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Abstract—The rapid growth of InfiniBand, 10 Gigabit Eth-
ernet/iWARP and IB WAN extensions is increasingly gaining
momentum for designing high end computing clusters and
data-centers. For typical applications such as data staging,
content replication and remote site backup etc., FTP has been
the most popular method to transfer bulk data within and
across these clusters or data-centers. Although the existing
sockets based FTP approaches can be transparently used in
these systems through the protocols like IPoIB or SDP, their
performance and scalability are limited due to the additional
interaction overhead and unoptimized protocol processing.
This leads to a challenge how to design more efficient FTP
mechanisms by leveraging the advanced features of modern
interconnects.

In this paper we design a new Advanced Data Transfer
Service (ADTS) with the capabilities such as zero-copy data-
transfer, memory registration cache, persistent data sessions
and pipelined data transfer etc. to enable efficient zero-copy
data transfers over IB and iWARP equipped LAN and WAN.
We then utilize ADTS to design a high performance FTP li-
brary (FTP-ADTS). From our experimental results, we observe
that our design outperforms existing sockets based approaches
by more that 95% in transferring large volumes of data over
LAN. It also provides significantly better performance at much
lower (by up to a factor of 6) CPU utilization in various IB
WAN scenarios. These results present the promising future for
designing high performance communication protocols to power
the efficiency and scalability of next-generation parallel and
distributed environments.

I. INTRODUCTION

Ever increasing demands in high end computing and

intensive data exchange in data-centers together with the

cost effectiveness of high performance commodity systems

have led to massive deployments of compute and storage

systems on a global scale. In such scenarios, bulk data

transfer within and across these physically separated clusters

or data-centers has been an inescapable requirement for the

uses of scientific data-sets distribution, content replication,

remote data backup, etc. Generally, File Transfer Protocol

(FTP) [21] is used for handling bulk data transfers. Through

the years since the earliest FTP implementation based on

TCP/IP, there have been a lot of efforts on its improvement

and extensions [10], [12], [15], [23], [16], [13], while greatly

boost its performance in both LAN and WAN.

On the other hand, System Area Networks (SAN) such

as InfiniBand (IB) [4] and 10 Gigabit Ethernet/iWARP

[1] are rapidly gaining momentum for designing the high-

end clusters and data-centers. These high performance in-

terconnects have revolutionized the communication capa-

bilities of modern systems. In addition to providing high

bandwidth and low latency, they also provide advanced

features like zero-copy communication and Remote Direct

Memory Access (RDMA) that enable the design of novel

communication protocols. Furthermore, industry vendors

[6], [20] have recently introduced IB WAN routers to extend

these capabilities beyond a single cluster or data-center,

e.g., across multiple campuses or even across WAN range.

Hence, communication libraries are now capable of zero-

copy communications over WAN, which also provides a new

scope for designing newer FTP mechanisms.
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Figure 1. Protocol Stack over IB and 10Giga/iWARP (Existing approaches:
#1,#2,#3; Our design: #4)

Multiple approaches can be utilized for implementing

FTP in IB based LAN and WAN, as illustrated in Figure

1. We can directly apply the existing sockets based FTP

through intermediate drivers (schemes #1, #2 and #3), or

we can design new FTP mechanisms using the native IB

features (scheme #4). IPoIB (IP over IB) [18] and SDP

(Sockets Direct Protocol) [4] are two popular schemes

for the first choice. IPoIB encapsulates the standardized

IP packets over IB fabrics so that IP based applications

can access an IB device as usual. SDP is also a sockets-

like implementation which allows sockets applications to

be transparently deployed on IB and meanwhile retains
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Figure 2. Performance of Current Generation Communication Protocols and GridFTP

most of the native performance. These two schemes require

no modifications on existing FTP implementations, but at

the cost of losing significant native performance. We can

observe this in Figure 2(a) where native IB verbs with

DDR (expected peak bandwidth of 16 Gbps) switch achieve

much higher bandwidth as compared to other protocols.

Moreover, the performance for FTP, e.g., GridFTP, using

IPoIB and SDP with various tunings (discussed in detail

in Section II) lead to poor performance compared to that

achieved at the network level. 1 This leads to a challenge

whether FTP mechanism can be designed to maximize the

possible benefits of IB and IB WAN for high performance

data transfer.

In this paper, we take on this challenge and design a novel

zero-copy FTP for bulk data transfers across WAN. We first

design a generic high performance Advanced Data Transfer

Service (ADTS) layer that support zero-copy communica-

tions, and on top of that, we design the FTP client/server

library named as FTP-ADTS. The primary contributions of

our work are listed as follows:

• Design an Advanced Data Transfer Service (ADTS)

that leverages zero-copy capabilities of modern in-

terconnects to perform efficient bulk data transfers,

with further optimizations such as memory registration

caches, persistent data connections and pipelined data

transfers

• Leverage ADTS to design a high performance zero-

copy FTP library

• Provide a robust and inter-operable mechanism to

support both the zero-copy capable clients and the

traditional TCP (or UDP) clients

• Study the performance benefits of our design in the

current and emerging high performance environments

including both IB LAN and WAN scenarios, and com-

pare it with the current designs available in the literature

Our experimental results show an improvement of up to

95% in latency of transferring large files in LAN as com-

pared to IPoIB (TCP or UDP) based approaches. Further,

1The 10Gigabit Ethernet has the similar peak bandwidth as IPoIB with
DDR. We will not discuss this in the following sections, as we focus on
the IB based environment in this paper.

we demonstrate that for WAN with high network delays,

our approach performs significantly better than the existing

approaches. We also observe that it achieves peak transfer

rates at significantly lower (up to 6 times) CPU utilization.

The remainder of this paper is organized as follows:

Section II discusses the motivation in detail, and Section III

gives an overview of IB and IB WAN. In Section IV we

present our design of ADTS and FTP-ADTS. We evalu-

ate and analyze the performance in various scenarios in

Section V, describe the related work in Section VI, and

summarize the conclusions and possible future work in

Section VII.

II. DETAILED MOTIVATION

We have seen in Section I that the TCP or UDP adapted

protocols (e.g., IPoIB or SDP) cannot achieve good perfor-

mance in IB based systems. In this section, we take GridFTP

as an example to show the application level limitations by

these adaptations.

While running GridFTP through IPoIB and SDP in an IB

cluster, we used various well know tunings [11] to improve

the performance. Experimental setup are as described in

Section V. Figure 2(b) and 2(c) compare the file transfer time

and throughput (for get operation) with increasing tuning

levels (e.g., the legend of “TCP buffer size + block size”

means that the tuning on MTU, parallel streams, TCP buffer

size and transmission buffer size are all applied). It can

be observed that GridFTP over IPoIB performs very badly

without any tuning, while it is gradually improved with more

and more tuning. For the case of using SDP as the underlying

protocol, we only measured the performance with all the

tunings enabled. Its performance is not much better than that

of using IPoIB, which means that the low-level networking

benefits of SDP seen in Figure 2(a) are not fully translated

into FTP-level benefits. (Therefore, in Section V, we only

compare our design and the existing designs over IPoIB.)

Overall, we see that the traditional sockets based FTP is not

capable of utilizing the benefits of IB either over IPoIB or

SDP. This drives us to leverage the native advanced features,

e.g., the zero-copy capabilities of modern interconnects in

this work, to design more efficient approaches.
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III. INFINIBAND AND INFINIBAND WAN

In this section we present the background on InfiniBand

and InfiniBand WAN. InfiniBand Architecture (IBA) [4]

defines a switched network fabric for interconnecting pro-

cessing nodes and I/O nodes, using a queue-based model.

It has multiple transport services including Reliable Con-

nection (RC) and Unreliable Datagram (UD), and supports

two types of communication semantics: Channel Semantics

(Send-Receive communication) over RC and UD, and Mem-

ory Semantics (Remote Direct Memory Access - RDMA

communication) over RC. Both semantics can perform zero-

copy data transfers, i.e. the data can directly be transferred

from the application source buffers to the destination buffers

without additional host level memory copies.

Figure 3. Clusters Connected with Obsidian Longbow

InfiniBand Range Extension with Obsidian Longbows:

Obsidian Longbows [6] primarily provide range extension

for InfiniBand fabrics over modern 10 Gigabit/s Wide Area

Networks (WAN), supporting IB traffic at SDR rates (8

Gbps). The Longbows work in pairs, establishing point-

to-point links between two clusters with one Longbow at

each end of the link as shown in Figure 3. The Longbows

unify both the networks into one InfiniBand subnet which

is transparent to the InfiniBand applications and libraries,

except for the increased latency added by the wire delays.

Typically, a delay of 5 us is expected per each km of wire

length in WAN. The Obsidian Longbow routers provide a

web interface for each to specify the delay. We leverage this

feature to emulate cluster-of-clusters with varying degrees

of separation in our experiment.

It is to be noted that in this paper we use IB-WAN routers

from Obsidian. However, such routers are also available

from other vendors such as BayNetworks [2].

IV. DESIGNING EFFICIENT FTP MECHANISMS

In this section we describe the details of our zero-copy

FTP design. We present the ADTS design followed by the

FTP-ADTS library design.

A. Architecture of the Proposed Design

Figure 4 presents the overall architecture of the proposed

design. Utilizing the advanced networking capabilities of

modern interconnects, we first design a generic Advanced

Data Transfer Service (ADTS) layer which has the network

and transport functionalities to support high performance

zero-copy data transfers as well as the traditional TCP or

UDP based data transfer. We then design the FTP-specific

functionality and interface on top of ADTS, which is named

as FTP-ADTS. (Note that ADTS layer can be reused for

other applications by appropriate porting.) These two layers

are described in detail in the following.

B. Designing Advanced Data Transfer Service

As shown in Figure 4, ADTS consists of several compo-

nents that handle different tasks.

Depending on the network equipment, clients may be

capable of performing zero-copy data transfer or only sup-

port the TCP or UDP based communication. Once the

type of transport protocol (channel) is negotiated, the Data

Connection Management component initiates a connection

to the remote peer using the corresponding transport. This

channel selection can be adapted dynamically on a per

client connection basis to handle different kinds of clients,

thus improving robustness and interoperability. In addition

to zero-copy, TCP/IP and UDP/IP channels, the DATA

Transport Interface provides scope for enabling support for

other emerging transports for next generation architectures.

1) Design of Zero-Copy Channel:

Design Alternatives: As mentioned in Section III, we

have two possible alternatives for zero-copy design: (i)

Memory semantics using RDMA; (ii) Channel semantics

using Send and Receive.

RDMA based data-transfer requires allocating and reg-

istering buffers on both the source and the destination

nodes. The sender initiates the data-transfer by specifying

the destination buffer address. It is known that RDMA

based approaches [17] achieve better latencies. However,

they have three significant drawbacks. Firstly, the target

RDMA buffers need to be pre-allocated, registered and the

address information need to be communicated to the source

process before they can be used. Further, the flow control in

RDMA communication is explicit. i.e. the sender can initiate

data-transfers only after receiving explicit notification of

buffer availability. Secondly, since RDMA operations do not

involve remote node CPU, notifying the completion of data-

transfers to the remote node requires to send additional mes-

sages that based on send-recv, which adds more overhead.

And finally, in IB WAN environment, the latency benefits

of RDMA seen for small messages are dominated by the

actual network delay. Hence it offers no superior benefits

over send/recv in these scenarios.

On the other hand, send/recv mechanism shows good

benefits. Firstly, zero copy benefits of send-recv mechanism

are identical to those seen with RDMA, i.e. the remote data

can be directly received to the FTP buffers without kernel-

level buffering. Secondly, send-recv mechanisms support

easy flow control. For example, the receiver can use SRQ

[4] to post buffers when needed automatically. It eliminates

the need for explicit flow control. This benefit can be

quite significant on IB WAN links because the sender is

not throttled due to lack of buffers on the remote node.

3
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Figure 4. Proposed FTP-ADTS Architecture (Shaded boxes are design components focused in this paper)

In addition, as mentioned in Section III, the InfiniBand’s

send/recv communications can be used over both the RC and

UD transports. Due to these benefits, we utilize send/recv for

our design2. We will describe the details in the following.

Send/Recv based Design: Once the client and server ne-

gotiate the use of zero-copy and the appropriate connections

are setup by the Data Connection Management component,

the channel is marked for zero-copy data transfers. As

aforementioned, we need to handle flow control and buffer

management.

Each buffer that the underlying layer (IB or iWARP)

accesses needs to be registered and pinned in memory. In

order to alleviate this overhead, the Buffer/File Management

component keeps a small set of pre-allocated buffers. Part

of the data is first read into these buffers while additional

buffers are being allocated and registered as needed. The

buffers that are allocated on-demand are unregistered and

released on completion of the data transfer.

Unlike the sockets interface where the underlying kernel

TCP/IP stack performs the flow control, the ADTS needs

to perform explicit flow control to support zero-copy op-

erations. i.e. data cannot be sent out unless the sender is

assured of buffer availability on the receiver. In our design,

we perform our flow control on the receiver side by using

SRQ as discussed earlier. This enables the ADTS to push

the data out of the source node at a high rate.

In certain scenarios, the end nodes might not be capable

of processing/storing the incoming data at a good rate3, so

it is necessary to throttle the sender. We use a flow control

fall back mechanism to throttle the sender as needed.

2) Design Enhancements:

In order to further improve the performance of ADTS, we

use the following optimizations: memory registration cache

2Note that RDMA operations support one-sided data-transfer which can
be highly beneficial for certain kinds of applications even in IB WAN
scenarios. However, in the context of this paper, zero-copy send/recv based
mechanisms are more beneficial.

3Note that in the context of high performance FTP transfers, it is
reasonable to assume that the end-nodes are capable of sustaining high
IO bandwidths.

and persistent sessions, and pipelined data transfers.

Memory Registration Cache and Persistent Sessions:

While we pre-allocate a set of buffers to speed up processing,

the buffers need to be registered for use. This in turn impacts

the performance. Existing libraries such as MVAPICH [5]

amortize the registration cost by avoiding multiple registra-

tion/deregistration calls for multiple transfers on the same

buffers, which is popularly known as registration cache. We

apply the same technique here.

In typical FTP data transfers, each file is transmitted

on a different data-connection, which incurs multiple data

connection setup costs. In this situation, memory registra-

tion caching would not help significantly to reduce the

registration overhead. In order to alleviate costs, we enable

persistent data-sessions that keep data connection and the

associated buffer alive during the transfer of multiple files.

The maximum number of files to be transmitted on a given

connection is negotiated in advance and the connection is

not closed until all of them are transferred or the connec-

tion becomes idle. This approach also allows for efficient

use of buffers and memory registrations which boosts the

performance significantly.

Pipelined Data Transfers: In order to maximize the

utilization of both the network bandwidth and the local disk

bandwidth (or the local file system being used), the ADTS

is designed with two threads. The network thread deals

with processing of network related work queues, completion

notifications, flow control etc., while the disk thread handles

the reads and writes from/to the disk. With this multi-

threaded functioning, all data transfers are packetized and

pipelined and hence better performance is obtained.

C. Design of FTP-ADTS

Figure 4 shows the basic architecture of our FTP

client/server library (FTP-ADTS). It utilizes the low-

overhead zero-copy ADTS layer to provide high perfor-

mance FTP transfers. The top level FTP Interface deals with

the rest of the features needed for the FTP library. It provides

a basic user interface to enable all client interactions. Other

4
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Figure 5. FTP Performance in IB LAN

main components are described as follows.

1) Control Connection Management:

Based on the user provided information, the client FTP

engine initiates a socket based control connection to the

remote server. This is used to relay all control informa-

tion such as FTP commands and error messages. In addi-

tion, it is also used to negotiate the Active/Passive modes

(PORT/PASV commands in the FTP specification [21]) and

transport protocols to be used for data-transfers. Hence,

clients that are capable of zero-copy transfers can benefit

from higher performance. To enable this, we require the

zero-copy capable client to send an additional command

TPRT (Transport PRoTocol) advertising its transport pref-

erence. Once this negotiation is complete, the ATDS layer

initiates the appropriate data connection.

2) Prefork Server:

Multiple parallel connections to the FTP server is a

common scenario in most large data-centers. In order to ef-

ficiently support such parallelism, we design our FTP server

as a multi-process server. The main FTP server daemon forks

multiple processes for different clients. Further, the server

maintains a small pool of pre-forked processes efficiently to

handle bursts of requests.

V. EXPERIMENTAL RESULTS

In this section, we present the experimental results. We

evaluate the performance of our FTP design in both LAN

and WAN scenarios, and further measure the CPU utilization

and the benefits of design enhancement. GridFTP and FTP-

UDP (we implement a UDP based FTP which has the

consideration of unreliable transfers) over IPoIB are utilized

as the base case for performance comparisons. We set

the TCP window size and MTU size that yield the best

performance for IPoIB based on our previous work [19],

and did all the tuning as that in Section II.

We use RAM disks for data storage so that there is no

disk I/O bottleneck and we can analyze the communication

performance more clearly. This is a reasonable simplification

in that modern HEC systems or data-centers usually employ

high performance parallel or distributed file systems and

advanced data storage technologies such as RAID to obtain

improved I/O performance.

Experimental Setup: We use a cluster consisting of 64

Intel Xeon Quad dual-core processor nodes with 6GB RAM

on each node. The nodes are equipped with both IB DDR

ConnectX HCAs with OFED 1.3 [7] drivers and Chelsio

T3b 10 Gigabit Ethernet/iWARP adapters. The OS used was

RHEL4U4. The nodes are divided into Cluster A and Cluster

B that are connected with Obsidian InfiniBand WAN routers

as shown in Figure 3.

A. Performance in IB LAN Scenarios

This experiment shows the basic performance improve-

ment achieved by our FTP-ADTS as compared to FTP-

UDP and GridFTP in low-delay, high-bandwidth LAN. We

evaluate the client-perceived file transfer time of both put

(upload) and get (download) operations. Since our FTP

can been used either over IB or over 10 Giga/iWARP, we

measure the performance in both cases and use FTP-ADTS-

IB and FTP-ADTS-iWARP to represent them, respectively.

Figures 5(a) and 5(b) compares the performance of get

operation with varying file sizes. We see that FTP-ADTS

achieves significantly better performance for larger file sizes.

FTP-ADTS-IB presents an improvement by up to 95% and

181% as compared to GridFTP and FTP-UDP, respectively,

and FTP-ADTS-iWARP also provides significant improve-

ment. This indicates that FTP-ADTS can make much more

benefits of IB, which is consistent with what observed

in Section I. Since FTP-ADTS-iWARP performs a little

worse than FTP-ADTS-IB, we will use FTP-ADTS-IB as

the representative of our design in the following analysis.

We also observe that GridFTP-IPoIB does not perform well

for small file sizes, but does better as the file sizes increase.

This confirms what has been indicated about GridFTP in

[24]. We see the similar trends for put operations as shown

in Figure 5(c).

B. Performance in IB WAN Scenarios

In order to study the performance in IB WAN scenarios,

we evaluate the FTP operations with server and client

running on a pair of nodes connected by a pair of Obsidian

routers. The distance between them is emulated by varying

the WAN delays as mentioned in Section III.

5
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Basic Performance: We compare the performance of our

design, GridFTP and FTP-UDP with varying WAN delays

of 0 us (no delay), 10 us, 100 us, 1,000 us and 1,0000us

(corresponding to the distance of 0 km, 2 km, 20 km,

200 km and 2,000 km). Figures 6 (a) and (b) present the

time for downloading a 32 MByte and a 256 MByte file,

respectively. It is obvious that our FTP performs better,

especially over high delay network. Particularly, FTP-ADTS

sustains performance for larger WAN delays quite well,

while GridFTP-IPoIB shows a steep latency increase when

the WAN delay arrives 10000 us. The improvement is not

only due to the underlying faster zero-copy operations,

but also because the network throughput is the bottleneck

for IPoIB in WAN where issues such as RTT time and

MTU size can severely degrade the performance. Further,

although we have done standard TCP tuning and GridFTP

parameters tuning, the overhead incurred by the interactions

between TCP and IPoIB (especially in WAN) contributes

to the performance degradation [22]. Another observation

is that here the FTP-UDP performs better than GridFTP.

It is well-known that UDP can achieve good performance

over high-bandwidth, high-latency networks where TCP has

fundamental limitations [3] because of flow control. Due

to the space constraints in the paper, we do not show

the performance of FTP put operations which demonstrates

similar trends.

Detailed Analysis: We further carried out the following two

experiments to demonstrate the fundamental reasons.

First we measure the WAN peak bandwidth of different

transports. Figure 7 shows the results for IPoIB (including

TCP/IP and UDP/IP) and IB verbs (including RC and UD)

as WAN delays increases. It is to be noted that Obsidian

routers currently support SDR (8Gbps) link only. We can see

that IB verbs achieves the stable highest bandwidth through

the whole range of delays (RC and UD have the same

bandwidth because the very large messages used elliminate

the limitation of reliable management in RC [19]), while the

TCP/IP bandwidth drops fast when the delay is high, which

is consistent with the degradation in GridFTP performance.

On the other hand, although the UDP/IP bandwidth with

smaller delays is lower than the TCP/IP, it shows no sig-

nificant degradation as the delay increases. It is even better

than TCP/IP when the delay is high (>= 10000 us). This is

because that UDP can swamp the network by firing many

successive packets, but TCP is not capable of saturating

available bandwidth due to congestion control and flow

control. (Please note that researchers have shown that TCP

bandwidth over longer pipes can be improved by techniques

such as multiple parallel streams. While this improves the

bandwidth performance, this also needs additional resources

at the end nodes. We intend to study the impact of parallel

zero-copy protocol and parallel TCP/IP streams in future.)

The second experiment is to characterize the impact of

packet size. Usually, larger packets are preferred for better

use of the link bandwidth. We claim that our design is

benefited from the use of very large packet size (i.e. 1

MByte) in IB send-recv operations, while IPoIB is limited

by the largest packet size of 64 KByte. In this experiment,

we vary the packet size of IB RC verbs (which is used in

our design) and measure the bandwidth. From the results

shown in Figure 8, we observe that the bandwidth for small

and medium messages becomes progressively worse with

increasing network delays. This demonstrates that some of

the benefits in our design can be attributed to the use of

6



 0

 5

 10

 15

 20

128 256 512 1024

S
e
rv

e
r 

C
P

U
 u

ti
liz

a
ti
o
n
 (

%
)

File size (MByte)

FTP-ADTS-IB
GridFTP-IPoIB

FTP-UDP-IPoIB

 0

 5

 10

 15

 20

128 256 512 1024

S
e
rv

e
r 

C
P

U
 u

ti
liz

a
ti
o
n
 (

%
)

File size (MByte)

FTP-ADTS-IB
GridFTP-IPoIB

FTP-UDP-IPoIB

Figure 9. End Node CPU Utilization (a) Server; (b) Client

large packet sizes.

C. Performance of Multiple File Transfers

In some data-center scenarios such as site replication,

mirroring, etc., FTP is used to transfer multiple files. We

evaluate the performance of site replication in this section.

We measure the performance of FTP-ADTS and FTP-

UDP (since we already observed that FTP-UDP is better

than GridFTP over the high-delay IB WAN links, we only

use FTP-UDP here) using a zipf [26] trace. This trace has a

high α value with an average file size of about 66 MB. The

average amount of time to replicate this trace over WAN is

shown in Figure 10. We see that the FTP-ADTS speeds up

the data transfer by up to 65%. This presents that the FTP-

ADTS is a promising candidate for some real applications.

We also observe that the time in both cases increases for

very large network delays. This is due to the fact that here

the zipf trace consists of a large number of smaller sized

files that could degrade the WAN performance.
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Figure 10. Site Replication over IB WAN using FTP

D. Benefits in CPU Utilization

TCP or UDP based communications often suffer from the

added CPU utilization for TCP(UDP)/IP stack processing

[9]. Particularly, at sender side, the data is copied into ker-

nel’s socket buffer before being sent out, and at receiver side,

the data is also copied to kernel’s buffer before being written

to the destination disk. While the sender side overhead can

be alleviated by utilizing the sendfile system call, the receiver

side overhead is usually unavoidable.

Figures 9 (a) and (b) show the normalized CPU utilization

(the total percentage of CPU time being used on our 8-core

system) at server and client, respectively, while performing

multiple back-to-back large file put operations. As expected,

the GridFTP and FTP-UDP over IPoIB uses a significant

amount of CPU on both the server and the client for

additional data copies. On the other hand, FTP-ADTS has

much lower CPU utilization due to the use of zero-copy

protocol. Further, we observe that the CPU utilization of

GridFTP client is very low, which demonstrates the benefits

of using sendfile to reduce one memory copy on the client

side. FTP-UDP does not show such trends since UDP can

not use this optimization. Overall, our approach requires

fairly smaller amount of CPU time for all file sizes, therefore

is more scalable than the IPoIB based designs.

E. Benefits of the Design Enhancements

In this experiment we detail the benefits of design en-

hancements (seen in Section IV-B2).

We break up the performance of the FTP-ADTS while

transferring a set of small files into Connection time (Conn)

and Data Transfer time (Data). Figure 11 shows this breakup

with varying number of successive file transfers in two cases:

(i) Basic: with all optimizations disabled and (ii) Opt: with

all optimizations enabled. We clearly observe the following

two trends: (i) pipelined data transfers, buffer reuse and

memory registration caches improve the performance signif-

icantly (upto 55% improvement for the transfer of 16 files of

size 1MB) and (ii) the use of persistent sessions improves the

connection setup time considerably, i.e. the cost of initiating

the connections is incurred only once instead of incurring

on a per transfer basis.

VI. RELATED WORK

Researchers have investigated FTP from multiple angles

including security, performance, distributed anonymous FTP

and extensibility [12], [14]. The extension to support IPv6

and transfer files over Network Address Translators (NATs)

is introduced in [13]. In [10], the authors have proposed

GridFTP which performs efficient TCP based transfers

through the use of multiple streams for each transfer. Also,

scientists aimed to improve multiple file transfers using

SCTP multistreaming, parallel transfers [16]. The use of

UDP based transfers has been explored in [15], in order

to overcome some of the limitations in TCP.
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Figure 11. Benefits of Design Enhancements

On the other hand, researchers have explored the advanced

features of modern interconnects (e.g. IB) and IB WAN. The

work on NFS over RDMA demonstrates better performance

[8] due to the benefits of RDMA in several scenarios.

Literature [22], [25], [19] investigate various aspects of the

performance characteristics over IB WAN.

In this paper, we propose to leverage the advanced features

such as zero-copy operations provided by high performance

interconnects for improving the FTP capabilities in high-end

IB based clusters or data-centers.

VII. CONCLUSIONS AND FUTURE WORK

The emerging WAN capable interconnects such as Infini-

Band WAN and 10 Gigabit Ethernet/iWARP are making

rapid advances in the high-end computing clusters and

data-centers, where FTP is the most popular method to

transfer bulk data in many applications. Although the ex-

isting solutions, e.g., TCP or UDP or SCTP based FTP

implementations, can be directly used in these systems by

the intermediate protocols such as IPoIB and SDP, their

performance is far lower than the maximum network capa-

bilities. Attempting to improve this, in this paper we propose

and design a novel FTP library (FTP-ADTS) that is ported

to our Advanced Data Transfer Service (ADTS) and that

is capable of efficiently transferring data by leveraging the

zero-copy operations of modern interconnects.

From our experimental results, we have observed that our

FTP-ADTS outperforms existing approaches by upto 95%

in transferring large amounts of data in LAN, as well as

significant improvements in various IB WAN scenarios. We

also observed that our approach achieves peak transfer rates

at much lower (up to 6 times) CPU utilization, resulting in

much better scalability.

Our studies demonstrates that the novel FTP design using

IB advanced features can provide very efficient file transfer,

thus offering the insight to design next generation high

performance applications in a radically different manner. In

the future we intend to explore these challenges in other

communication middleware and study the impact of modern

WAN interconnects on their designs.
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