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Abstract

Caching has been a very important technique in improv-
ing the performance and scalability of web-serving data-
centers. The research community has proposed coopera-
tion of caching servers to achieve higher performance ben-
efits. These existing cooperative caching mechanisms often
partially duplicate the cached data redundantly on multi-
ple servers for higher performance (by optimizing the data-
fetch costs for multiple similar requests). With the advent
of RDMA enabled interconnects these basic data-fetch cost
estimates have changed significantly. Further, the effective
utilization of the vast resources available across multiple
tiers in today’s data-centers is of obvious interest. Hence,
a systematic study of these various issues involved is of
paramount importance. In this paper, we present several
cooperative caching schemes that are designed to benefit
in the light of the above mentioned trends. In particular,
we design schemes that take advantage of the RDMA capa-
bilities of networks and the multitude of resources avail-
able in modern multi-tier data-centers. Our designs are
implemented on InfiniBand based clusters to work in con-
junction with Apache based servers. Our experimental re-
sults show that our schemes achieve a throughput improve-
ment of up to 35% as compared to the basic cooperative
caching schemes and 180% better than the simple single
node caching schemes. Our experimental results lead us to
a new scheme which can deliver good performance in many
scenarios.

1 Introduction

Clusters have easily become the most viable method to
host web servers banking on their high performance-to-cost
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ratios. The structure of clusters, with several nodes con-
nected with high performance interconnects, has seen the
emergence of a popular web-serving systems: data-centers.
With the explosive growth of the adoption of Internet and
Web by today’s society, the performance and scalability
of these web-serving data-centers have become issues of
paramount importance.

Caching of processed content in a data-center has been
a long standing technique to help web systems to scale and
deliver high performance. Several researchers [2] [11] have
looked at various aspects of basic web caching. It has
been well acknowledged in the research community that
single larger cache performs significantly better than multi-
ple smaller caches. Even though the total cache size remains
the same in both cases, having multiple independent caches
leads to very high localization of caching decisions and in-
dividual servers do not take advantage of the neighboring
caches. Due to this disadvantage and the fact that current
clusters support efficient data transfers, [14, 15, 18, 12], for
example, have proposed cooperation among caches within
the data-center. Several nodes in a data-center participate in
this cooperative caching process and try to present a logi-
cal illusion of having a single cache. While such coopera-
tive caching schemes show better performance than the ba-
sic case of nodes caching independently, several trade-offs
exist and a through study of needs to be done and caching
schemes need to be modified appropriately to reflect these.

Currently many approaches do not cautiously eliminate
the possibility of duplicating cached entries redundantly on
more than a single node. Some approaches can handle this
in a limited manner with no direct control over the cache
content [13, 7] . While this leads to better performance for
the duplicated cache content, it is often at the cost of not
caching other content that could have occupied this cache
space. On the other hand, lack of redundant duplicates in
the system necessitates the transfer of the cached entries
from remote nodes on each request. In addition, cache re-
placement for each local cache is also considerably compli-
cated due to the additional checks, logic and data transfers
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needed. A good balance between these trade offs is criti-
cal to achieve good performance. Consequently, designing
these more complex protocols to deliver high performance
in the light of these constraints, is a central challenge. In
this paper, we present schemes to eliminate these redundant
copies.

Since lack of duplication of content incurs higher
data-transfer overheads for cache retrieval, traditional net-
work hardware/software architectures that impose signifi-
cant communication load on the server CPUs and memory
cannot benefit fully from these. On the other hand, Remote
Direct Memory Access (RDMA) enabled network interface
cards (e.g., InfiniBand) are capable of providing reliable
communication without server CPU’s intervention. Hence,
we design our cache cooperation protocols using RDMA
with other one-sided operations to alleviate the possible ef-
fects of the high volume of data transfers between individ-
ual cache and sustain good overall performance.

Furthermore, current generation data-centers have
evolved into complex multi-tiered structures presenting
more interesting design options for cooperative caching.
The nodes in the multi-tier data-center are partitioned into
multiple tiers with each tier providing a part of request pro-
cessing functionality. The front-end proxy nodes typically
perform caching functions. In this paper, we also propose
the use of the available back-end nodes to assist the proxies
in the caching services. Mechanisms of providing access
to the back-end nodes increases the overall complexity of
the design and could potentially incur additional overheads.
In our design, we handle this challenge by introducing addi-
tional passive cooperative cache system processing modules
on the back-end servers. The benefits of these cache mod-
ules on the back-end servers are two-fold: (i) they provide
the back-end servers access to the caching system and (ii)
they provide better overall performance by contributing a
certain amount resources of the back-end server when pos-
sible.

We implement our system over InfiniBand using Apache
Web and Proxy Servers [10]. We further evaluate the var-
ious design alternatives using multiple workloads to study
the trade-offs involved. The following are the main contri-
butions of our work:

• Cooperative caching schemes to eliminate redundant
copies and improve performance: We propose two
schemes: (i) Cooperative Cache Without Redundancy
(CCWR) and (ii) Multi-Tier Aggregate Cooperative
Cache (MTACC).

• Detailed experimental evaluation and analysis of the
trade offs involved. Especially the issues associated
with working-set size and file sizes are analyzed in de-
tail.

• Based on our evaluations with the above-mentioned
schemes we propose a Hybrid Cooperative Caching

(HYBCC) scheme that addresses the trade-offs asso-
ciated with CCWR and MTACC and achieves the best
of both the schemes.

Our experimental results show throughput improvements
of up to 35% for certain cases over the basic cooperative
caching scheme and improvements of up to 180% over sim-
ple caching methods. We further show that our schemes
scale well for systems with large working-sets and large
files.

The remaining part of the paper is organized as follows:
Section 2 provides a brief background about modern net-
work interconnects, and multi-tier data-centers. In Section
3 we present the design detail of our implementation. Sec-
tion 4 deals with the detailed performance evaluation and
analysis of our designs. In Section 5, we discuss current
work in related fields and conclude the paper in Section 6.

2 Background

In this section, we present an overview of RDMA-
enabled interconnects and multi-tier data-centers.
RDMA-enabled Interconnects: Many of the modern in-
terconnects such as InfiniBand and Ammasso Gigabit Eth-
ernet provide a wide range of enhanced features. InfiniBand
Architecture [3] is an industry standard that defines a Sys-
tem Area Network (SAN) that offers high bandwidth and
low latency. In an InfiniBand network, processing nodes
and I/O nodes are connected to the fabric by Host Chan-
nel Adapters (HCA) and Target Channel Adapters, respec-
tively. An abstraction interface for HCA’s is specified in the
form of InfiniBand Verbs. InfiniBand supports both channel
and memory semantics. In channel semantics, send/receive
operations are used for communication. To receive a mes-
sage, the receiver first posts a receive descriptor into a re-
ceive queue. Then the sender posts a send descriptor into
a send queue to initiate data transfer. In channel semantics
there is a one-to-one match between the send and receive
descriptors. In memory semantics, the operations allow a
process to write to a virtually contiguous buffer on a re-
mote node. Such one-sided operation does not incur soft-
ware overhead at the remote side. Remote Memory Direct
Access (RDMA) Read, RDMA Write and Remote Atomic
Operations (fetch-and-add and compare-and-swap) are sup-
ported by InfiniBand.
Multi-Tier Data-Centers: A typical data-center architec-
ture consists of multiple tightly interacting layers known as
tiers. Each tier can contain multiple physical nodes. Fig-
ure 1 shows a typical multi-tier data-center. Requests from
clients are load-balanced by the edge services tier on to the
nodes in the front-end proxy tier. This tier mainly does
caching of content generated by the back-end tiers. The
other functionalities of this tier include embedding inputs
from various application servers into a single HTML doc-
ument (for framed documents for example), balancing the
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requests sent to the back-end based on certain pre-defined
algorithms.
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Figure 1. A Typical Multi-Tier Data-Center
(Courtesy CSP Architecture design [16])

The middle tier consists of two kinds of servers. First,
those which host static content such as documents, im-
ages, music files and others which do not change with time.
These servers are typically referred to as web-servers. Sec-
ond, those which compute results based on the query itself
and return the computed data in the form of a static docu-
ment to the users. These servers, referred to as application
servers, usually handle compute intensive queries which in-
volve transaction processing and implement the data-center
business logic.

The last tier consists of database servers. These servers
hold a persistent state of the databases and other data repos-
itories. These servers could either be compute intensive or
I/O intensive based on the query format. For simple queries,
such as search queries, etc., these servers tend to be more
I/O intensive requiring a number of fields in the database to
be fetched into memory for the search to be performed. For
more complex queries, such as those which involve joins
or sorting of tables, these servers tend to be more compute
intensive.

3 Design and Implementation of Proposed
Cooperative Cache Schemes

In this section, we propose four schemes for coopera-
tive caching and describe the design details of our schemes.
At each stage we also justify our design choices. This
section is broadly categorized into four main parts: (i)
RDMA based design and implementation of basic coopera-
tive caching (Section 3.1) , (ii) Design of a non-redundancy
scheme (Section 3.2), (iii) Multi-tier extensions for cooper-
ative caches (Section 3.3) and (iv) A combined hybrid ap-
proach for cooperative caches (Section 3.4). We first de-
scribe the common design aspects of our schemes.

External Module: The traditional data-center applica-
tions service requests in two ways: (i) by using different
server threads for different concurrent requests or (ii) by
using single asynchronous server to process to service re-
quests. Catering to both these approaches used by appli-

cations, our design uses an asynchronous external helper
module to provide cooperative caching support. Figure 2
shows the typical setup on each node. This module han-
dles inter-node communication by using InfiniBand’s native
Verbs API (VAPI) and it handles intra-node communica-
tion with the basic data-center applications using IPC. This
module is designed to be asynchronous to handle multiple
overlapping requests from the data-center applications.

Data−Center Node

IPC

TCP
To Other

Applications

Modules
To Other 

VAPI

Data−Center
Application

Threads

Cooperative
Caching

External
Module

for

Figure 2. External Module based Design
Soft Shared State: The cache’s meta-data informa-

tion is maintained consistently across all the servers by
using a home node based approach. The cache entry
key space (called key-table) is partitioned and distributed
equally among the participating nodes and hence all the
nodes handle a similar amount of meta-data key entries.
This approach is popularly known as the home node based
approach. It is to be noted that in our approach we han-
dle only the meta-data on the home node and since the
actual data itself can reside on any node, our approach is
much more scalable than the traditional home node based
approaches where the data and the meta-data reside on the
home node.

All modifications to the file, such as invalidations, loca-
tion transfers, etc., are performed on the home node for the
respective file. This cache meta-data information is period-
ically broadcasted to other interested nodes. Additionally,
this information can also be requested by other interested
nodes on demand. The information exchange uses RDMA
Read operations for gathering information and send-receive
operations for broadcasting information. This is done to
avoid complex locking procedures in the system.

Basic Caching Primitives: The basic caching opera-
tions can be performed using a small set of primitives. The
internal working caching primitives needs to be designed
efficiently for scalability and high performance. Our vari-
ous schemes implement these primitives in different ways
and are detailed in the following sub-sections. The basic
caching primitives needed are:

• Cache Fetch: To fetch an entity already present in
cache

• Cache Store: To store an entity in cache

• Cache Validate: To verify the validity of a cached en-
tity

• Cache Invalidate: To invalidate a cached entity
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Buffer Management: The cooperative cache module
running on each node reserves a chunk of memory. This
memory is then allocated to the cache entities as needed.
Since this memory needs to be pooled into the global coop-
erative cache space, this memory is registered (i.e. locked
in physical memory) with the InfiniBand HCA to enable
efficient memory transfers by RDMA. Several researchers
[6, 5, 19] have looked at the different aspects of optimizing
this limited buffer usage and have suggested different cache
replacement algorithms for web caches. Our methods are
orthogonal to these issues and can easily leverage the bene-
fits of the proposed algorithms.

3.1 Basic RDMA based Cooperative
Cache (BCC)

In our design, the basic caching services are provided by
a set of cooperating modules residing on all the participating
server nodes. Each cooperating module keeps track of the
local cache state as a set of local page-tables and places this
information in the soft shared state for global access.

The basic RDMA based Cooperative Caching is
achieved by designing the cache primitives using RDMA
operations. The communication messages between the
modules are divided into two main components: (i) control
messages and (ii) data messages. The control messages are
further classified into (i) meta-data read messages and (ii)
meta-data update messages. Since data messages form the
bulk volume of the total communication load we use one-
sided RDMA operations for these. In addition, the meta-
data read messages use the RDMA Read capabilities. Meta-
data update messages are exchanged using send-receive op-
erations to avoid concurrency control related issues.

The basic cache primitives are handled by BCC in the
following manner:

Cache Fetch involves three simple steps: (i) finding the
cache entry, (ii) finding a corresponding amount of local
free space and (iii) fetching the data using RDMA Read op-
eration.

Cache Store involves the following steps: in case the lo-
cal node has enough free space the entity is cached and key-
table holding the meta-data information is updated. In cases
where the local node has no free memory, the entity is stored
into a temporary buffer and the local copies of all page ta-
bles are searched for a suitable candidate remote node for a
possible free space. A control message is sent to that node
which then performs an RDMA Read operation of this data
and notifies the original node of the transfer. Once a control
message is sent with a store request to a remote node, then
the current entity is considered to be a responsibility of the
remote node. For both these primitives, in cases where free
space is not available system-wide, a suitable replacement
is chosen and data is stored in place of the replacement.

Cache Validate and Cache Invalidate involve a meta-data
read or a meta-data update to the home node respectively.

As mentioned earlier, RDMA Read is used for the read op-
eration.

Although this scheme provides a way to share cache
across the proxy nodes, there may be redundancy in the
cache entities across the system.

3.2 Cooperative Cache Without Redun-
dancy (CCWR)

In this scheme, the main emphasis is on the redundant
duplicates in the system. At each step of request processing,
the modules systematically search the system for possible
duplicate copies of cache entities and these are chosen for
replacement. In aggregate, the cache replacement decisions
are taken in the following priority: (i) Local free space, (ii)
Remote node free space, (iii) Local redundant copies of en-
tries cached elsewhere in the system, (iv) remote redundant
copies having duplicates in the system and (v) replacement
of suitable entity by removing an existing entry to make
space for the new entry. We again describe the details of
designs of the cache primitives.

The case of Cache Fetch presents interesting design op-
tions. The data from remote node is fetched into local free
space or in place of local redundant copy in the priority de-
scribed above. However, in case there are no free buffer
spaces or local duplicates available for getting the data, re-
mote cache entity is swapped with some local cached entity.
In our design, we select a suitable local replacement, send
a store message to the remote cache for this local replace-
ment and followed by a RDMA Read of the required remote
cache entity. The remote node follows a similar mechanism
to decide on storage and sends back an acknowledgment.
Figure 3 shows the swap case of this scheme. The dotted
lines shown in the figure are control messages.

Node A Node B

Fetch File B

Fetch File A

File A Stored

Store File A

RDMA Read

RDMA Read

Request for File B Present
File B In Cache

Figure 3. Cooperative Caching Without Re-
dundancy

Cache Store design in this case is similar to the previous
approach, the main difference being the priority order de-
scribed above. The memory space for storing new cache en-
tries is searched in the order of free space, redundant copies
and permanent replacements.

The CCWR scheme benefits significantly by increas-
ing the total amount of memory available for cooperative
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caching by removing redundant cache entities. For large
working sets this yields higher overall performance.

3.3 Multi-Tier Aggregate Cooperative
Cache (MTACC)

In typical multi-tier data-centers proxy servers perform
all caching operations. However, the system can benefit sig-
nificantly by having access to additional memory resources.
There are several back-end nodes in the data-center that
might not be using their memory resources to the maxi-
mum extent. In MTACC, we utilize this additional free
memory on servers from other tiers of the multi-tier data-
center. This provides us with more aggregate system mem-
ory across the multiple tiers for cooperative caching. Fur-
ther, the involvement back-end modules in caching can be
possibly extended to the caching support for dynamically
changing data [11].

The MTACC scheme is designed with passive cooper-
ative caching modules running on the back-end servers.
These passive modules do not generate cache store or re-
trieve requests themselves, but help the other modules to
utilize their pooled memory. In addition, these passive mod-
ules do not act as home nodes for meta-data storage, mini-
mizing the necessity for cache request processing overheads
on these back-end servers.

In addition, in certain scenarios such as cache invalidates
and updates, the back-end servers need to initiate these op-
erations [11]. Utilizing the modules existing on the back-
end nodes, the back-end nodes can perform operations like
invalidations, etc. efficiently with the help of the closer and
direct access to cache to achieve significant performance
benefits. Figure 4 shows a typical setup for MTACC.
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Figure 4. Multi-Tier Aggregate Cooperative
Caching

3.4 Hybrid Cooperative Cache (HYBCC)

Though the schemes CCWR and MTACC can achieve
good performance by catering to larger working sets, they
have certain additional working overhead to remove redun-
dant cache entities. While this overhead does not impact the
performance in cases when the working set is large or when

the requested file is large, it does impact the performance of
the smaller cache entities or smaller working set files to a
certain extent.

CCWR adds certain overhead to the basic cache process-
ing. The added lookups for duplicates and the higher cost
of swapping make up these overheads. MTACC also adds
similar overheads. This larger aggregated cache system size
can cause higher overheads for request processing.

To address these issues, we propose the Hybrid Coop-
erative Caching Scheme. In this scheme, we employ dif-
ferent techniques for different file sizes. To extent possible,
smaller cache entities are not checked for duplications. Fur-
ther, the smaller cache entities are stored and their lookups
are performed on only the proxy servers without using the
back-end servers. Hence, smaller cache entities are not
stored on the passive nodes and are duplicated to the extent
possible reducing the effect of the associated overheads.

4 Experimental Results

In this section, we present a detailed experimental eval-
uation of our designs. Here, we compare the following lev-
els of caching schemes: (i) Apache default caches (AC) (ii)
BCC, (iii) CCWR, (iv) MTACC and (v) HYBCC.

Experimental Testbed: For our experiments we used
20 nodes with dual Intel Xeon 2.66 GHz processors.
InfiniBand network connected with Mellanox InfiniHost
MT23108 Host Channel Adapters (HCAs). The clusters are
connected using a Mellanox MTS 14400 144 port switch.
The Linux kernel version used was 2.4.20-8smp. Mellanox
IBGD 1.6.1 with SDK version 3.2 and the HCA firmware
version 3.3 was used.

These nodes were setup with two web-servers and with
the number of proxy servers varying from two to eight. The
client requests were generated from multiple threads on 10
nodes. The web-servers and application servers used in
the reference implementation are Apache 2.0.52. All proxy
nodes we configured for caching of data. Web server nodes
were also used for caching for the schemes MTACC and
HYBCC as needed. Each node was allowed to cache 64
MBytes of data for any of the experiments.

Traces Used: Four synthetic traces representing the
working sets in Zipf [20] traces were used. The files sizes in
the traces were varied from 8KBytes to 64KBytes. Since the
working sets of Zipf traces all have similar request probabil-
ities, a trace comprising of just the working set is seemingly
random. The working set sizes for these traces are shown
in the Table 1. These present us with a number of cases in
which the working sets are larger than, equal to or smaller
than the total cache space available to the caching system.

4.1 Basic Performance Analysis

As an indication of the potential of various caching
schemes, we measure the overall data-center throughput.

5



Trace 2 nodes 4 nodes 8 nodes 10 nodes

8k-trace 80M/128M 80M/256M 80M/512M 80M/640M
16k-trace 160M/128M 160M/256M 160M/512M 160M/640M
32k-trace 320M/128M 320M/256M 320M/512M 320M/640M
64k-trace 640M/128M 640M/256M 640M/512M 640M/640M

Table 1. Working Set and Cache Sizes for Var-
ious Configurations

Figures 5(a) and 5(b) show the throughput measured for the
four traces. We see that the basic throughput for all the co-
operative caching schemes are significantly higher than the
base case of basic Apache caching (AC) - the default single
node caching provided by apache.

Impact of Working Set Size: We notice that the per-
formance improvements from the AC scheme to the other
schemes show steep improvements when the cooperative
caching schemes can hold the entire working set of that
trace. For example, the throughput for the cooperative
caching schemes for the 8k-trace for two nodes in Figure
5(a) are about 10000 TPS, where as the performance for
AC is just above 5000 TPS. This shows a performance im-
provement of about a factor of two. This is because the
AC scheme cannot hold the working set of the 8k-trace
which is about 80 MBytes. Since each node can hold 64
MBytes, AC incurs cache misses and two node coopera-
tive caching shows good performance. We see similar per-
formance jumps for all cases where the working set fits in
cache. Figure 6(a) clearly shows a marked improvement
for larger traces (32k-trace and 64k-trace) for MTACC and
HYBCC. This benefit comes from the fact that MTACC and
HYBCC can accommodate more of the working set by ag-
gregating cache from nodes across several tiers.

Impact of Total Cache Size: The total cache size of the
system for each case is as shown in Table 1. For each con-
figuration, as expected, we notice that the overall system
performance improves for the cases where the working-set
sizes are larger then the total system cache size. In partic-
ular, the performance of the 64k-trace for the 8 node case
achieves a throughput of about 9500 TPS while using the
memory aggregated from the web server for caching. This
clearly shows an improvement of close to 20.5% improve-
ment over basic caching scheme BCC.

Impact of System Size: The performance of the 8k-trace
in Figure 6(b) shows a drop in performance for the CCWR
and the MTACC cases. This is because as a result of ag-
gregated cache across tiers for MTACC its total system size
increases, hence the total overheads for each lookup also
increases as compared to CCWR. On the other hand, since
HYBCC uses CCWR for small cache entities and MTACC
for large cache entities, its improvement ratios of HYBCC
in Figure 6(b) clearly show that the HYBCC scheme does
well in all cases. It is to be noted that the benefit of HYBCC
will increase as the system size increases.
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Figure 7. Bookkeeping and Lookup delay

Scheme Fetch Store Validate Invalidate

BCC 2,1 2,1 1,0 1,0
CCWR 2,2 2,1 1,0 1,0
MTACC 2,2 2,1 1,0 1,0
HYBCC 2,2 2,1 1,0 1,0

Table 2. Maximum number of messages
required for each scheme (control-
messages/data-messages)

4.2 Detailed Evaluation and Analysis

In this section, we discuss the performance benefits seen
for each of the schemes and analyze the same.

4.2.1 Additional Overheads for Cooperative Caching

Our approaches incur different costs for lookup for different
schemes. The primary difference is in the lookup times of
schemes with redundancy allowed and schemes without re-
dundancy. Figure 7 shows the worst case lookup latency for
each request in steady state. We have seen that as the total
size of the cache increases with number of nodes the lookup
times also increase correspondingly. In addition, searching
for redundant copies also incurs additional cost.

The number of network messages required for cache op-
erations is shown in the Table 2. We see that the expected
worst case number of control and data messages remain the
same for all mechanisms with lower redundancy.

4.2.2 Detailed Data-Center Throughput Analysis

In the following sections, detailed analysis is presented for
the each scheme to evaluate their effectiveness.

AC: These numbers show the system throughput achiev-
able by using the currently available and widely used simple
single node caching. Since all the nodes here take local de-
cisions the performance is limited by the amount of cache
available on individual nodes.

BCC: As shown by researchers earlier, the performance
of the BCC scheme marks significant performance improve-
ment over the AC scheme. These performance numbers
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Figure 6. Performance Improvement: (a) Two Proxy Nodes (b) Eight Proxy Nodes

hence represent throughput achievable by basic cooperative
caching schemes. In addition, the trends for the BCC per-
formance also show the effect of working-set size as men-
tioned earlier. We see that as we increase the number of
proxy servers, the performance benefit seen by the BCC
scheme with respect to AC increases. The performance ben-
efit ratio as shown in Figures 6(a) and 6(b) clearly shows
this marked improvement.

CCWR: From the Figures 5(a) and 5(b), we observe that
the performance for the CCWR method shows two inter-
esting trends: (i) the performance for the traces 16k-trace,
32k-trace and 64k-trace show improvement of up to 32% as
compared to the BCC scheme with the improvement grow-
ing with higher size traces and (ii) the performance of the
8k-trace shows a drop of about 5% as compared to the BCC
scheme. The primary reason for this performance drop is
the cost of additional book-keeping required for eliminat-
ing copies (as shown in Figure 7). We measured this lookup
cost for this scheme to be about 5-10% of the total request
processing time for a file of 8 Kbytes size. Since this cost
does not grow with file size, its effect on larger file sizes is
negligible.

MTACC: The main difference between the CCWR
scheme and the MTACC scheme is the increase in the to-
tal system cache size and the total system meta-data infor-
mation size. The additional system size improves perfor-
mance by accommodating more entities in cache. On the
other hand, larger lookup table size incurs higher lookup
and synchronization costs. These reasons both show effect
on the overall performance of the data-center. The 8 node
case in Figure 5(b) shows that the performance of 8k-trace

decreases with MTACC as compared to BCC and CCWR
and the performance improves for 16k-trace, 32k-trace and
64k-trace. We observe similar trends for the 2 node case in
Figure 5(a).

HYBCC: HYBCC overcomes the problems of lower
performance for smaller files as seen above by using a hy-
brid scheme described in Section 3.4. In this case, we ob-
serve in Figures 5(a) and 5(b) that the HYBCC scheme
matches the best possible performance. Also, we notice
that the improvement of the HYBCC scheme over the BCC
scheme is up to 35%.

5 Related Work

Several researchers [11, 8, 2, 4] have focused on the var-
ious aspects of caching. Cooperation of multiple servers is
proposed as an important technique in caching [4, 9]. A
popular approach of cooperative caching (e.g., [4]) uses ap-
plication level redirects of requests to enable cooperative
caching. This approach needs all the data-center servers to
have different external IP addresses visible to the client and
incurs higher overheads. On the other hand, approaches like
[9, 1] use either a home node based approach for the data or
use a single node for management activities. Though these
approaches can be extended to have minimal redundancy,
they are inherently susceptible to performance bottlenecks
arising from central management mechanisms. In our ap-
proach, we use the concept of home node for just the meta-
data instead of the actual cached data. This alleviates the
bottleneck problem to a large extent.
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Further, we use an approach similar to the N-Chance ap-
proach proposed in the file-system research context in XFS
[17]. Significant work [6, 5, 19] has been done with re-
spect to the cache replacement algorithms. Our proposed
schemes are orthogonal to these and can easily leverage the
benefits of these.

In [13, 7] researchers have looked at content aware re-
quest handling which can provide controlled redundancy.
These approaches can provide efficiency or optimality on
a per file request basis. They redirect each request to the
server holding that content. However, in HTTP 1.1 per-
sistent connections are allowed and a client could request
multiple files using the same TCP connection. This violates
the per-file optimality condition. Our design is complimen-
tary to these approaches and can handle this by sharing the
cache across all nodes, thereby making all the nodes capa-
ble of handling all the files.

6 Conclusions

The importance of caching as an instrument for improv-
ing the performance and scalability of web-serving data-
centers is immense. Existing cooperative cache designs of-
ten partially duplicate cached data redundantly on multiple
servers for higher performance while optimizing the data-
fetch costs for multiple similar requests. With the advent
of RDMA enabled interconnects these cost estimates have
changed the basic factors involved. Further, the utilization
of the large scale of resources available across the tiers in
today’s multi-tier data-centers is of obvious importance.

In this paper, we have presented cooperative cache
schemes that have been designed to benefit in the light of
the above mentioned trends. In particular, we have designed
schemes that take advantage of RDMA capabilities of net-
works and the resources spread across the multiple tiers of
modern multi-tier data-centers. Our designs have been im-
plemented on InfiniBand based clusters to work in conjunc-
tion with Apache based servers. We have evaluated these
with appropriate request traces. Our experimental results
have shown that our schemes perform up to 35% better than
the basic cooperative caching schemes for certain cases and
180% better than the simple single node caching schemes.

We further analyze the performance of each of our
schemes and propose a hybrid caching scheme that shows
high performance in all our cases. We have observed that
simple caching schemes are better suited for cache entities
of small sizes and advanced schemes are better suited for
the larger cache entities. As future work we propose to ex-
tend our work to support dynamic data cooperative caching.
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