
SC’03, November 15–21, 2003, Phoenix, Arizona, USA
Copyright 2003 ACM 1-58113-695-1/03/0011 . . . $5.00

Scalable NIC-based Reduction on Large-scale Clusters

Adam Moody1,2 Juan Fernandez2 Fabrizio Petrini2

Dhabaleswar K. Panda1

1Department of Computer & Information Science
The Ohio State University, Columbus, OH 43210, USA

{moody,panda}@cis.ohio-state.edu

2Performance and Architecture Laboratory (PAL)
Computer and Computational Sciences (CCS) Division

Los Alamos National Laboratory, NM 87545, USA
{juanf,fabrizio}@lanl.gov

Abstract

Many parallel algorithms require efficient reduction collectives. In response, researchers have designed algo-
rithms considering a range of parameters including data size, system size, and communication characteristics.
Throughout this past work, however, processing was limited to the host CPU. Today, modern Network Interface
Cards (NICs) sport programmable processors with substantial memory, and thus introduce a fresh variable into the
equation. In this paper, we investigate this new option in the context of large-scale clusters.

Through experiments on the 960-node, 1920-processor ASCI Linux Cluster (ALC) at Lawrence Livermore National
Laboratory, we show that NIC-based reductions outperform host-based algorithms in terms of reduced latency and
increased consistency. In particular, in the largest configuration tested —1812 processors— our NIC-based algorithm
summed single-element vectors of 32-bit integers and 64-bit floating-point numbers in 73 µs and 118 µs, respectively.
These results represent respective improvements of 121% and 39% over the production-level MPI library.

1 Introduction

Many high-performance computing applications de-
pend critically on efficient reduction algorithms. Re-
cent performance evaluation studies show that large-
scale scientific simulations spend up to 60% of their
time executing reductions [21]. Similar results have
been provided by an in-depth analysis of the scientific
workload at Lawrence Livermore National Laboratory
[12]. Reduction algorithms which minimize latency
will thus substantially reduce the overall run-time of
such programs.

The problem of developing efficient reduction al-
gorithms has proven to be a rather rich area of re-
search. Reduction collectives involve both communi-
cation (data transfer) and processing (data reduction
operations), and so efficient implementations must
consider characteristics of the network, the processors,

and the interplay between the two. In other words, the
design space for developing efficient reduction algo-
rithms is quite large. Over the years, many researchers
have committed significant time in order to derive op-
timal and scalable algorithms [1, 2, 3, 4, 5, 8]. These
algorithms differ in their assumptions of the under-
lying system characteristics. During all of this effort,
however, designers have commonly assumed process-
ing must be performed by the host CPU.

Network interface cards for modern cluster inter-
connects, such as the Quadrics Elan [20] or Myrinet
NIC [7], provide programmable processors and sub-
stantial memory. This added capability allows the
host processor to delegate certain tasks to the NIC
processor. To differentiate where the task is actually
performed, the terminology “host-based” and “NIC-
based” has been introduced. There are various rea-
sons to do such a thing, and in this paper we discuss
two of them with regard to reduction. Namely, we find
that NIC-based reductions can offer both significantly
lower latency and better consistency than host-based

1

http://www.cis.ohio-state.edu/
http://www.ohio-state.edu/
mailto:moody.64@osu.edu
mailto:panda@cis.ohio-state.edu
http://www.c3.lanl.gov/
http://www.ccs.lanl.gov/
http://www.lanl.gov/
mailto:juanf@lanl.gov
mailto:fabrizio@lanl.gov

algorithms.
This paper presents our scientific and technical con-

tributions. We first derive a detailed model to pre-
dict the performance of various NIC-based reduction
algorithms on the Quadrics network. Guided by this
model, we then implement a NIC-based algorithm
that uses emulated floating-point operations in the
Quadrics NIC. This algorithm operates without the in-
tervention of the host processors. Finally, we provide
an enhanced version of our algorithm to be used when
reducing larger vector sizes.

Experimental results show that our NIC-based re-
duction algorithm provides reduced latency and in-
creased consistency in the common case. In particular,
in the largest configuration tested on ALC [25] —1812
processors— our NIC-based algorithm summed single-
element vectors of 32-bit integers and 64-bit floating-
point numbers in 73 µs and 118 µs, respectively. These
results represent respective improvements of 121%
and 39% over the production-level MPI library. In ad-
dition, since the NIC-based implementation is not sub-
ject to certain host-level interference, we found that
the performance of our algorithm is much more pre-
dictable. To the best of our knowledge, our reduc-
tion latency results are the best performance achieved
on any large-scale parallel computer, both in terms of
scalability and consistency.

The rest of this paper is organized as follows. Sec-
tion 2 outlines relevant characteristics of the Quadrics
network. Section 3 describes important trade-offs in-
volved between implementing host-based and NIC-
based collectives, and Section 4 discusses design con-
straints specific to NIC-based reductions. Section 5
presents the model and the algorithm we developed,
while Section 6 provides the results we obtained. Fi-
nally, related work is discussed in Section 7, and some
concluding remarks are given in Section 8.

2 The Quadrics Network

We implemented our NIC-based reduction algorithm
on the Quadrics network, a modern cluster inter-
connect technology [20]. Quadrics is based on
two building blocks: a programmable network in-
terface card called the Elan [22, 23] and a low-
latency high-bandwidth communication switch called
the Elite [24].

The Elan resides on the PCI bus and interfaces a
processing node, containing one or more CPUs, to the
network. The Elan itself has respectable processing
capabilities. It provides a user-programmable, multi-
threaded, 32-bit, 100 MHz RISC-based processor; sup-
ported with a 64 MB bank of local SDRAM memory,

along with an MMU and other sophisticated process-
ing features. All of this hardware is available to the
NIC to aid the implementation of higher-level mes-
sage processing protocols without requiring explicit in-
tervention from the host CPU. In order to better sup-
port this usage model, the processor’s instruction set
includes specialized instructions to construct network
packets, manipulate events, and schedule threads.

The Elan divides messages into a sequence of fixed-
length transactions for efficient transfer through the
network. The primary communication primitive sup-
ported by the network is the Remote DMA (RDMA).
RDMAs allow for one-sided data transfer between re-
mote processes, i.e. the remote process need not ex-
plicitly participate in the exchange. Transfer opera-
tions include PUT, which transfers data to a remote
address space, and GET, which acquires data from a
remote address space. Both operations can access ei-
ther host- or NIC-level memory.

The underlying network is circuit-switched and uses
source-based, wormhole routing. It consists of Elite
switches interconnected in a fat-tree topology [19].
Each Elite provides the following features: 8 bidirec-
tional links each with a raw bandwidth of 400 MB/s
(325 MB/s at the MPI-level), a full crossbar switch
with a low 35 ns cut-through latency, and hardware
support for collective communication including barri-
ers and broadcasts.

3 NIC-based vs. Host-based – Pros
and Cons

In this paper, we show how NIC-based reduction im-
plementations can outperform host-based versions in
two important ways: reduced latency and increased
consistency. These benefits are not limited to reduc-
tions, and in this section, we describe how NIC-based
collectives, in general, can attain such gains. We also
discuss the major penalties encountered when imple-
menting collectives at the NIC-level, namely, host-NIC
synchronization cost and reduced computational per-
formance.

3.1 Advantages – Reduced Latency and
Increased Consistency

NIC-based collectives can be completed significantly
faster than host-based versions on fast networks. Mod-
ern cluster interconnects, such as Quadrics, support
very low message latencies; so low in fact, that PCI bus
transaction time is substantial compared to the latency
between nodes. By implementing collective communi-

2

Figure 1: MPI Barrier and Reduce Latencies

cations in the NIC, as opposed to the host, many ex-
traneous PCI bus transactions can be eliminated. This
can significantly reduce the total operational latency.

Collective communications, by their very nature, re-
quire a series of related messages to be exchanged be-
tween nodes involved in the operation. In host-based
implementations, the host processor explicitly handles
each of these messages. In order to do so, each mes-
sage must be relayed back and forth between the host
processor and the network via PCI bus transactions.
NIC-based implementations, on the other hand, han-
dle messages immediately at the NIC, avoiding most of
these trips through the PCI bus. In fact, NIC-based im-
plementations suffer from such costs only while initiat-
ing and terminating the operation. Collectives involv-
ing many nodes entail many messages, which means
that NIC-based collectives can scale substantially bet-
ter than host-based versions as the size of the cluster
increases.

Thus far, the majority of NIC-based research has
taken focus on this advantage [6, 9, 10, 11, 14, 16,
18, 27, 28]. In the process of further investigating
how this established advantage extends to the realm
of reductions, we found a new and much more sig-
nificant advantage that NIC-based collectives provide
when running on large-scale systems:

NIC-based collectives show dramatically reduced
latency and increased consistency over host-based

versions when used in large-scale clusters.

It happens that process interference at the host level
turns out to be a major problem on large clusters. To
demonstrate this, observe Figure 1. This figure shows
the host-based latencies measured for a barrier and
a reduction when using both one and two processes
per node. As the number of nodes is increased, note
how the latency for each collective deviates drastically
when two processes are involved on each node as op-
posed to just one.

This result is surprising since the underlying imple-
mentation efficiently reduces the two process problem
to the one process problem by first performing a local
shared memory step. Since shared memory operations
take place quite quickly compared to typical network
latencies, and because all nodes perform this brief step
in parallel, the added overhead should be both small
and constant with the number of nodes. Hence, the
implementation can not be at fault; something else is
to blame.

In this system, there are two physical processors per
node. When the collective involves only one process
per node, there is a spare processor on which the node
may run various system threads. However, when both
processors are used by the collective, at least one of the
processes is forced to share its processor with the sys-
tem threads. This process interference turns out to be
responsible for the drastic drop in performance [21].

Basically, the problem arises since host-based pro-
cesses in charge of handling intermediate messages
during the collective may be subject to descheduling.
That is, processes at intermediate nodes may be de-
scheduled from the CPU just before handling an in-
coming message. In this case, the collective will stall
until the process is rescheduled to handle the message.
Such untimely context switching may lead to poor per-
formance. The problem tends to manifest itself on
large systems more so than on small systems, because
larger collectives require larger communication tree
structures. Larger trees, in turn, require more interme-
diate nodes. Thus, there are simply more chances that
some intermediate processes will be interfered with on
large-scale clusters.

In addition to increased latency, one may immedi-
ately understand that this is a rather non-deterministic
phenomenon, which leads to a large variance in oper-
ational latency from one collective invocation to an-
other. Thus, the same process interference problem si-
multaneously increases average latency and decreases
operational consistency.

As host-level process interference is inherently a
host-based problem, NIC-based implementations can
avoid it altogether. As a result, NIC-based collectives
can complete with drastically better latency and in a
more consistent fashion.

3.2 Disadvantages – Overhead and Lim-
ited NIC Processor Capability

Even though the NIC carries out the actual collective
in the NIC-based implementations, the host must com-
municate to the NIC, among other information, what
operation is to be done, which data are to be pro-
cessed, and when the operation is to start. Also, the

3

NIC must notify the host of the operation’s completion
and deliver any final results. This process is termed
“host-NIC synchronization.”

In the absence of process interference, host-NIC syn-
chronization introduces overhead which may signifi-
cantly reduce the benefits gained from implementing
NIC-based collectives. Although we lack the space for
discussion, it should be noted that this overhead can
be largely avoided by overlapping it with other opera-
tions and is thus of minor concern.

The most important issue to be considered is that of
the NIC processor. The user-programmable processor
on the NIC is considerably slower than the host proces-
sor (more than 25 times slower on the Livermore ma-
chine). Different processing requirements by different
algorithms and different operations make this a very
significant difference. Basically, this difference places
a limit on the complexities of the collectives and algo-
rithms which may benefit from NIC-based implemen-
tations. To make matters more complicated, the NIC
processor typically lacks substantial processing func-
tionality as well. For example, there is no hardware-
based floating-point support on the Quadrics Elan.
The limitations of the NIC CPU proved to be the tough-
est design issue we encountered in our work.

4 NIC-based Reduction Design
Constraints

Reductions are computationally intensive collectives,
and as a result, the slower and less functional NIC CPU
becomes a limiting factor. In this section, we probe the
sensitivity of the Quadrics Elan to computational re-
quirements. Fortunately, the common case reduction
operation in many programs does not require large
amounts of computation. Thus, even with limited pro-
cessing power, NIC-based reductions present a viable
option.

4.1 Complications – Processing Speed
and Capability

As noted above, NIC CPUs are typically much slower
than the CPU available at the host level, often by an or-
der of magnitude or so. In addition, NIC CPUs provide
less functionality. Knowing these limitations, most of
the research in NIC-based work so far has concen-
trated on collectives which involve little processing.
Collectives such as barriers, broadcasts, and multicasts
simply require intermediate nodes to pass on the re-
ceived message as is, with perhaps minor data restruc-
turing. Because so little processing is required, these

Figure 2: Serial Reduction Latencies

algorithms incur little penalty from running on slower
processors, and the overall results have been quite pos-
itive.

The success obtained by simpler NIC-based col-
lectives inspired us to investigate more complicated
cases, namely reductions. Our design goals were to
support NIC-based implementations of the standard
MPI reduce and allreduce collectives for 32- and 64-
bit integer and floating-point data types, each having
minimum, maximum, and summation operations.

The first problem we encountered is the fact that
the Elan CPU has no hardware support for floating-
point operations. Thus, we were required to emulate
floating-point operations in software with integer in-
structions. Of course, this isn’t the first time such a
problem has been posed, and others have provided
sophisticated software libraries to serve as a solution.
In particular, we tackled this problem by porting Soft-
Float [15] to the Elan, an IEEE 754 compliant floating-
point package written by John R. Hauser, which is
freely available to the public domain.

After providing floating-point capability, we investi-
gated the communication and computation character-
istics of the Elan. This was accomplished by imple-
menting a very simplistic reduction algorithm. Basi-
cally, a group of P nodes perform a reduction by desig-
nating one of the nodes as the root, which is solely re-
sponsible for receiving and reducing all of the data. Af-
ter a synchronization phase, all non-root nodes simul-
taneously send their data to a corresponding RDMA
buffer at the root. Upon receiving all of the messages,
the root performs the reduction operation on them
in serial order. We will refer to these results at later
points in the paper, so it is convenient to provide a
name for this algorithm. We simply call it the “serial
reduction” algorithm.

Serial reduction tests involving 2-13 nodes for vari-
ous reduction operations and data sizes produced Fig-
ure 2. In particular, we show latencies for 32-bit in-
teger and 64-bit floating-point addition on both one-

4

and two-element vectors, as well as, a NOP operation
which indicates the lowest achievable bound for any
serial reduction involving data processing. There are a
couple of important features to take note of.

First, regardless of the operation, all of the curves
closely follow a linear trend as the number of nodes
is increased. Such a tight trend makes it very easy to
model performance, as latency can be predicted using
only a handful of model parameters. We address this
issue in more detail in Section 5, but essentially, the
intercept is related to the message latency, while the
slope represents the reception and reduction costs re-
quired to process a message.

Second, it is more relevant at this time to take note
of the reduction latency sensitivity to the operation be-
ing performed. Simpler operations scale considerably
better than more complicated ones: compare integer
addition to floating-point addition. Even fast opera-
tions are rather sensitive to small changes in data size:
observe integer addition for one- and two-element vec-
tors. And, the emulated floating-point operations are
especially slow: the time to perform a single 64-bit
floating-point addition is comparable to the message
latency between nodes.

Certainly then, it will be essential to consider both
communication and computation costs when design-
ing efficient NIC-based reduction algorithms. It is also
clear that NIC-based reductions, even for very simple
operations, will execute with reasonably low latency
only for small data sizes. Nevertheless, it turns out
that even while this is a rather stringent restriction on
the class of problems where NIC-based implementa-
tions may be valuable, a large majority of the problems
posed by practical programs falls within this class.

4.2 Simplifications – Simple Operations
and Small Data Sizes

Reductions involving simple operations on small data
sizes are the common case in many scientific applica-
tions. To demonstrate this, we profiled the MPI allre-
duce operations performed during the execution of
SAGE [17]. SAGE is a program representative of the
typical scientific applications running on large-scale,
ASCI-class parallel machines. The results are shown in
Figure 3.

Figure 3(a) shows the distribution of reduction op-
erator types. First, note that only a few simple types
of operations are used by SAGE: minimum, maxi-
mum, and summation. Typical reduction operations
thus require limited processing. Second, note that
floating-point operations far outnumber integer oper-
ations. This strongly suggests that, if no hardware-
based floating-point support is provided on the NIC

(a) Operator Type Distribution

(b) Vector Size Distribution

Figure 3: Profile of MPI Allreduce Operations in SAGE

CPU, the emulation software should be highly opti-
mized in order to reduce costs in the common case.

Equally important is Figure 3(b), which shows the
cumulative distribution of the data sizes for both inte-
ger and floating-point data types. Direct observation
makes a striking point: 95% of all reductions use 3 or
fewer elements and 100% use 8 or fewer.

Observations from these two figures are key. To-
gether, they imply that typical reductions involve sim-
ple operations on small vectors, which so happens to
be the same class of reductions for which one may ben-
efit from NIC-based implementations. In other words,
NIC-based reduction implementations will benefit the
common case the most. Thus, given the substantial
benefits previously mentioned, NIC-based reduction
implementations promise to be quite valuable to typ-
ical programs, even while considering the limitations
imposed by the NIC processor.

5 The Model and the Algorithm

Through the years, many efficient reduction algo-
rithms have materialized, stressing the importance of
these collective communication patterns. However,

5

the large majority of previous work performs the re-
duction at the host-level, thus missing out on the valu-
able benefits available to NIC-level implementations.
In this section, we address details in the design of ef-
ficient NIC-based reductions on the Elan. We begin
by applying a modified LogP [13] model to Quadrics,
which can be used to choose among various NIC-
based implementation alternatives. We then present
an efficient algorithm based on this model, and con-
clude with a valuable optimization available for multi-
element vectors.

5.1 The Model

Observations of the serial reduction data, as shown
previously in Figure 2, suggest a simple parametric
model. Namely, it is difficult to overlook the sharp
linear trend that relates the reduction latency to the
number of nodes involved. Using just the slope and
intercept, such a tight trend provides a very simple but
accurate analytical model to estimate the serial reduc-
tion latency. Furthermore, the serial reduction algo-
rithm will form the basic building block of more so-
phisticated tree-based algorithms. Given an accurate
model for the building blocks, we can piece together
a model for more sophisticated algorithms. In other
words, the slope and intercept of the serial reduction
latency curves are sufficient to quite accurately predict
the performance of any other proposed algorithm.

With this as our motivation, we delve a little deeper
to define the slope and intercept in terms of more
meaningful parameters. To account for the linear
trend, we recall the implementation of the serial re-
duction algorithm: all nodes simultaneously send their
data to the root, which receives all, and then reduces
all messages in order. Since the nodes send to the root
simultaneously, all messages worm their way to the
root in parallel. Hence, regardless of the number of
nodes, we suffer the cost of message latency only once.
On the other hand, the root receives and reduces each
message serially, which introduces reception and re-
duction cost on a per node basis.

With these observations, we define our model as
given in Table 1. We will typically suppress the func-
tional parameters M (message size) and OP (reduce
operation) from the various terms.

Essentially, this model modifies LogP [13] to better
serve our needs. We substitute the parameter r in place
of o, the cost to receive a message; and represent the
parameter g as (r + c), the time required to fully pro-
cess a message. Conceivably, the message latency, the
reception costs, and the reduction costs may all differ
between host-based and NIC-based implementations,
and these redefinitions allow one to explicitly account

Parameter Meaning
L message latency
r(M) reception cost of a message of size

M
c(M, OP) reduction cost of a message of size

M, dependent on the operation OP
P number of nodes
C(OP) constant due to initial overhead, in

general dependent on the operation
OP

TABLE 1: Model Parameters

for those differences using dedicated parameters. Ad-
ditionally, since r and c may be general functions of
the message size, one may better model nonlinearities,
such as data packetization and caching, which are rel-
evant for small data sizes. Finally, although we don’t
investigate it in this work, splitting g into two compo-
nents, r and c, allows one to directly model any com-
munication and computation overlap.

Note with this model it is simple to describe the lin-
ear form of the serial reduction latency curves as:

Tserial(P) ≈ C + L + (P− 1) · (r + c)

This expression is shown pictorially in Figure 5.1,
which presents a timeline depicting the time required
for the root node of the serial reduction to receive and
reduce (P− 1) vectors.

LC r r r c c c

(P-1) incoming messages to root

Figure 4: Model of Serial Reduction Latency

To assign numerical values to the parameters, we
extracted the values of r and c from the serial reduc-
tion data for various values of M and OP. The terms
L and C were fit to the data, and P is given for a par-
ticular problem. We note that while r is dependent on
the message size in general, it turns out to be constant
for cases we are interested in. This is because we focus

6

on reductions involving vector sizes of only a few ele-
ments, say up to eight, which typically fit into a single
64-byte fixed-length packet on the Quadrics network.
Thus whether we are working with one-element vec-
tors or eight-element vectors, the receive time is the
same, i.e. the cost to receive one 64-byte packet.

The proposed model parameters also suggest the
general form of efficient algorithms. Again looking at
the serial reduction data in Figure 2, one may note
that for small messages, the latency, L, is often signifi-
cantly more than the receive time, r: e.g. compare the
intercept of the NOP curve to its slope. This is relevant
considering the circuit-switched nature of the network
as the sender may only send a message every L units
of time, while the receiver can receive one in every
r � L units. As a result of this asymmetry, nodes in ef-
ficient algorithms will tend to receive more often than
they send, which leads to tree-shaped communication
structures. Given that efficient algorithms will take the
form of trees, we designed and implemented f -nomial
tree algorithms, feeling they provide a good balance
between structural simplicity and optimality.

5.2 f -nomial Trees – Generalized Bino-
mial Trees

Our goal in this paper is not so much to present
a new algorithmic communication structure via f -
nomial trees (a.k.a., k-nomial trees), but rather to
show that because of the limited NIC processor, effi-
cient NIC-based reductions require a range of commu-
nication structures. We chose to implement f -nomial
trees because they provide such a range of structures
by generalizing a well-known reduction algorithm, bi-
nomial trees.

Binomial trees are commonly used in reduction al-
gorithms because they offer two useful properties:
1) they have a regular structure, so they are easy
to implement, and 2) they keep many nodes in-
volved throughout the collective, so they are well-
parallelized. In fact, binomial trees have been shown
to be optimal communication structures for reduction
in synchronous communication networks, i.e. those in
which the sender and receiver have the same cost for
message transfer [2].

f -nomial trees generalize binomial trees to add a
third valuable property: they provide a range of differ-
ent communication structures, so one may selectively
balance communication against computation. This
property is especially useful for NIC-based reductions,
where the computation costs incurred by the slow pro-
cessor may change substantially depending on the op-
eration being performed and the amount of data be-
ing processed. We will describe f -nomial trees starting

from a quick review of the operation of binomial trees,
from which the generalization is trivial. Also, although
reduction trees collapse to the root node, it is easier to
describe the structure of a tree as it expands. For con-
venience then, say we desire to broadcast a message
from the root to all nodes in the tree.

The operation of binomial trees can be described as
follows. Starting from the root, the broadcast mes-
sage is distributed through a series of communication
phases. During each phase, each node that holds a
copy of the broadcast message at the start of the phase
sends to another node which doesn’t. In this way, the
number of nodes that hold a copy of the message dou-
bles at the end of each phase. Thus, in a binomial tree,
the number of nodes the message can reach grows as
a power of 2 (hence the prefix “bi”) with the number
of phases.

An f -nomial tree generalizes this algorithm by hav-
ing each node with a copy of the message at the start
of a phase send to (f −1) others who don’t, as opposed
to just one. For instance, during the first phase, the
root sends to (f − 1) children, so that by the end of
the first phase the message has spread from the root,
1 node, to the root and its (f − 1) children, a total of
1+(f −1) = f nodes. In the second phase, each of these
f nodes becomes a parent to (f −1) children who have
yet to receive the message. By the end of the second
phase, the message spreads from the f parent nodes
to each of their (f − 1) children, reaching a total of
f + f (f − 1) = f (1 + (f − 1)) = f 2 nodes. Similarly, in
the third phase, each of these f 2 nodes become a par-
ent and each sends to (f − 1) children who have yet
to receive the message, so that by the end of the third
phase, the message spreads to a total of f 3 nodes, and
so on. Thus now, the number of nodes the message
can reach grows as a power of f with the number of
phases. This is the structure of the algorithm we im-
plemented; only remember, the tree collapses rather
than expands since we desire a reduction rather than
a broadcast. In Appendix A, we provide the psuedo/C
code which initiates and drives a reduction algorithm
using f -nomial tree communication structures.

As a concrete description of an f -nomial reduction,
consider Figure 5, which shows a graph represent-
ing a 4-nomial tree overlaid atop a set of 16 nodes.
In this example, we wish to reduce data distributed
among the 16 nodes and place the result at the root
node 0 using a 4-nomial tree communication struc-
ture. The arcs in the graph connect communication
partners and are labeled with the phase number in
which the corresponding communication takes place;
all messages travel upward from children to parents.
During the first phase, parent node 0 receives and re-
duces (4 − 1) = 3 messages from nodes 1, 2, and 3;

7

Figure 5: 4-nomial Reduction over 16 Nodes

while likewise, nodes 4, 8, and 12 simultaneously re-
ceive and reduce data from their own three children.
At the end of the first phase, the distributed data has
been partially reduced and localized to the four par-
ent nodes 0, 4, 8, and 12. To be precise, the number
of nodes containing data relevant to the reduction has
been cut by a factor of four, from 16 to 4. The algo-
rithm completes after the second phase again cuts the
number of nodes by a factor of four, from 4 to 1, when
node 0 receives and reduces the partial results from
the three, now child, nodes 4, 8, and 12. Thus, in
two communication rounds, the 4-nomial tree is able
to perform a reduction over 42 = 16 nodes.

f -nomial trees offer a range of communication
structures to select from through choice of the degree
of the tree f . For example, Figure 6 shows f -nomial
trees of various degrees, all which cover 16 nodes.
This flexibility allows one to trade off between com-
munication and computation costs, choosing an ap-
propriate mix for a given problem. Each level of the
tree corresponds to a communication phase, while the
width is related to the amount of computation any one
processor is required to do. Efficient algorithms will
tend to balance the costs of communication and com-
putation. Communicationally bound reductions will
favor wide trees to minimize the number of tree lev-
els, and hence, the number of communication phases.
Computationally bound reductions, on the other hand,
will fair better with tall trees which better parallelize
the processing. Thus, the best choice for the degree of
the tree depends on the relative costs established by a
particular problem.

We would like to be able to choose the best tree
through analytical methods, so now we apply our
model to the algorithm. Since the root node of an
f -nomial tree is involved in every phase of the algo-
rithm, we can predict the latency of the entire opera-
tion by focusing on the work the root node must do.
Assuming a full tree, an f -nomial tree generates logf P
phases, during each of which the root has (f − 1) chil-

Figure 6: f -nomial Trees of Varying Degrees covering
16 Nodes
dren. Each phase will be of the linear, building-block
form of the serial reduction algorithm previously dis-
cussed. In other words, the critical path consists of
a series of logf P serial reductions, each involving f
nodes. Thus, inserting Tserial(f) and adjusting for ini-
tial overhead, one arrives at the following expression
as a quick analysis of the f -nomial reduction latency:

T f ull
f nomial(P, f) ≈ C + Tserial(f) · logf P

≈ C + [L + (f − 1) · (r + c)] · logf P

An example application of the model to intermedi-
ate phases is shown pictorially in Figure 7. In this fig-
ure, the two horizontal timelines represent two inter-
mediate parent nodes in the f -nomial tree, the bottom
node being one of the children of the top node. To
start, the initial overhead, C, is encountered in par-
allel across all nodes as a one time cost. Then, after
waiting for a length of time L, the two parent nodes
each receive and reduce the data from their (f − 1)
children of the first phase. Starting the second phase,
the bottom node, now a child to the top node, immedi-
ately sends its partial result to its parent. Again, after a
length of time L, the top node receives and reduces the
data from its (f − 1) children of the second phase. The
reduction continues off the diagram as the top node,
now a child to some higher node, sends its partial re-
sult to its parent to begin the third phase, which is not
shown.

With this model, it is straight-forward to compute
the optimal degree f to use for a particular problem.
One seeks to find that value of f which minimizes the
reduction latency. To do so, we take the derivative of
T f ull

f nomial(P, f) with respect to f and find the condition
which sets the result equal to zero. This analysis is
left to Appendix B, but we provide the result here for
discussion:

f · (ln f − 1) = L/(r + c) − 1

The value of f satisfying the expression above for
L, r, and c will provide the minimal reduction latency

8

LC r r c c

(f-1) incoming messages

L r r c c

(f-1) incoming messages

LC r r c c

(f-1) incoming messages

Phase 1 Phase 2

Figure 7: Model of f -nomial Reduction Latency

for a full f -nomial tree. One important observation
is that the optimal value of f is not influenced by the
number of processing nodes P. Only integer values
f ≥ 2 are meaningful, so one must choose f which
gives the closest fit under these restrictions. Note that
for these values, the left side of the equation strictly
increases with f . Hence, low values of f are good
when (r + c) � L and high values of f are good when
(r + c) � L. Since L and r are constants, this implies
that low-degree trees are desireable when computa-
tion costs are high, and high-degree trees are desire-
able when computation costs are low, which agrees
with our previous intuitive arguments. Note that if
the computation cost c is negligible, the best value for
f assumes an upper bound, given by a function in-
volving just L and r, two constants. This means that,
since computation costs are essentially negligble for
the host processor when considering simple operations
and small data sizes, the best degree for host-based
algorithms is constant across all operations and data
sizes and bounded from above only by the receive cost.
The same can not be said for NIC-based algorithms
where computation is much more costly. The best de-
gree f for NIC-based algorithms may take on any value
ranging from the lower bound to the upper bound de-
pending on the exact computation costs.

Unfortunately, the simplistic expression above for
T f ull

f nomial(P, f) does not accurately account for trees with
an arbitrary number of nodes. The above expression
was derived assuming a full tree, i.e. assuming logf P
is an integer. When the number of nodes is not an in-
teger power of the degree f , the root may not have a
full set of children during the final phase. In this case,
the root still incurs the message latency cost, L, while
waiting for the data of the last phase to arrive, how-
ever, there will be fewer than the full set of (f −1) mes-
sages to receive and reduce. In general, more careful

0

1 2 3

4 5

6

7 8

9

10 11 12

13 14

15

Phase 1 Phase 2 Phase 3

log 3 (16) = 2.52

Total Phases = CEILING[2.52] = 3Full Phases = FLOOR[2.52] = 2

(3-1) = 2 children in each full phase CEILING[16 / 32 - 1] = 1 child in last phase

f = 3, P = 16

Figure 8: Application of Reduction Latency Model to
16-Node 3-nomial Tree

analysis will show that:

T f nomial(P, f) ≈ C + L · dlogf Pe +

(r + c) · (f − 1) · blogf Pc +

(r + c) · dP/ f blogf Pc − 1e

Here, logf P represents roughly the number of
phases in the f -nomial tree. In particular dlogf Pe is
the total number of phases, while blogf Pc is the num-
ber of full phases, i.e. those involving a full set of (f−1)
children for the root. The L term accounts for the mes-
sage latency cost incurred from each phase of the tree.
The last two (r + c) terms together sum the reception
and reduction costs incurred for processing each child.
Of these two terms, the first counts the number of chil-
dren we process due to full phases, while the second
counts the number of children in the final phase, if less
than a full set. An example given in Figure 8 demon-
strates how the various terms refer to a 16-node, 3-
nomial tree.

When using this expression for T f nomial(P, f), it is
non-trivial to express the best degree f in terms of the
other model parameters, as done before. However, in
practice the best degree tends to be a small value, so
one can simply cycle through a limited set of values
and evaluate the expression to find the best one nu-
merically. This approach is illustrated graphically in
Section 6 when we validate the model.

5.3 Vector Split Optimization

The slower and less functional NIC CPU is quite sensi-
tive to the vector size of the reduction, especially for
floating-point operations which must be emulated in
software. To reduce this effect, it helps to increase the
processing parallelism. In other words, we would of-
ten like to keep as many of the NIC processors working
as possible. To do so, we are often willing to suffer a

9

little extra communication cost in favor of a substan-
tial reduction in computation cost.

For multi-element vectors, we can increase paral-
lelism through an optimization proposed by Van de
Geijn [26]. Basically, the idea is to split the vector and
assign the different pieces to different groups of nodes.
The groups then reduce the distributed pieces in paral-
lel and recombine the vector from the partial results in
the last step. In other words, presented with this opti-
mization, we now have two options available to reduce
multi-element vectors: 1) reduce one large vector se-
rially through a single tall tree, or 2) distribute and
reduce smaller pieces of the vector in parallel through
shorter trees, incurring the added overhead of split-
ting and recombining. In the second approach, we
suffer from extra communication to distribute and re-
combine the vector pieces, however, if computation is
expensive, we save significantly by processing smaller
pieces of data during each phase of the tree. For tall
trees, which require many phases, this savings can
quickly amount to a lot.

As an example, which is diagrammed in Figure 9,
say we would like to use this optimization to reduce
a two-element vector over 8 nodes. Here, the vector
elements are shown as small rectangles located adja-
cent to circles representing the nodes on which they re-
side. As shown in the left section of the figure, we first
split the group of 8 nodes into two groups of 4, rep-
resented with the dotted line bisecting the circles. We
wish to assign the the top element of the vector to the
top group of 4 nodes and the bottom element to the
bottom group. To do so, nodes in the two groups send
the appropriate element to a partner in the opposite
group, as represented by the arrows, and reduce the
received data with their local copy of the correspond-
ing element. At this point, the two-element vector has
been split among the two groups. The top group con-
tains all information about the top element, and the
bottom group contains all information about the bot-
tom element. Once this distribution is complete, the
two groups simultaneously perform group-wise reduc-
tions on the element assigned to them, represented
with the dotted boxes in the middle section of the fig-
ure. Finally, as shown in the right section of the figure,
the two fully-reduced elements are recombined to pro-
duce the fully-reduced two-element vector.

This optimization was prepended to the f -nomial al-
gorithm to create a new algorithm we call “ f -nomial
split”. During the beginning, the vector is recursively
split in half a specified number of times, with the
pieces being distributed among the appropriate num-
ber of groups. The f -nomial tree algorithm is then
used within each of the groups to reduce the smaller
pieces. As discussed, these partial reductions occur in

reduce

reduce

Split w/ Local Reduce Parallel Partial Reduce Combine Partial Results

Problem: reduce

Figure 9: Vector Split Optimization

parallel across the multiple trees. The root of the f -
nomial tree in each group will receive a fully-reduced
piece of the vector, which is then sent to the primary
root of the overall reduction during the last step. The
improvement due to this optimization proved to be
dramatic and is discussed in Section 6. Basically, it
allows NIC-based reductions to scale substantially bet-
ter than they otherwise would have for larger vector
sizes.

6 Experiments

In this paper, we aim to highlight the attractive advan-
tages NIC-based reductions achieve over host-based
versions in large-scale clusters. We developed our al-
gorithm and our initial performance evaluation on the
“crescendo” cluster at Los Alamos National Labora-
tory, which consists of 32 dual-processor nodes with
1.0 GHz Pentium IIIs and the Quadrics network. We
completed our scalability analysis on the ALC cluster
[25] located at Lawrence Livermore National Labora-
tory. The ALC uses 960 dual-processor nodes with 2.4
GHz Xeons and the Quadrics network.

To begin, we verify the accuracy of the newly pro-
posed model. Then, we show results indicative of
the reduced latency and increased consistency we ob-
served when using NIC-based reductions. To end, we
present the benefits obtained with the vector split op-
timization. Yet before discussing the measurements,
we explain several points of our testing procedures in
more detail.

6.1 Procedural Details

Here, we discuss certain details about our implemen-
tation and the testing methods we used which are rel-
evant for proper interpretation of the results given in
the following subsections.

First, regardless of the number of host processes per
node, each node implements the NIC-based reduction

10

using a single thread running on a single NIC. When-
ever there are multiple processes per node, we first use
the host processor and shared memory to reduce the
local data vectors before we initiate the NIC-based por-
tion of the algorithm. In NIC-based reduction, one ac-
cepts the increased computational cost associated with
performing reduction processing on the slower NIC
processor in return for elimination of extraneous data
transfers to and from the host. However, if a collec-
tion of data (e.g., vectors for multiple local processes)
is already located at the host, one may as well use the
faster host processor to reduce it. In addition to the
obvious computational savings, less data needs to be
sent through the PCI bus to the NIC, just the locally
reduced result rather than each of the local vectors.

Second, while our goal is to investigate both reduce
and allreduce operations, our NIC-based reduction re-
sults present just reduce. Our focus was to optimize re-
duce, which is simpler to implement, model, and ana-
lyze. Admittedly, since allreduce tends to be used more
frequently than reduce in many parallel programs, its
inspection is more relevant. However, the hardware-
based broadcast provided by Quadrics allows us to
simplify things. The hardware-based broadcast, which
scales very well (almost constant) as the number of
nodes is increased, can be tacked on to the end of
an efficient reduce operation to implement an efficient
allreduce operation. Thus, our measurements for re-
duce are representative of what one may expect for
allreduce, since the observed reduce latencies can be
extrapolated to estimate allreduce latencies with the
addition of a small constant.

Third, for testing purposes, we insert a barrier be-
tween each of our NIC-based reductions in order to se-
rialize consecutive reduction invocations. As Quadrics
provides a hardware-based barrier mechanism, these
barriers tend to keep the distributed nodes very tightly
synchronized. This simplifies the measurement proce-
dure since we need not worry about pipelining effects
associated with nodes which escape ahead to start
the next operation before the previous one has com-
pleted. While this extra synchronization adds unneces-
sary overhead to the reduction operation, we include
the cost of the barrier in the NIC-based latency mea-
surements to make a fairer comparison to the host-
based results, whose implementation, as to be dis-
cussed, includes such global synchronization as a final
step.

Fourth, we used the MPI reduce collective for our
host-based tests. The MPI implementation internally
delegates the work to a reduction function, called
elan reduce(), supported in the lower-level Quadrics
Elan library [22]. The Elan algorithm, in turn, per-
forms a reduction via a 4-ary tree communication

structure followed by a hardware-based broadcast of
the result. This trailing broadcast simultaneously
serves as a global synchronization step and acts to ex-
tend the reduce into an allreduce. Thus, really the
Elan library function implements an allreduce opera-
tion, rather than the simpler reduce operation which
we investigate with our NIC-based scheme. Even so,
the tests remain more or less fair, since the cost of the
barrier inserted between each of the NIC-based reduc-
tions effectively offsets the broadcast which completes
each of the host-based reductions.

Finally, when taking measurements, we found a
large variance in the operational latency from one
reduction invocation to another, especially for host-
based reduction. Unless otherwise stated, we compen-
sate for this variance by reporting the average reduc-
tion latency: computed as the total time required to
complete 100,000 iterations, divived by 100,000.

6.2 Model Validation and Algorithm In-
spection

Before running tests on large-scale systems, we
wanted to inspect the accuracy of the model. We ex-
tracted the model parameters from the serial reduction
data as previously mentioned and applied them to var-
ious f -nomial trees for different reduction problems.

To provide a context of typical values, we list some
of the NIC-based model parameter values in Table 2.
From these numbers one may also note many of the
design characteristics previously mentioned. For ex-
ample, note that r is a fifth of L which highlights the
asymmetry issue we discussed. Also, take note of the
significant computation costs, especially for floating-
point, and the nonlinearities introduced by caching ef-
fects as the number of elements increases for a given
operation. Again, the model was intentionally de-
signed to detail these characteristics, which are rele-
vant in the design of efficient reduction algorithms.

To provide some confidence in this model, in Fig-
ure 10, we show the predicted and measured NIC-
based f -nomial reduction latencies as a function of
the degree f for 64-bit floating-point addition on a
31-node system using vectors sizes of 1, 2, 4, and 8
elements. There are a few items of interest here.

First, as one might guess, we were of course quite
pleased to see how well the model aligns with ac-
tual measurements. Because the model fits the data
so closely, one may make theoretical estimates of the
behavior of various reduction algorithms with a good
deal of confidence. Thus, in future reduction algo-
rithm design, one has a detailed model by which one
may be able to consider and eliminate many design
choices without the need to run extensive tests. This is

11

Parameter Value
L 2.10
r 0.42
C 9.20
(a) Communication and
Initialization (µs)

Operation 1-elem 2-elem 4-elem 8-elem
Int32 Max 0.27 0.46 0.84 1.60
Int32 Add 0.25 0.44 0.76 1.44
Float64 Max 0.67 1.27 2.44 4.80
Float64 Add 1.50 2.95 5.80 11.56

(b) Computation (µs)

TABLE 2: NIC-based Model Parameter Values

Figure 10: Predicted and Measured Latencies for 64-
bit Floating-Point Addition over a 31-Node f -nomial
Tree

valuable since opportunities to run tests on large-scale
machines are hard to come by.

Second, note that because of the high susceptibil-
ity to computation costs, the degree of the f -nomial
tree may make a significant difference in the latency
of the reduction. Intuition suggests that expensive
computation should be spread among as many pro-
cessors as possible, implying that efficient algorithms
will tend to produce low-degree trees for problems
that require much computation. Reassuringly, that is
what is observed in the plots. Small vectors, which
require less processing time, lead to curves that are es-
sentially flat for the degrees tested, while larger vec-
tors tend to heavily favor lower-degree trees: com-
pare the one-element curve to the eight-element curve.
On the other hand, for reduction operations simpler
than floating-point addition, it pays more dividends
to use higher-degree trees to save on the relatively
more costly communication. Once again, because the
host processor is so much faster, such drastic latency
variation would not be observed as the degree of the
tree is varied in host-based reductions. Efficient host-

based trees are effectively independent of both the vec-
tor size and the computation being performed. NIC-
based reductions are clearly not. Forutnately, since
the model accurately predicts actual performance, one
may use it to determine the best degree f for a partic-
ular reduction problem. For example, looking at the
figure, the model correctly tells us that a degree of 4
is best for 64-bit floating-point addition of 1-element
vectors, and a degree of 2 is best for 2, 4, and 8-
element vectors on this 31-node system.

6.3 Reduced Latency

We timed the latencies for host-based and NIC-based
reduction over a variety of operations and data sizes,
using both one and two processes per node. In all
measurements we consider a 4-nomial tree, which pro-
vides a good performance trad-off for the configura-
tions used in the experiments (see Appendix 8). We
show the single-element vector results obtained for
host-based and NIC-based 32-bit integer addition in
Figure 11(a) and 64-bit floating-point addition in Fig-
ure 11(b). The NIC-based curves scale considerably
better than the host-based results. Indeed, as one may
infer from the 32-bit integer addition plot, our NIC-
based implementation was able to perform simple in-
teger reductions in about half the time it takes the host
to do so. Further, even while incurring the expensive
cost of emulating floating-point addition on a much
slower processor, our NIC-based implementation was
able to substantially improve the host-based reduction.
When reducing over 906 nodes, we were able to obtain
latencies as low as 40 µs for integer operations and a
slightly higher time of 65 µs for floating-point. In the
largest configuration tested —1812 processors— our
NIC-based algorithm summed single-element vectors
of 32-bit integers and 64-bit floating-point numbers in
73 µs and 118 µs, respectively. These results represent
respective improvements of 121% and 39% over the
production-level MPI library.

We should also point out the deviation in the NIC-
based latencies when involving two processes per
node, as opposed to one. Unfortunately, the NIC-based
curves follow the same trend which we earlier noted
in the host-based latencies. As similarly discussed for
the host-based case, we blame this occurrence on sys-
tem noise, i.e. the kernel threads and system dæmons
that interfere with the execution of the collective com-
munication. The NIC-based implementation is subject
to host-level process interference during the time it
takes the distributed host processes to initiate the re-
duction operation. Once initiated, however, the NIC-
based algorithm is able to avoid process interference
throughout all of the intermediate phases while actu-

12

(a) 32-bit Integer Addition (b) 64-bit Floating-Point Addition

Figure 11: Host-based and NIC-based Reduction Latencies for Single-Element Vectors

Figure 12: Reduction Latency Distributions for Single-
Element 64-bit Floating-Point Addition over 900
Nodes

Reduction Average (µs) Std. Deviation (µs)
host-based 89.30 65.26
NIC-based 73.67 0.29

TABLE 3: Reduction Latency Statistics for Single-
Element 64-bit Floating-Point Addition over 900
Nodes

ally executing the reduction. As a result, one may note
that our NIC-based reduction implementation is only
marginally affected by the system noise when com-
pared to the host-based results.

6.4 Increased Consistency

The host-based MPI reduce latencies varied substan-
tially from one invocation to another. The best times
we observed were about three times better than the av-
erage time. The NIC-based results, on the other hand,
were quite steady. This is related to the consistency
advantage we have noted for NIC-based reductions.

To clarify this point, Figure 12 shows a distribu-
tion graph of the latencies recorded for NIC-based and

host-based 64-bit floating-point addition of a single-
element vector over 900 nodes. Unlike measurements
for the average reduction latency, to obtain these data
points, we timed 100,000 reduction invocations in-
dividually and grouped the resulting set of 100,000
times into bins of a histogram to produce a distribu-
tion.

Though at first glance the NIC-based reduction ap-
pears to take more time than the host-based reduction,
the NIC-based latencies are largely contained within a
sharp spike, while the host-based latencies are spread
smoothly across a wide range of values. To be precise,
97% of the NIC-based reductions fall with a spread
of only 4 µs, while for host-based reductions, only
57% fall within a spread of 20 µs. Indeed, a substan-
tial number of host-based latencies extend far past the
right-hand limit of the distribution graph. After pitch-
ing out the highest 1% of the samples, one arrives at
the statistics in Table 3. The average host-based la-
tency is 89 µs, while the NIC-based latency is 74 µs.
The drastic, two order-of-magnitude difference in the
standard deviations is perhaps most telling. This no-
tably large contrast in consistency is quite indicative of
the non-deterministic effect that process interference
imposes on host-based reduction implementations. As
expected, NIC-based reductions are more consistent
than host-based versions on large-scale systems.

6.5 Vector Split Optimization

Earlier we noted that, while NIC-based reductions can
provide reduced latency and increased consistency,
they are especially sensitive to computational cost due
to the slow NIC CPU. The vector split optimization is a
way to counteract this shortcoming by increasing par-
allelism when reducing multi-element vectors.

We measured the performance of the f -nomial split

13

Figure 13: f -nomial Split on Various Vector Sizes for
64-bit Floating-Point Addition over 512 Nodes

algorithm for 64-bit floating-point addition on 512
nodes using various vector sizes. The results are
shown in Figure 13. The value of the vector split opti-
mization is quite pronounced. After 3 recursive splits,
the 8-element latency is improved by nearly a factor of
three, while for 4 recursive splits, the 16-element case
is over three times faster. The trend obviously suggests
the larger the vector, the better the benefit.

Although the vector split optimization enables NIC-
based reductions to scale better than they otherwise
would have, there is still a limit on the performance it
can achieve. Note that a latency of 140 µs for a 16-
element reduction may still be much more than what
a host processor can provide. And interestingly, one
may carefully note that the latency for a 2-element
vector actually increases slightly after one split. This of
course will happen if the total savings in computation
over the height of the tree is less than the added com-
munication cost of the recombine step. However, the
cross-over point can be computed so as to always pick
the better of the two options. Van de Geijn discusses
the details in [26].

7 Related Work

Huang and McKinley were perhaps the first to real-
ize the potential of NIC-based collectives [16]. They
examined the benefits gained by implementing broad-
cast and barrier operations on Asynchronous Transfer
Mode (ATM) network adapters to avoid the excessive
processing overhead incurred throughout the protocol
stack. In order to develop implementations portable
across a variety of ATM hardware, they placed rigid re-
strictions on the processing and memory requirements
of their algorithms so that even the most limited ATM
devices could adequately support them. Namely, they
designed algorithms which were table-driven and per-
formed only a small number of arithmetic and logical

operations while using just a few scalar variables. In
addition, they considered only static communication
tree structures. Yet even with such limitations, they
showed that certain NIC-based collectives scaled sub-
stantially better than host-based versions due to signif-
icantly reduced message processing (software) over-
head.

While the advent of zero-copy, user-level proto-
cols lessened the dramatic improvement shown in the
above work, modern cluster interconnects, such as
Quadrics and Myrinet, have reduced wire and switch
latencies to the point where the cost of a PCI-bus trans-
action is significant. Simultaneously, the processing
capability and memory available on the network inter-
face cards have increased. Thus, the concept of NIC-
based collectives remains a hot topic and researchers
continue to investigate more complicated collectives
and algorithms.

Many researchers have considered NIC-based multi-
cast algorithms [6, 11, 14, 16, 18, 27, 28]. Multicast
can be used as a building block to implement other col-
lectives, such as broadcasts or barriers, and thus an ef-
ficient multicast implementation is desirable. In addi-
tion, the problem is rather rich since the message size
and destination set can be different with each invoca-
tion, and often one must design flow control and ac-
knowledgment collection schemes for reliability. Each
of the numerous publications put forth demonstrates a
different approach, all of which have found success.

The work most closely aligned with our own is that
by Buntinas and Panda [10]. They investigated the
potential of NIC-based reduction on clusters intercon-
nected with Myrinet. In particular, they modified the
network drivers to implement binary AND and OR op-
erations, as well as, integer and floating-point addi-
tion on a single 64-bit value via binomial trees. For
these cases, they found that NIC-based reduction has
better scalability than host-based reduction and shows
performance gains in clusters as small as 8 nodes. Al-
though they only used binomial trees, with each re-
duction invocation, the host processor passes an oper-
ation descriptor, including the list of communication
partners, to the NIC so their implementation could be
easily generalized to use other tree structures. How-
ever, they leave the investigation of other communica-
tion trees, as well as, larger reduction vectors to future
work.

Our work serves two purposes. In part, this paper
picks up where the previous work left off. We in-
vestigate the effect of using different tree structures
and various vector sizes for an expanded set of reduc-
tion operations, as well as, an optimization for multi-
element vectors. We also propose a parameterized
model which can be accurately used to dynamically

14

select the best available tree for a given instance of a
reduction. In remainder, we believe our paper is the
first to show the dramatically reduced latency and in-
creased consistency which NIC-based reductions may
achieve through avoidance of host-level process inter-
ference on large-scale clusters.

8 Conclusions and Future Work

In this paper we showed that NIC-based reduc-
tions outperform host-based versions in two impor-
tant ways: reduced latency and increased consistency.
While NIC-based reductions are able to gain on the
host by eliminating many PCI bus transactions, we dis-
covered that the major benefit on large-scale clusters
is due to decreased susceptibility to host-level process
interference.

NIC-based implementations are potentially valu-
able, however, they don’t come for free. Namely,
one must deal with host-NIC synchronization over-
head and perform processing on a much slower and
less functional processor. Even so, modern NICs are
powerful enough to handle the processing required
by typical reductions and should benefit practical pro-
grams.

We presented a simple model, derived from LogP,
which can be used to design efficient reduction algo-
rithms on Quadrics. We then presented the f -nomial
tree reduction algorithm, and demonstrated how to
choose the best degree f for a given problem based on
the model parameter values. We also added the vector
split optimization to improve performance when re-
ducing larger vectors. These issues, which may often
be neglected when using host-based implementations,
must be considered in order to design efficient NIC-
based reductions.

The experimental results show low latency and
impressive scalability. In the largest configuration
tested —1812 processors— our NIC-based algorithm
summed single-element vectors of 32-bit integers and
64-bit floating-point numbers in 73 µs and 118 µs, re-
spectively. These results represent respective improve-
ments of 121% and 39% over the production-level MPI
library.

Future work will involve exploration of additional
communication structures. It is also possible to
optimize the software performing the reduction on
the NIC, especially for floating-point operations. Fi-
nally, we intend to investigate the value of asyn-
chronous (non-blocking) reductions, as well as, hybrid
host/NIC-based reductions.

Acknowledgments

We would like to thank Robin Goldstone, Jim Garlick,
Moe Jette and Ryan Braby at Lawrence Livermore Na-
tional Laboratory and David Addison at Quadrics who
provided us with the opportunity to run experiments
on the ASCI Linux Cluster [25]. We would also like
to thank our anonymous reviewers for their time and
many instructive comments.

This work was supported by the U.S. Department of
Energy through Los Alamos National Laboratory con-
tract W-7405-ENG-36.

References

[1] V. Bala, J. Bruck, R. Cypher, P. Elustondo, A. Ho,
C.T. Ho, S. Kipnis, and M. Snir. CCL: A Portable
and Tunable Collective Communication Library
for Scalable Parallel Computers. In Proceed-
ings of the 8th International Parallel Processing
Symposium, pages 835–844, Cancun, Mexico,
April 1994. Available from http://citeseer.
nj.nec.com/bala95ccl.html.

[2] A. Bar-Noy, S. Kipnis, and B. Schieber. Optimal
Computation of Census Functions in the Postal
Model. Discrete Applied Mathematics, 58(3):213–
222, April 1995.

[3] M. Barnett, R. Littlefield, D.G. Payne, and R.A.
van de Geijn. Global Combine on Mesh Archi-
tectures with Wormhole Routing. In Proceedings
of the 7th International Parallel Processing Sym-
posium, pages 156–162, Newport Beach, Califor-
nia, April 1993. Available from ftp://ftp.cs.
utexas.edu/pub/rvdg/ipps.ps.

[4] M. Barnett, L. Shuler, S. Gupta, D.G. Payne,
R.A. van de Geijn, and J. Watts. Building a
High-Performance Collective Communication Li-
brary. In Proceedings of the Supercomputing
Conference, pages 107–116, Washington D.C.,
November 1994. Available from http://www.
scp.syr.edu/~jwattszSzSC94.ps.gz.

[5] M. Bernaschi and G. Iannello. Collective Com-
munication Operations: Experimental Results
vs. Theory. Concurrency: Practice and Expe-
rience, 10(5):359–386, April 1998. Available
from ftp://www.grid.unina.it/pub/Papers/
iannello/ps-files/ours-art/cc-exp.ps.

[6] R. Bhoedjang, T. Ruhl, and H. Bal. Effi-
cient Multicast on Myrinet Using Link-Level

15

http://citeseer.nj.nec.com/bala95ccl.html
http://citeseer.nj.nec.com/bala95ccl.html
ftp://ftp.cs.utexas.edu/pub/rvdg/ipps.ps
ftp://ftp.cs.utexas.edu/pub/rvdg/ipps.ps
http://www.scp.syr.edu/~jwattszSzSC94.ps.gz
http://www.scp.syr.edu/~jwattszSzSC94.ps.gz
ftp://www.grid.unina.it/pub/Papers/iannello/ps-files/ours-art/cc-exp.ps
ftp://www.grid.unina.it/pub/Papers/iannello/ps-files/ours-art/cc-exp.ps

Flow Control. In Proceedings of the Interna-
tional Conference on Parallel Processing, pages
381–390, Minneapolis, Minnesota, August 1998.
Available from http://citeseer.nj.nec.com/
bhoedjang98efficient.html.

[7] Nanette J. Boden, Danny Cohen, Robert E.
Felderman, Alan E. Kulawick, Charles L.
Seitz, Jakov N. Seizovic, and Wen-King Su.
Myrinet: A Gigabit-per-Second Local Area Net-
work. IEEE Micro, 15(1):29–36, January
1995. Available from http://www.myri.com/
research/publications/Hot.ps.

[8] J. Bruck, L. de Coster, N. Dewulf, C.T. Ho, and
R. Lauwereins. On the Design and Implemen-
tation of Broadcast and Global Combine Opera-
tions Using the Postal Model. IEEE Transactions
on Parallel and Distributed Systems, 7(3):256–
265, March 1996.

[9] D. Buntinas and D.K. Panda. Fast NIC-Based
Barrier over Myrinet/GM. In Proceedings of
the International Parallel and Distributed Pro-
cessing Symposium, San Francisco, California,
April 2001. Available from ftp://ftp.cis.
ohio-state.edu/pub/communication/papers/
ipdps01-NIC-barrier.pdf.

[10] D. Buntinas and D.K. Panda. NIC-Based Reduc-
tion in Myrinet Clusters: Is It Beneficial? In Pro-
ceedings of the Workshop on Novel Uses of System
Area Networks, pages 22–33, Anaheim, Califor-
nia, Febuary 2003. Available from ftp://ftp.
cis.ohio-state.edu/pub/communication/
papers/san-2-NIC-reduction.pdf.

[11] D. Buntinas, D.K. Panda, J. Duato, and P. Sa-
dayappan. Broadcast/Multicast over Myrinet
using NIC-assisted Multidestination Mes-
sages. In Proceedings of the Workshop on
Communication, Architecture, and Applica-
tions for Network-Based Parallel Computing,
High Performance Computer Architecture Con-
ference, pages 115–129, Toulouse, France,
January 2000. Available from ftp://ftp.cis.
ohio-state.edu/pub/communication/papers/
canpc00-nic-multicast.pdf.

[12] M. Collette. LLNL User Briefings. In ASCI Q
LANL/HP Technical Quarterly Meeting, Santa Fe,
New Mexico, March 2003.

[13] D.E. Culler, R. Karp, D. Patterson, A. Sahay,
K.E. Schauser, E. Santos, R. Subramonian, and
T. von Eicken. LogP: Towards a Realistic Model

of Parallel Computation. In Proceedings of the
4th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 1–12,
San Diego, California, May 1993. Available
from http://www.cs.berkeley.edu/~culler/
papers/logp.ps.

[14] M. Gerla, P. Palnati, and S. Walton. Mul-
ticasting Protocols for High-Speed, Wormhole-
Routing Local Area Networks. In Proceed-
ings of the ACM SIGCOMM Symposium, pages
184–193, Stanford, California, August 1996.
Available from http://citeseer.nj.nec.com/
gerla96multicasting.html.

[15] J.R. Hauser. SoftFloat. Available from
http://www.jhauser.us/arithmetic/
SoftFloat.html.

[16] C. Huang and P.K. McKinley. Efficient Collective
Operations with ATM Network Interface Sup-
port. In Proceedings of the International Confer-
ence on Parallel Processing, volume 1, pages 34–
43, Bloomingdale, Illinois, August 1996. Avail-
able from ftp://ftp.cps.msu.edu/pub/crg/
PAPERS/icpp96.ps.gz.

[17] D.J. Kerbyson, H.J. Alme, A. Hoisie, F. Petrini,
H.J. Wasserman, and M. Gittings. Predic-
tive Performance and Scalability Modeling of a
Large-Scale Application. In Proceedings of the
Supercomputing Conference, Denver, Colorado,
November 2001. Available from http://www.
sc2001.org/papers/pap.pap255.pdf.

[18] R. Kesavan and D.K. Panda. Optimal Multi-
cast with Packetization and Network Interface
Support. In Proceedings of the International Con-
ference on Parallel Processing, pages 370–377,
Bloomingdale, Illinois, August 1997. Avail-
able from ftp://ftp.cis.ohio-state.edu/
pub/communication/papers/icpp97-packet_
mcast.ps.Z.

[19] C. E. Leiserson. Fat-trees: Universal Networks for
Hardware-Efficient Supercomputing. IEEE Trans-
actions on Computers, C-34(10):892–901, Octo-
ber 1985.

[20] F. Petrini, W. Feng, A. Hoisie, S. Coll, and
E. Frachtenberg. The Quadrics network:
High-performance clustering technology. IEEE
Micro, 22(1):46–57, January/Febuary 2002.
ISSN 0272-1732. Available from http://www.
computer.org/micro/mi2002/pdf/m1046.pdf.

16

http://citeseer.nj.nec.com/bhoedjang98efficient.html
http://citeseer.nj.nec.com/bhoedjang98efficient.html
http://www.myri.com/research/publications/Hot.ps
http://www.myri.com/research/publications/Hot.ps
ftp://ftp.cis.ohio-state.edu/pub/communication/papers/ipdps01-NIC-barrier.pdf
ftp://ftp.cis.ohio-state.edu/pub/communication/papers/ipdps01-NIC-barrier.pdf
ftp://ftp.cis.ohio-state.edu/pub/communication/papers/ipdps01-NIC-barrier.pdf
ftp://ftp.cis.ohio-state.edu/pub/communication/papers/san-2-NIC-reduction.pdf
ftp://ftp.cis.ohio-state.edu/pub/communication/papers/san-2-NIC-reduction.pdf
ftp://ftp.cis.ohio-state.edu/pub/communication/papers/san-2-NIC-reduction.pdf
ftp://ftp.cis.ohio-state.edu/pub/communication/papers/canpc00-nic-multicast.pdf
ftp://ftp.cis.ohio-state.edu/pub/communication/papers/canpc00-nic-multicast.pdf
ftp://ftp.cis.ohio-state.edu/pub/communication/papers/canpc00-nic-multicast.pdf
http://www.cs.berkeley.edu/~culler/papers/logp.ps
http://www.cs.berkeley.edu/~culler/papers/logp.ps
http://citeseer.nj.nec.com/gerla96multicasting.html
http://citeseer.nj.nec.com/gerla96multicasting.html
http://www.jhauser.us/arithmetic/SoftFloat.html
http://www.jhauser.us/arithmetic/SoftFloat.html
ftp://ftp.cps.msu.edu/pub/crg/PAPERS/icpp96.ps.gz
ftp://ftp.cps.msu.edu/pub/crg/PAPERS/icpp96.ps.gz
http://www.sc2001.org/papers/pap.pap255.pdf
http://www.sc2001.org/papers/pap.pap255.pdf
ftp://ftp.cis.ohio-state.edu/pub/communication/papers/icpp97-packet_mcast.ps.Z
ftp://ftp.cis.ohio-state.edu/pub/communication/papers/icpp97-packet_mcast.ps.Z
ftp://ftp.cis.ohio-state.edu/pub/communication/papers/icpp97-packet_mcast.ps.Z
http://www.computer.org/micro/mi2002/pdf/m1046.pdf
http://www.computer.org/micro/mi2002/pdf/m1046.pdf

[21] Fabrizio Petrini, Darren Kerbyson, and Scott
Pakin. The Case of the Missing Supercomputer
Performance: Achieving Optimal Performance
on the 8,192 Processors of ASCI Q. In Proceed-
ings of SC2003, Phoenix, Arizona, November 10–
16, 2003. Available from http://www.c3.lanl.
gov/~fabrizio/papers/sc03_noise.pdf.

[22] Quadrics Supercomputers World Ltd. Elan Pro-
gramming Manual, 2nd edition, December 1999.

[23] Quadrics Supercomputers World Ltd. Elan Refer-
ence Manual, 1st edition, January 1999.

[24] Quadrics Supercomputers World Ltd. Elite Refer-
ence Manual, 1st edition, November 1999.

[25] M. Seager. Planned Machines: ASCI Pur-
ple, ALC and M&IC MCR. In Proceedings of
the 7th Workshop on Distributed Supercomput-
ing, Durango, Colorado, March 2003. Avail-
able from http://www.cs.sandia.gov/SOS7/
presentations/seager.ppt.

[26] R.A. van de Geijn. On Global Combine Oper-
ations. Technical Report CS-91-129, Available
from ftp://ftp.netlib.org/lapack/lawns/
lawn29.ps, April 1991.

[27] K. Verstoep, K. Langendoen, and H. Bal. Ef-
ficient Reliable Multicast on Myrinet. In Pro-
ceedings of the International Conference on Par-
allel Processing, volume 3, pages 156–165,
Bloomingdale, Illinois, August 1996. Available
from ftp://ftp.cs.vu.nl/pub/amoeba/orca_
papers/icpp96.ps.Z.

[28] W. Yu, D. Buntinas, and D.K. Panda. High Per-
formance and Reliable NIC-based Multicast over
Myrinet/GM-2. In Proceedings of the Interna-
tional Conference on Parallel Processing, page to
be presented, Kahosiung, Taiwan, October 2003.

17

http://www.c3.lanl.gov/~fabrizio/papers/sc03_noise.pdf
http://www.c3.lanl.gov/~fabrizio/papers/sc03_noise.pdf
http://www.cs.sandia.gov/SOS7/presentations/seager.ppt
http://www.cs.sandia.gov/SOS7/presentations/seager.ppt
ftp://ftp.netlib.org/lapack/lawns/lawn29.ps
ftp://ftp.netlib.org/lapack/lawns/lawn29.ps
ftp://ftp.cs.vu.nl/pub/amoeba/orca_papers/icpp96.ps.Z
ftp://ftp.cs.vu.nl/pub/amoeba/orca_papers/icpp96.ps.Z

Appendix A

This appendix provides a psuedo/C code listing of how
to initialize and use an f -nomial tree communication
structure for reduction operations.

We assume the processes in the collective group are
numbered with IDs starting from 0. Without loss of
generality, we assume that process ID 0 is the root of
the reduction. (The algorithm can be used to describe
the communication structure for a general root if one
performs a logical remapping by shifting all process
IDs cyclically down by an amount equal to the ID of
the root.)

Each process must first initialize the f -nomial
tree communication data structure by calling
init fnomial tree() with the degree f , the number
of processes involved, and the local process ID, as
well as, a pointer to an empty communication data
structure to be filled-in by the function. Having done
this, a process may use the communication structure
to carry out an f -nomial reduction operation as shown
in reduce fnomial tree(). One must pass in a pointer to
the local data, a pointer to a memory segment to be
used as receive buffers, the data size, and the filled-in
communication structure.

Reducing by an f -nomial Tree:

procedure reduce_fnomial_tree

// Inputs:
// data_local: pointer to local data
// data_remote: pointer to memory segment for receive buffers
// data_size: size of reduction vector
// fnomial_tree: filled-in communication data structure

// Temporaries:
uint data_temp = 0;

// index into receive buffers
uint num_recvs;

// convience variable of the number of receives in a phase

// Process any children
for(phase = 0; fnomial_tree->array_receives[phase] != 0; phase++)
{

// number of messages we’ll receive from children of this phase
num_recvs = fnomial_tree->array_receives[phase];

// wait for messages from children
wait for messages to fill buffers at
[data_temp, data_temp + num_recvs - 1] * data_size + data_remote;

// reduce the data from children with local data
reduce the data in buffers at
[data_temp, data_temp + num_recvs - 1] * data_size + data_remote
with data_local
store result in data_local;

// point to head of receive buffers for next phase
data_temp += num_recvs;

}

// Send reduction data to parent
send data_local
to fnomial_tree->id_parent
at buffer fnomial_tree->child_num * data_size + data_remote;

end procedure

Initializing an f -nomial Tree:

procedure init_fnomial_tree
// Maps process ID == 0 as root.

// Inputs:
// degree: degree, f, of the f-nomial tree
// id_count: number of processes involved
// id_local: local process ID, counts from 0

// Outputs:
// fnomial_tree: communication data structure
// i.e.,
// fnomial_tree->array_receives[]:
// number of children during each phase
// fnomial_tree->id_parent:
// parent process ID (equals id_local for root)
// fnomial_tree->child_num:
// which number child we are to our parent

// Temporaries:
uint phase = 0;

// which communication phase we are computing
uint stride = 1;

// how many process IDs are skipped between
// adjacent children within a phase

// Initialization
// assume we are the root
fnomial_tree->id_parent = id_local;

// While we haven’t covered the entire tree...
while(stride < id_count)
{

// assume we have no children in this phase
fnomial_tree->array_receives[phase] = 0;

// If we are a parent in this phase...
if(FLOOR(id_local / stride) MOD degree == 0)
{

// For each of our (possible degree-1) children...
for(uint index = 0; index < (degree-1); index++)
{

// If the possible child really exists,
// increase number of receives for this phase
if(id_local + (index+1) * stride < id_count)

fnomial_tree->array_receives[phase]++;
}

// Else, we must be a child in this phase...
} else {

// Note our parent’s id
fnomial_tree->id_parent =

FLOOR(id_local / (stride * degree)) * (stride * degree);

// and which number child we are to our parent
fnomial_tree->num_child =

phase * (degree-1) + (FLOOR(id_local / stride) MOD degree) - 1;

// After determining our parent, our part is done
break; // out of the while

} // end if

// Move on to the next phase of the tree
stride *= degree;
phase++;

} // end while

end procedure

18

Appendix B

This appendix illustrates the analysis to express the
best degree f for an f -nomial tree based on the model
derived in Section 5 for a full tree, i.e. those trees for
which logf P is an integer.

Basically, we desire to find that value of f which
minimizes the following expression:

T f ull
f nomial(P, f) ≈ C + Tserial(f) · logf P

≈ C + [L + (f − 1) · (r + c)] · logf P

To do so, we first take the derivative of T f ull
f nomial(P, f):

∂

∂ f
T f ull

f nomial(P, f)

≈
∂

∂ f
{C + Tserial(f) · logf P}

=
∂Tserial(f)
∂ f

· logf P+ Tserial(f) ·
∂ logf P

∂ f

=
∂[L + (f − 1) · (r + c)]

∂ f
· [ln P/ ln f]

+ [L + (f − 1) · (r + c)] ·
∂[ln P/ ln f]
∂ f

= (r + c) · [
ln P
ln f

]

+ [L + (f − 1) · (r + c)] · [−
ln P

f · ln2 f
]

= (r + c) ·
ln P
ln f
− [L + (f − 1) · (r + c)] ·

ln P

f · ln2 f

Then, we set this expression equal to zero and isolate
f :

(r + c) ·
ln P
ln f
− [L + (f − 1) · (r + c)] ·

ln P

f · ln2 f
= 0

(r + c) ·
ln P
ln f

= [L + (f − 1) · (r + c)] ·
ln P

f · ln2 f
f · ln f · (r + c) = L + (f − 1) · (r + c)

f · ln f = L/(r + c) + (f − 1)

f · ln f − f = L/(r + c) − 1

f · (ln f − 1) = L/(r + c) − 1

The above expression gives the best value of f to use
with L, r, and c. It is a transcendental equation, so
one must solve for f numerically by finding the inter-
section of f · (ln f − 1) with the function L/(r + c) − 1,
which is constant once c is decided by the operation
and data size for a particular problem. We set L = 2.10
µs and r = 0.42 µs, the same values listed in Section 6,
and ploted the intersection of these two functions for
various values of c in Figure 14.

Only integers f ≥ 2 produce valid f -nomial trees.
For intersection points which are between two inte-
gers, one must choose the best of the two. For the val-
ues used for L and r note that the best degree may fall

Figure 14: Plot of f · (ln f − 1) and L/(r + c) − 1 for L =
2.10 µs, r = 0.42 µs, and various c

anywhere in the range [2,6] depending on the value of
c. The upper bound is reached somewhere between
5 and 6 when c = 0. Note when f = 6, a parent
node receives 5 messages so that the reception costs
accumulate to exactly balance the message latency. As
computation cost increases, the best degree decreases.

It is interesting to consider the range [1,2]. Values of
f smaller than 2 do not produce meaningful f -nomial
trees, however, if we take some number in this range,
say f = 1.5, and plug back it back into T f ull

f nomial(P, f) we
get:

T f ull
f nomial(P,1.5) ≈ C + [L + ((1.5)− 1) · (r + c)] · log(1.5) P

= C + [L + 0.5 · (r + c)] · log1.5 P

When compared to binomial trees, these values of f
tend to construct trees which have more communica-
tion phases, since log1.5 P < log2 P. They do so in re-
turn for a reduced amount of reception and computa-
tion costs, 0.5 · (r + c) instead of (r + c). Thus, trees in
this range wish to suffer extra communication in order
to save on computation, so this is the range in which
optimizations like the vector split are valuable.

This analysis applies only to full f -nomial trees; it
can not accurately be applied to arbitrary trees. How-
ever, it helps to build our intuition and establishes rea-
sonable expectations by using actual parameter values,
so it is worthwhile to study.

19

	Introduction
	The Quadrics Network
	NIC-based vs. Host-based -- Pros and Cons
	Advantages -- Reduced Latency and Increased Consistency
	Disadvantages -- Overhead and Limited NIC Processor Capability

	NIC-based Reduction Design Constraints
	Complications -- Processing Speed and Capability
	Simplifications -- Simple Operations and Small Data Sizes

	The Model and the Algorithm
	The Model
	f-nomial Trees -- Generalized Binomial Trees
	Vector Split Optimization

	Experiments
	Procedural Details
	Model Validation and Algorithm Inspection
	Reduced Latency
	Increased Consistency
	Vector Split Optimization

	Related Work
	Conclusions and Future Work
	References

