends to increase significantly. The

figure also shows the CPU utilized by RDMA Read (notification based) and IPoIB.

The receiver side CPU utilization for RDMA as observed is negligible and close to

zero, i.e., with RDMA, the initiator can read or write data from the remote node

without requiring any interaction with the remote host CPU. In our experiments,

78

we benefit more from the one sided nature of RDMA and not just due to the raw

performance improvement of RDMA over IPoIB.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 2 4 8 16 32 64

L
a
te

n
c
y
 (

u
s
e
c
)

Number of background threads

64byte RDMA read
64byte IPoIB

0

200

400

600

800

1000

1 2 4 8 16 32 64

B
a
n
d
w

id
th

 (
M

b
y
te

/s
e
c
)

Number of background threads

32K RDMA
32K IPoIB

Figure 6.5: Performance of IPoIB and RDMA Read with background threads: (a)
Latency and (b) Bandwidth

Figure 6.4b shows the uni-directional bandwidth achieved by RDMA Read and

IPoIB. RDMA Read is able to achieve a peak bandwidth of 839.1 MBps as compared

to a 231 MBps achieved by IPoIB. Again, the CPU utilization for RDMA is negligible

on the receiver side.

In Figure 6.5, we present performance results showing the impact of the loaded

conditions in the data-center environment on the performance of RDMA Read and

IPoIB on Cluster 2. We emulate the loaded conditions in the data-center environment

by performing background computation and communication operations on the server

while the read/write test is performed by the proxy server to the loaded server.

This environment emulates a typical cluster-based multiple data-center environment

where multiple server nodes communicate periodically and exchange messages, while

the proxy, which is not as heavily loaded, attempts to get the version information

from the heavily loaded machines. Figure 6.5 shows that the performance of IPoIB

79

degrades significantly with the increase in the background load. On the other hand,

one-sided communication operations such as RDMA show absolutely no degradation

in the performance. These results show the capability of one-sided communication

primitives in the data-center environment.

0
2000
4000
6000
8000

10000
12000
14000
16000

Trace 2 Trace 3 Trace 4 Trace 5

Traces with Increasing Update Rate

T
P

S

No Cache Invalidate All Dependency Lists

0

1

2

3

4

5

6

Trace 2 Trace 3 Trace 4 Trace 5

Traces with Increasing Update Rate

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

No Cache Invalidate All Dependency Lists

Figure 6.6: Performance of Data-Center with Increasing Update Rate: (a) Through-
put and (b) Response Time

6.3.2 Coherent Active Caching

In this section, we present the basic performance benefits achieved by the strong

coherency dynamic content caching as compared to a traditional data-center which

does not have any such support. To measure and make these comparisons, we use the

following traces: (i) Trace 1: Trace with 100% reads, (ii) Trace 2 - Trace 5: Traces

with update rates increasing in the order of milliseconds to seconds. (iii) Trace 6:

Zipf like trace [20, 86] with medium update rate.

6.3.3 Overall Performance and Analysis

In this section, we present results for overall data-center performance with dy-

namic content caching. We also analyze these results based on the actual number of

80

Cache Misses

0

20

40

60

80

100

120

Trace 2 Trace 3 Trace 4 Trace 5

Traces with Increasing Update Rate

C
a

c
h

e
 M

is
s
 %

No Cache Invalidate All Dependency Lists

Figure 6.7: Cache Misses With Increasing Update Rate

0

5000

10000

15000

20000

25000

100% 50% 10% 5% 1% 0.10% 0%
Relative Cache Size

T
P

S

Figure 6.8: Effect of Cache Size for Trace 6

cache misses and cache hits. All results presented in this section are taken in steady

state (i.e. eliminating the effects of cold cache misses, if any). We non-cached data-

center throughput of about 1,700 TPS for Trace 1 and 15,000 TPS for a fully cached

data-center. These values roughly represent the minimum and maximum throughput

achievable for our setup.

Figure 6.6a compares the throughput achieved by dynamic content caching schemes

and the base case with no caching. We observe that the caching schemes always per-

form better than the no cache schemes. The best case observed is about 8.8 times

better than the no cache case.

81

Figure 6.6a also shows the two schemes (Invalidate All and Dependency Lists)

for the traces 2 - 5. We observe that Invalidate All scheme drops in performance

as the update rate increases. This is due to the false invalidations that occur in the

Invalidate All scheme. On the other hand, we observe that Dependency Lists scheme

is capable of sustaining performance even for higher update rates. The latter sustains

a performance of about 14,000 TPS for our setup. Figure 6.6b shows the response

time results for the above three cases. We observe similar trends in these results as

above. No Cache case has a response time of about 4 milliseconds where as the best

response time for dynamic content caching schemes is about 1.2 milliseconds.

Figure 6.7 shows the cache misses that occur in each of the runs in the throughput

test. The No Cache scheme obviously has 100% cache misses and represents the worst

case scenario. We clearly observe that the cache misses for Invalidate All scheme

increase drastically with increasing update rate, leading to the drop in performance.

Data-center scenarios in which application servers cannot extract dependencies from

the requests can take advantage of our dynamic content caching architecture for lower

update rates. For higher update rates, Invalidate All performs slightly better than

or almost equal to the performance of No Cache case. The difference in the number

of cache misses between Invalidate All and Dependency Lists is the number of false

invalidations occurring in the system for the Invalidate All scheme.

Selective Caching

As mentioned earlier, in real scenarios only a few popular files are cached. In

Figure 6.8, we present the results of an experiment showing the overall data-center

performance for varying cache sizes. We used Trace 6 for this experiment. We observe

that even for very small cache sizes the performance is significantly higher than the

82

No Cache case. The throughput achieved by caching 10% of the files is close to the

maximum achievable. Hence, data-centers with any amount of resources can benefit

from our schemes.

0

2000

4000

6000

8000

10000

12000

14000

16000

1 2 4 8 16 32 64

Factor of Dependencies

T
P

S

Figure 6.9: Effect of Varying Dependencies on Overall Performance

Effect of Varying Dependencies on Overall Performance

Figure 6.9 shows the effect of increasing the number of dependencies on the overall

performance. The throughput drops significantly with the increase in the average

number of dependencies per cache file. This is because the number of coherent cache

invalidations per update request increase with the average number of dependencies

tending toward Invalidate All in the worst case. We see that as the ratio of object

updates to file invalidations representing the dependency factor increases to 64 in

Figure 6.9 the throughput achieved drops by about a factor of 3.5.

83

6.3.4 Effect on Load

In this section, we study the effect of increased back-end server load on the data-

center aggregate performance. In this experiment, we emulate artificial load as de-

scribed in Section 6.3.1. We use Trace 5 (trace with higher update rate) to show the

results for the Dependency Lists scheme. Figure 6.10 shows the results.

We observe that our design can sustain high performance even under heavy back-

end load. Further, the factor of benefit for the Dependency Lists scheme to the No

Cache scheme increases from about 8.5 times to 21.9 times with load. This clearly

shows that our approach is much more resilient to back-end load than the No Cache

scheme. In addition, since loaded back-end servers can support the proxy caching with

negligible overhead, our approach can scale to bigger data-centers with significantly

higher number of caching servers. The results in [62] show that these benefits are

largely due to the one-sided communication in the basic client polling protocols.

Effect of Load

0

2000

4000

6000

8000

10000

12000

14000

16000

0 1 2 4 8 16 32 64
Compute Threads

T
P

S

No Cache Dependency List

Figure 6.10: Effect of Load

84

6.4 Summary

In this chapter, we have presented an extended load resilient architecture that sup-

ports caching of dynamic requests with multiple dynamic dependencies in multi-tier

data-centers. Our architecture is designed to support existing data-center applica-

tions with minimal modifications. We have used one sided operations like RDMA and

Remote Atomics in our design to enable load resilient caching. We have performed

our experiments using native InfiniBand Verbs Layer (VAPI) for all protocol commu-

nications. Further, we have presented two schemes Invalidate All and Dependency

Lists to suite the needs and capabilities of different data-centers. Our experimental

results show that in all cases the usage of our schemes yield better performance as

compared to No Cache case. Under loaded conditions, our architecture can sustain

high performance better than the No Cache case, and in some cases being more than

an order of magnitude better. The results also demonstrate that our design can scale

well with increasing number of nodes and increasing system load.

85

CHAPTER 7

EFFICIENT MULTI-TIER COOPERATIVE CACHING

In this work, we present four schemes for efficient cooperative caching to optimize

the utilization of the system resources. At each stage we also justify our design

choices. This section is broadly categorized into four main parts: (i) RDMA based

design and implementation of basic cooperative caching (Section 7.2.1) , (ii) Design

of a non-redundancy scheme (Section 7.2.2), (iii) Multi-tier extensions for cooperative

caches (Section 7.2.3) and (iv) A combined hybrid approach for cooperative caches

(Section 7.2.4).

7.1 Background and Related Work

As mentioned earlier, caching of processed content in a data-center has been a

long standing technique to help web systems to scale and deliver high performance.

Researchers [9] have looked at various aspects of basic web caching. It has been well

acknowledged in the research community that single larger cache performs signifi-

cantly better than multiple smaller caches. Even though the total cache size remains

the same in both cases, having multiple independent caches leads to very high lo-

calization of caching decisions and individual servers do not take advantage of the

86

neighboring caches. Due to this disadvantage and the fact that current clusters sup-

port efficient data transfers, [70, 74, 83, 65], for example, have proposed cooperation

among caches within the data-center. Several nodes in a data-center participate in

this cooperative caching process and try to present a logical illusion of having a sin-

gle cache. While such cooperative caching schemes show better performance than

the basic case of nodes caching independently, several trade-offs exist and a through

study of needs to be done and caching schemes need to be modified appropriately to

reflect these.

Currently many approaches do not cautiously eliminate the possibility of dupli-

cating cached entries redundantly on more than a single node. Some approaches

can handle this in a limited manner with no direct control over the cache content

[67, 27]. In particular, such approaches [16] are explored in the context of storage

systems. While this leads to better performance for the duplicated cache content, it

is often at the cost of not caching other content that could have occupied this cache

space. On the other hand, lack of redundant duplicates in the system necessitates the

transfer of the cached entries from remote nodes on each request. In addition, cache

replacement for each local cache is also considerably complicated due to the additional

checks, logic and data transfers needed. A good balance between these trade offs is

critical to achieve good performance. Consequently, designing these more complex

protocols to deliver high performance in the light of these constraints, is a central

challenge. Researchers [29] have evaluated and confirmed these needs empirically. In

this chapter, we present schemes to eliminate these redundant copies to achieve high

performance through effective cache to cache cooperations.

87

7.2 Efficient Cooperative Caching

In this section we describe the various design details of our cooperative caching

schemes.

The traditional data-center applications service requests in two ways: (i) by using

different server threads for different concurrent requests or (ii) by using single asyn-

chronous server to process to service requests. Catering to both these approaches used

by applications, our design uses the asynchronous external helper module described

in Section 4.1.1 to provide cooperative caching support.

Data−Center

Services

Lock Manager

Distributed
Aggregator

Global Memory

Remote Atomics Network
Mechanisms

Interconnects
ModernInfiniBand 10 Gigabit Ethernet/iWARP

Caching
Content

Dynamic

Cooperative
Caching

Multi−Tier

Caching

Dependency
Multi−

Existing Data−Center Applications (Apache, MySQL, PHP, etc.) Data−Center

Applications

Application Adaptation Layer

Interconnect Capability Mapping Interface

ADTS

RDMA

Figure 7.1: Proposed Multi-Tier Cooperative Caching

The cache’s meta-data information is maintained consistently across all the servers

by using a home node based approach. The cache entry key space (called key-table) is

partitioned and distributed equally among the participating nodes and hence all the

nodes handle a similar amount of meta-data key entries. This approach is popularly

88

known as the home node based approach. It is to be noted that in our approach

we handle only the meta-data on the home node and since the actual data itself can

reside on any node, our approach is much more scalable than the traditional home

node based approaches where the data and the meta-data reside on the home node.

All modifications to the file, such as invalidations, location transfers, etc., are

performed on the home node for the respective file. This cache meta-data information

is periodically broadcasted to other interested nodes. Additionally, this information

can also be requested by other interested nodes on demand. The information exchange

uses RDMA Read operations for gathering information and send-receive operations

for broadcasting information. This is done to avoid complex locking procedures in the

system. Please note that the actual remote data placement and remote data transfer

is handled separately from the control protocol and the meta-data management and

we intend to allow usage of these Global Memory Aggregation services directly to

other applications in future.

Basic Caching Primitives: The basic caching operations can be performed

using a small set of primitives. The internal working caching primitives needs to

be designed efficiently for scalability and high performance. Our various schemes

implement these primitives in different ways and are detailed in the following sub-

sections. The basic caching primitives needed are:

• Cache Fetch: To fetch an entity already present in cache

• Cache Store: To store an entity in cache

• Cache Validate: To verify the validity of a cached entity

• Cache Invalidate: To invalidate a cached entity

89

Buffer Management: The cooperative cache module running on each node

reserves a chunk of memory. This memory is then allocated to the cache entities

as needed. Since this memory needs to be pooled into the global cooperative cache

space, this memory is registered (i.e. locked in physical memory) with the InfiniBand

HCA to enable efficient memory transfers by RDMA. Several researchers [25, 23,

85] have looked at the different aspects of optimizing this limited buffer usage and

have suggested different cache replacement algorithms for web caches. Our methods

are orthogonal to these issues and can easily leverage the benefits of the proposed

algorithms.

In the following subsections, we describe the details of our following schemes: (i)

Basic RDMA-based Cooperative Caching (BCC), (ii) Cooperative Cache Without

Redundancy (CCWR), (iii) Multi-Tier Aggregate Cooperative Cache (MTACC) and

(iv) Hybrid Cooperative Cache (HYBCC).

7.2.1 Basic RDMA based Cooperative Cache

In our design, the basic caching services are provided by a set of cooperating

modules residing on all the participating server nodes. Each cooperating module

keeps track of the local cache state as a set of local page-tables and places this

information in the soft shared state for global access.

The Basic RDMA based Cooperative Caching (BCC) is achieved by designing the

cache primitives using RDMA operations. The communication messages between the

modules are divided into two main components: (i) control messages and (ii) data

messages. The control messages are further classified into (i) meta-data read messages

and (ii) meta-data update messages. Since data messages form the bulk volume of the

90

total communication load we use one-sided RDMA operations for these. In addition,

the meta-data read messages use the RDMA Read capabilities. Meta-data update

messages are exchanged using send-receive operations to avoid concurrency control

related issues.

The basic cache primitives are handled by BCC in the following manner:

Cache Fetch involves three simple steps: (i) finding the cache entry, (ii) finding

a corresponding amount of local free space and (iii) fetching the data using RDMA

Read operation.

Cache Store involves the following steps: in case the local node has enough free

space the entity is cached and key-table holding the meta-data information is updated.

In cases where the local node has no free memory, the entity is stored into a temporary

buffer and the local copies of all page tables are searched for a suitable candidate

remote node for a possible free space. A control message is sent to that node which

then performs an RDMA Read operation of this data and notifies the original node

of the transfer. Once a control message is sent with a store request to a remote

node, then the current entity is considered to be a responsibility of the remote node.

For both these primitives, in cases where free space is not available system-wide, a

suitable replacement is chosen and data is stored in place of the replacement.

Cache Validate and Cache Invalidate involve a meta-data read or a meta-data

update to the home node respectively. As mentioned earlier, RDMA Read is used for

the read operation.

Although this scheme provides a way to share cache across the proxy nodes, there

may be redundancy in the cache entities across the system.

91

7.2.2 Cooperative Cache Without Redundancy

In this scheme, the main emphasis is on the redundant duplicates in the system.

At each step of request processing, the modules systematically search the system for

possible duplicate copies of cache entities and these are chosen for replacement. In

aggregate, the cache replacement decisions are taken in the following priority: (i)

Local free space, (ii) Remote node free space, (iii) Local redundant copies of entries

cached elsewhere in the system, (iv) remote redundant copies having duplicates in

the system and (v) replacement of suitable entity by removing an existing entry to

make space for the new entry. We again describe the details of designs of the cache

primitives.

The case of Cache Fetch presents interesting design options. The data from remote

node is fetched into local free space or in place of local redundant copy in the priority

described above. However, in case there are no free buffer spaces or local duplicates

available for getting the data, remote cache entity is swapped with some local cached

entity. In our design, we select a suitable local replacement, send a store message to

the remote cache for this local replacement and followed by a RDMA Read of the

required remote cache entity. The remote node follows a similar mechanism to decide

on storage and sends back an acknowledgment. Figure 7.2 shows the swap case of

this scheme. The dotted lines shown in the figure are control messages.

Cache Store design in this case is similar to the previous approach, the main

difference being the priority order described above. The memory space for storing new

cache entries is searched in the order of free space, redundant copies and permanent

replacements.

92

Node A Node B

Fetch File B

Fetch File A

File A Stored

Store File A

RDMA Read

RDMA Read

Request for File B Present
File B In Cache

Figure 7.2: Cooperative Caching Without Redundancy

The CCWR scheme benefits significantly by increasing the total amount of mem-

ory available for cooperative caching by removing redundant cache entities. For large

working sets this yields higher overall performance.

7.2.3 Multi-Tier Aggregate Cooperative Cache

In typical multi-tier data-centers proxy servers perform all caching operations.

However, the system can benefit significantly by having access to additional memory

resources. There are several back-end nodes in the data-center that might not be using

their memory resources to the maximum extent. In MTACC, we utilize this additional

free memory on servers from other tiers of the multi-tier data-center. This provides us

with more aggregate system memory across the multiple tiers for cooperative caching.

Further, the involvement back-end modules in caching can be possibly extended to

the caching support for dynamically changing data [62].

93

The MTACC scheme is designed with passive cooperative caching modules running

on the back-end servers. These passive modules do not generate cache store or retrieve

requests themselves, but help the other modules to utilize their pooled memory. In

addition, these passive modules do not act as home nodes for meta-data storage,

minimizing the necessity for cache request processing overheads on these back-end

servers.

In addition, in certain scenarios such as cache invalidates and updates, the back-

end servers need to initiate these operations [62]. Utilizing the modules existing on

the back-end nodes, the back-end nodes can perform operations like invalidations, etc.

efficiently with the help of the closer and direct access to cache to achieve significant

performance benefits. Figure 7.3 shows a typical setup for MTACC.

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

Server Node
����
����
����
����
����

����
����
����
����
����

Server Node

����
����
����
����
����

����
����
����
����
����

Server Node

�����
�����
�����
�����

�����
�����
�����
�����

Server Node

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

Proxy Tier

Server Node

Back−End Tier

Memory Pool

Global Cache

Space
Local Cache

Figure 7.3: Multi-Tier Aggregate Cooperative Caching

94

7.2.4 Hybrid Cooperative Cache

Though the schemes CCWR and MTACC can achieve good performance by cater-

ing to larger working sets, they have certain additional working overhead to remove

redundant cache entities. While this overhead does not impact the performance in

cases when the working set is large or when the requested file is large, it does impact

the performance of the smaller cache entities or smaller working set files to a certain

extent.

CCWR adds certain overhead to the basic cache processing. The added lookups

for duplicates and the higher cost of swapping make up these overheads. MTACC also

adds similar overheads. This larger aggregated cache system size can cause higher

overheads for request processing.

To address these issues, we propose the Hybrid Cooperative Caching Scheme. In

this scheme, we employ different techniques for different file sizes. To extent possible,

smaller cache entities are not checked for duplications. Further, the smaller cache

entities are stored and their lookups are performed on only the proxy servers without

using the back-end servers. Hence, smaller cache entities are not stored on the passive

nodes and are duplicated to the extent possible reducing the effect of the associated

overheads.

7.3 Performance Evaluation

In this section, we present a detailed experimental evaluation of our designs. Here,

we compare the following levels of caching schemes: (i) Apache default caches (AC)

(ii) BCC, (iii) CCWR, (iv) MTACC and (v) HYBCC.

95

Trace 2 nodes 4 nodes 8 nodes 10 nodes

8k-trace 80M/128M 80M/256M 80M/512M 80M/640M
16k-trace 160M/128M 160M/256M 160M/512M 160M/640M
32k-trace 320M/128M 320M/256M 320M/512M 320M/640M
64k-trace 640M/128M 640M/256M 640M/512M 640M/640M

Table 7.1: Working Set and Cache Sizes for Various Configurations

For our experiments we used 20 nodes with dual Intel Xeon 2.66 GHz proces-

sors. InfiniBand network connected with Mellanox InfiniHost MT23108 Host Channel

Adapters (HCAs). The clusters are connected using a Mellanox MTS 14400 144 port

switch. The Linux kernel version used was 2.4.20-8smp. Mellanox IBGD 1.6.1 with

SDK version 3.2 and the HCA firmware version 3.3 was used.

These nodes were setup with two web-servers and with the number of proxy servers

varying from two to eight. The client requests were generated from multiple threads

on 10 nodes. The web-servers and application servers used in the reference imple-

mentation are Apache 2.0.52. All proxy nodes we configured for caching of data.

Web server nodes were also used for caching for the schemes MTACC and HYBCC as

needed. Each node was allowed to cache 64 MBytes of data for any of the experiments.

Traces Used: Four synthetic traces representing the working sets in Zipf [86]

traces were used. The files sizes in the traces were varied from 8KBytes to 64KBytes.

Since the working sets of Zipf traces all have similar request probabilities, a trace

comprising of just the working set is seemingly random. The working set sizes for

these traces are shown in the Table 7.1. These present us with a number of cases in

which the working sets are larger than, equal to or smaller than the total cache space

available to the caching system.

96

7.3.1 Basic Performance Analysis

As an indication of the potential of various caching schemes, we measure the overall

data-center throughput. Figures 7.4(a) and 7.4(b) show the throughput measured for

the four traces. We see that the basic throughput for all the cooperative caching

schemes are significantly higher than the base case of basic Apache caching (AC) -

the default single node caching provided by apache.

Impact of Working Set Size: We notice that the performance improvements

from the AC scheme to the other schemes show steep improvements when the coop-

erative caching schemes can hold the entire working set of that trace. For example,

the throughput for the cooperative caching schemes for the 8k-trace for two nodes in

Figure 7.4(a) are about 10,000 TPS, where as the performance for AC is just above

5000 TPS. This shows a performance improvement of about a factor of two. This is

because the AC scheme cannot hold the working set of the 8k-trace which is about 80

MBytes. Since each node can hold 64 MBytes, AC incurs cache misses and two node

cooperative caching shows good performance. We see similar performance jumps for

all cases where the working set fits in cache. Figure 7.5(a) clearly shows a marked

improvement for larger traces (32k-trace and 64k-trace) for MTACC and HYBCC.

This benefit comes from the fact that MTACC and HYBCC can accommodate more

of the working set by aggregating cache from nodes across several tiers.

Impact of Total Cache Size: The total cache size of the system for each case is

as shown in Table 7.1. For each configuration, as expected, we notice that the overall

system performance improves for the cases where the working-set sizes are larger

then the total system cache size. In particular, the performance of the 64k-trace for

the 8 node case achieves a throughput of about 9,500 TPS while using the memory

97

0

2000

4000

6000

8000

10000

12000

AC BCC CCWR MTACC HYBCC

T
P

S

8k 16k 32k 64k

0

5000

10000

15000

20000

25000

30000

35000

AC BCC CCWR MTACC HYBCC

T
P

S

8k 16k 32k 64k

Figure 7.4: Data-Center Throughput: (a) Two Proxy Nodes (b) Eight Proxy Nodes

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

BCC CCWR MTACC HYBCC

P
e
rf

o
rm

a
n
c
e
 R

a
ti
o

8k 16k 32k 64k

0

0.5

1

1.5

2

2.5

3

BCC CCWR MTACC HYBCC

P
e
rf

o
rm

a
n
c
e
 R

a
ti
o

8k 16k 32k 64k

Figure 7.5: Performance Improvement: (a) Two Proxy Nodes (b) Eight Proxy Nodes

aggregated from the web server for caching. This clearly shows an improvement of

close to 20.5% improvement over basic caching scheme BCC.

Impact of System Size: The performance of the 8k-trace in Figure 7.5(b) shows

a drop in performance for the CCWR and the MTACC cases. This is because as a

result of aggregated cache across tiers for MTACC its total system size increases,

hence the total overheads for each lookup also increases as compared to CCWR. On

the other hand, since HYBCC uses CCWR for small cache entities and MTACC for

large cache entities, its improvement ratios of HYBCC in Figure 7.5(b) clearly show

98

Scheme Fetch Store Validate Invalidate

BCC 2,1 2,1 1,0 1,0
CCWR 2,2 2,1 1,0 1,0
MTACC 2,2 2,1 1,0 1,0
HYBCC 2,2 2,1 1,0 1,0

Table 7.2: Maximum number of messages required (control-messages/data-messages)

that the HYBCC scheme does well in all cases. It is to be noted that the benefit of

HYBCC will increase as the system size increases.

0

20

40

60

80

100

120

1024 2048 4096 8192 16384

Lookup table size

T
im

e
 t

a
k
e
n

 (
u

s
)

Duplicates Allowed - 2 nodes

Duplicates Allowed - 8 nodes

Duplicates not Allowed - 2 nodes

Duplicates not Allowed - 8 nodes

Figure 7.6: Bookkeeping and Lookup delay

We now discuss the performance benefits seen for each of the schemes and analyze

the same.

7.3.2 Additional Overheads for Cooperative Caching

Our approaches incur different costs for lookup for different schemes. The primary

difference is in the lookup times of schemes with redundancy allowed and schemes

without redundancy. Figure 7.6 shows the worst case lookup latency for each request

in steady state. We have seen that as the total size of the cache increases with number

99

of nodes the lookup times also increase correspondingly. In addition, searching for

redundant copies also incurs additional cost.

The number of network messages required for cache operations is shown in the

Table 7.2. We see that the expected worst case number of control and data messages

remain the same for all mechanisms with lower redundancy.

7.3.3 Detailed Data-Center Throughput Analysis

In the following sections, detailed analysis is presented for the each scheme to

evaluate their effectiveness.

• AC: These numbers show the system throughput achievable by using the cur-

rently available and widely used simple single node caching. Since all the nodes

here take local decisions the performance is limited by the amount of cache

available on individual nodes.

• BCC: As shown by researchers earlier, the performance of the BCC scheme

marks significant performance improvement over the AC scheme. These per-

formance numbers hence represent throughput achievable by basic cooperative

caching schemes. In addition, the trends for the BCC performance also show

the effect of working-set size as mentioned earlier. We see that as we increase

the number of proxy servers, the performance benefit seen by the BCC scheme

with respect to AC increases. The performance benefit ratio as shown in Figures

7.5(a) and 7.5(b) clearly shows this marked improvement.

• CCWR: From the Figures 7.4(a) and 7.4(b), we observe that the performance

for the CCWR method shows two interesting trends: (i) the performance for

100

the traces 16k-trace, 32k-trace and 64k-trace show improvement of up to 32%

as compared to the BCC scheme with the improvement growing with higher

size traces and (ii) the performance of the 8k-trace shows a drop of about 5% as

compared to the BCC scheme. The primary reason for this performance drop is

the cost of additional book-keeping required for eliminating copies (as shown in

Figure 7.6). We measured this lookup cost for this scheme to be about 5-10%

of the total request processing time for a file of 8 Kbytes size. Since this cost

does not grow with file size, its effect on larger file sizes is negligible.

• MTACC: The main difference between the CCWR scheme and the MTACC

scheme is the increase in the total system cache size and the total system meta-

data information size. The additional system size improves performance by

accommodating more entities in cache. On the other hand, larger lookup ta-

ble size incurs higher lookup and synchronization costs. These reasons both

show effect on the overall performance of the data-center. The 8 node case in

Figure 7.4(b) shows that the performance of 8k-trace decreases with MTACC

as compared to BCC and CCWR and the performance improves for 16k-trace,

32k-trace and 64k-trace. We observe similar trends for the 2 node case in Figure

7.4(a).

• HYBCC: HYBCC overcomes the problems of lower performance for smaller

files as seen above by using a hybrid scheme described in Section 7.2.4. In this

case, we observe in Figures 7.4(a) and 7.4(b) that the HYBCC scheme matches

the best possible performance. Also, we notice that the improvement of the

HYBCC scheme over the BCC scheme is up to 35%.

101

7.4 Summary

The importance of caching as an instrument for improving the performance and

scalability of web-serving data-centers is immense. Existing cooperative cache de-

signs often partially duplicate cached data redundantly on multiple servers for higher

performance while optimizing the data-fetch costs for multiple similar requests. With

the advent of RDMA enabled interconnects these cost estimates have changed the

basic factors involved. Further, the utilization of the large scale of resources available

across the tiers in today’s multi-tier data-centers is of obvious importance.

In this chapter, we have presented cooperative cache schemes that have been

designed to benefit in the light of the above mentioned trends. In particular, we

have designed schemes that take advantage of RDMA capabilities of networks and

the resources spread across the multiple tiers of modern multi-tier data-centers. Our

designs have been implemented on InfiniBand based clusters to work in conjunction

with Apache based servers. We have evaluated these with appropriate request traces.

Our experimental results have shown that our schemes perform up to 35% better

than the basic cooperative caching schemes for certain cases and 180% better than

the simple single node caching schemes.

We further analyze the performance of each of our schemes and propose a hybrid

caching scheme that shows high performance in all our cases. We have observed that

simple caching schemes are better suited for cache entities of small sizes and advanced

schemes are better suited for the larger cache entities.

102

CHAPTER 8

WAN FRAMEWORK

In this section we present the details on our WAN communication framework.

We briefly describe the possible alternatives RDMA communication over WAN. We

further study the tradeoffs of RDMA communication involved in the various WAN

scenarios.

8.1 Background and Motivation

Compute clusters have become increasingly popular due to the high performance

to cost ratios they offer. Rapid technology advances at largely affordable costs have

led to the wide spread deployment of these clusters, with several organizations having

multiple cluster deployments. TCP/IP has been the most popular protocol for all

inter-node communication requirement. While TCP/IP based communication has its

advantages in being the most popular protocol and supporting both across LAN and

WAN communication, CPU and memory related costs for driving traditional TCP/IP

stacks often impact communication performance and hence limit the scalability and

efficiency of the clusters.

103

To improve communication performance within clusters, modern interconnects like

10 Gigabit Ethernet, Quadrics [68], Myrinet [61] and InfiniBand [4] offer higher net-

work bandwidths and lower communication latencies. In addition, interconnects like

InfiniBand include features such as Remote Direct Memory Access (RDMA) that have

enabled communication mechanisms providing a significantly higher performance. To

extend the benefits of RDMA to the traditional Ethernet-based networks, a new Inter-

net Wide Area RDMA Protocol (iWARP) standard has been recently introduced [32].

The iWARP standard basically allows for zero-copy transfer of data over the legacy

TCP/IP communication stacks. Hence iWARP provides for a significantly higher

communication performance. Applications need to leverage this available commu-

nication performance into better overall application performance. Additionally, the

iWARP protocol being based on TCP/IP also allows high performance data transfers

across WANs enabling users to run high performance applications in cluster-of-clusters

scenarios. Figure 8.1 shows a typical scenario with cluster-of-clusters. Currently sev-

eral vendors including Chelsio [31], NetEffect [64] and Ammasso provide iWARP

capable RNICs.

Further, InfiniBand has also extended its capability to WANs. Obsidian Research

Corporation [33] has recently announced products capable of performing InfiniBand

communications over WAN. While these modern interconnects have now enabled the

use of advanced features like RDMA across WANs, it is important to understand the

benefits and limitations that these protocols see in such scenarios.

While these Obsidian IB WAN routers provide limited capability of emulating

long distance WAN links, networks without such capabilities cannot be evaluated.

104

Hence, appropriate evaluation methodologies also need to be established for these

emerging cluster-of-cluster scenarios.

High−Speed

Backbone

Network

Cluster A

Cluster B

Cluster C

Figure 8.1: Typical Cluster-of-Clusters Environment

In this chapter, we detail our work on evaluation methodology of WAN capable

adapters. We first describe our design of NemC - a Network Emulator for Cluster-of-

Clusters to handle the emulation of specific characteristics of these emerging cluster-

of-cluster scenarios.

8.2 Network Emulator for Cluster-of-Cluster Scenarios

In this section we describe our fine-grain network emulator for cluster-of-cluster

scenarios.

8.2.1 Background and Related Work

The cluster-of-clusters environment poses several research challenges including

performance, compatibility, security, authentication, etc. However, before addressing

such research challenges, one of the foremost critical issues is how to construct the

105

experimental environment of cluster-of-clusters. Since research groups usually do not

have the actual backbone networks for cluster-of-clusters, which can be reconfigured

with respect to delay, packet loss, etc. as needed, it is hard to carry out practical

research over realistic environments. Accordingly, the demand for an efficient way

to emulate the backbone networks for cluster-of-clusters is overreaching. Approaches

involving simulations and modeling are widely accepted [40, 17, 22]; however, these

approaches have the limitations that they cannot run actual software (i.e., applica-

tions, middleware, and system software). On the other hand, if we can emulate only

the backbone networks running actual clusters, it will provide very close environments

to the real-world systems but also give flexibility to change the system parameters,

such as network delay, packet loss, etc. For the emulation, a workstation can be

configured as a router with multiple Network Interface Cards (NICs), of which each

is connected to a cluster. By running a network emulation software that generates

artificial network delay, packet loss, etc. on the workstation-based router we can em-

ulate the backbone networks for cluster-of-clusters while running actual software over

the clusters in a transparent manner.

Though there are several existing network emulators [28, 44, 72, 80], they are

focusing on large scale Wide Area Networks (WANs) such as Internet. However, there

are many prominently different characteristics between such WANs and the backbone

networks for cluster-of-clusters. For example, the backbone networks usually have a

much lower delay than typical WAN environments though the backbone networks

have a higher delay than the intra-cluster LAN environments. The emulators that

can emulate a millisecond network delay resolution may not be enough to emulate the

high-speed backbone networks. In addition, the bandwidth provided by the backbone

106

networks for cluster-of-clusters is higher than the WAN case. Hence the emulator

should be able to emulate higher bandwidth networks.

In this context, we present a novel design for emulating the backbone networks

of cluster-of-clusters. The emulator named NemC (Network Emulator for Cluster-

of-Clusters) can support the fine-grained network delay resolution minimizing the

additional overheads. We design a new packet scheduling mechanism that performs

on-demand scheduling, which is independent on any system timers. Also we min-

imize the additional overhead by designing it at the kernel-level to emulate high

bandwidth networks. In addition to the network delay emulation, current implemen-

tation of NemC can emulate packet losses and out-of-order packets. To the best of our

knowledge, no research has focused on the network emulation for cluster-of-cluster

environments and NemC is the first emulator to address this.

8.2.2 Design and Implementation of NemC

In this section, we detail the design and implementation of our network emulator

for cluster-of-clusters named NemC. NemC is implemented using the netfilter hooks

provided by Linux, which can be dynamically inserted to the kernel’s chain of packet

processing. A run-time loadable kernel module which runs on Linux-based routers is

used to perform all operations. Its design does not require any kernel modifications.

The current implementation can insert network delay with fine-grained resolution,

packet drops, and out-of-order packets.

Figure 8.2 shows the overall design of NemC. As shown in the figure, NemC

consists of four components: (i) NemC netfilter, (ii) NemC scheduling demon, (iii)

NemC kernel module and (iv) NemC user applications. The NemC netfilter intercepts

107

the packets arrived at the router node after the IP routing decision. Based on the

parameters set by the user applications, the NemC netfilter can drop packets, generate

out-of-order packets, or introduce network delays. These parameters can be controlled

at run-time by using the NemC user applications. The NemC scheduling daemon is

a user-level process, which requests the netfilter to search the packets that has been

sufficiently delayed and reinject them into the network. The kernel module takes

care of insertion of the netfilter in the initialization phase but also provides access to

the internal data structures and parameters of the NemC netfilter to the scheduling

daemon and the user applications.

Linux−based Router

IP

Netfilter
Insersion

Network Devices

Routing
Decision

SwitchSwitch

Cluster BCluster A

Packet SchedulingNetwork Parameters

Device Driver

Out−Of−Order Packet

Network Delay

Packet Drop

NemC

User Applications

Netfilter

Scheduling Demon

Kernel Module

Timestamp

Figure 8.2: Overall Design of NemC

Packet Scheduling for Fine-Grained Delay Resolution:

The backbone networks for cluster-of-clusters have low network delay compared to

general WANs such as Internet. To emulate such networks, the emulator is required

to support fine-grained delay resolution. The delay resolution of a network emulator

108

is mainly decided by the triggering mechanism of packet scheduling. The packets

delayed more than the given time, net delay, at the router node are reinjected into

the network by the packet scheduling routine. The most widely used mechanism

to trigger the packet scheduling is to invoke the scheduling routine for every timer

interrupt. This mechanism is simple to design and implement; however, since it

depends on the system timer resolution, it may not be able to support fine-grained

delay resolution. For example, if the network emulator uses Linux timer then it can

support only 10ms (with kernel version 2.4) or 1ms (with kernel version 2.6) delay

resolution, which is too coarse-grained to emulate the backbone networks for cluster-

of-clusters. On the other hand, if the network emulator directly uses a hardware timer

in the system, the interrupt can be generated very high frequency and can delay the

actual packet processing.

To overcome these limitations of the timer based mechanism, we suggest the on-

demand packet scheduling mechanism. In this mechanism, the packet scheduling

routine is triggered by either incoming packet or scheduling daemon. That is, when-

ever there is a new packet arrived at the router node, it triggers the packet scheduling

routine, while the user-level scheduling demon continually tries to invoke the packet

scheduling routine if there are no packets waiting to be processed in the protocol

stacks and the system is idle. It is to be noted that the user-level scheduling daemon

has lower priority than the kernel-level packet processing context. Thus, if packets ar-

rive at the router node in a bursty manner the scheduling routine will be invoked very

frequently by those packets. On the other hand, if packets arrive intermittently then

the user-level daemon will continuously trigger the packet scheduling. In this man-

ner, we can trigger the scheduling routine as much as possible (i.e., in a fine-grained

109

mode) without any effect on the actual packet processing of the protocol stacks. In

this mechanism, since both newly arrived packets and the user-level daemon invoke

the scheduling routine, which accesses the same data structures in the NemC netfilter,

we guarantee that only one can access the data structures at a time by locking. We

use the time stamp in the sk buff data structure of the Linux kernel to calculate the

total time duration spent by the packet in the router node.

Low Overhead Emulation for High Bandwidth Support:

Another important characteristic of the backbone networks for cluster-of-clusters

is high bandwidth. To emulate the high bandwidth networks, we need to address two

critical issues: i) delay cascading and ii) emulation overhead.

If an emulator holds a packet for a given time to add a delay without yielding

the CPU resource, this delay will be cascaded to the next packets that have been

already arrived at the router node. For example, if an emulator is implemented as a

high priority kernel-level process and polls the timer occupying the CPU resource, the

delay can be cascaded on subsequent packets. To avoid this delay cascading problem,

we place the packets that need to be delayed into a queue and immediately return

the context to the original routine. The packets queued are re-injected by the packet

scheduling mechanism described earlier.

On the other hand, higher emulation overheads can reduce the effective bandwidth

between the clusters in the experimental systems, which is a undesired side effect.

Broadly, the emulator can be implemented at the user-level or the kernel-level. The

user-level emulation requires two data copies between user and kernel buffers for each

packet. This copy operation is a well-known bottleneck of packet processing. Hence,

110

our network emulator is designed at the kernel-level to prevent any additional data

copy.

Packet Drop and Out-of-Order Packet Generation:

Since the backbone networks for cluster-of-clusters can use store-and-forward net-

works there can be packet drops because of network congestion. To emulate such

case, we generate packet drops based on the packet drop rate value, drop rate, given

by a NemC user application. NemC chooses a packet randomly for every drop rate

packets and simply drops this packet freeing all the resources occupied by this packet.

Out-of-order packets can occur in cluster-of-clusters due to multi-path and adap-

tive routing. To emulate such case, we generate out-of-order packets using a given

out-of-order packet generation rate, ooo rate, and a delay for out-of-order packets,

ooo delay. These values are set by a NemC user application. It is guaranteed that the

value of ooo delay is always larger than that of net delay. NemC chooses a packet

randomly for every ooo rate packets and delays this packet as much as ooo delay.

Since this packet has been delayed more than other packets it becomes an out-of-

order packet if the packet interval between this packet and the next is smaller than

ooo delay.

Experimental WAN Setup

Our performance evaluations have been performed on the experimental system

shown in Figure 8.3, where we have two different IP networks and they are connected

through a workstation-based router emulating WAN. The end nodes are SuperMicro

SUPER P4DL6 nodes - each has dual Intel Xeon 2.4GHz processors with a 512KB L2

cache and an Ammasso 1100 Gigabit Ethernet NIC. The router node is a SuperMicro

111

GigE
Switch

Routing
Decision degen

eth0 eth1

Device Driver

IP

GigE
Switch

IP Network A IP Network B

Router

Figure 8.3: Experimental WAN Setup: A Simplistic View

SUPER X5DL8-GG workstation with dual Intel Xeon 3.0GHz processors, 512KB

L2 cache, and 2GB of main memory. The router node is connected to IP networks

A and B with Broadcom BCM5703 and Intel PRO/1000 Gigabit Ethernet NICs,

respectively. All nodes use Linux kernel version 2.4.20. The switches used for each

IP network are Foundry FastIron Edge X448 Switch and Netgear GS524T Gigabit

Switch, respectively.

To reflect the characteristics of high latency in the WAN environment, we utilize a

simplistic version of our network emulator NemC (named degen) to introduce delays.

It delays the forwarding of each packet on the router by a given value after the

corresponding routing decision has taken place as shown in Figure 8.3.

8.3 Evaluation of iWARP protocols

In this section, we compare RDMA with traditional TCP/IP sockets on WAN

environments with respect to (i) latency, (ii) computation and communication overlap,

(iii) communication progress, (iv) CPU resource requirements, and (v) unification of

communication interface.

112

We perform our experiments over the Ammasso Gigabit Ethernet [1] adapter as

described in the following subsection.

8.3.1 Overview of Ammasso Gigabit Ethernet NIC

The iWARP capable Ammasso Gigabit Ethernet NIC [1] provides an implemen-

tation of the RDMA over TCP/IP enabled NIC. Based on the RDMA Protocol Verbs

(RDMAVS 1.0) [45] specified by the RDMA consortium, the RDMA interface of the

Ammasso Gigabit Ethernet NIC provides low latency and high bandwidth on Gi-

gabit Ethernet network. As shown in Figure 8.4, Ammasso Gigabit Ethernet NIC

supports the legacy sockets interface and the Cluster Core Interface Language (CCIL)

interface.

Sockets

TCP

Device Driver

Gigabit Ethernet

(Offloaded

TOE

TCP/IP)

RDMA

IP

O
p

er
at

in
g

 S
y

st
em

A
m

m
asso

 G
ig

ab
it E

th
ern

et N
IC

Applications

CCILSockets Interface

Figure 8.4: Protocol Stacks on Ammasso Gigabit Ethernet NIC

The CCIL interface is an implementation of the Verbs layer to utilize RDMA over

IP. The CCIL interface uses the RDMA layer and offloaded TCP/IP on the NIC to

transmit the data. On the other hand, the sockets interface still sends and receives the

113

data through the traditional TCP/IP implemented in the operating system kernel.

The CCIL interface enables zero-copy and kernel-bypass data transmission.

8.3.2 Communication Latency

The basic communication latency is one of the most important performance met-

rics. In this section, we carry out the latency test in a standard ping-pong fashion

to report one-way latency. The client sends a message and waits for a reply message

of the same size from the server. The time for this is recorded by the client and it

is divided by two to find out one-way latency. In the case of RDMA, we use RDMA

write to transmit the data.

Figure 8.5(a) shows the results of latency without the delay by degen. We can

see that the latencies of RDMA and sockets are almost the same regardless of the

message size even without the delay. It is because the latency added by the default

experimental setup described in Section 8.2.2 is relatively large compared to the

overhead on the end nodes. Although RDMA achieves a zero-copy data transmission,

since the MTU size is only 1500 Bytes, we cannot expect a large benefit with respect

to the latency. In the case of messages larger than the MTU size, TCP constructs

several segments so that each segment can fit into the MTU sized IP fragment. Hence

the transmission of the segments are pipelined and we can obtain the benefit of the

zero-copy only for the first segment in a high delay environment. However, if the

network delay is smaller than the processing overhead of the end node, the zero-copy

transmission helps to deliver low latency.

Figure 8.5(b) shows the latency varying the network delay with 1KB message. As

we can see, RDMA and sockets report almost the same latency. This reveals that

114

0

50

100

150

200

250

300

350

400

450

4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

Message Size (Bytes)

L
a

te
n

c
y

 (
u

s
)

Sockets

CCIL

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 1 2 4 8

Delay (ms)

L
a

te
n

c
y

 (
u

s
)

Sockets

CCIL

Figure 8.5: Communication Latency: (a) Varying Message Size and (b) Varying
Network Delay

the basic communication latency is not an important metric to distinguish RDMA

from the sockets in a high delay WAN environment because the overheads on the end

nodes is too small compared with the network delay in the order of milliseconds.

8.3.3 Computation and Communication Overlap

In this section, we evaluate how well the process is able to overlap computa-

tion with communication. In our test shown in Figure 8.6(a), the client performs a

computation loop that does a dummy work for a given time in between ping (i.e.,

sending) and pong (i.e., receiving) operations of the latency test described in Sec-

tion 8.3.2. We evaluate the computation and communication overlap ratio with

(Computation T ime)/(Total T ime) on the client side. Thus a value closer to 1 rep-

resents a better computation and communication overlap. It is to be noted that our

sockets latency test is using non-blocking sockets to maximize the computation and

communication overlapping.

Figure 8.7(a) shows the overlap ratios with varying computation time and without

network delay. The message size used is 1KB. As we can see, RDMA can achieve

115

better overlap even with smaller computation time compared to the sockets. This

is because RDMA provides asynchronous communication interface. In addition, we

do not need to utilize CPU resources to get the data from remote node because

the remote node uses RDMA write. On the other hand, in the case of the sockets,

some of the receiving functions of the sockets (e. g., kernel buffer to user buffer

copies) are performed in the context of the application process. As a result, these

receiving functions cannot be overlapped with actual application processing while

some other functions (e. g., interrupt handling and bottom half) can run in parallel

with the application processing by another CPU in a SMP system. Further, the

offloaded TCP/IP of the RDMA case increases the chance of overlapping between

packet processing overhead and computation overhead.

Figure 8.7(b) shows the overlap ratio values of RDMA and sockets for varying

network delay, where we have fixed the computation time to 242ms and message size

to 1KB. It can be observed that the difference between RDMA and sockets reduces

with large network delays. It is mainly because the network delay is the dominant

overhead and it can be overlapped with computation time regardless of RDMA or

sockets. Since the packet processing overhead of end nodes is not a critical overhead

anymore on a high delay WAN, its overlapping with other overheads does not affect

much to the overlap ratio. However, still we can see that RDMA can provide better

overlap than sockets for delays in order of a few milliseconds.

8.3.4 Communication Progress

In many distributed systems, we often observe the communication pattern that a

node requests some data to a remote node and it returns the data. This operation

116

send()

recv()

Computation

recv()

send()
(t1)

ping

pong

Client Server

Overlap Ratio = t1 / t2

t2

Client Server

recv()

send()

send()

recv()

Request

Response

Data
Fetching
Latency

Load

.

Figure 8.6: Pseudo Code for Benchmarks: (a) Overlap Test and (b) Communication
Progress Test

can be implemented with either by using a pair of send and receive calls or by using

RDMA read. Moreover, the remote node can be heavily loaded because of burst

requests on the data or CPU intensive computations. To compare the performance

of RDMA read with the traditional sockets in this scenario, we simulate the load on

the remote node by adding a dummy loop running for a given time. We measure the

latency to get 1KB of data from remote node as shown in Figure 8.6(b).

Figure 8.8(a) shows the data fetching latency varying the load on the remote

node, where the load is represented as the response delay. Since RDMA read does

not require any involvement of remote process for data transmission, it can read data

from remote memory without any impact from the load on the target. It is to be

noted that the sockets interface is not able to deliver good performance as the load

increases. It is because the overall communication progress of the sockets highly

depends on that of both sides (sender and receiver).

Figure 8.8(b) shows the data fetching latency varying the network delay for a

fixed response load of 16ms. With increase in the network delay, both of the in-

terfaces (sockets and RDMA) perform similarly because the network delay tends to

117

dominate the performance costs more than the load on the remote node. However, it

can still be seen that RDMA is more tolerant of the network delay achieving better

communication progress.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 61 122 182 242 302 362 422

Computation (ms)

O
v
e
rl

a
p

 R
a
ti

o

Sockets

CCIL

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 4 8

Delay (ms)

O
v

e
rl

a
p

 R
a

ti
o

Sockets

CCIL

Figure 8.7: Overlap Ratio: (a) Varying Computation Time and (b) Varying Network
Delay

1

10

100

1000

10000

100000

0 1 4 16 64

Load (ms)

L
a
te

n
c
y
 (

u
s
)

Sockets

CCIL

1

10

100

1000

10000

100000

0 1 2 4 8

Delay (ms)

L
a
te

n
c
y
 (

u
s
)

Sockets

CCIL

Figure 8.8: Communication Progress: Data Fetching Latency (a) Varying Load and
(b) Varying Network Delay

118

0

5

10

15

20

25

30

35

40

45

50

1k 2k 4k 8k 16k

Message Size (Bytes)

T
o

ta
l
C

o
m

p
u

te
 T

im
e

 (
s

e
c

)

Sockets CCIL

0

10

20

30

40

50

0 1 2 4 8

Delay (ms)

T
o

ta
l
C

o
m

p
u

te
 T

im
e
 (

s
e
c
)

Sockets CCIL

Figure 8.9: Impact on Application Execution Time: (a) Varying Message Size and
(b) Varying Network Delay

8.3.5 CPU Resource Requirements

To measure the effect of CPU resource requirements for communication on the

application performance, in this experiment, we run an application on a server node

that performs basic mathematical computations while 40 clients continuously send

data to this server. We report the total execution time of the application under this

scenario.

Figure 8.9(a) shows the application execution time varying the message size with

no added network delay. As we can see, the execution time with background sockets

communications is very high for all message sizes while it does not have any significant

performance impact with background RDMA communication.

Figure 8.9(b) shows the execution time of the application varying the network

delay with 16KB message size. We can observe that the background sockets commu-

nication significantly degrades the application performance even on high delay WANs.

The reason is that, in the case of sockets, the remote CPU is involved in the commu-

nication effort, with packet processing and interrupt handling at the kernel level and

119

receive request posting at the application level. This results in stealing of the CPU

resource from the computing application. However, RDMA can place the data to the

remote memory without any CPU requirement on the remote node. Hence we can

see in the figure that the application execution time is not affected by RDMA and

constant for all network delays. This reveals that RDMA has a strong potential of

saving the CPU resource on the server side even on a high delay WAN environment.

8.3.6 Unification of Communication Interface

In addition to direct performance metrics detailed in the previous sections, WAN

and LAN interoperability is a very important feature of RDMA over IP and IB-

WAN. Scenarios in which several inter-cluster and intra-cluster nodes communicate

with each other need common communication interfaces for the job. Traditionally,

the sockets over TCP/IP has been the main interface with this feature. However,

with RDMA over IP (or IB-WAN), this interoperability can be achieved and it can

be achieved with all the benefits described in the previous sections. Further, RDMA

over IP performs significantly better then sockets for within LAN communications.

0

50

100

150

200

250

4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

Message Size (Bytes)

L
a

te
n

c
y

 (
u

s
)

Sockets

CCIL

Figure 8.10: Communication Latency within a LAN with varying Message Sizes

120

Figure 8.10 shows the latency of CCIL and Sockets communications within a

LAN. We see that the small message latency differs by almost 50% with RDMA

being better. Hence, RDMA over IP benefits these multi-cluster applications with

better communication both over the WAN as well as in the LAN. It is to be noted

that the benefit of zero-copy with RDMA is not significant even in the LAN as we

have discussed in Section 8.3.2. However, 10 Gigabit Ethernet [46] is expected to

provide very low propagation delay within LAN and show the benefit of zero-copy on

the communication latency with large messages.

8.3.7 Evaluation of the Chelsio 10 Gigabit Ethernet Adapter

In this section, we show the performance potential of modern iWARP capable

10 Gigabit Ethernet interconnects. We have designed MPI-iWARP to study the

issues in designing iWARP based communication middleware. We further use our

MPI-iWARP implementation to evaluate the Chelsio [8] iWARP capable 10 Gigabit

Ethernet adapter. The details of our MPI-iWARP design are available in [63]. The

main issues in the design of MPI-iWARP include RDMA-CM based connection man-

agement and iWARP protocol’s requirement for the first message to be initiated from

client to server. The implementation is released as part of MVAPICH2 [52].

Experimental Testbed: For all our experiments we have used a two node cluster

equipped with nodes having two quad core Intel Xeon 2.33GHz Nodes and a memory

of 4GB each. These systems are equipped with a Chelsio T3B 10 GigE PCI-Express

adapters (Firmware Version 4.2) plugged into an x8 PCI-Express slot. The Chelsio

adapters are connected through a 24 port Fulcrum 10 GigE evaluation switch [3]. The

121

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

1 2 4 8 16 32 64 128 256 512 1k 2k

Message Size

L
a

te
n

c
y

 (
u

s
)

Sockets RW MPICH2 MVPAICH2-R MVAPICH2-SR

0

200

400

600

800

1000

1200

1400

1 4 16 64 25
6 1k 4k 16

k
64

k
25

6k 1M 4M

Message Size

B
a

n
d

w
id

th
 (

M
B

/s
)

Sockets RW MPICH2 MVAPICH2-R MVAPICH-SR

Figure 8.11: Verbs level Performance of 10 GE/iWARP: (a) Latency and (b) Band-
width

MTU used for the path is 9000 bytes. The software stack we have used is OFED 1.2

rc4 and the operating systems is RH4 U4. MPICH2 1.0.5p3 is used for comparisons.

We present the performance numbers for the following: (i) MPICH2: the basic

MPI-2 implementation over TCP/IP [47], (ii) MVAPICH2-R: the MPI-iWARP im-

plementation using MVAPICH2’s RDMA fast path, (iii) MVAPICH2-SR: the MPI-

iWARP implementation without RDMA fast path and (iv) MVAPICH2-1SC: the

MPI-iWARP implementation with RDMA based direct one-sided operations enabled.

Complete set of MPI-level results showing the performance of MPI-iWARP are avail-

able in our work [63].

Figure 8.11(a) shows the basic latencies that we observe. The latency for the

verbs level RDMA write operation over the T3 adapter is about 6.49 microseconds

which is quite lower than the basic sockets over TCP/IP number which is about

22.3 microseconds. In thic context we also show the numbers for a popular RDMA

capable MPI library MVAPICH2 and compare it with sockets based implementation

of MPICH2. The corresponding latency for MPICH2 is about 27.84 microseconds

and the latencies for MVAPICH2-R and MVAPICH2-SR are 6.89 us and 8.43 us,

122

respectively. As we clearly observe, MVAPICH2-R adds a minimal overhead to the

basic RDMA write latency. The difference in the performance of MVAPICH2-R and

MVAPICH2-SR is the absence of RDMA fast path in the latter. Further we also note

that the latency observed by the MVAPICH2-R is about 75% better than the latency

observed by MPICH2. It is to be noted that large messages are bandwidth bound

and hence for clarity of presentation we show the latencies of only the small messages.

The peak bandwidth that we observe for our test bed is about 1287 Million Bytes

per second (MB/s) using the verbs level RDMA write operations. MPICH2 shows a

peak bandwidth of about 895 MB/s out of a maximum bandwidth of 1034 MB/s that

the sockets interface offers. The MVAPICH2-R and MVAPICH2-SR implementations

both offer a peak bandwidth of about 1231 MB/s. The performance gain that we

observe for MPI-iWARP variations over MPICH2 is about 37%. Figure 8.11(b) shows

the basic bandwidth numbers.

8.4 Evaluation of InfiniBand WAN

In this section we present a brief evaluation of various protocols over IB WAN.

Figure 2.3 shows our experimental setup for IB WAN.

8.4.1 Evaluation Methodology

In order to study and analyze the performance of IB communication and IO

middleware, we first perform a basic low-level evaluation of IB protocols. These

results provide a base line for understanding the results for higher level protocols.

We perform all the tests with varying WAN delays. We then evaluate and examine

the performances of IPoIB (with both RC and UD transports). For all these scenarios,

we perform basic tests followed by optimized tests such as parallel stream tests.

123

Experimental Testbed: In our experiments we use the following two clusters

connected by a pair of Obsidian Longbow XRs: (i) Cluster A consists of 32 Intel

Xeon dual 3.6 Ghz processor nodes with 2GB of RAM and (ii) Cluster B consists of

64 Intel Xeon Quad dual-core processor nodes with 6GB RAM. Both the clusters are

equipped with IB DDR memfree MT25208 HCAs and OFED 1.2 [37] drivers were

used. The OS used was RHEL4U4. The WAN experiments are executed using nodes

from each of the clusters as shown in Figure 2.3.

8.4.2 Verbs-level Performance

In this section, we use the IB verbs-level tests (perftests) provided with the OFED

software stack to evaluate the performance of the basic IB protocols in cluster-of-

clusters scenarios. The experiments evaluate the latency, bandwidth and bidirectional

bandwidth between the nodes of the two clusters shown in Figure 2.3.

The Obsidian Longbows are capable of providing full bandwidth at SDR rates.

We measure the bandwidth performance across our clusters (with increasing network

delays) using RC and UD transports, respectively.

 0

 200

 400

 600

 800

 1000

 1200

1K 256 64 16 4

B
a
n
d
w

id
th

 (
M

ill
io

n
 B

y
te

s
 /
 S

e
c
)

Message Size (Byte)

UD-no-delay
UD-10us-delay

UD-100us-delay
UD-1000us-delay

UD-10000us-delay

 0

 200

 400

 600

 800

 1000

 1200

4M1M256K64K16K4K1K 256 64 16 4

B
a
n
d
w

id
th

 (
M

ill
io

n
 B

y
te

s
 /
 S

e
c
)

Message Size (Byte)

RC-no-delay
RC-10us-delay

RC-100us-delay
RC-1000us-delay

RC-10000us-delay

Figure 8.12: Verbs level Throughput over IB WAN using (a) UD (b) RC

124

Verbs-level UD Bandwidth

In this experiment, we utilize perftests to measure the Send/Recv UD bandwidth

with varying network delays. We observe that the bandwidth seen in this context

is independent of the network delay. We achieve a peak bandwidth of about 967

MillionBytes/sec for a message size of 2k in all cases. This is primarily due to the

fact that UD bandwidth tests do not involve any acknowledgements from the remote

side and the data can be pushed at the full rate possible. Figure 8.12(a) which shows

the UD bandwidth performance, indicates that UD is scalable with higher delays. It

is to be noted that higher level protocols using UD transport will need to include

their own reliability/flow control mechanisms (such as message acks, etc.) which can

impact the performance.

Verbs-level RC Bandwidth

Figure 8.12(b) shows the bandwidth using RC transport mode, with varying delay

between the clusters. We observe a peak bandwidth of about 984 MillionBytes/sec

in all cases. However, the bandwidth observed for small and medium messages is

progressively worse with increasing network delays. i.e. in order to leverage the high

bandwidth capability of the IB WAN connectivity under higher network delays, larger

messages need to be used. This is due to the fact that RC guarantees reliable and

in-order delivery by ACKs and NACKs. This limits the number of messages that

can be in flight to a maximum supported window size. While using larger messages,

the pipeline can be filled with fewer messages, so it is seen that larger messages do

125

quite well with larger delays. Higher level applications can fill the message transmis-

sion pipelines well in several different ways including message coalescing, overlapping

multiple streams, etc. We observe similar trends with bidirectional bandwidth.

 0

 100

 200

 300

 400

 500

 10000 1000 100 10

B
a
n
d
w

id
th

 (
M

B
p
s
)

Delay (usecs)

64k Window
256k Window
512k Window

Default

 0

 100

 200

 300

 400

 500

 10000 1000 100 10

B
a
n
d
w

id
th

 (
M

B
p
s
)

Delay (usec)

1 stream
2 streams
4 streams
6 streams
8 streams

Figure 8.13: IPoIB-UD throughput: (a) single stream (b) parallel streams

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 10000 1000 100 10

B
a
n
d
w

id
th

 (
M

B
p
s
)

Delay (usecs)

4K MTU
16K MTU
64K MTU

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 10000 1000 100 10

B
a

n
d

w
id

th
 (

M
B

p
s
)

Delay (usec)

1 stream
2 streams
4 streams
6 streams
8 streams

Figure 8.14: IPoIB-RC throughput over WAN: (a) Single Stream (b) Parallel Streams

8.4.3 Performance of TCP/IPoIB over WAN

In this section, we aim to characterize the IPoIB throughput and provide insights

to the middleware and application design in the cluster-of-clusters scenarios. Four

main factors affect the bandwidth performance, i.e., MTU size, the TCP buffer size,

126

the number of parallel streams and the WAN delays. Therefore, we vary these pa-

rameters in the following experiments. Messages with size 2M are used in all the

experiments.

IPoIB UD Bandwidth

We evaluate the IPoIB bandwidth using the UD transport with varying WAN

delays in both the single-stream and the parallel streams tests. Also, we vary the

protocol window sizes in the single-stream experiment and the number of connections

in the parallel stream experiment. The results are shown in Figures 8.13 (a) and (b),

respectively. The MTU size used for IPoIB UD is 2KB.

From Figure 8.13(a), we see that larger bandwidth is achieved with larger window

sizes. It is well known that TCP needs larger window sizes in order to achieve good

bandwidth over large bandwidth networks. However, when the WAN delay increases,

we observe that the performance of all the cases degrades. It is to be noted that the

peak bandwidth that IPoIB UD achieves is significantly lower than the peak verbs-

level UD bandwidth due to the TCP stack processing overhead. Overall, the default

window size (>1M) in Figure 8.13(a) shows good performance in most cases. Thus,

we use this default window size in all of the following experiments.

In order to improve the overall bandwidth performance, we measure the parallel

stream bandwidth with various WAN delays as shown in Figure 8.13(b). We see

that by using more streams, significant improvements (up to 50%) are achieved in

the higher delay scenarios. We observe that the peak IPoIB-UD bandwidth can be

sustained even with the delay of 1ms using multiple streams. This is because of the

fact that higher number of TCP streams lead to more UD packets with independent

flow control (at TCP level), allowing for better utilization of the IB WAN long haul

127

pipe, i.e. there are more outstanding packets that can be pushed out from the source

at any given time frame.

IPoIB RC Bandwidth

For the IPoIB using RC transport mode, we also evaluate the single-stream and

the parallel stream bandwidth with various WAN delays. One significant advantage

of using RC transport mode for IPoIB is the that RC can handle larger packet sizes.

This has the following advantages: (i) larger packets can achieve better bandwidth

and (ii) per byte TCP stack processing decreases.

As expected in Figure 8.14(a), we see that the best bandwidth of 890 Million-

Bytes/sec is achieved with largest MTU size of 64KB (the maximum allowed for an

IP packet). This is significantly higher than the bandwidth achieved for IPoIB-UD.

That is because the IPoIB-UD test has an MTU size of just 2KB, which means that

more packets need to be transferred for the same amount of data and correspondingly

more overhead is introduced. In addition, the number of packets required to utilize

the WAN link bandwidth fully is significantly higher. On the other hand, we also

observe that the bandwidth drops sharply with the longer WAN delay (i.e., larger

than 100 us) in this case. This drop corresponds to the drop of verbs level bandwidth

for 64K message sizes (at 1000us delay) as seen in Figure 8.12(b) as well.

As in the earlier section, we measure the parallel stream bandwidth of IPoIB-RC.

The results are shown in Figure 8.14 (b). We observe the similar trend that with

two or more connections, the bandwidth performance can be better sustained across

a wider range of cluster separations. Hence, applications with parallel TCP streams

have high potential to maximize the utility of the WAN links.

128

8.5 Summary

In this chapter, we have presented our network emulator for cluster-of-clusters.

Further, we have evaluated several WAN scenarios including IB WAN and iWARP

with Ammasso and Chelsio NICs. Our results have shown that applications usually

absorb smaller network delays fairly well. However, many protocols get severely im-

pacted in high delay scenarios. Further, we have shown that communication protocols

can be optimized for high delay scenarios to improve the performance. In particu-

lar, the benefits of RDMA in terms of communication latency and communication

progress are significantly diminished on long delay links, while CPU utilization re-

mains an important benefit. Hence, our experimental results show that optimizing

communication protocols (i.e. WAN-aware protocols), transferring data using large

messages and using parallel data streams (upto 50% improvement for high delay

networks) is necessary for the cluster-of-cluster scenarios.

129

CHAPTER 9

ADVANCED DATA TRANSFER SERVICE

Ever increasing needs in High End Computing (HEC) and cost effectiveness of

high performance commodity systems have led to massive deployments of highly

capable systems on a global scale. This tremendous increase in compute and storage

capabilities has necessitated bulk data transfers among various storage systems and/or

compute systems that are often physically separated. Typical uses for such large scale

data transfers include distribution of scientific data-sets, content replication, remote

site backup, etc. Traditionally, File Transfer Protocol (FTP) [69] has been used for

handling such bulk data transfers. In this chapter, we present our advanced data

transfer service that utilizes zero-copy transfers to achieve high performance.

9.1 Background and Related Work

Large data transfers have traditionally been explored in the context of FTP. While

FTP provides the basic data transfer functionality, it also suffers from several critical

performance overheads. In particular, since FTP is based on TCP/IP, it inherits the

fundamental limitations imposed by TCP/IP itself, such as high CPU utilization,

multiple memory copies and limited peak bandwidths achieved over high delay links.

Researchers in [11, 12] have looked at several improvements to FTP for optimizing

130

performance. Techniques such as TCP tuning, striped access, persistent data connec-

tions, etc. have been proposed for providing improved performance. However, these

approaches still bank on TCP/IP (along with its limitations) for data-transfers and

fail to achieve good performance for high-delay, high-bandwidth links.

In order to drive higher bandwidth performance, approaches utilizing “TCP un-

friendly” mechanisms such as multi-streaming, FTP over UDP or SCTP, etc. [21, 77,

50, 11] have recently gained prominence. Even though these approaches achieve bet-

ter bandwidth as compared to TCP based approaches, they still suffer from multiple

memory copies and high CPU overheads.

On the other hand, a rapid growth of modern high performance networking inter-

connects, such as InfiniBand (IB) and 10 Gigabit Ethernet/iWARP, have revolution-

ized the communication capabilities of modern systems. As described earlier, with

the advent of InfiniBand WAN and iWARP, communication libraries are now capable

of zero-copy communication over WAN. This presents the scope for designing high

performance communication protocols in wide area networks as well. However, in

order to maximize the possible benefits of the IB WAN capabilities, the data trans-

fer mechanisms required for FTP need to be designed carefully, which presents a

considerable challenge.

In this chapter, we present a novel zero-copy approach for bulk data transfers

across IB WAN. In our approach, we design a high performance Advanced Data

Transfer Service (ADTS) that utilizes zero-copy capabilities of modern networks to

achieve scalable and efficient data transfers. We leverage the performance of the

ADTS layer to design a high performance FTP client/server library. We further

131

investigate the issues involved and study the benefits of our approach in various IB

WAN scenarios.

9.1.1 File Transfer Protocol

In this section we provide a brief background on the File Transfer Protocol (FTP).

FTP [69] was initially proposed to promote file sharing and the implicit use of

remote computers. It is an application level protocol used to copy files between

the local machine (user) and the remote machine (server) over the network, and

fundamentally relies on the TCP/IP protocol. The typical FTP model, as shown in

Figure 9.1, includes control connection and data connection between the user and the

server FTP processes for communicating the control commands and the data (file)

respectively. The FTP server plays a passive role of listening on the specific port

when started, and the user initiates a connection which may involve negotiation of

authentication and certification with the server. After that, control commands can

be transferred over the connection. The data connections are established as needed

for the data transfers.

Through the years since the release of the protocol, FTP has seen a variety of

extensions and improvements [6, 56, 55, 11, 77, 21, 50], largely due to the explosive

development of Internet and data-intensive applications. This trend is expected to

grow with the availability of newer networking technologies and other related ap-

proaches.

132

Performance Limitations of Existing FTP Mechanisms

In this section we briefly discuss the main limitations2 in the communication

performance of popular FTP designs: (i) the standard FTP over TCP/IP, (ii) FTP

over UDP and (iii) FTP over SCTP.

FTP over TCP/IP: TCP/IP based data transport imposes certain well known

limitations on raw communication performance. The fundamental limitations in the

current context are as follows: (i) TCP’s inability to achieve good bandwidth for high-

delay, high-bandwidth links, (ii) high CPU utilization required for TCP processing

and (iii) multiple memory copies causing high memory bandwidth utilization and

increased end to end latency. These limitations are inherited by all FTP transfers

based on TCP as well.

In order to address the first limitation, researchers have proposed a multi-stream

approach. Such an approach requires multiple TCP connections, requiring addi-

tional resources at the server, thereby limiting the scalability of the server. Further,

multi-stream approaches (along with UDP based data transfers) are considered ”TCP

Unfriendly” [50]. The use of TCP Offload Engines (TOE) have been proposed to al-

leviate the second limitation. However, this approach still incurs overheads including

multiple memory copies and hence higher end-to-end latencies.

FTP over UDP/IP: UDP based data transfers suffer from both (i) high CPU uti-

lization and (ii) high memory bandwidth utilization due to multiple memory copies.

2It is to be noted that researchers have identified certain limitations such as having a separate
control and data connection, sequential nature of command exchanges, etc. in the FTP standard.
These issues are orthogonal to our approach and will not be addressed in this chapter. The main
focus of our approach is to alleviate communication performance overheads.

133

However, UDP based transfers are capable of achieving higher bandwidths as com-

pared to TCP due to lack of flow control and congestion control for UDP transfers.

FTP mechanisms based on UDP inherit all its limitations.

FTP over SCTP/IP: Data transfers using SCTP (Stream Control Transmission

Protocol)[7] incur limitations similar to the those mentioned above for TCP/IP. The

primary benefit of utilizing SCTP is the capability of managing multiple streams

without much of the overhead as seen for TCP. In particular, high bandwidth through

multiple streams can be achieved with fewer connections. However, FTP based on

SCTP also suffers from the above mentioned CPU utilization overhead and memory

copy overheads.

In this chapter, we address these limitations by leveraging the zero-copy capabili-

ties of modern interconnects. Our design alternatives and optimizations are presented

in the following sections.

User
Interface

User
DTP

User PI

Server
 DTP

Server PI

File System File System

FTP Commands

FTP Replies

Data

Connection

User−FTPServer−FTP

User

Figure 9.1: Basic FTP Model (Courtesy: RFC 959 [69])

134

9.2 Proposed Advanced Data Transfer Service

In this section we describe the details of our zero-copy design. In particular, we

present our high performance data transfer service layer that is used to provide FTP

services to the applications. In the following subsections we present the main design

alternatives followed by the design details of the overall FTP library.

9.2.1 Design Alternatives

In order to enable zero-copy data-transfers, we consider the following two alter-

natives: (i) Memory semantics using RDMA and (ii) Channel semantics using Send

and Receive.

RDMA based data-transfer requires allocating and registering buffers on both

the source and the destination nodes. The data-transfer is initiated from the sender

side by specifying the precise destination target buffer address. It is known that

RDMA based approaches [53] achieve better latencies. However, RDMA based ap-

proaches have two significant drawbacks. Firstly, the target RDMA buffers need to

pre-allocated, registered and the information (including addresses and memory regis-

tration keys) need to be communicated to the source process before each buffer can

be used. Further, the flow control for the data-transfer using RDMA is very explicit.

i.e. the sender can initiate data-transfers only after explicit notification of buffer

availability on the remote target. Secondly, since RDMA does not involve remote

node CPU in data-transfer, notifying the completion of each data-transfer requires

additional mechanisms. In particular, additional messages based on send-recv (or

RDMA-write with immediate) are needed for handling the remote notification, which

adds a further overhead. And finally, in the case of WAN links, the latency benefits

135

of RDMA seen for small messages are dominated by the actual network delay. Hence

RDMA does not see any specific benefits over send-recv in WAN scenarios. These

issues present critical constraints for data-transfers over WAN links.

On the other hand, send-recv based mechanisms show good benefits. Firstly,

zero copy benefits of send-recv mechanism are identical to those seen with RDMA.

i.e. the remote data can be directly received in the FTP buffers, which can then be

written to the destination file. Secondly, send-recv mechanisms present opportunities

for enabling flow control mechanisms. For example, with the use of SRQ [14], the

receiver can post buffers when needed automatically. Such a capability eliminates

the need for strict (or explicit) flow control for the data-transfers. This benefit can

be quite significant on WAN links because the sender is not throttled due to lack of

buffers on the remote node. In addition, as mentioned in Section 2.1.2 the InfiniBand’s

send/recv communications can be used over both the RC and UD transports. Due to

these benefits, we utilize channel semantics (send/recv) for all WAN communication

protocols3.

9.2.2 Overview of the Proposed ADTS Architecture

In order to provide robust and efficient data transfers over modern WAN inter-

connects, in this chapter we propose the Advanced Data Transfer Service (ADTS).

Figure 9.2 shows the main components of the ADTS layer.

As mentioned earlier, several high performance clients can utilize zero-copy mech-

anisms for data transfers. Once the type of channel to be used is negotiated by the

3It is to be noted that RDMA operations provide one-sided data-transfer capabilities which can
be highly beneficial for certain kinds of applications. As mentioned in the previous chapter, in this
context zero-copy send/recv based mechanisms are more beneficial

136

Interconnects

ADTS

Flow Control

Interface

RegisterationMemory

User
Prefork

Server

Control
Connection

Management

File SystemBuffer/File

Management

Persistent
Session

Management

Data
Connection

Management

Channel
UDP/IPTCP/IP

Channel

Network10GigE / iWARPInfiniBand

Data Transport Interface

Modern WAN

Channel
Zero Copy

Interface

UserFTP

Figure 9.2: Overview of the Proposed ADTS Architecture

client and the server, the Data Connection Management component shown in Fig-

ure 9.2, initiates a connection to the remote peer (based on the negotiated PORT,

PASV and/or TPRT commands) on either the zero-copy channel, the TCP/IP chan-

nel or the UDP/IP. Transport channels can dynamically be selected by the ftp server

processes on a per connection basis to handle different kinds of clients. Thus improv-

ing robustness and interoperability. In addition to zero-copy, TCP/IP and UDP/IP

channels, the Advanced Transport Interface provides scope for enabling support for

other emerging transport protocols for next generation architectures.

We present our zero-copy channel design and the possible optimizations in the

following sections.

137

Zero-Copy Channel

Once the client and server negotiate the use of zero-copy (detailed in Section 9.3)

and the appropriate connections are setup by the Data Connection Management com-

ponent, the channel is marked for zero-copy data transfers. However, in order to

utilize zero-copy operations (send/recv), the client and the server need to handle flow

control and buffer management.

Each buffer that the underlying layer (IB or iWARP) accesses needs to be reg-

istered and pinned in memory. This requirement adds a significant overhead to the

actual data transfer. In order to alleviate this problem, the Buffer and File Manage-

ment component keeps a small set of pre-allocated buffers. The data that needs to be

transmitted is first read into these buffers while additional buffers are being allocated

and registered as needed. Once the data is ready and the buffers are registered, the

data transfers are initiated from these buffers. The buffers that are allocated on-

demand are unregistered and released on completion of the complete data transfer.

Unlike the sockets interface where the underlying kernel TCP/IP stack performs

the flow control, the ADTS needs to perform flow control for the buffers being sent

out. i.e. data cannot be sent out unless the sender is assured of buffer availability on

the receiver. In our design, we perform our flow control on the receiver side (using

SRQ) as mentioned earlier in Sections 2.1.2 and 9.2.1. This enables the ADTS to

push the data out of the source node at a high rate.

138

Performance Optimizations

In order to optimize the performance of data transfers over ADTS, we present

the following optimizations: Persistent Sessions and Memory Registration Cache,

Pipelined Data Transfers.

Persistent Sessions and Memory Registration Cache: While we utilize a set of

pre-allocated buffers to speed up processing, these buffers need to be registered for

each use. This in turn impacts the performance. Existing RDMA based libraries

such as MVAPICH [66], amortize the registration cost by avoiding multiple regis-

tration/deregistration calls for multiple transfers by using the same buffers. This

technique of maintaining registered buffers is popularly known as registration cache.

In typical FTP data transfers, each transferred file is transmitted on a different

data-connection. Due to this, memory registration caching would not help signifi-

cantly in our case. Further, such an approach would also incur multiple data connec-

tion setup costs as well.

In order to alleviate these multiple data-connection costs, in our design we enable

persistent data-sessions that keep data connection and the related buffer associations

alive during the transfer of multiple files. The maximum number of files to be trans-

mitted on a given connection is negotiated in advance and the connection is not closed

until the specified number of files are transferred or the connection becomes idle. This

approach also allows for an efficient use of buffers and memory registrations which

boosts the performance significantly.

Pipelined Data Transfers: In order to maximize the utility of both the network

bandwidth and the local disk bandwidth (or the bandwidth of the local file system

being used), the ADTS layer is designed with two threads. The network thread deals

139

with processing of network related work queues, completion notifications, flow control

and memory registrations while the disk thread handles the reads and writes from

the disk. With this multi-threaded capability, all data transfers are packetized and

pipelined and hence increased performance is obtained.

9.3 Design of FTP over ADTS

Figure 9.2 shows the basic architecture of our FTP client/server library (FTP-

ADTS). In our approach we utilize the low-overhead zero-copy ADTS layer to provide

high performance FTP transfers. The FTP Interface deals with the rest of the features

needed for the FTP library. This interface provides a basic client user interface

to enable all client interactions. The other main components are described in the

following sections.

FTP Control Connection Management

Based on the user information, the client FTP engine initiates a sockets based

control connection to the remote FTP server. This connection is used to relay all

control information such as FTP commands and error messages. In addition, it is also

used to negotiate the transport protocols and modes to be used for the data-transfers.

In particular, the client negotiates with the server on Active/Passive (PORT/PASV

commands in the FTP specifications [69]) mode connections.

Further, in our FTP client/server library we negotiate the use of zero-copy channel

(or TCP/UDP channels) as well. Hence, clients that are capable of zero-copy transfers

with the servers can benefit from higher performance. To enable this negotiation, we

require the zero-copy enabled client to send an additional command TPRT (Transport

140

PRoTocol) advertising its transport preference. Once this negotiation is complete,

the ATDS layer initiates the appropriate data connection.

Parallel Prefork Server

Multiple parallel accesses to the FTP server is a common scenario in most large

data-centers. In order to efficiently support such parallelism, we design our FTP

server as a multi-process server. The main FTP server daemon forks multiple pro-

cesses that handle the client requests. In order to handle bursts of requests, our

server maintains a small pool of pre-forked processes that handle burst of requests

efficiently.

9.4 Performance Evaluation

In this section, we present the experimental results demonstrating the capabilities

of our design. We evaluate the performance of our FTP designs in both LAN and

WAN scenarios. We further measure the overheads of our approach and compare

them with existing popular approaches to analyze the performance and scalability

aspects of our design.

In a typical scenario, the primary bottleneck for large file transfer is disk I/O.

In order to demonstrate the performance benefits of our design, we use RAM disks

for all data storage purposes. Please note that modern HEC systems usually employ

the use of high performance parallel or distributed file systems and advanced data

storage technologies such as RAID, to obtain improved I/O performance.

Experimental Setup: In our experiments we use a cluster consisting of 64

Intel Xeon Quad dual-core processor nodes with 6GB RAM. The nodes are equipped

with IB DDR ConnectX HCAs with OFED 1.3 [37] drivers. The OS used was

141

Figure 9.3: FTP File Transfer Time in LAN: (a) FTP (get) and (b) FTP (put)

RHEL4U4. These nodes are also equipped with Chelsio T3b 10 Gigabit Ether-

net/iWARP adapters. We use the GridFTP and FTP-UDP (FTP using the UDP/IP

channel in ADTS) as the base case for our performance comparisons. The connectiv-

ity for TCP and UDP are provided by IPoIB-RC and IPoIB-UD, respectively. The

nodes in the cluster are divided into Cluster A and Cluster B and are connected with

Obsidian InfiniBand WAN routers as shown in Figure 2.3.

9.4.1 Performance of FTP in LAN Scenarios

This experiment shows the basic performance improvement achieved by our FTP-

ADTS as compared to FTP-UDP and GridFTP in low-delay, high-bandwidth scenar-

ios. We evaluate the file transfer time of both file put and file get operations.

GridFTP and FTP-UDP are used for the TCP/IP and UDP/IP cases, respectively,

and FTP-ADTS is used for the zero-copy cases (IB-DDR4 and iWARP).

4It should be noted that currently the Obsidian Longbows can only support the packets at SDR
rate, However, in LAN scenarios our cluster is capable of DDR speeds.

142

Figure 9.3(a) compares the client-perceived file transfer time of get operation

with varying file sizes. We can see that our design (FTP-ADTS) achieves signifi-

cantly better performance for larger file sizes. The FTP-ADTS over IB presents an

improvement of by up to 95% and 181% as compared to GridFTP and FTP-UDP,

respectively. Similarly FTP-ADTS over iWARP also outperforms these two cases

by huge margins. This is expected since the zero-copy operations that FTP-ADTS

employs has much lower latency than the IPoIB operations. We also observe that

GridFTP does not perform well for small file sizes, but does better as the file sizes

increase. This confirms what has been indicated about GridFTP in [81]. We can ob-

serve the similar trends for put operations as shown in Figure 9.3(b). Also, note that

the performance of IPoIB itself limits the performance of the FTP operations using

it. GridFTP and FTP-UDP are capable of saturating the available bandwidths in

LAN scenarios, however, at the cost of high CPU utilization and memory bandwidth

usage. We study this aspect further in the following sections.

Figure 9.4: FTP File Transfer Time in WAN (get): (a) 32 MBytes and (b) 256
MBytes

143

9.4.2 Performance of FTP in WAN Scenarios

In order to study the impact of our design in WAN scenarios, we evaluate the

performance of basic FTP operations with server and client running on a pair of nodes

connected by a pair of Obsidian routers. The distance between them is emulated by

varying the WAN delays (5us corresponds to one km of wire length).

Basic Performance

We compare the performance of our design, GridFTP and FTP-UDP with varying

WAN delays of 0 us (no delay), 10 us, 100 us, 1000 us and 10000us (corresponding

to the distance of 0 km, 2 km, 20 km, 200 km and 2000 km). Figure 9.4 presents

the time for transferring a 32 MByte file and a 256 MByte file. It is obvious that our

FTP outperforms the GridFTP and FTP-UDP especially for data transfers over high

delay networks. We observe that the FTP-ADTS sustains performance for larger

WAN delays quite well, while the GridFTP shows a steep latency increase when

the WAN delay is 10000 us. In the high delay scenario, our FTP delivers six times

better performance, which shows significant promise for our FTP-ADTS design. The

improvement is not only due to the underlying zero-copy operations being faster

than the TCP/UDP, but also because the network throughput is the bottleneck for

IPoIB over WAN, where issues such as RTT time, MTU size and buffer size can

severely impact the performance. Another interesting observation is that here the

FTP-UDP performs better than GridFTP, which is contrary to the results in the

LAN scenario as shown earlier. This is due to the well-known trait that UDP can

achieve good performance on high-bandwidth, high-latency networks in which TCP

has fundamental limitations [38].

144

Detailed Analysis

In order to demonstrate the fundamental reasons that explain the above observa-

tions, we further carried out the following two experiments.

The first experiment is to measure the peak bandwidth of the WAN link with

different transmission protocols. Figure 9.5 shows the results of IPoIB (including

TCP/IP and UDP/IP) and verbs (including verbs-RC and verbs-UD) with increasing

network delays. We can see that the IB verbs achieves the highest bandwidth and

it sustains very well through the whole range of delays (WAN distance), while the

TCP/IP bandwidth drops fast with the increasing delay, which in turn jeopardizes

the GridFTP performance. On the other hand, although the UDP/IP bandwidth

with smaller delays is lower than the TCP/IP bandwidth, it shows no significant

degradation as the delay increases, which even makes it better than TCP/IP when

the delay is high (> 10000 us). This is because that UDP can swamp the network by

firing many packets, but TCP is limited by the congestion control and flow control

that constrains it from using the available bandwidth in high bandwidth, high latency

scenarios. (Please note that researchers have shown that TCP bandwidth over longer

pipes can be improved by using techniques such as multiple parallel streams. While

this improves the bandwidth performance of the application, this also needs additional

resources at the end nodes. We intend to study the impact of parallel zero-copy

protocol and parallel TCP/IP streams in future.)

The second experiment is to characterize the impact of transmitted packet size on

bandwidth performance. Usually, larger packet sizes are preferred as they can make

more use of the available link bandwidth. We claim that one of the reasons for the

benefits of our design is that very large packet size (i.e. 1 MByte) can be used in the

145

zero-copy send-recv (or RDMA) based approaches. Comparatively, the largest packet

size that IP can use is 64 KByte (IPv4). In this experiment, we vary the packet size

of IB RC Verbs bandwidth test (which is used in our design) with different WAN

delays. From the results shown in Figure 9.6, we observe that the bandwidth for

small and medium messages is progressively worse with increasing network delays.

i.e. in order to leverage the high bandwidth capability of the IB WAN connectivity

under higher network delays, larger messages need to be used. This demonstrates

that some of the benefits of our design can be attributed to the use of large packet

sizes. Further, we also show that IB WAN is currently not ideally suited for IP traffic

(IPoIB), especially over high delay links.

Figure 9.5: Peak Network Bandwidth with Increasing WAN Delay

9.4.3 CPU Utilization

TCP and UDP based communication libraries often suffer from the added CPU

utilization for TCP(UDP)/IP stack processing. In basic implementations the FTP

sender reads the data into its buffers and then sends this using the sockets interface.

146

 0

 200

 400

 600

 800

 1000

 1200

4M1M256K64K16K4K1K 256 64 16 4

B
a
n
d
w

id
th

 (
M

ill
io

n
 B

y
te

s
 /
 S

e
c
)

Message Size (Byte)

RC-no-delay
RC-10us-delay

RC-100us-delay
RC-1000us-delay

RC-10000us-delay

Figure 9.6: InfiniBand RC Bandwidth with Increasing WAN Delay

Figure 9.7: End Node CPU Utilization (a) Server; (b) Client

147

This would then be copied into the kernel’s socket buffer before being sent out to the

network. Similarly, the receiver would have to get this data into its kernel’s internal

socket buffers, then into its own buffers before it can be written to the destination

disk. While TCP-based FTP implementations optimize the sender side overhead by

utilizing the sendfile system call, the receiver side overhead is usually unavoidable.

Figures 9.7 (a) and (b) show the server and client CPU utilization, respectively,

of the FTP-ADTS, GridFTP and FTP-UDP while performing multiple back-to-back

large file put operations. The y-axis shows a normalized CPU utilization metric that

represents the total percentage of CPU time being used on our 8-core system.

As expected, the GridFTP and FTP-UDP utilizes a significant amount of CPU

on both the server and client for performing the two copies. On the other hand,

our ADTS based approach has much lower CPU utilization, due to the use of zero-

copy protocol which eliminates the need for additional copies on both the sender

and the receiver. Further, we observe that the CPU utilization of GridFTP client

is significantly lower. This demonstrates the benefits of using sendfile to reduce one

memory copy on the client side. FTP-UDP does not show such trends as it can not

use this optimization in UDP. Overall, our approach requires fairly smaller amounts

of CPU time for all file sizes on both the server and client. This shows that our

zero-copy ADTS design requires less CPU per request even at very high data rates

and hence is more scalable than the corresponding IPoIB based designs.

9.4.4 Performance of Multiple File Transfers

In several scenarios such as site replication, mirroring, etc. FTP is used to transfer

multiple individual files. Such scenarios present opportunities for several performance

148

optimizations (including ones presented in Section 9.2.2). In this section, we present

the following two experiments: (i) FTP performance for content replication and (ii)

Analysis of performance benefits due to ADTS optimizations.

FTP Performance for Content Replication

In order to demonstrate the benefits of our design, we measure the performance of

FTP-ADTS and FTP-UDP using a zipf [86] trace. This trace has a high α value with

an average file size of about 66 MB. The average amount of time taken to replicate

these traces over WAN is shown in Figure 9.8. We can see that the FTP-ADTS

speeds up the data transfer by up to 65%. This demonstrates that the FTP-ADTS is

a promising candidate for FTP design for the zero-copy-enabled networks especially in

the long-distance WAN scenarios. These benefits are in addition to the CPU benefits

mentioned earlier. We observe that the total transfer time in both cases increases for

very large network delays. This is due to the fact that the zipf trace used consists of

a large number of requests for smaller sized files.

Figure 9.8: Site Content Replication using FTP

149

Benefits of the Proposed Optimizations

In this experiment we break up the performance of the FTP-ADTS while transfer-

ring a set of small files into Connection time (Conn) and Data Transfer time (Data).

Figure 9.9 shows this breakup of the per transfer performance for FTP-ADTS with

the following two cases: (i) Basic: with all optimizations disabled and (ii) Opt : with

all optimizations enabled.

We clearly observe the following two trends: (i) pipelined data transfers, buffer

reuse and memory registration caches improve the performance significantly (upto

55% improvement for the transfer of 16 files of size 1MB) and (ii) the use of persistent

sessions improves the connection setup time considerably. i.e. the cost of initiating

the connections is incurred only once instead of incurring on a per transfer basis.

Figure 9.9: Benefits of ADTS Optimizations

150

9.5 Summary

FTP has been the most popular method to transfer large files for data-staging,

replication, and the like. While existing FTP mechanisms have improved gradually

with newer networks, they still inherit the fundamental limitations imposed by the

underlying networking protocol TCP/IP. This includes limitations on the achievable

bandwidth and the amount of CPU utilization that TCP/IP causes on the end-

nodes, thereby limiting both the performance and scalability of such systems. On

the other hand modern WAN capable interconnects such as InfiniBand WAN and 10

Gigabit Ethernet/iWARP have enabled the use of high performance RDMA capa-

bilities in these scenarios. In this chapter we have presented an efficient zero-copy

Advanced Data Transfer Service (ADTS) that has enabled a high performance FTP

design (FTP-ADTS) capable of efficiently transferring data across WANs. Further,

we reduced the CPU utilization required for the data-transfers and demonstrated

significantly higher FTP server scalability.

In our experimental results, we have observed that our FTP-ADTS design out-

performs existing approaches by more that 80% in transferring large amounts of data.

In addition, we have utilized the WAN emulation capabilities of Obsidian InfiniBand

WAN routers to study the impact of our designs in a wide range of WAN scenarios.

We also observed that our approach achieves peak transfer rates at significantly lower

(up to 6 times) CPU utilization.

Our studies have demonstrated that the IB WAN-based solutions are highly ben-

eficial in WAN scenarios as well and can enable designing of next generation high

performance parallel and distributed environments in a radically different manner.

151

CHAPTER 10

CONCLUSIONS AND FUTURE RESEARCH
DIRECTIONS

10.1 Summary of Research Contributions

In this thesis, we have demonstrated various benefits that modern interconnects

like InfiniBand and 10 Gigabit Ethernet/iWARP bring to data-centers. The high

performance and scalable services proposed are beneficial to a wide gamut of data-

center applications and scenarios. Specifically, we have demonstrated how we can

use the advanced features of modern interconnects to improve the performance of

existing and emerging data-center scenarios. The following are the broad research

contributions:

• Our research has demonstrated the feasibility of developing high performance

system services based on the advanced capabilities of modern interconnects. The

various designs proposed in this thesis are also intended to expose the design

space that the advanced features of modern interconnects, such as RDMA and

Remote Memory Atomics, present for distributed system services.

152

• Traditional communication protocols over WAN are limited largely to TCP/IP.

Our study has demonstrated the benefits and limitations of WAN-based cluster-

of-cluster environments. Our research will have a great impact on such current

and next-generation scenarios with modern interconnects. In particular, the

proposed designs will significantly impact the design of applications for the

rapidly emerging distributed and hierarchical datacenter scenarios.

• Although we have concentrated on web-caching and data-centers, many of our

research contributions are directly applicable to other scenarios like file-systems,

grid computing, etc. Hence, our work is expected to have impact in those areas

as well.

Below, we summarize the specific contributions and results of this dissertation.

10.1.1 Distributed Lock Management using Remote Atomic
Operations

In Chapter 4, we presented a novel approach for efficient distributed lock manage-

ment. We utilized the remote atomic operations provided by InfiniBand to provide

one-sided mechanisms to enable both shared mode locking and exclusive mode lock-

ing. We discussed limitations of existing approaches and the benefits of our designs.

By distributing the lock management related workload appropriately, we achieved

fair load balancing among participating nodes. Further, we demonstrated the advan-

tages of our design with detailed evaluation. Our results showed that our approaches

consistently outperform existing approaches for distributed locking over InfiniBand.

153

10.1.2 Dynamic Content Caching with Strong Cache Co-
herency

In Chapter 5, we presented a highly efficient mechanism for dynamic content

caching. We extensively utilized RDMA Read operations to obtain cache validity

information in real-time to enable strong cache coherence required for several modern

applications. Our results demonstrate a significant performance improvement over ex-

isting approaches. Further, we also demonstrate excellent scalability of our approach

under loaded conditions that datacenters often encounter. Our results show an im-

provement of upto 10 times in the overall throughput (and upto 2 times improvement

for average response time) achieved under loaded circumstances.

10.1.3 Dynamic Content Caching for Complex Objects

In Chapter 6, we have presented an extended approach for dynamic content

caching in order to handle complex web-objects. Modern applications often gen-

erate complex objects with multiple dynamic components. We discussed the issues

involved in providing strong cache coherency for such complex objects. We have

evaluated the various tradeoffs involved in providing such caching capabilities. Our

results have demonstrated an improvement of upto 1000% over existing approaches.

10.1.4 Efficient Multi-Tier Cooperative Caching

In Chapter 7, we have studied the various alternatives for enabling cooperative

caching of web objects. In particular, we have discussed several optimizations to

maximize system resource usage and overall performance. We evaluated the effect of

selective automated replication of cached data to achieve maximum performance ben-

efits. Further, we have explored the possibility of utilizing system-wide free resources

154

for caching in terms of possible benefits and involved overheads. Our experimen-

tal results showed an improvement of upto 35% over existing cooperative caching

approaches.

10.1.5 WAN Framework and High Performance Protocols

over WAN

In Chapter 8, we have presented a framework for study of high performance com-

munications over WAN. We have analyzed various mechanisms for emulating WAN

characteristics for performing accurate higher level evaluations. We studied the per-

formance characteristics of both IB WAN and iWARP using a multitude of hard-

ware and software environments. Based on our analysis of such environments, we

isolated the benefits and overheads of high performance protocols when used over

WAN. We observed that the latency oriented benefits of RDMA are largely dimin-

ished in the context of WAN communications. However, zero-copy data transfers and

asynchronous communication benefits still play an important role in such scenarios.

10.1.6 Efficient Data Transfers over WAN

In Chapter 9, we have presented the design of high performance data transfer

capabilities (ADTS) across IB WAN. We have explored the possibility of using zero-

copy communications, including RDMA and Send/Recv, for WAN data transfers.

We have studied the tradeoffs involved in such communications and have designed an

extended FTP client/server architecture that leverages our ADTS service to achieve

efficient data transfers over IB WAN. Our experimental results showed significant

performance benefits (upto 80% as compared to FTP over TCP/IP) over IB WAN

interconnects.

155

10.2 Future Research Directions

Deployment of cluster based datacenters has long become the main stream ap-

proach for several applications. However, with the rapid advancement in interconnect

and system technologies, many interesting research directions are open to be pursued.

In particular, the recent WAN capability of popular RDMA interconnects is present-

ing great scope for new research directions. Below we describe some of these areas of

future research.

10.2.1 Zero-copy WAN protocols for HTTP

HTTP has been the single most popular data transfer protocol over WAN. Web

clients access content by communicating with servers over the HTTP protocol. In or-

der to accommodate for wide portability, HTTP is primarily structured over TCP/IP

communications. However, this can lead to known limitations in server scalability

and sub-optimal communication performances.

While high performance communication protocols are being widely used in LAN

scenarios, recent advances in WAN technologies have enabled the use of these high

performance protocols across WAN links. InfiniBand WAN and 10GE/iWARP have

enabled the use of RDMA and other zero copy mechanisms over wide area networks.

In this context, the use of zero-copy high performance protocols need to be explored

for HTTP servers. While such use of these protocols for HTTP can be beneficial,

appropriate extensions to the HTTP protocol need to be explored, defined and stan-

dardized.

156

10.2.2 Caching and Content Dissemination with Internet Prox-
ies

Web caching has been an important technique for improving web server perfor-

mance. Traditionally, Internet proxy servers have been used to provide certain levels

caching capabilities for web users. However, the usage of such servers is limited and

these servers are often coupled loosely with the backend web-servers. With the WAN

capabilities of modern interconnects such as InfiniBand and 10GE/iWARP, high per-

formance protocols can now be used in the context of these Internet proxy servers.

Several aspects of caching such as providing coherency and large scale cooperation

among Internet proxies, can now be explored and need to be designed in order to

handle the requirements of the next generation datacenters and web-applications.

Further, with the added capabilities of modern interconnects, aggressive strategies

for content dissemination are feasible and need to be studied.

10.2.3 Exploiting Network QoS features to Boost Perfor-
mance

InfiniBand includes mechanisms to provide network-level QoS. In particular, the

traffic in the network can be effectively prioritized using the SL-VL mapping mecha-

nism. While providing user-level QoS is the usual goal, mechanisms like segregating

traffic into control and data packets and prioritizing them appropriately at the net-

work level are also possible. Further, modern generation IB NICs provide additional

QoS capabilities including best latency guarantees, best bandwidth guarantees, etc.

that can be exploited for improving the performance of the data-center services.

157

For example, the bulk of the data traffic in data-centers uses TCP/IP. During

high network load, critical communication messages of the various data-center ser-

vices (such as a lock request) can be delayed by the bulk data-transfer. Providing

appropriate QoS guarantees to such messages might lead to better overall perfor-

mance. i.e. a lock request message could be guaranteed best possible latency.

Detailed investigation is needed in order to ascertain the feasibility of exploit-

ing InfiniBand’s QoS mechanisms in enabling highly efficient communications for the

framework providing the data-center services. Further the effect of this traffic segre-

gation and prioritization on overall performance needs to be studied.

158

BIBLIOGRAPHY

[1] Ammasso, Inc., www.ammasso.com.

[2] ConnectX: 4th Generation Server and Storage Adapter Architecture.
http://www.mellanox.com/.

[3] Fulcrum Microsystems. http://www.fulcrummicro.com/.

[4] InfiniBand Trade Association. http://www.infinibandta.com.

[5] MySQL - Open Source Database Server. http://www.mysql.com/.

[6] Secure File Transfer Protocol (SFTP). www.openssh.com.

[7] Stream Control Transmission Protocol (SCTP). www.sctp.com.

[8] Virtual Interface Architecture Specification. http://www.viarch.org.

[9] Marc Abrams, Charles R. Standridge, Ghaleb Abdulla, Stephen Williams, and

Edward A. Fox. Caching proxies: limitations and potentials. In Proceedings of
the 4th International WWW Conference, Boston, MA, December 1995.

[10] M. Aldred, I. Gertner, and S. McKellar. A distributed lock manager on fault

tolerant MPP. hicss, 00:134, 1995.

[11] W Allcock. GridFTP: Protocol Extensions to FTP for the Grid. Global Grid

ForumGFD-R-P.020,2003.

[12] M. Allman and S. Ostermann. Multiple Data Connection FTP Extensions. Tech-

nical report, Ohio University, 1996.

[13] The Internet Traffic Archive. http://ita.ee.lbl.gov/html/traces.html.

[14] Infiniband Trade Association. http://www.infinibandta.org.

[15] P. Balaji, S. Narravula, K. Vaidyanathan, S. Krishnamoorthy, J. Wu, and D. K.

Panda. Sockets Direct Protocol over InfiniBand in Clusters: Is it Beneficial? In
the Proceedings of the IEEE International Symposium on Performance Analysis

of Systems and Software, Austin, Texas, March 10-12 2004.

159

[16] Alexandros Batsakis and Randal Burns. NFS-CD: Write-Enabled Coopera-
tive Caching in NFS. In IEEE TRANSACTIONS ON PARALLEL AND DIS-

TRIBUTED SYSTEMS, 2008.

[17] W. Bell, D. Cameron, L. Capozza, A. Millar, K. Stockinger, and F. Zini. Op-

torSim - A Grid Simulator for Studying Dynamic Data Replication Strategies.
International Journal of High Performance Computing Applications, 17(4):403–

416, 2003.

[18] Adam D. Bradley and Azer Bestavros. Basis Token Consistency: Extending and

Evaluating a Novel Web Consistency Algorithm. In the Proceedings of Workshop
on Caching, Coherence, and Consistency (WC3), New York City, 2002.

[19] Adam D. Bradley and Azer Bestavros. Basis token consistency: Supporting

strong web cache consistency. In the Proceedings of the Global Internet Worshop,
Taipei, November 2002.

[20] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. Web caching
and Zipf-like distributions: Evidence and implications. In Proceedings of the

INFOCOM ’99 conference, March 1999.

[21] Dennis Bush. UFTP. http://www.tcnj.edu/ bush/uftp.html.

[22] J. Cao. ARMSim: a Modeling and Simulation Environment for Agent-based
Grid Computing. Simulation, 80(4), 2004.

[23] P. Cao and S. Irani. Greedydual-size: A cost-aware www proxy caching algo-
rithm, 1997.

[24] P. Cao, J. Zhang, and K. Beach. Active Cache: Caching Dynamic Contents

on the Web. In Proceedings of IFIP International Conference on Distributed
Systems Platforms and Open Distributed Processing, 2002.

[25] Pei Cao and Sandy Irani. Cost-aware WWW proxy caching algorithms. In
Proceedings of the 1997 Usenix Symposium on Internet Technologies and Systems

(USITS-97), Monterey, CA, 1997.

[26] Pei Cao, Jin Zhang, and Kevin Beach. Active cache: Caching dynamic contents

on the Web. In Middleware Conference, 1998.

[27] Enrique V. Carrera, Srinath Rao, Liviu Iftode, and Ricardo Bianchini. User-level

communication in cluster-based servers. In HPCA, 2002.

[28] M. Carson and D. Santay. NIST Net: A Linux-based Network Emulation Tool.

Computer Communication Review, 33(3):111–126, June 2003.

160

[29] Zhifeng Chen, Yan Zhang, Yuanyuan Zhou, Heidi Scott, and Berni Schiefer. Em-
pirical Evaluation of Multilevel Buffer Cache Collaboration for Storage Systems.

In SIGMETRICS, 2005.

[30] Michele Colajanni and Philip S. Yu. Adaptive TTL schemes for load balancing of

distributed Web servers. SIGMETRICS Perform. Eval. Rev., 25(2):36–42, 1997.

[31] Chelsio Communications. http://www.chelsio.com/.

[32] RDMA Consortium. Architectural Specifications for RDMA over TCP/IP.
http://www.rdmaconsortium.org/.

[33] Obsidian Research Corporation. http://www.obsidianresearch.com.

[34] Nirmit Desai and Frank Mueller. A Log(n) Multi-Mode Locking Protocol for
Distributed Systems.

[35] A. Devulapalli and P. Wyckoff. Distributed queue based locking using advanced
network features. In ICPP, 2005.

[36] John Dilley, Martin Arlitt, and Stephane Perret. Enhancement and validation
of the Squid cache replacement policy. In Proceedings of the 4th International

Web Caching Workshop, April 1999.

[37] Open Fabrics Enterprise Distribution. http://www.openfabrics.org/.

[38] Phil Dykstra. Gigabit Ethernet Jumbo Frames.
http://sd.wareonearth.com/ phil/jumbo.html.

[39] E. V. Carrera, S. Rao, L. Iftode, and R. Bianchini. User-Level Communication

in Cluster-Based Servers. In the 8th IEEE International Symposium on High-
Performance Computer Architecture (HPCA 8), Feb. 2002.

[40] K. Fall and K. Varadhan. The NS Manual (Formerly NS Notes and Documen-
tation), February 2006.

[41] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext Transfer Protocol – HTTP 1.1. RFC 2616. June,

1999.

[42] The Apache Software Foundation. URL: http://www.apache.org/.

[43] Open Fabrics Gen2. http://www.openfabrics.org.

[44] S. Hemminger. Network Emulation with NetEm. In Proceedings of LCA, April

2005.

161

[45] J. Hilland, P. Culley, J. Pinkerton, and R. Recio. RDMA Protocol Verbs Speci-
fication (Version 1.0). Technical report, RDMA Consortium, April 2003.

[46] IEEE. IEEE Std 802.3ae-2002, Media Access Control (MAC) Parameters, Phys-
ical Layers, and Management Parameters for 10 Gb/s Operation, August 2002.

[47] J. Liu and W. Jiang and P. Wyckoff and D. K. Panda and D. Ashton and D.
Buntinas and B. Gropp and B. Tooney. High Performance Implementation of

MPICH2 over InfiniBand with RDMA Support. In IPDPS, 2004.

[48] Terence P. Kelly, Yee Man Chan, Sugih Jamin, and Jeffrey K. MacKie-Mason.

Biased replacement policies for Web caches: Differential quality-of-service and
aggregate user value. In Proceedings of the 4th International Web Caching Work-

shop, April 1999.

[49] H. Kishida and H. Yamazaki. SSDLM: architecture of a distributed lock manager
with high degree of locality for clustered file systems.

[50] Sourabh Ladha and Paul D. Amer. Improving Multiple File Transfers Using
SCTP Multistreaming. In IEEE International on Performance, Computing, and

Communications Conference, April 2004.

[51] D. Li, P. Cao, and M. Dahlin. WCIP: Web Cache Invalidation Protocol. IETF

Internet Draft, November 2000.

[52] J. Liu, W. Jiang, P. Wyckoff, D. K. Panda, D. Ashton, D. Buntinas, W. Gropp,

and B. Toonen. Design and Implementation of MPICH2 over InfiniBand with
RDMA Support. In Proceedings of Int’l Parallel and Distributed Processing Sym-

posium (IPDPS ’04), April 2004.

[53] J. Liu, J. Wu, S. P. Kini, P. Wyckoff, and D. K. Panda. High Performance
RDMA-Based MPI Implementation over InfiniBand. In 17th Annual ACM In-

ternational Conference on Supercomputing, June 2003.

[54] Jiuxing Liu, Amith R.Mamidala, and Dhabaleswar K. Panda. Fast and Scal-

able MPI-Level Broadcast using InfiniBand’s Hardware Multicast Support. In
Proceedings of IPDPS, 2004.

[55] S. Ostermann M. Allman and C. Metz. FTP Extensions for IPv6 and NATs.
RFC 2428. Network Working Group, Sep. 1998.

[56] C. Solutions M. Horowitz and S. Lunt. FTP Security Extensions. RFC 228.
Network Working Grou, Oct., 1997.

162

[57] David McWherter, Bianca Schroeder, Anastassia Ailamaki, and Mor Harchol-
Balter. Improving preemptive prioritization via statistical characterization of

oltp locking. In 21st International Conference on Data Engineering (ICDE 05),
2005.

[58] Mikhail Mikhailov and Craig E. Wills. Evaluating a New Approach to Strong
Web Cache Consistency with Snapshots of Collected Content. In WWW2003,

ACM, 2003.

[59] Inc Mindcraft. http://www.mindcraft.com/webstone.

[60] Jeffrey C. Mogul. Clarifying the fundamentals of HTTP. In the Proceedings of
WWW-2002, Honolulu, HI, May 2002.

[61] Myricom. Myrinet Software and Customer Support. http://www.myri.

com/scs/GM/doc/, 2003.

[62] S. Narravula, P. Balaji, K. Vaidyanathan, S. Krishnamoorthy, J. Wu, and D. K.

Panda. Supporting strong cache coherency for active caches in multi-tier data-
centers over infiniband. In SAN-3 held in conjunction with HPCA 2004, 2004.

[63] S. Narravula, A. Mamidala, A. Vishnu, G. Santhanaraman, and D. K. Panda.
High Performance MPI over iWARP: Early Experiences. In Proceedings of In-

ternational Conference on Parallel Processing, 2007.

[64] Inc. NetEffect. http://www.neteffect.com/.

[65] V. Olaru and W.F Tichy. Request distribution-aware caching in cluster-based
web servers. In Third IEEE International Symposium on Network Computing

and Applications, 2004. (NCA 2004). Proceedings., 2005.

[66] MVAPICH2: High Performance MPI over InfiniBand and iWARP.
http://mvapich.cse.ohio-state.edu/.

[67] Vivek S. Pai, Mohit Aron, Gaurav Banga, Michael Svendsen, Peter Druschel,
Willy Zwaenepoel, and Erich M. Nahum. Locality-aware request distribution in

cluster-based network servers. In Architectural Support for Programming Lan-
guages and Operating Systems, pages 205–216, 1998.

[68] F. Petrini, W. C. Feng, A. Hoisie, S. Coll, and E. Frachtenberg. The Quadrics
Network (QsNet): High-Performance Clustering Technology. In Hot Intercon-

nects, 2001.

[69] J. Postel and J Reynolds. File Transfer Protocol. RFC 959. Internet Engineering

Task Force. 1985.

163

[70] L. Ramaswamy, Ling Liu, and A. Iyengar. Cache clouds: Cooperative caching
of dynamic documents in edge networks. In 25th IEEE International Conference

on Distributed Computing Systems, 2005. ICDCS 2005. Proceedings., 2005.

[71] R. Recio, P. Culley, D. Garcia, and J. Hilland. An RDMA Protocol Specification

(Version 1.0). Technical report, RDMA Consortium, Oct 2003.

[72] L. Rizzo. Dummynet: a simple approach to the evaluation of network protocols.

Computer Communication Review, 27(1):31–41, January 1997.

[73] Luigi Rizzo and Lorenzo Vicisano. Replacement policies for a proxy cache. Tech-

nical Report RN/98/13, UCL-CS, 1998.

[74] J.B. Sartor, Subramaniam Venkiteswaran, K.S. McKinley, and Z. Wang. Cooper-
ative caching with keep-me and evict-me. In 9th Annual Workshop on Interaction

between Compilers and Computer Architectures, 2005. INTERACT-9., 2005.

[75] H. V. Shah, D. B. Minturn, A. Foong, G. L. McAlpine, R. S. Madukkarumuku-

mana, and G. J. Regnier. CSP: A Novel System Architecture for Scalable Internet
and Communication Services. In the Proceedings of the 3rd USENIX Symposium

on Internet Technologies and Systems, pages pages 61–72, San Francisco, CA,
March 2001.

[76] Weisong Shi, Eli Collins, and Vijay Karamcheti. Modeling Object Character-
istics of Dynamic Web Content. Special Issue on scalable Internet services and

architecture of Journal of Parallel and Distributed Computing (JPDC), Sept.
2003.

[77] Karen R. Sollins. The Trivial File Transfer Protocol – TFTP 2 RFC 1350. July,

1992.

[78] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor, I. Ry-

tina, M. Kalla, L. Zhang, and V. Paxson. Stream Control Transmission Proto-
col(SCTP), RFC 2960, October 2000.

[79] Mellanox Technologies. InfiniBand and TCP in the Data-Center.

[80] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostic, J. Chase, and

D. Becker. Scalability and Accuracy in a Large-Scale Network Emulator. In
Proceedings of OSDI, December 2002.

[81] W. Allock, J. Bresnahan, R. Kettimuthu, and M. Link. The Globus Striped
GridFTP Framework and Server. In Super Computing, ACM Press, 2005.

164

[82] Matt Welsh, David Culler, and Eric Brewer. SEDA: An Architecture for Well-
Conditioned, Scalable Internet Services. In the Eighteenth Symposium on Oper-

ating Systems Principles (SOSP-18), Oct. 2001.

[83] Alec Wolman, Geoffrey M. Voelker, Nitin Sharma, Neal Cardwell, Anna R. Kar-

lin, and Henry M. Levy. On the scale and performance of cooperative web proxy
caching. In Symposium on Operating Systems Principles, pages 16–31, 1999.

[84] J. Yin, L. Alvisi, M. Dahlin, and A. Iyengar. Engineering Web Cache Consis-
tency. ACM Transactions on Internet Technology, 2:3,, August. 2002.

[85] Q. Zhang, Z. Xiang, W. Zhu, and L. Gao. Cost-based cache replacement and
server selection for multimedia proxy across wireless networks.

[86] George Kingsley Zipf. Human Behavior and the Principle of Least Effort.

Addison-Wesley Press, 1949.

165

