
HIGH-PERFORMANCE MULTI-TRANSPORT MPI
DESIGN FOR ULTRA-SCALE INFINIBAND CLUSTERS

DISSERTATION

Presented in Partial Fulfillment of the Requirements for

the Degree Doctor of Philosophy in the

Graduate School of The Ohio State University

By

Matthew J. Koop, B. C. S.

* * * * *

The Ohio State University

2009

Dissertation Committee:

Prof. D. K. Panda, Adviser

Prof. P. Sadayappan

Prof. F. Qin

Approved by

Adviser
Graduate Program in

Computer Science and
Engineering

c© Copyright by

Matthew J. Koop

2009

ABSTRACT

In the past decade, rapid advances have taken place in the field of computer and network

design enabling us to connect thousands of computers together to form high performance

clusters. These clusters are used to solve computationally challenging scientific problems.

The Message Passing Interface (MPI) is a popular model to write applications for these

clusters. There are a vast array of scientific applications which use MPI on clusters. As the

applications operate on larger and more complex data, the size of the compute clusters is

scaling higher and higher. The scalability and the performance of the MPI library if very

important for the end application performance.

InfiniBand is a cluster interconnect which is based on open-standards and is gaining

rapid acceptance. This dissertation explores the different transports provided by Infini-

Band to determine the scalabilty and performance aspects of each. Further, new MPI de-

signs have been proposed and implemented for transports that have never been used for

MPI in the past. These designs have significantly decreased the resource consumption, in-

creased the performance and increased the reliability of ultra-scale InfiniBand clusters. A

framework to simultaneously use multiple transports of InfiniBand and dynamically change

transfer protcols has been designed and evaluated. Evaluations show that memory can be

reduced from over 1 GB per MPI process to 40 MB per MPI process. In addition, perfor-

mance using this design has been improved by up to 30% over earlier designs. Investiga-

tions into providing reliability have shown that the MPI library can be designed to withstand

ii

many network faults and also how to design reliability in software to provide higher mes-

sage rates than in hardware. Software developed as a part of this dissertation is available in

MVAPICH, which is a popular open-source implementation of MPI over InfiniBand and is

used by several hundred top computing sites all around the world.

iii

Dedicated in memory of my father, Dr. Allen H. Koop (1947-2007)

iv

ACKNOWLEDGMENTS

I would like to thank my adviser, Prof. D. K. Panda for helping guide me throughout

the duration of my PhD study. I’m thankful for all the efforts he took took help develop my

various skills in systems experimentation and writing.

I would like to thank my committee members Prof. Sadayappan and Prof. Qin for their

valuable guidance and suggestions.

I’m thankful to Lawrence Livermore National Laboratory for giving me a chance to see

my research in action and see new areas of research through two internships. I’m especially

grateful for Adam Moody and the help he extended to me while there.

I’m grateful to have had Sayantan Sur as a mentor during my first years of graduate

study. Without him I would not have been able to make the progress that I have made.

I’d also like to thank other senior colleagues of Nowlab including Lei Chai, Wei Huang,

Amith Mamidala, Sundeep Narravula, Gopal Santhanaraman, and Karthik Vaidyanathan.

I’m also thankful to have worked with many others in the lab including Jaidev Sridhar, Tejus

Gangadharappa, Karthik Gopalakrishnan, Jonathan Perkins, Krishna Chaitanya, Ping Lai,

Hari Subramoni, Greg Marsh, Xiangyong Ouyang and Ajay Sampat.

I would like to thank my family including my parents and my brother. They kept me

going when going through some tough times. I’d also like to especially thank my fianceé

Erin. She gave me support and a listening ear that was invaluable. I would not have had

made it this far without their love and support.

v

VITA

September 6, 1982 . Born - San Diego, CA, USA.

August 2000 - May 2004 .B.C.S. Computer Science, Calvin Col-
lege, Grand Rapids, Michigan.

June 2005 - August 2005 . Intern,
Lucent Corporation, Columbus, OH.

September 2004 - December 2006 Graduate Teaching Associate,
The Ohio State University.

July 2006 - September 2006 Summer Scholar,
Lawrence Livermore National Labora-
tory, Livermore, CA.

June 2007 - September 2007 Summer Scholar,
Lawrence Livermore National Labora-
tory, Livermore, CA.

June 2008 - September 2008 Research Intern,
IBM T. J. Watson Research, Hawthorne,
NY.

January 2006 - Present . Graduate Research Associate,
The Ohio State University.

PUBLICATIONS

M. Koop, J. Sridhar and D. K. Panda, “TupleQ: Fully-Asynchronous and Zero-Copy
MPI over InfiniBand”, IEEE Int’l Parallel and Distributed Processing Symposium (IPDPS
2009), Rome, Italy, May 2009

K. Kandalla, H. Subramoni, G. Santhanaraman, M. Koop and D. K. Panda, “Design-
ing Multi-Leader-Based Allgather Algorithms for Multi-Core Clusters”, 9th Workshop on
Communication Architecture for Clusters (CAC 09), Rome, Italy, May 2009

vi

J. Sridhar, M. Koop, J. Perkins and D. K. Panda, “ScELA: Scalable and Extensible Launch-
ing Architecture for Clusters”, International Conference in High Performance Computing
(HiPC08), Bangalore, India, December 2008

M. Koop, J. Sridhar and D. K. Panda, “Scalable MPI Design over InfiniBand using eX-
tended Reliable Connection”, IEEE Int’l Conference on Cluster Computing (Cluster 2008),
Tsukuba, Japan, September 2008

W. Huang, M. Koop and D. K. Panda, “Efficient One-Copy MPI Shared Memory Com-
munication in Virtual Machines”, IEEE Int’l Conference on Cluster Computing (Cluster
2008), Tsukuba, Japan, September 2008

R. Kumar, A. Mamidala, M. Koop, G. Santhanaraman and D. K. Panda, “Lock-free Asyn-
chronous Rendezvous Design for MPI Point-to-point communication”, EuroPVM/MPI 2008,
Dublin, Ireland, September 2008

M. Koop, W. Huang, K. Gopalakrishnan and D. K. Panda, “Performance Analysis and
Evaluation of PCIe 2.0 and Quad-Data Rate InfiniBand”, 16th IEEE Int’l Symposium on
Hot Interconnects (HotI16), Palo Alto, CA, August 2008

M. Koop, R. Kumar and D. K. Panda, “Can Software Reliability Outperform Hardware
Reliability on High Performance Interconnects? A Case Study with MPI over InfiniBand”,
22nd ACM International Conference on Supercomputing (ICS08), Island of Kos, Greece,
June 2008

M. Koop, T. Jones and D. K. Panda, “MVAPICH-Aptus: Scalable High-Performance
Multi-Transport MPI over InfiniBand”, IEEE Int’l Parallel and Distributed Processing Sym-
posium (IPDPS 2008), Miami, FL, April 2008

W. Huang, M. Koop, Q. Gao and D. K. Panda, “Virtual Machine Aware Communication
Libraries for High Performance Computing”, SuperComputing (SC07), Reno, NV, Novem-
ber 2007

M. Koop, S. Sur and D. K. Panda, “Zero-Copy Protocol for MPI using InfiniBand Unreli-
able Datagram”, IEEE Int’l Conference on Cluster Computing (Cluster 2007), Austin, TX,
September 2007

Q. Gao, W. Huang, M. Koop and D. K. Panda, “Group-based Coordinated Checkpointing
for MPI: A Case Study on InfiniBand”, International Conference on Parallel Processing
(ICPP07), XiAn, China, September 2007

vii

S. Sur, M. Koop, L. Chai and D. K. Panda, “Performance Analysis and Evaluation of
Mellanox ConnectX InfiniBand Architecture with Multi-Core Platforms”, 15th IEEE Int’l
Symposium on Hot Interconnects (HotI15), Palo Alto, CA, August 2007

M. Koop, S. Sur, Q. Gao and D. K. Panda, “High Performance MPI Design using Unre-
liable Datagram for Ultra-Scale InfiniBand Clusters”, 21st ACM International Conference
on Supercomputing (ICS07), Seattle, WA, June 2007

W. Huang, J. Liu, M. Koop, B. Abali and D. K. Panda, “Nomad: Migrating OS-bypass
Networks in Virtual Machines”, 3rd International ACM Conference on Virtual Execution
Environments (VEE07), San Diego, CA, June 2007

M. Koop, T. Jones and D. K. Panda, “Reducing Connection Memory Requirements of MPI
for InfiniBand Clusters: A Message Coalescing Approach”, 7th IEEE Int’l Symposium on
Cluster Computing and the Grid (CCGrid07), Rio de Janeiro, Brazil, May 2007

A. Vishnu, M. Koop, A. Moody, A. Mamidala, S. Narravula and D. K. Panda, “Hot-
Spot Avoidance With Multi-Pathing Over InfiniBand: An MPI Perspective”, 7th IEEE Int’l
Symposium on Cluster Computing and the Grid (CCGrid07), Rio de Janeiro, Brazil, May
2007

S. Sur, M. Koop and D.K. Panda, “High-Performance and Scalable MPI over InfiniBand
with Reduced Memory Usage: An In-Depth Performance Analysis”, SuperComputing
(SC06), Tampa, FL, November 2006

M. Koop, W. Huang, A. Vishnu and D.K. Panda, “Memory Scalability Evaluation of the
Next-Generation Intel Bensley Platform with InfiniBand”, 14th IEEE Int’l Symposium on
Hot Interconnects (HotI14), Palo Alto, CA, August 2006

FIELDS OF STUDY

Major Field: Computer Science and Engineering

Studies in:

Computer Architecture Prof. D. K. Panda
Computer Networks Prof. D. Xuan
Software Systems Prof. F. Qin

viii

TABLE OF CONTENTS

Page

Abstract . ii

Dedication . iv

Acknowledgments . v

Vita . vi

List of Tables . xiv

List of Figures . xvi

Chapters:

1. Introduction . 1

2. Background . 6

2.1 InfiniBand Overview . 6
2.1.1 Communication Semantics . 7
2.1.2 Transport Services . 9
2.1.3 Shared Receive Queue . 11
2.1.4 eXtended Reliable Connection (XRC) 12
2.1.5 Memory Registration . 12
2.1.6 Completion and Event Handling Mechanisms 13

2.2 MVAPICH Design Overview . 13
2.2.1 Eager Protocol . 14
2.2.2 Rendezvous Protocol . 16

2.3 Zero-Copy Protocols and RDMA . 17
2.4 Modern Network Technologies and Packet Loss 19

ix

3. Problem Statement and Methodology . 21

4. Reducing Memory for Reliable Connection with Message Coalescing 27

4.1 Work Queue Entries and Memory Usage 28
4.1.1 Memory Usage with Varied Numbers of WQEs 28
4.1.2 Effects of Reducing WQEs . 30

4.2 Message Coalescing Design . 31
4.2.1 Motivation . 31
4.2.2 Design . 32

4.3 Evaluation . 34
4.3.1 Microbenchmark Performance 34
4.3.2 Application Performance . 36

4.4 Related Work . 38

5. Scalable MPI over Unreliable Datagram . 39

5.1 Motivation . 41
5.1.1 Resource Scalability . 41
5.1.2 Performance Scalability . 43

5.2 Design Alternatives . 44
5.2.1 Overview . 45
5.2.2 Reliability . 45

5.3 Implementation . 49
5.4 Evaluation . 50

5.4.1 Basic Performance . 53
5.4.2 Application Results . 54

5.5 Zero-Copy Design . 61
5.5.1 Design Challenges . 61
5.5.2 Proposed Design . 63

5.6 Zero-Copy Evaluation . 67
5.6.1 Basic Performance . 68
5.6.2 Application Benchmarks . 70

5.7 Related Work . 73

6. Unreliable Connection: Hardware vs. Software Reliability 76

6.1 Methodology . 77
6.1.1 Native Performance . 77
6.1.2 Reliability Performance . 78
6.1.3 Resource Usage . 79

x

6.2 Proposed Design . 79
6.2.1 Reliability Engine . 79
6.2.2 Reliable Message Passing . 80

6.3 Implementation . 84
6.4 Evaluation and Analysis . 84

6.4.1 Experimental Setup . 85
6.4.2 Microbenchmarks . 86
6.4.3 Application Benchmarks . 87

6.5 Related Work . 93

7. Multi-Transport Hybrid MPI Design . 94

7.1 Message Channels . 96
7.1.1 Eager Protocol Channels . 96
7.1.2 Rendezvous Protocol Channels 98
7.1.3 Shared Memory . 98

7.2 Channel Evaluation . 99
7.2.1 Basic Performance Microbenchmarks 99
7.2.2 Evaluation of Channel Scalability 101

7.3 Proposed Design . 104
7.3.1 Initial Channel Allocation . 105
7.3.2 Channel Multiplexing and Reliability 106
7.3.3 Channel Selection . 106
7.3.4 Channel Allocation . 108

7.4 Application Benchmark Evaluation . 109
7.4.1 NAS Parallel Benchmarks . 110
7.4.2 NAMD . 113
7.4.3 SMG2000 . 113

7.5 Related Work . 114

8. Scalable MPI over eXtended Reliable Connection 115

8.1 eXtended Reliable Connection . 116
8.1.1 Motivation . 116
8.1.2 Connection Model . 118
8.1.3 Addressing Method . 119

8.2 Design . 120
8.2.1 Shared Receive Queues . 120
8.2.2 Connection Setup . 121

8.3 Experimental Evaluation . 124
8.3.1 Experimental Platform . 124
8.3.2 Methodology . 124

xi

8.3.3 Memory Usage . 126
8.3.4 MPI Microbenchmarks . 127
8.3.5 Application Benchmarks . 128

8.4 Related Work . 131

9. Increasing Overlap with the XRC Transport 134

9.1 Motivation . 135
9.2 Existing Designs of MPI over InfiniBand 136

9.2.1 Eager Protocol . 137
9.2.2 Rendezvous Protocol . 138

9.3 Proposed Design . 140
9.3.1 Providing Full Overlap . 140
9.3.2 Creating Receive Queues . 141
9.3.3 Sender-Side Copy . 142
9.3.4 MPI Wildcards . 142

9.4 Evaluation . 143
9.4.1 Experimental Platform . 143
9.4.2 Experimental Combinations . 144
9.4.3 Overlap . 144
9.4.4 NAS Parallel Benchmarks (NPB) - SP 145

9.5 Related Work . 146

10. Scalable and Efficient RDMA Small Message Transfer 148

10.1 RDMA Fast Path and Existing Design 149
10.1.1 What is RDMA Fast Path? . 149
10.1.2 Existing Structure . 150
10.1.3 Detecting Message Arrival . 150

10.2 Veloblock Design . 152
10.2.1 Remove Sender-Side Buffer . 152
10.2.2 Supporting Variable-Length Segments 153
10.2.3 Possible Designs . 155
10.2.4 Veloblock Design . 156

10.3 Veloblock Evaluation . 157
10.3.1 Experimental Platform . 157
10.3.2 Methodology . 158
10.3.3 Application Benchmarks . 158

10.4 Related Work . 162

xii

11. Providing Extended Reliability Semantics . 164

11.1 InfiniBand States and Reliability Semantics 165
11.1.1 Queue Pair States . 165
11.1.2 Reliability Semantics . 166
11.1.3 Error Notification . 167

11.2 Design . 168
11.2.1 Message Completion Acknowledgment 168
11.2.2 Error Recovery . 170

11.3 Experimental Setup . 172
11.4 Experimental Evaluation . 173
11.5 Related Work . 176

12. Open-Source Software Distribution . 177

13. Conclusion and Future Directions . 179

13.1 Summary of Research Contributions . 179
13.1.1 Reducing Memory Requirements for Reliable Connection 179
13.1.2 Designing MPI for Unreliable Datagram 180
13.1.3 Designing Reliability Mechanisms 180
13.1.4 Investigations into Hybrid Transport Design 181
13.1.5 MPI Designs for eXtended Reliable Connection Transport 181
13.1.6 Designing Communication-Computation Overlap with Novel Trans-

port Choices . 182
13.2 Future Work . 182

Bibliography . 184

xiii

LIST OF TABLES

Table Page

2.1 Comparison of InfiniBand Transport Types 10

4.1 Memory usage per additional connection with increasing send WQEs . . . 29

5.1 Additional Memory Required with additional processes and connections . . 51

5.2 NAS Characteristics (256 processes) . 55

5.3 Application Characteristics . 58

5.4 Messaging Characteristics (16 processes) 71

6.1 NAMD Characteristics Summary (Per Process) 90

6.2 LAMMPS Characteristics Summary (Per Process) 91

7.1 Channel Characteristics Summary . 104

7.2 Average Number of Channels Used/Allocated Per Task (Aptus) 111

8.1 Comparison of Number of Queue Pairs for Various Channels 125

8.2 NAMD Characteristics Summary (Per Process) 129

8.3 NAS Characteristics Summary (Per Process) 132

10.1 Comparison of RDMA Fast Path Designs 155

10.2 Communication Characteristics . 159

xiv

11.1 Comparison of average maximum memory usage per process for message
buffering . 175

xv

LIST OF FIGURES

Figure Page

1.1 Memory Usage of MPI over InfiniBand (Earlier Design) 3

2.1 InfiniBand Architecture (Courtesy IBTA) 7

2.2 IBA Communication Stack (Courtesy IBTA) 8

2.3 RDMA Channel Design in MVAPICH (Courtesy [41]) 14

2.4 Copy vs. Zero Copy . 17

3.1 Research Framework . 22

4.1 Memory Usage (per process) with Varied Numbers of WQEs 29

4.2 Uni-Directional Messaging Rate with Existing Design 31

4.3 Uni-Directional Bandwidth with Existing Design 31

4.4 Coalesced Message Rate . 34

4.5 Coalesced Uni-Directional Bandwidth . 34

4.6 NAS Benchmarks Comparison, Class C, 256 Processes 37

4.7 sPPM, SMG2000, and Sweep3D Results, 256 Processes 37

5.1 Resource Allocation . 45

5.2 Coalesced ACK and NACK Protocols . 46

xvi

5.3 Reliability Protocols . 48

5.4 Fully-Connected Memory Usage . 51

5.5 Basic Micro-Benchmark Performance Comparison 53

5.6 Characteristics of NAS Benchmarks (256 processes, Class C) 57

5.7 Total MPI Message Size Distribution . 58

5.8 sPPM Performance Comparison . 59

5.9 Sweep3D Performance Comparison . 59

5.10 SMG2000 Characteristics with increasing processes 60

5.11 UD Zero-Copy Protocol . 64

5.12 One-way Latency . 69

5.13 Uni-Directional Bandwidth . 69

5.14 Bi-Directional Bandwidth . 69

5.15 Evaluation Normalized Time (16 processes) 72

6.1 Progress-Based Acknowledgments . 80

6.2 Traditional Zero-Copy Rendezvous over RC 81

6.3 Zero-Copy over Unreliable Connection 82

6.4 Microbenchmark Transport Performance Comparison 86

6.5 NAMD Evaluation Results . 88

6.6 LAMMPS Evaluation Results . 90

7.1 Channel Latency Comparison . 100

7.2 Multi-Pair Uni-Directional Bandwidth Comparison 100

xvii

7.3 Channel Scalability Evaluation . 103

7.4 MVAPICH-Aptus Design Overview . 105

7.5 Message Size Distribution: Darker blocks denote larger message sizes (Bright-
ness Index: 100%: ≤ 64 bytes, 50% ≤ 4KB, 25% ≤ 64KB , 0% ≥ 512KB) 110

7.6 Application Benchmark Performance . 111

7.7 Aptus Channel Usage Distributions . 112

8.1 InfiniBand Reliable Connection Models 117

8.2 Multi-SRQ Designs: Each figure shows two nodes, each with two pro-
cesses in a fully-connected configuration. Each small white box denotes a
QP. 120

8.3 Depending on communication characteristics, connections may be created
differently . 122

8.4 Fully-Connected MPI Memory Usage . 126

8.5 Many-to-Many Benchmark Evaluation . 127

8.6 NAMD Evaluation . 129

8.7 NAS Parallel Benchmarks (Class C) Evaluation 130

9.1 Overlap of Existing RDMA Protocols . 135

9.2 Data Movement of Protocols . 137

9.3 TupleQ Overlap . 139

9.4 Transfer Mechanism Comparison . 140

9.5 Sandia Overlap Benchmark . 145

9.6 NAS SP Benchmark . 146

xviii

10.1 Basic structure of paired buffers on sender and receiver in the RDMA fast
path design . 151

10.2 Message Detection Method for fixed-length segments 151

10.3 Message Detection Method for variable-length segments 154

10.4 Fast Path Designs: Each figure shows one of the options available for de-
signing a RDMA fast path. Note that all “top-fill” designs also need a
mirrored sender-side buffer. 156

10.5 AMG2006 Performance (higher bars are better). The “0, 8, . . . , 128” values
refer to the number of RDMA fast path connections allowed to be created
per process. 159

10.6 NAMD Performance (higher bars are better) 160

11.1 Queue Pair State Diagram . 165

11.2 Reliability Protocols . 168

11.3 Recovery Flow Chart: Upon failure, a reconnect request will take place
out-of-band. If this fails or if a fatal HCA event was received then attempt
to reopen the HCA or switch to another HCA. 171

11.4 Microbenchmark Results . 174

11.5 NAS Parallel Benchmarks Performance (256 processes) 174

xix

CHAPTER 1

INTRODUCTION

In the past decade, rapid advances have taken place in the field of computer and network

design enabling us to connect tens of thousands of computers together to form high per-

formance clusters. These clusters are used to solve computationally challenging scientific

problems. These applications are wide ranging and include weather prediction, molecular

dynamics, aircraft design and fusion simulations.

The Message Passing Interface (MPI) is a popular model to write applications for these

clusters. It is a model that provides a way to conceptually “glue” all of the distinct comput-

ers into a single computational machine. Developed in the 1990s, this is now the defacto

standard for parallel computing. MPI provides a portable abstraction for exchanging data

between processes. There are a vast array of scientific applications which use MPI on clus-

ters. As the applications operate on larger and more complex data, the size of the compute

clusters is scaling higher as well.

The amount of computational power needed continues to grow. For many problems an

almost unlimited amount of computation can be needed. Even simulating a millisecond of a

protein interaction cannot be performed by today’s computers. The most powerful systems

have only simulated up to a microsecond of this interaction [68]. As a result, applications

continue to take advantage of increasing computational power. MPI is a key part of this as

1

these applications interact with the network through this library. Thus, in order to enable

the best performance to these scientific applications, it is very critical for the design of the

MPI libraries be extremely scalable and deliver higher performance.

InfiniBand [28] is a cluster interconnect which is based on open-standards and is gain-

ing rapid acceptance. Originally designed as a generic I/O bus to connect graphics cards,

storage, and CPUs, InfiniBand has become well accepted in the area of High Performance

Computing (HPC).

As InfiniBand clusters continue to expand to ever increasing scales, the need for scal-

ability and performance at these scales remains paramount. As an example, the “Ranger”

system at the Texas Advanced Computing Center (TACC) includes over 60,000 cores with

nearly 4000 InfiniBand ports [81]. By comparison, the first year an InfiniBand system ap-

peared in the Top500 list of fastest supercomputers was in 2003 with a 128 node system

at NCSA [2]. The latest list shows over 28% of systems are now using InfiniBand as the

compute node interconnect. As a result, designing a scalable and high-performance MPI

library for ultra-scale InfiniBand clusters is of critical importance.

This additional scale and the expected further growth of InfiniBand clusters is placing

additional demands on the MPI library that were unthinkable even a few years ago. In this

dissertation we examine the issues that arise in both current and future systems. Novel

techniques are developed for reducing the memory footprint on ultra-scale systems and to

increase performance. The transports of InfiniBand are studied in depth to determine the

tradeoffs that each bring for performance and resource consumption.

The InfiniBand Architecture specification defines four different transports, however, all

MPI designs over InfiniBand currently use only the Reliable Connection (RC) transport.

2

The RC transport is a reliable, connection-oriented transport and is also the most feature-

rich transport of InfiniBand. When using the RC transport the network hardware provides

reliability and message segmentation.

Using the RC transport, however, can have significant resource requirements as the

number of processes in an MPI job increase. As a connection-oriented transport, each

communicating peer must have a dedicated connection and associated memory resources

of many KB per connection. This connection memory on earlier1 designs can reach to be

hundreds of MB per process at 8,192 MPI processes. Current MPI cluster sizes are already

an order-of-magnitude higher than this level, showing an urgent need for scalability.

 0

 500

 1000

 1500

 2000

 2500

8 16 32 64 128 256 512 1K 2K 4K 8K 16KM
em

or
y

U
sa

ge
 (

M
B

/p
ro

ce
ss

)

Number of Processes

MVAPICH 0.9.7

Figure 1.1: Memory Usage of MPI over InfiniBand (Earlier Design)

The other three original transports of InfiniBand are Reliable Datagram (RD), Unre-

liable Datagram (UD) and Unreliable Connection (UC). The RD transport of InfiniBand

is not implemented in any currently available hardware and cannot be used for MPI. The

UD transport is datagram-based and is the most scalable in resource usage since dedicated

1This refers to MVAPICH 0.9.7 from March 2006 when much of this work began

3

connections are not needed. The UC transport is connection-oriented like RC, but does not

provide reliable or in-order service. Neither of these transports have been investigated in

published work for MPI prior to this work.

Since the scalability problems of RC have become known another transport for Infini-

Band has recently been introduced. The eXtended Reliable Connection (XRC) transport

has the same features as RC, however, it provides a unique connection model that can save

memory resources on multi-core machines. Prior to this work there also had been no studies

on designing MPI for this transport.

In this dissertation a high-performance and scalable MPI library is designed for current-

generation clusters as well as the next-generation ultra-scale clusters. We focus our atten-

tion on how the underlying transport choice effects the performance and scalability of the

MPI libraries. In our work we investigate the four available transports for InfiniBand as

well as methods to combine all of them into a hybrid design. We seek to address the fol-

lowing six questions in the proposed thesis:

• How can current MPI libraries that utilize Reliable Connection (RC) be optimized

for lower memory utilization?

• How can MPI be designed over the Unreliable Datagram (UD) transport and what

benefits and difficulties does it bring?

• How can reliability be designed for large-scale networks for each of the transports of

InfiniBand and what are the consequences?

• What are the challenges associated with designing MPI over the new eXtended Reli-

able Connection (XRC) transport and what is the resulting performance and memory

usage?

4

• How can an MPI library be designed to leverage all available InfiniBand transports

simultaneously for the highest performance and scalability?

• How can an MPI library be designed to leverage the appropriate InfiniBand transport

to achieve communication and computation overlap?

The rest of this dissertation is organized as follows: In Chapter 2 we discuss existing

technologies which provide background for our work including InfiniBand, MPI and gen-

eral network technologies. Chapter 3 describes in detail the problems that are addressed in

this dissertation. Chapters 4-11 discuss the detailed approaches and results for these prob-

lems. Open-source software developed as part of this dissertation is described in Chap-

ter 12. Chapter 13 provides the conclusion and possible future research directions.

5

CHAPTER 2

BACKGROUND

In this section the necessary background to InfiniBand and the earlier design of MVA-

PICH is provided. In addition, this section also describes the lower-level features and

transports provided by InfiniBand on which this dissertation is designed upon.

2.1 InfiniBand Overview

The InfiniBand Architecture [28] (IBA) defines a switched network fabric for inter-

connecting compute and I/O nodes. In an InfiniBand network, compute and I/O nodes

are connected to the fabric using Channel Adapters (CAs). There are two types of CAs:

Host Channel Adapters (HCAs) which connect to the compute nodes and Target Channel

Adapters (TCAs) which connect to the I/O nodes. IBA describes the service interface be-

tween a host channel adapter and the operating system by a set of semantics called verbs.

Verbs describe operations that take place between a CA and the host operating system for

submitting work requests to the channel adapter and returning completion status. Figure 2.1

depicts the architecture of an InfiniBand network.

InfiniBand uses a queue based model. A consumer can queue up a set of instructions

that the hardware executes. This facility is referred to as a Work Queue (WQ). Work queues

are always created in pairs, called a Queue Pair (QP), one for send operations and one for

6

Figure 2.1: InfiniBand Architecture (Courtesy IBTA)

receive operations. In general, the send work queue holds instructions that cause data

to be transferred between the consumer’s memory and another consumer’s memory, and

the receive work queue holds instructions about where to place data that is received from

another consumer. The completion of Work Queue Entries (WQEs) is reported through

Completion Queues (CQ). Figure 2.2 shows a Queue Pair connecting two consumers and

communication through the send and the receive queues.

2.1.1 Communication Semantics

InfiniBand supports two types of communication semantics: channel and memory se-

mantics. In channel semantics, the sender and the receiver both must post work request

entries (WQEs) to their QP. After the sender places the send work request, the hardware

transfers the data in the corresponding memory region to the receiver end. It is to be noted

7

Figure 2.2: IBA Communication Stack (Courtesy IBTA)

that the receive work request needs to be present before the sender initiates the data trans-

fer. This restriction is prevalent in most high-performance networks like Myrinet [10],

Quadrics [57] and others. The sender will not complete the work request until a receive re-

quest has been posted on the receiver. This allows for no buffering and zero-copy transfers.

When using channel semantics, the receive buffer size must be the same or greater than

that of the sending side. Receive WQEs are consumed in the same order that they are

posted. In the case of reliable transports, if a send operation is sent on a QP where the next

receive WQE buffer size is smaller than needed the QPs on both ends of communication

are put into the error state.

In memory semantics, Remote Direct Memory Access (RDMA) operations are used

instead of send/receive operations. These RDMA operations are one-sided and do not

require software involvement at the target. The remote host does not have to issue any work

request for the data transfer. Both RDMA Write (write to remote memory location) and

8

RDMA Read (read from remote memory location) are supported in InfiniBand, although

not all transports support it.

2.1.2 Transport Services

There are four transport modes defined by the InfiniBand specification: Reliable Con-

nection (RC), Reliable Datagram (RD), Unreliable Connection (UC) and Unreliable Data-

gram (UD). Of these, RC and UD are required to be supported by Host Channel Adapters

(HCAs) in the InfiniBand specification. RD is not available with any current hardware. All

transports provide a checksum verification.

Reliable Connection (RC) is the most popular transport service for implementing ser-

vices over InfiniBand. As a connection-oriented service, a QP with RC transport must be

dedicated to communicating with only one other QP. A process that communicates with

N other peers must have at least N QPs created. The RC transport provides almost all

the features available in InfiniBand, most notably reliable send/receive, RDMA and atomic

operations.

Unreliable Connection (UC) provides connection-oriented service with no guarantees

of ordering or reliability. It does support RDMA write capabilities and sending mes-

sages larger than the Maximum Transfer Unit (MTU) of InfiniBand, which is 4KB. Being

connection-oriented in nature, every communicating peer requires a separate QP. In regard

to resources required, it is identical to RC, while not providing reliable service.

Reliable Datagram (RD) is a datagram-based transport. It provides most of the same

features as RC, however, it does not require connection resources between nodes. There

are no implementations of this transport on any current hardware.

9

Attribute RC RD UC UD
Scalability (Number of QPs) n2 n n2 n

Corrupt Data Detected Yes Yes Yes Yes
Delivery Guarantee Yes Yes No No
Ordering Guarantee Yes Yes No No
Data Loss Detection Yes Yes Yes/No No

Error Recovery Reliable Reliable Unreliable Unreliable
RDMA Write Yes Yes Yes No
RDMA Read Yes Yes No No

Messages above MTU size Yes Yes Yes No

Table 2.1: Comparison of InfiniBand Transport Types

Unreliable Datagram (UD) is a connection-less and unreliable transport, the most basic

transport specified for InfiniBand. As a connection-less transport, a single UD QP can

communicate with any number of other UD QPs. UD does have a number of limitations,

however. Messages larger than an MTU size, which on current Mellanox [1] hardware

is limited to 2KB, cannot be directly sent using UD. Only channel semantics are defined

for UD, so RDMA is not supported. Additionally, UD does not guarantee reliability or

message ordering.

Table 2.1 compares the various transports provided by InfiniBand. The connection-

oriented transports (RC and UC) have additional features, such message segmentation and

RDMA, but they require a QP per communicating process. The UD transport lacks those

features, but has superior scalability. Also note that RC has delivery guarantees, which

allows us to know if a transfer has failed.

10

2.1.3 Shared Receive Queue

Introduced in the InfiniBand 1.2 specification, Shared Receive Queues (SRQs) were

added to help address scalability issues with InfiniBand memory usage. As noted earlier, in

order to receive a message on a QP, a receive buffer must be posted in the Receive Queue

(RQ) of that QP. To achieve high-performance MPI implementations pre-post buffers to the

RQ to accommodate unexpected messages.

When using the RC transport of InfiniBand, one QP is required per communicating

peer. To prepost receives on each QP, however, can have very high memory requirements

for communication buffers. To give an example, consider a fully-connected MPI job of 1K

processes. Each process in the job will require 1K - 1 QPs, each with n buffers of size s

posted to it. Given a conservative setting of n = 5 and s = 8KB, over 40MB of memory per

process would be required simply for communication buffers that may not be used. Given

that current InfiniBand clusters now reach 60K processes, maximum memory usage would

potentially be over 2GB per process in that configuration.

Recognizing that such buffers could be pooled, SRQ support was added so instead of

connecting a QP to a dedicated RQ, buffers could be shared across QPs. In this method,

a smaller pool can be allocated and then refilled as needed instead of pre-posting on each

connection.

Note that a QP can only be associated with one SRQ for RC and UD. Thus, any channel

traffic on a QP will consume a receive buffer from the attached SRQ. If another SRQ is

desired instead, a second QP must be created.

11

2.1.4 eXtended Reliable Connection (XRC)

As noted in Section 2.1.2 the connection-oriented transports of InfiniBand require a

QP per communicating process. On large-scale clusters this can use a significant amount

of memory. In response to this, the eXtended Reliable Connection (XRC) transport was

proposed by Mellanox in their ConnectX HCA. This allows a process to need only one QP

to send a message to any process on another node. This can potentially reduce the number

of QPs required by a factor equal to the number of processes per node.

This transport maintains the same functionality as the RC transport, but requires the use

of SRQs. This new transport opens a new set of design possibilities.

2.1.5 Memory Registration

InfiniBand requires that all memory that is used for communication be “registered”

before any data is sent or received into it. Registration is a two phase operation in which

the pages are marked unswappable (i.e. these will no longer be paged out to disk) and

the virtual addresses of the pages in concern will be sent to the CA. The reason for this

requirement is that when the CA actually performs the communication operation, the data

should be present in the RAM and the CA should know its physical address.

Registration is usually a high-latency blocking operation. In addition, since the memory

pages registered cannot be swapped out, the application (running on top of MPI) has lesser

physical memory available.

12

2.1.6 Completion and Event Handling Mechanisms

In InfiniBand, the Completion Queue (CQ) provides an efficient and scalable mecha-

nism to report completion events to the application. The CQ can provide completion noti-

fications for both send and receive events as well as many asynchronous events. It supports

two modes of usage: i) polling and ii) asynchronous. In the polling mode, the application

uses an InfiniBand verb to poll the memory locations associated with the completion queue.

One or many completion entries may be returned at one go. In the asynchronous mode, the

application needs to continuously poll the CQ to look for completions. The CQ will gener-

ate an interrupt when a completion event is generated. Further, IBA provides a mechanism

by which only “solicited events” may cause interrupts. In this mode, the application can

poll the CQ, however on selected types of completions, an interrupt is generated. This

mechanism allows interrupt suppression and thus avoids unnecessary costs (like context-

switch) associated with interrupts. This asynchronous mode is not used often in MPI since

each MPI process is generally dedicated a core and polling gives higher performance.

2.2 MVAPICH Design Overview

In this section we describe the design of MVAPICH [53] (MPI over InfiniBand). MVA-

PICH is based on the ADI2 interface of MPICH [24] and was derived from MVICH [34].

MVAPICH is currently in use at over 900 organizations around the world. It has helped

several clusters achieve top rankings in the Top500 [2] list. The initial design and imple-

mentation of MVAPICH was done by Liu et. al at the Network-Based Computing Labo-

ratory [35, 41, 31, 37, 40, 39]. In this section we will discuss several key aspects of the

MVAPICH design which are pertinent to this dissertation. Particularly, this dissertation

relates to the design of point-to-point communication of MVAPICH.

13

Most modern MPI implementations [20, 24] employ two major types of protocols for

performing point-to-point message passing – the eager and the rendezvous protocols. We

describe these protocols and the corresponding design used in MVAPICH to implement

them:

2.2.1 Eager Protocol

The eager protocol is designed for MPI to provide low-latency and fast progress for

small message sizes. In this protocol, small messages are simply sent to the receiver by

the sender without any synchronization. MVAPICH has two main eager protocol designs

based on the InfiniBand send/receive and RDMA semantics. They are:

Tail

Head

Tail

Head

Sender Receiver

Receiver Buffer RingSender Buffer Ring

(a) RDMA Channel Design

Data Size

Head Flag

Tail Flag

Data

Unused

Poll tail flag

Poll head flag first

(b) RDMA Buffer Polling Mecha-
nism

Figure 2.3: RDMA Channel Design in MVAPICH (Courtesy [41])

1. Reliable Connection Fast-Path (RC-FP): InfiniBand adapters only reach their low-

est latency when using RDMA write operations, with channel semantics having a

2µsec additional overhead (e.g. 5µsec vs. 3µsec) on our evaluation hardware. The

14

newest Mellanox adapter, ConnectX [47], reduces this gap to less than a microsec-

ond, however RDMA write operations still achieve the lowest latency [77].

The RC-FP channel was first proposed by Liu et al [41] to leverage the low-latency

of the RDMA write operation provided by InfiniBand. The design of this channel

is shown in Figure 2.3(a). In this design, each sender/receiver process pair has a

dedicated set of buffers associated with them. The association of these buffers is

persistent. As noted in Section 2.1.1, the RDMA operations do not cause any com-

pletion event to be generated at the receiver end. To allow the receiver to discover the

completion of packets sent over this RDMA channel, the sender places a particular

flag at the memory location just following the end of the data buffer. This is shown

in Figure 2.3(b).

The default MVAPICH configuration requires over 300KB of memory per RC-FP

channel created. To limit memory usage, channels are currently setup adaptively and

limited to a configurable number of channels in current MPIs over InfiniBand. In

addition, each RC-FP channel requires polling an additional memory location for

detection of message arrival. For example, communication with n peers using the

RC-FP channel requires polling n memory locations for message arrival.

2. Reliable Connection Send/Receive (RC-SR): This channel utilizes the InfiniBand

Send/Receive semantics. Unlike the RC-FP channel described above, this does not

provide the best point-to-point latency. However, this channel does provide some

other features that are useful for large scale clusters. Each process can locally register

and post receive requests. It is not even necessary for these receive regions to be

contiguous in memory as in RC-FP.

15

It is the primary form of communication for small messages on nearly all MPI im-

plementations over InfiniBand. Two designs have been proposed, one with per-peer

credit-based flow control and the other using the Shared Receive Queue (SRQ) sup-

port of InfiniBand.

2.2.2 Rendezvous Protocol

The rendezvous protocol negotiates the buffer availability at the receiver side before the

message is actually transferred. This protocol is used for transferring large messages when

the sender is not sure whether the receiver actually has the buffer space to hold the entire

message [53, 51, 63].

MVAPICH also has two main rendezvous protocol designs based on the InfiniBand

send/receive and RDMA semantics. They are:

• Reliable Connection RDMA (RC-RDMA): The MVAPICH design utilizes RDMA

Write operations to eliminate intermediate message copies and efficiently transfer

large messages in a “zero-copy protocol”. The sending process first sends a con-

trol message to the receiver (RNDZ START). The receiver replies to the sender using

another control message (RNDZ REPLY). This reply message contains the buffer in-

formation of the receiver along with the remote key to access that memory region.

The sending process then sends the large message directly to the application buffer

of the receiver by using RDMA Write (DATA). Finally, the sending process issues

another control message (FIN) which indicates to the receiver that the message has

been placed in the application buffer.

• Copy-Based Send: Memory registration in InfiniBand is an expensive operation.

For some messages above the eager threshold, but too small to efficiently register,

16

Application Send Buffer

Memory Copies

Application Receive Buffer

Memory Copies

Network Transfer

Internal MPI Buffers

(a) Copy-Based

Application Send Buffer Application Receive Buffer

Network Transfer

(b) Zero-Copy

Figure 2.4: Copy vs. Zero Copy

a copy-based approach is used. Large messages can be segmented within the MPI

library into many small sends and sent using an eager protocol channel (after negoti-

ating buffer availability). This method, however, introduces intermediate copies and

degrades performance for large messages.

2.3 Zero-Copy Protocols and RDMA

Memory copies lead to overall degradation of application performance and ineffec-

tive use of resources of the computing platform. Memory copies become a bottleneck

especially when transferring large messages. State-of-the-art MPI implementations over

high-performance networks avoid memory copies for large messages by using zero-copy

protocols. In zero copy protocols the sender and receiver use small control messages to

match the message and then the message data is placed directly in user memory. A zero-

copy protocol can significantly increase bandwidth and reduce cache pollution. Figure 2.4

17

shows the difference between a typical copy-based approach and a zero-copy approach.

Instead of performing data copies in the send and receive paths, within user-space or the

kernel, a zero-copy approach directly sends the data from the source application buffer to

the final destination buffer.

Many zero-copy mechanisms have been implemented, including in U-Net [87], BIP [61],

and PM [16]. Modern high-performance interconnects such as InfiniBand, Myrinet, and

Quadrics use zero-copy communication. In order to support zero-copy messaging, the net-

work and drivers must support OS-bypass to avoid kernel copies. There are two major ways

zero-copy protocols are implemented in MPI implementations over modern interconnects:

• Rendezvous Protocol using RDMA: In this method, a handshake protocol (rendezvous)

is used. The sending process sends a Request to Send (RTS) message with message

tag information. Upon discovery of the message by the MPI layer at the receiver

end, the receiver can either use RDMA Read to get the message data directly into

user application buffer or send a Clear to Send (CTS) to the sender. If the sender

receives a CTS, then it can use RDMA Write to send the message data directly to

user application buffer at remote side. Thus, RDMA Read/Write provide a conve-

nient method to perform zero-copy protocols when MPI message tags are matched

by the MPI library. Typically, this method is used with networking stacks which do

not have the capability to match MPI tags, e.g. InfiniBand/OpenFabrics [55].

• Matched Queues Interface: In this method, the sending process directly sends the

message to a remote process. This requires that either the network device or network

software layers be able to decipher the message tags from the sent message and

match it with the posted receive operations. Upon a successful match, the rest of

18

the message may be directly received into the user application memory. This method

is used in Myrinet/MX [50], InfiniPath/QLogic [62] and Quadrics [57].

2.4 Modern Network Technologies and Packet Loss

In this section we give background on network technologies used in modern networks

and their effect on communication reliability.

Link Level Flow Control: Link level flow control is a critical feature of all networks [3,

21]. Many high-performance System Area Networks (SAN) provide link level credit flow

control. These interconnects, such as ASI [46], InfiniBand, and Fibre Channel generally

do not drop packets due to congestion [64]. As a result, packet loss is minimal. Traditional

Ethernet, however, will drop packets due to congestion. In this case, packets do not always

arrive at the receiver side.

Cyclic Redundancy Checks (CRC): Modern networks provide a link-level CRC check to

provide data reliability. Networks such as InfiniBand implement an end-to-end link-level

CRC as well as per-hop CRC check. Other networks such as Myrinet [10] also provide

CRC at the hardware level. Others have advocated for additional memory-to-memory CRC

checks to prevent against I/O errors [30].

Reliability: Unlike many of the previous technologies, high-performance intercon-

nects differ in their implementation of reliability. Myrinet requires software-level reliabil-

ity, Quadrics [57] implements hardware-level reliability, and InfiniBand implements both

modes of operation.

Packet Loss: Many modern network technologies implement link level flow control to

prevent packet loss from occurring due to congestion. Additionally, many networks provide

19

a link-level CRC check, which represents one of the few times a network will drop a packet.

Empirical data confirms these very low drop rates.

20

CHAPTER 3

PROBLEM STATEMENT AND METHODOLOGY

The main objective of this dissertation is to explore the various InfiniBand transports

and how they can be used within the MPI library to enhance performance, scalability, and

reliability. New protocols and designs for the InfiniBand transports are designed. In many

cases these transports have never been used for MPI before, and others that have been used

in MPI before we further optimize.

Figure 3.1 shows the various components of our proposed research framework. In gen-

eral, this dissertation focuses on the shaded boxes. At the lowest layer we optimize the

Reliable Connection (RC) connections and design message passing over the Unreliable

Datagram (UD), Unreliable Connection (UC) and eXtended Reliable Connection (XRC)

transports. To support these designs we design a “Reliability and Reordering Protocols”

layer. This allows reliable and efficient data reliability, despite the lower layers potentially

being unreliable. Further, we develop a “Message and Channel Scheduling” layer that can

dynamically schedule messages on different transports and protocols according to applica-

tion patterns and resource usage. Additionally, this dissertation focuses on providing fault

tolerance for large-scale clusters and allowing communication-computation overlap that is

key for ultra-scale applications. All of these designs are part of the MPI library, which

allows end user applications to benefit directly without modification.

21

Message and Channel
Scheduling

Reliability and Reordering
Protocols

Shared
Memory

Message Transmission
Layer

Message Scheduling Channel Selection Channel Allocation

Send/Receive Zero-Copy UD Zero-Copy RDMA

Application-Tuned Adaptation

MPI Interface

Existing Component Designed Component

Reliable
Connection

Unreliable
Datagram

Unreliable
Connection

eXtended
Reliable

Connection

User Applications

Profiling
Data

Fast Path Fault Tolerance

Communication
Computation

Overlap

Figure 3.1: Research Framework

Using this framework we aim to address the following questions:

• How can current MPI libraries that utilize Reliable Connection (RC) be opti-

mized for lower memory utilization?

Current MPI libraries over InfiniBand use the RC transport as the primary transport

mode for message passing. As described in Section 2.1, as a connection-oriented

transport, RC requires a dedicated connection resource for every communicating pro-

cess in the job. Previous work [69, 75] has reduced this memory with the Shared Re-

ceive Queue (SRQ) feature of InfiniBand, but significant resources are still required.

As part of this study we show that memory consumption can grow up to 1 GB/per

process at only 8K processes.

In Chapter 4 methods to reduce this memory consumption are examined. A key fac-

tor in memory usage is found to be the number of Work Request Entries (WQEs)

22

allocated per connection. The number of WQEs denotes the number of simulta-

neously outstanding send operations allowed at a single time. Simply reducing this

value, however, can cause severe performance degradation. To address this concern a

message coalescing technique is proposed to reduce the number of outstanding send

operations required to maintain performance.

Second, we find that the method that MPI libraries use to transfer small messages

(RC-FP) can use a significant amount of memory. In Chapter 10 a new design for

small message transfer over RDMA is proposed and evaluated.

• How can MPI be designed over the Unreliable Datagram (UD) transport and

what benefits and difficulties does it bring?

Despite optimizations in memory usage for the RC transport, memory consump-

tion for connections can still reach hundreds of MB per process at larger scales. To

address this concern an MPI is designed over the connection-less UD transport of

InfiniBand in Chapter 5. As a datagram transport, only a single communication end-

point is required per process. This allows superior scalability for ultra-scale clusters.

There are a number of issues with the UD transport that require a careful design

study to map it to MPI efficiently though. The UD transport provides no reliability

or ordering guarantees. Additionally, it provides no RDMA or message segmentation

support.

Additionally, the UD transport has very poor bandwidth for applications due to the

lack of RDMA and the need to provide reliability in software. To address this we pro-

pose a novel zero-copy transfer mechanism over UD that can increase performance

to near that of RC.

23

• How can reliability be designed for large-scale networks for each of the trans-

ports of InfiniBand and what are the consequences?

In Chapter 6 the unreliable transports of InfiniBand are examined to determine the

cost of providing reliability. The Unreliable Connection transport has not previously

been used for MPI. Thus, a new MPI design is proposed over UC and tradeoffs in

the design are explored. More importantly, this design is also a tool to quantitatively

analyze the cost of providing reliability in hardware. Since the significant difference

between RC and UC is the lack of hardware reliability, this design allows a compar-

ison of the costs of hardware versus software reliability.

Large-scale clusters also face the increasing problem of hardware failures as the num-

ber of components increases. Switches can break or reboot, cables can be faulty, or

even the end HCAs can fail. In Chapter 11 a new reliability framework is designed to

allow MPI jobs to survive these types of failures. The performance is also evaluated

to show a very low overhead despite this added reliability.

• What are the challenges associated with designing MPI over the new eXtended

Reliable Connection (XRC) transport and what is the resulting performance

and memory usage?

Recently, in response to the increased memory usage for RC communication con-

texts, the XRC transport has been introduced for InfiniBand. It adds additional capa-

bilities that allow connections to be shared between processes on the same node, but

preserves the features of RC.

In Chapter 8 various MPI designs are proposed for this transport. This is done to an-

alyze the design issues and tradeoffs involved in mapping MPI to this new transport.

24

In particular, the connection mapping is now on a process to node basis rather than a

process to process basis, however, connections are not symmetric. This leads to addi-

tional connection setup design choices that must be evaluated carefully. Performance

and memory scalability is evaluated for this mode.

• How can an MPI library be designed to leverage all available InfiniBand trans-

ports simultaneously for the highest performance and scalability?

From our earlier studies on the various InfiniBand transports available, we have

shown that each transport provides different characteristics in performance and re-

source scalability. The key component of this dissertation is to investigate how all of

these transports can be combined within a single MPI design to optimize the overall

application execution.

In Chapter 7 a new MPI library design termed “Aptus” is proposed that can simulta-

neously use different message transfer protocols and transports. This framework can

allow superior scalability as well as the highest performance since a transport can be

used only for communication patterns where it will perform the best. We leverage

the results from the MPI designs on each transport to design the adaptive messaging

techniques.

• How can an MPI library be designed to leverage the appropriate InfiniBand

transport features to achieve communication and computation overlap?

Communication and computation overlap is a key concern for large-scale systems

as the number of processes increase. There is a need to make the communication

less dependent on synchronization and allow communication to proceed even when

computation is being performed.

25

In Chapter 9 a new design for allowing full overlap of communication and computa-

tion is proposed. It uses the new XRC transport of InfiniBand to allow the hardware

to perform the task of all matching operations.

26

CHAPTER 4

REDUCING MEMORY FOR RELIABLE CONNECTION WITH
MESSAGE COALESCING

In this chapter, the memory scalability issues for MPI and other applications that make

use of the Reliable Connection (RC) transport of InfiniBand are explored. In particular,

we evaluate the memory usage of MVAPICH [42, 52], a popular MPI implementation over

InfiniBand, and quantify the effect of the number of allowed outstanding send operations

on memory usage. As part of this study we propose reducing the number of allowed out-

standing send operations and a coalescing method to eliminate the resulting performance

degradation. While MPI is examined in-depth, this same analysis and design can apply to

other applications or protocols that make use of InfiniBand connections.

This new design reduces memory usage at 8,192 processes by an order of magnitude

and maintains performance equivalent to the existing design. Our results show an increase

in small message performance of up to 150% and near identical performance for message

sizes above that level. We additionally validate our design with the NAS Parallel Bench-

marks, sPPM, SMG2000, and Sweep3D and note that performance remains unchanged

despite reducing memory usage significantly.

The rest of the chapter is organized as follows. In Section 4.1 we provide an evaluation

of the memory usage by the MPI library with different numbers of allowed outstanding

27

sends. Section 4.2 describes our design of coalescing packets when many small messages

are sent within a short time period. Our enhanced design is evaluated in Section 4.3. Re-

lated work is covered in Section 4.4.

4.1 Work Queue Entries and Memory Usage

In this section we discuss the purpose and memory usage of send Work Queue Entries

(WQEs). In particular, we examine memory usage when all connections are made between

processes in the cluster.

4.1.1 Memory Usage with Varied Numbers of WQEs

To observe the memory usage of the MPI library, we run an MPI application with

the static connection settings of MVAPICH and measure the total memory usage. The

average value per process is reported. To better assess only the InfiniBand connection

costs, we disable shared memory support. Even when shared memory communication is

used, however, the per connection values we report are accurate and the memory usage at

large numbers of processes is nearly identical to the case without shared memory support.

Figure 4.1 shows the memory usage per process with increasing numbers of processes

and varied allocations of send WQEs. Results are experimentally obtained through 1024

processes; numbers above that level are modeled. We observe that for 8192 processes, us-

ing the default allocation of 200 send WQEs requires around 1 GB of memory per process.

On a machine with 8 cores per node, such as the Peloton clusters at Lawrence Livermore

National Laboratory (LLNL), a total of 8 GB per node would be used only for the MPI

library with this allocation. With 16 GB per node, 50% of available memory is consumed

only for connection memory. When the number of send WQEs per connection is decreased

to 5, the memory usage drops to less than 90 MB per process at 8192 processes.

28

 0

 200

 400

 600

 800

 1000

 1200

8K4K2K1K5122561286432168

M
e

m
o

ry
 U

s
a

g
e

 (
M

B
/p

ro
c
e

s
s
)

Number of Processes

5 WQEs
20 WQEs
40 WQEs

100 WQEs
200 WQEs

Figure 4.1: Memory Usage (per process) with Varied Numbers of WQEs

Table 4.1: Memory usage per additional connection with increasing send WQEs
5 10 20 40 100 200

8.82 KB 12.82 KB 20.81 KB 36.86 KB 68.73 KB 132.76 KB

Table 4.1 shows the additional memory required per connection based on the experi-

mental evaluation up to 1024 processes. From this information we can determine that there

are approximately 4 KB of connection costs other than send WQEs, but after 5 send WQEs

per QP that term becomes dominant.

It should be noted that InfiniBand allows for different sizes of inline data. This allows

the reduction of latency by ∼ 200 nanoseconds by storing the data, generally up to a max-

imum of ∼ 200 bytes (HCA dependent), in the request. Since inline data is stored within

each WQE, it increases the size of the data structure. In the version of the InfiniBand

drivers used for this work, the memory usage remained unchanged for different values of

29

inline data. Newer versions of these drivers have reduced memory when smaller inline

limits are used in QP creation.

4.1.2 Effects of Reducing WQEs

As noted in the previous subsection, the MPI library memory usage is highly depen-

dent on the memory allocation of the QP and WQE resources. Reducing the number of

send WQEs leads to a large decrease in connection memory usage, however, there are

performance consequences to lowering the number of available WQEs.

As noted in Section 2.1, the number of send WQEs restrict the number of send oper-

ations that can be outstanding on a given QP. In this section we evaluate the issues with

lowering the number of send WQEs. The default value of 200 was empirically derived so

buffering in the MPI library is extremely rare.

Results from throughput microbenchmarks show that small message throughput is di-

minished considerably when the number of send WQEs is reduced. Figure 4.2 shows that

performance drops over 70% from nearly 900,000 to under 200,000 messages per second.

From Figure 4.3 we observe the overall data throughput is also reduced significantly for

small to medium-sized messages.

It is important to note that with these throughput microbenchmarks the sending process

sends a window of 64 MPI messages before an acknowledgment is sent by the receiver.

This process is repeated many times to get an average value. Thus, the performance de-

grades since the send WQEs are exhausted before the window is complete and additional

sends cannot be pipelined by the HCA. This means that the bandwidth for a single message

is the same in the case of both 200 and 5 WQEs, however, if messages are sent in bursts

30

Figure 4.2: Uni-Directional Messaging
Rate with Existing Design

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 4 16 64 256 1K 4K 16K 64K256K 1M

T
h
ro

u
g
h
p
u
t
(M

B
/s

e
c
)

Message Size (Bytes)

200 WQEs
5 WQEs

Figure 4.3: Uni-Directional Bandwidth
with Existing Design

then the performance will be degraded when fewer WQEs have been allocated. Regard-

less, it is not possible to simply decrease the number of WQEs, doing so has performance

consequences.

4.2 Message Coalescing Design

In this section we describe our design to alleviate any issues that may arise as a result

of reducing the number of send WQEs available to the MPI library.

4.2.1 Motivation

As mentioned in Section 2.1, a send WQE is needed to issue a send request to the HCA.

If one is not available, the message must be queued internally in the library until a previous

send operation completes. If the number of outstanding sends is to be reduced without

sacrificing performance, a method is needed to efficiently send the messages that may be

in the queue as quickly as possible.

31

From Figures 4.2 and 4.3 we observe that when the number of WQEs is low, small

message performance is degraded significantly. With larger messages, the bandwidth can

be saturated with only a few simultaneous sends. Since this is the case, our attention will

focus on increasing the performance for messages up to 8K, where the performance gap is

the largest.

The key issue is that the network fabric is not being efficiently utilized when only a few

WQEs are available. In this case the HCA is not able to pipeline the requests optimally.

To make better use of the network fabric we propose a scheme to coalesce the messages

that are being queued to increase the network performance since there is a startup cost

associated with each send operation. By coalescing the messages we are able to amortize

the startup cost of the operation across the number of messages that we are able to pack

together.

4.2.2 Design

As discussed in Section 2.1, memory used in communication must be registered. Since

memory registration has a high startup cost, small messages are copied into pre-registered

communication buffers before being sent in MVAPICH. The general send flow for a small

message send operation therefore is to copy the contents of the user buffer into an internal

registered MPI buffer, at which point the library determines if there are available send

WQEs. If at least one WQE is available the message is immediately posted to the QP

and sent by the HCA, otherwise it is placed on a linked-list queue. When completion of

previous send operations are detected through the CQ, messages are sent in order from the

queue.

32

To efficiently coalesce messages, we alter the send flow operation. Before copying

the contents of the user buffer into a registered buffer we check to the availability of send

WQEs. If there is availability, the flow continues as in the original case. If not, we first

check the queue for any other messages waiting to be sent on that QP. Assuming another

message is present we verify it is of a compatible type – we do not combine sends with

rendezvous data messages or other special message types. If enough space is available in

the communication buffer the message is coalesced and copied into the buffer. If there are

no other pending sends for that QP or there is insufficient buffer space available, a new

communication buffer is used and the message is copied into it. Note that we are not using

any additional memory to coalesce the messages; we are potentially using less since we

can use the same buffer for more than one message.

Another design alternative is to use the InfiniBand scatter/gather capabilities instead of

packing into the same buffer. This, however, introduces an unnecessary overhead. Since

the user buffer is already being copied into pre-registered buffers it is more efficient to

coalesce into a buffer initially. In this way we only have one copy on the sender side as

well.

To further optimize the throughput of messages we cache the MPI tag matching infor-

mation for each message. If the tag information of a message matches that of the previous

coalesced message, a one byte COALESCED CACHED flag is set and the header information

is omitted. Otherwise the entire header information is included in the coalesced message.

This caching increases performance by nearly 10% for messages less than 64 bytes and

is negligible for messages with payloads above 512 bytes. Thus, even without caching

the coalescing design has performance significantly higher than that of the original design

with 200 WQEs for these message sizes. In this way we achieve a general solution with

33

no requirement that all coalesced messages need to have the same tag matching informa-

tion (size, tag, context), while obtaining optimal performance for those with identical tag

information.

4.3 Evaluation

Our experimental testbed is a 575-node InfiniBand Linux cluster at Lawrence Liver-

more National Laboratory. Each compute node has four 2.5 GHz Opteron 8216 dual-core

processors for a total of 8 cores. Total memory per node is 16GB. Each node has a Mel-

lanox MT25208 DDR HCA. InfiniBand software support is provided through the Open-

Fabrics/Gen2 stack [55]. The Intel v9.0 compiler is used for compilation of the MVAPICH

library and applications.

4.3.1 Microbenchmark Performance

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

1 4 16 64 256 1K 4K 16K 64K256K1M

T
h
ro

u
g
h
p
u
t
(m

e
s
s
a
g
e
s
/s

e
c
)

Message Size (Bytes)

200 WQEs - Normal
5 WQEs - Coalesce

10 WQEs - Coalesce

Figure 4.4: Coalesced Message Rate

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 4 16 64 256 1K 4K 16K 64K256K 1M

T
h
ro

u
g
h
p
u
t

(M
B

/s
e
c
)

Message Size (Bytes)

200 WQEs - Normal
5 WQEs - Coalesce

10 WQEs - Coalesce

Figure 4.5: Coalesced Uni-Directional
Bandwidth

Figure 4.4 shows that small message throughput for the coalesced design with 5 and 10

send WQEs significantly exceeds that of the existing design for message sizes through 1

34

KB. This is an effect of the amortization of startup costs for posting a send in InfiniBand.

By packing more messages per send buffer we are able to lower the average overhead for

sending a message. In this regard we have more than succeeded in removing the perfor-

mance degradation that otherwise occurs with such a small number of send WQEs.

This finding is also seen in Figure 4.5, where we observe improved performance for

messages up to 1 KB and slightly lower performance for messages from 4 KB to 128

KB. Performance has been improved significantly for small to medium messages, but the

coalescing scheme cannot pack messages that exceed the half of the buffer space. The

copy-based send method is used through 9 KB on this platform. The number of WQEs is

important; using only 5 WQEs for the coalescing design cannot match the microbenchmark

performance of 200 WQEs at all message sizes, however, 10 WQEs nearly matches the

performance. Adding additional WQEs can close the performance gap.

Even higher messaging rates could likely be achieved with an even smaller number of

send WQEs, or artificially restricting the number of outstanding send operations for small

messages and then allowing messages greater than 2 KB to use additional WQEs. This is

outside the scope of this work; we instead wish to find the lowest memory usage possible

without harming performance rather than just increasing the message rate.

It is important to note that microbenchmark performance represents the extreme situa-

tion for a low number of send WQEs. This performance will only be seen when there are

more outstanding sends being used by the application than available send WQEs.

Applications that do not use more than the available send WQEs or do so infrequently

will perform equally with the coalescing design or the existing design. Differences in the

microbenchmark graphs are not applicable unless the send WQEs are exhausted, as they are

here. In this work we present these numbers since they represent the worst-case and even

35

in this case we are able to show near equal performance using only 15% of the memory

usage.

4.3.2 Application Performance

We compare the performance of the existing design with the default number of WQEs

with our proposed coalescing design using a low number of existing WQEs and signifi-

cantly less memory. We evaluate with the NAS Parallel Benchmarks, and three applications

from the ASC Benchmark Suite [4]: sPPM, SMG2000, and Sweep3D. Communication

pattern analysis of sPPM, SMG200, and Sweep3D is available in [84] by Vetter, et al.

Applications

• NAS Parallel Benchmarks [8] are kernels designed to be typical of various MPI

applications. As such, they are a good tool to evaluate the performance of the MPI

library and parallel machines.

• sPPM [49] is an application distributed as part of the ASC Purple Benchmarks. It

solves a 3D gas dynamics problem on a uniform Cartesian mesh using the Piecewise

Parabolic Method (PPM).

• SMG2000 [15] is a parallel semicoarsening multigrid solver, which is also a part of

the ASC Purple Benchmarks.

• Sweep3D [25, 32] uses a multidimensional wavefront algorithm to solve the 3D,

time-independent, particle transport equation on an orthogonal mesh.

36

Results

All results are taken with 256 processes, 4 processes per node with shared memory

support disabled to stress network performance. All application results are the average of

5 runs, although deviation in performance was low between runs.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

BT CG EP FT IS LU MG SP

N
o
rm

a
liz

e
d
 T

im
e

Benchmarks

Existing - 200 WQEs
Coalesce - 10 WQEs

Figure 4.6: NAS Benchmarks Compari-
son, Class C, 256 Processes

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

sPPM SMG2000 Sweep3D

N
o
rm

a
liz

e
d
 T

im
e

Application

Existing - 200 WQEs
Coalesce - 10 WQEs

Figure 4.7: sPPM, SMG2000, and
Sweep3D Results, 256 Processes

Figure 4.6 shows the performance of the existing and proposed designs with perfor-

mance normalized to the existing design for all of the NAS Benchmarks, Class C. As

expected from the microbenchmark results, there is no observed performance degradation.

MG shows some benefits using our design over the original, although additional study is

required to determine the cause of this improvement.

The performance comparison for sPPM, SMG2000, and Sweep3D is shown in Fig-

ure 4.7. Again we observe no performance degradation for our enhanced design. All

application results are within one percent of each other.

37

As expected from the microbenchmark results, the performance of the proposed design

is no worse in any application or benchmark than the existing design, despite using nearly

an order of magnitude less memory.

4.4 Related Work

Memory usage of the MPI library has also been studied by many other researchers.

Early versions of MVAPICH exhibited significant memory usage as the number of connec-

tions increased as studied by Liu, et al in [36]. Followup work by Sur, et al in [75] signif-

icantly reduced the per connection memory usage in MVAPICH using InfiniBand Shared

Receive Queue (SRQ) support and a unique flow control method. Similar techniques have

been used in Open MPI [20] by Shipman, et al in [69]. In both of these studies, the memory

usage was reduced mostly through a reduction in communication memory buffer usage. In

this work we have instead targeted the connection memory usage which remains a signif-

icant issue at scale. Adaptive connection management in MVAPICH to setup only those

connections that are used was discussed by Yu, et al in [90]. This paper described a method

to setup connections dynamically as needed. The methods we describe in this work can be

used in conjunction with an on-demand strategy for optimal memory usage.

Our contribution with this work is evaluating the memory connection usage and the im-

pact of send WQEs and proposing a coalescing method to maintain optimal performance

using significantly less WQEs. Our design seeks to be comprehensive in providing near-

identical performance using significantly less memory resources without imposing any re-

strictions on application behavior, such as the number of outstanding sends an application

may have, the number of connections created, or their message tags.

38

CHAPTER 5

SCALABLE MPI OVER UNRELIABLE DATAGRAM

State-of-the-art MPI implementations over InfiniBand primarily use the Reliable Con-

nection (RC) transport of InfiniBand since it is the most feature-rich – supporting high-

throughput, reliability, atomic operations, and operations for zero-copy transfers of large

buffers. The popular open-source MPI implementations over InfiniBand, MVAPICH [42]

and Open MPI [20], use this transport layer for communication. As such, research studies

on MPI implementations over InfiniBand have focused on managing resources for imple-

mentations using the RC transport. Strategies such as lazy connection setup and using the

Shared Receive Queue (SRQ) support of InfiniBand have been employed to reduce resource

consumption [90, 75, 69].

Using the RC transport, however, has the drawback that the worst-case memory usage

per process of the MPI library across the cluster increases linearly with increasing pro-

cesses. Since each connection requires several KB of memory and clusters continue to

scale to tens of thousands of processors and above, the connection-less Unreliable Data-

gram (UD) transport of InfiniBand is a potentially attractive alternative. As a connection-

less transport, the maximum memory used for connections across the cluster is static even

as the number of processes increases. Using the UD transport for an MPI library, however,

brings several challenges, including providing reliability. Additionally, the UD transport

39

limits the maximum message size to the Message Transfer Unit (MTU) size and lacks sup-

port for RDMA. The MTU on current Mellanox [1] hardware is 2KB.

In this chapter we analyze the design alternatives of the MPI library over the UD trans-

port of InfiniBand. We propose three messaging protocols that provide reliability without

sacrificing performance, and while quickly reacting to the expected number of packet drops

on high-performance networks. We prototype our design and compare the performance and

resource usage of our prototype versus the RC-based MVAPICH. We evaluate the NAS Par-

allel Benchmarks, SMG2000, Sweep3D, and sPPM up to 4K processes on an 1152-node

InfiniBand cluster. For SMG2000, our prototype shows up to a 60% speedup and seven-

fold reduction in memory for 4K processes. Additionally, based on an analytical model,

our design has a potential 30 times reduction in memory usage over MVAPICH at 16K

processes. To the best of our knowledge, this is the first research work that presents a high

performance MPI design over InfiniBand that is completely based on UD and can achieve

near identical or better application performance as compared to RC. We also further ex-

tend this work to include an additional zero-copy mode for transferring messages over UD,

which can further increase performance for large messages.

The rest of the chapter is organized as follows: Further motivation is provided in Sec-

tion 5.1. Our UD-based MPI designs are described in Section 5.2. The prototype imple-

mentation of the design is described in Section 5.3. We evaluate these designs in Sec-

tion 5.4. We also propose an additional optimization for large messages by designing a

novel zero-copy protocol using a “serialized” communication mode in Section 5.5. We

evaluate this enhanced design in Section 5.6.

40

5.1 Motivation

In this section we will describe the factors motivating this work, including resource

scalability as well as potential performance improvements that can be achieved with using

the UD transport.

5.1.1 Resource Scalability

In this section we examine the memory usage of the MPI library and the resource re-

quirements associated with a connection-oriented transport. We first classify the memory

usage of the MPI library into three main categories and then examine each with regards to

RC and UD.

• Data Structure Memory: Even when a connection is not created, memory alloca-

tions for data structures increase with job size.

• Communication Context / QP Memory: The memory required for QP contexts

we refer to as the communication context memory. This memory requirement is the

focus of this work.

• Communication Buffer Memory: Registered memory that is used for send or re-

ceive operations. This does not include user buffers that are registered to provide

zero-copy communication, only those used for eager or packetized communication.

Data Structure Memory

Regardless of the transport type, the memory allocated for data structures usually grows

with the number of total processes in a job. Although this memory usage per process grows

linearly with increasing numbers of processes, the coefficient is quite low, generally much

less than 1 KB.

41

Communication Context / QP Memory

Communication context memory is the memory required for QP contexts. With the RC

transport a separate dedicated QP must be created for each communicating peer. Unlike

the memory required for data structures, the memory required for each additional QP is

considerably greater. The resources required for a single QP context, as created with the

default settings of MVAPICH 0.9.8, consume nearly 68 KB of physical memory.

In an attempt to minimize this memory, current MPI implementations over InfiniBand,

including MVAPICH and Open MPI, employ an on-demand [89, 90] connection setup

method to only setup connections and QPs as required. Thus, if an application communi-

cates with only a few peers the number of connections and QPs required per process may

be considerably fewer than the number of total processes in a job. This method, however,

is only beneficial when the number of communicating peers is low. If an MPI applica-

tion communicates with more than a small number of peers, memory usage will grow with

the total number of processes in the job, potentially reaching above 1GB of memory per

process for 16K processes. In [89, 84], SMG2000 [15] is found to have up to the same

number of connections per process as total processes. With increasing scale the MPI li-

brary should be able to maintain a reasonable memory footprint regardless of the number

of communicating peers.

Using UD as a transport, however, solves this significant problem of QP memory in-

creasing with the number of peers. Since a single UD QP can communicate with any

number of other UD QPs each MPI process need only allocate a single QP. Thus, as the

number of communicating peers increases the connection memory remains constant. This

reduction in connection memory can significantly increase the amount of memory available

for the application.

42

Communication Buffer Memory

As mentioned in Section 2.1.1, to receive a message using channel semantics (send/receive),

the receiver must post a receive buffer to the associated QP. To maintain high-performance,

buffers are generally pre-posted to each QP; posting buffers per QP for a connection-

oriented transport, like RC, however, requires significant memory usage. This prompted

the InfiniBand specification to be updated to include support for Shared Receive Queues

(SRQs), which allow receive buffers to be shared across QPs. Thus, a single pool of posted

receives can be used for any number of QPs and MPI peers.

UD can also make use of an SRQ; however, it is not necessary since all receives can

be posted directly to the single UD QP. Thus, for both RC and UD, the communication

buffer memory can be allocated as a pool and does not depend directly on the number of

processes in a job.

5.1.2 Performance Scalability

Performance can also potentially be improved using a connection-less and unreliable

transport through better HCA cache and fabric utilization.

InfiniBand Context Memory Caching

InfiniBand HCAs cache communication context information using on-card memory,

called the InfiniBand Context Memory (ICM) cache. The ICM cache has a limited size and

cannot hold more than a limited number of QP entries at any one time; context information

outside of the cache must be fetched from host memory. Sur, et al. in [79] provide an

analysis of the Mellanox MT25218 HCA show that less than 128 QPs can be stored in the

cache at any one time. Furthermore, the authors show that when a QP is not in the ICM

43

cache there is a significant latency penalty; for transfers less than 1 KB the latency nearly

doubles. This is a significant problem, especially considering multi-core machines where

all processes on a node will be sharing the cache. Using a connection-less transport, a single

QP can communicate with many peer QPs, avoiding cache thrashing when communicating

with many other QPs.

Fabric Utilization

When using a reliable transport, the HCA must provide reliability to guarantee that

packets are not lost and are delivered in order. Providing this service at the transport layer

instead of the application layer does not allow the application to optimize for out-of-order

messages. For example, in MPI it is not necessary for all parts of a large message transfers

to arrive in order. Instead, they can be placed in the user buffer as they arrive and not

dropped by the HCA. Additionally, the lack of acknowledgements (ACKs) at the transport

layer means less traffic overhead on the InfiniBand fabric. The upper layer can send ACKs

in a more lazy method or another optimized way depending on application needs.

5.2 Design Alternatives

Providing a high-performance and scalable MPI over UD requires a careful design since

many features, including reliability, lack of RDMA, and a small MTU, are provided by

hardware when using the RC transport are now not available or must be done in the MPI

library.

44

Peer Data Structures

CQ
Recv Buffers

SRQ

Per Peer

QP QP QP QP

Shared

(a) MVAPICH

Peer Data Structures

CQ
Recv Buffers

Per Peer

Shared

QP

(b) UD-based Design

Figure 5.1: Resource Allocation

5.2.1 Overview

Our UD-based design is different from MVAPICH and Open MPI in that it uses UD

QPs for data transfer rather than RC. Using the connection-less UD transport allows much

better memory scalability for large-scale clusters.

Figure 5.1 shows the resource allocations of our proposed design versus the design

used in MVAPICH. In MVAPICH each peer requires a data structure and optionally a QP,

created when communication is initiated during application execution. In the worst-case a

QP will be allocated for each peer in this situation. Our UD-based design by contrast uses

a single UD QP for all peers since it is a connection-less transport. In both designs the CQ

and communication buffers are shared across all connections.

5.2.2 Reliability

A key issue that must be addressed when using an unreliable transport layer is how to

provide reliability in a lightweight and scalable form. Significant prior work has been done

on methods to provide reliable service at the transport layer; however, in-depth study has

45

SEQ=101

ACK=102

SEQ=102

SEQ=100

SEQ=101

SEQ=102

SEQ=100

NACK=101

SEQ=101

ACK=102

Coalesced ACK NACK

X

Figure 5.2: Coalesced ACK and NACK Protocols

not been done at the MPI library layer. LA-MPI [23, 6] has explored reliability against loss

and corruption in the MPI library, but was more focused on I/O bus errors.

Our design uses the traditional sliding window protocol. The sender issues packets

in order as there is available space in the window. In this manner the window represents

the maximum number of unacknowledged message segments outstanding. Additional send

operations occurring when the send window is already full are queued until outstanding

operations have been acknowledged.

At the time of each send operation, a timestamp is associated with each message seg-

ment. To maintain high-performance, we use the Read Time Stamp Counter (RDTSC)

assembly instruction to read the hardware counters for these values. If an ACK has not

been received within a given timeout the segment is retransmitted.

Optimizations

We additionally use a negative acknowledgment (NACK) based protocol to request se-

lective retransmissions. Upon receiving a message out of order we assume the skipped

messages have been lost and request re-transmission from the sender. Using this mecha-

nism we can handle potential message drops without having to wait for timer expiration.

46

We also borrow the traditional ACK coalescing method from TCP to reduce the number of

acknowledgments.

Reliability Progress Methods

The main challenge in providing reliability at the user-level within the MPI library is the

potential lack of progress. In a traditional sliding window sender retransmission protocol,

message acknowledgments must be sent within a timeout period otherwise the message is

retransmitted from the sender. There are two issues to consider:

• Sender Retransmission: How should the sender know when to retransmit a message?

Should there be a timer-based interrupt or a thread?

• Receiver Acknowledgment: How can the receiver acknowledge the message within

a bounded amount of time?

While providing these guarantees may seem simple, providing them while maintaining

performance is non-trivial. We present three different methods of providing reliable service

within the MPI library.

Thread: This is the traditional approach in which a watchdog thread sleeps for a set

amount of time before waking to process incoming messages, send ACKs, and resend

timed-out messages. This method provides a solution to both of the issues of sender and

receiver progress, but it does so at significant cost. To maintain a quick response to a

segment drop the thread wakeup time, twake, must be set to a short interval. A thread that

wakes up frequently may harm performance. Figure 5.3(a) demonstrates this protocol.

Progress-Engine: The progress engine of MPI refers to the core of the library that

is activated to send and receive messages – to make progress on communication. In this

47

SEQ=101

ACK=101

SEQ=100 twake

Reliability
Thread

Computation

(a) Thread Based

SEQ=100

SEQ=101
SEQ=100

ACK=101

t100 Computation

(b) Progress Engine Based

SEQ=101

Computation

SEQ=100

t100

SEQ=100

ACK=101

Event
Thread

(c) Hybrid Event Based

Figure 5.3: Reliability Protocols

variant, reliability is only handled in the progress engine. This has a number of advantages

including the lack of the overhead of locks for various data structures that otherwise need

protection. Additionally, for infrequent packet drops, there is no need to have a thread wake

up frequently, which causes potential performance degradation. Since we are relaxing the

timeframes for retransmission and acknowledgment, the disadvantage of such a design is

that an ACK may not be returned within the timeout period since the receiver may be in a

computation loop (not discovering the message), triggering an unnecessary retransmission

from the sender. Additionally, sender retransmission may also be delayed if the sender is

in a long compute loop. Figure 5.3(b) shows this protocol when the receiver is in a long

compute loop and an unnecessary retransmission is generated.

Hybrid: In this method the reliability is primarily through the progress engine; how-

ever, if the timer runs out the message is retransmitted to the receiver side to a secondary

UD QP that is interrupt-driven. When a message is received on the interrupt-driven QP

a thread is awoken to process the message and acknowledge all other waiting messages.

This guarantees an ACK will be sent back within a Round Trip Time (RTT) if received,

48

reducing unnecessary multiple retries while avoiding the overhead of a thread waking at

a constant rate. Figure 5.3(b) shows the benefit of this method when the receiver is in

a compute loop, avoiding multiple retransmissions. Using an interrupt-driven QP for all

communication is not feasible since interrupts are costly operations that harm performance

of both communication and computation.

Note that implementations of both the thread and hybrid designs require locking of

internal data structures to ensure thread safety. Using the progress engine method avoids

this as only one thread is only ever executing within the progress engine.

5.3 Implementation

We have implemented our proposed design over the verbs interface of the OpenFab-

rics/Gen2 stack [55]. Our prototype design is based on MPICH [24] from Argonne Na-

tional Laboratory. MPICH defines an Abstract Device Interface (ADI), that allows the

device and transport specific information to be encapsulated. We develop an ADI com-

ponent based on the MVICH [34] and MVAPICH ADI components. MVICH was devel-

oped at Lawrence Berkeley National Laboratory for the VIA [18] interconnect. MVAPICH

is a derivative of MVICH from the Ohio State University that has been significantly re-

designed and optimized for InfiniBand. Both MVICH and MVAPICH were created for

reliable connection-oriented transports, requiring a significant portion of the code path to

be re-written to support UD.

We implement all three of the reliability methods described in the design section as well

as a profiling engine to detect message retransmissions, duplicate messages, and message

sizes. We compute message drop rates by comparing the number of re-transmissions from

49

a given process to another and the number of duplicate messages the process detected from

the other. This data is collected during the finalize stage.

5.4 Evaluation

Our experimental testbed is an 1152-node, 9216-core, InfiniBand Linux cluster at Lawrence

Livermore National Laboratory (LLNL). Each compute node has four 2.5 GHz Opteron

8216 dual-core processors for a total of 8 cores. Total memory per node is 16GB. Each

node has a Mellanox MT25208 dual-port Memfree HCA. InfiniBand software support is

provided through the OpenFabrics/Gen2 stack [55]. The Intel v9.1 compiler is used for all

compilations, including MPI libraries and applications.

We compare the performance of our UD-based prototype versus the popular MVAPICH

MPI library, version 0.9.8. Comparisons with other MPIs were not possible due to limited

time on the cluster. For MVAPICH, we disable small message RDMA, since per process

it requires roughly 512KB of memory per additional connected process; large message

RDMA for zero-copy transfers is still enabled. We disable this feature since we are inter-

ested in ultra-scale clusters. Earlier studies [78] have shown the SRQ path to have similar

or better performance for applications than the small message RDMA path while using

significantly less memory. Small message RDMA, with lower latency (3.0µsec for RDMA,

5.0µsec for SRQ), may be beneficial for smaller clusters, but is not scalable for large-scale

systems due to the large per process memory usage.

Additionally, although by default MVAPICH posts 512 buffers to the shared SRQ for

receiving messages, we had to increase that value to 8K to ensure optimal performance for

some applications on this larger cluster.

50

Table 5.1: Additional Memory Required with additional processes and connections
Memory Required Per Process

MPI Addl. Peer Addl. Connection

MVAPICH-0.9.8 0.61KB 68KB
MVAPICH-opt 0.61KB 13KB

UD 0.44KB 0KB

Memory Usage

One of the primary benefits of using UD as the transport protocol is the reduced memory

usage, as noted in Section 5.1.1. In this section we describe our methodology and compare

the memory usage of the entire MPI library at increasing scale.

 0

 200

 400

 600

 800

 1000

 1200

8 16 32 64 128 256 512 1K 2K 4K 8K 16K

M
em

or
y

U
sa

ge
 (

M
B

/p
ro

ce
ss

)

Number of Processes

MVAPICH-0.9.8-SRQ
MVAPICH-opt-SRQ

UD

Figure 5.4: Fully-Connected Memory Usage

Figure 5.4 compares the memory usage of our proposed design as compared to MVA-

PICH with increasing numbers of connected peers. Values through 4K processes are mea-

sured, 8K and 16K values are modeled. From the figure we observe that MVAPICH has

51

the potential to use 1.1GB of memory per process at 16K processes per job, and our pro-

totype uses only 40MB per process. Expanding to total connection memory usage across

the cluster, which is what scientists use to determine the problem size able to be run, the

default settings will consume 18TB of memory, and the UD-based design will use a much

smaller 655GB of memory. This memory usage is the worst-case situation, where all peers

are communicated with at least once. As mentioned in Section 5.1.1, many applications

communicate with the majority of their peer processes, so the resource usage is important

to consider and cannot be ignored.

Settings currently being used on our evaluation cluster for reduced memory usage are

shown as “MVAPICH-opt”, these decrease the number of outstanding send operations al-

lowed per QP as well as the amount of data that can be inlined with a request to decrease

overall memory usage significantly from the 0.9.8 default. This decreases the total connec-

tion memory, however, we have not evaluated all possible effects. Our evaluation has been

done with the default settings; we mention possible optimization here for completeness.

Even using these optimized settings our UD-based design uses 80% less memory at 16K

processes. A subsequent release of MVAPICH (0.9.9) has reduced memory usage below

even the level of the optimized settings, however, UD remains the most scalable option.

We also calculate the memory usage of MVAPICH when the number of processes in

a job increases, but no direct connections are made to any peers. This reflects only the

data structure memory. Table 5.4 shows the results of this measurement. From this table

we observe that our UD-based prototype uses even less memory in data structures than

MVAPICH, meaning even with no connections setup the memory of our UD prototype

uses less memory than MVAPICH as the number of processes in a job increases.

52

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

4K1K256641641

La
te

nc
y

(u
se

c)

Message Size (Bytes)

MVAPICH-0.9.8 SRQ
UD (Progress)

(a) Latency

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

256K64K16K4K1K256641641

T
hr

ou
gh

pu
t (

M
B

/s
ec

)

Message Size (Bytes)

MVAPICH-0.9.8 SRQ
UD (Progress)

(b) Bandwidth

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

256K64K16K4K1K256641641

T
hr

ou
gh

pu
t (

m
es

sa
ge

s/
se

c)

Message Size (Bytes)

MVAPICH-0.9.8 SRQ
UD (Progress)

(c) Messaging Rate

Figure 5.5: Basic Micro-Benchmark Performance Comparison

5.4.1 Basic Performance

Figure 5.5 shows the latency, bandwidth, and messaging rate of both MVAPICH (with

SRQ) and our UD-based prototype using the progress engine based reliability method.

From Figure 5.5(a) we observe that for small messages under the MTU size message la-

tency is nearly the same as MVAPICH. Messages above that size have a higher latency as

the library must segment the message instead of segmenting in hardware. We also evaluate

the latency penalty of using locks around all critical data structures for the thread and hybrid

53

reliability methods and find it to have a 0.2 µsec additional overhead. Figure 5.5(b) shows

the bandwidth comparison. For messages less than the MTU size our prototype shows in-

creased throughput over MVAPICH. Throughput is roughly comparable until 8KB where

MVAPICH maintains a bandwidth of 100-150 MB/sec higher. From Figure 5.5(c) we ob-

serve that the messaging rate of our prototype is up to 40% higher for small messages. After

studying the base InfiniBand performance with and without a SRQ, it can be observed that

the lesser small message bandwidth and message rate for MVAPICH is due to the use of a

SRQ. Recall from Section 2.1.3 that for scalability a SRQ is required when using RC.

5.4.2 Application Results

We evaluate our designs with the NAS Parallel Benchmarks, and three applications

from the Advanced Simulation and Computing (ASC) Benchmark Suite [4]: sPPM, Sweep3D,

and SMG2000. Given limited large-scale cluster time, sPPM, Sweep3D, and SMG2000 are

evaluated with only the progress-engine approach for reliability and MVAPICH. For the

thread-based reliability method we set the thread-wake time to one second and a message

timeout of two seconds. The progress engine and hybrid message timeout is set to 0.4 sec.

All results are the average of multiple runs.

For each of the applications we evaluate the memory usage in all three categories: data

structure, connection/context memory and communication buffer memory used by the MPI

library. Additionally, we profile the MPI message sizes used by the application and directly

communicating peers to better understand the results. Communication pattern analysis of

sPPM, SMG200, and Sweep3D is available in [84] by Vetter, et al.

54

Table 5.2: NAS Characteristics (256 processes)

Characteristic
Benchmark

BT CG EP FT IS LU MG SP
Total MPI Messages (millions) 4.96 13.31 0.01 1.47 1.50 77.31 1.68 9.88
RC: Connections (max per process) 12 9 8 255 255 10 13 12
UD: Total Packet Drops 0 0 0 0 0 0 0 0

NAS Parallel Benchmarks

The NAS Parallel Benchmarks [8] (NPB) are kernels designed to be typical of various

Computational Fluid Dynamics (CFD) MPI applications. As such, they are a good tool

to evaluate the performance of the MPI library and parallel machines. We use the largest

class (C) with datasets for all benchmarks. Table 5.2 shows the number of messages, RC

connections, and UD packet drops observed for 256 processes. Additional study on com-

munication patterns of NAS Parallel Benchmarks is available in [85].

We evaluate the performance of each of the benchmarks with both our UD prototype

and MVAPICH for 256 processes on 256 nodes. Each of the design alternatives for reli-

ability are evaluated for the UD prototype. Figure 5.6(a) shows the results of our evalu-

ation. Comparing only the reliability methods for the UD prototype, the progress-engine

approach gives the best observed performance for all benchmarks. The other techniques

require additional locking overhead for thread safety. The thread-based technique has the

highest overhead, sometimes reaching nearly 10%. We attribute this to additional system

noise [58] incurred by the threads waking up and competing for computational cycles and

locks. The hybrid approach incurs very little overhead as no retransmissions are made.

55

Comparing the UD prototype performance with MVAPICH we observe that our UD

prototype performs quite well, performing with better or equal performance in all bench-

marks besides CG and MG where performance is within 3%. The UD prototype performs

particularly well for FT and IS, both of which make use of MPI Alltoall operations,

where an RC-based MPI will have to go outside the ICM cache to communicate with all

other nodes.

Figure 5.6(b) shows the memory usage of each of the benchmarks. As noted earlier, we

measure the connection memory (for QPs), the communication buffers, and the memory

required for data structures. We observe that even for MVAPICH, the connection memory

is not significant for many of the benchmarks since each process has only a few communi-

cating peers. IS and FT, however, connect to all 255 other peers, making their connection

memory more significant when the RC transport is used. The UD-based prototype shows

negligible connection memory in all cases since it is based on a connection-less transport.

The communication buffer memory usage is higher for MVAPICH as each receive buffer

posted is 8KB and those for our UD prototype are 2KB (the MTU size). Some applications

that use a significant number of large messages, such as FT and IS, required additional

memory above the base value for the UD prototype. Overall, including all forms of com-

munication memory the UD prototype used lower memory for all benchmarks.

sPPM

sPPM [49] is an application distributed as part of the ASC Purple Benchmarks. It solves

a 3D gas dynamics problem on a uniform Cartesian mesh using the Piecewise Parabolic

Method (PPM). Figure 5.7 shows a breakdown of MPI message volume according to size

for this dataset at 4K processes. We observe from the figure that 40% of messages are 64

bytes or less and another 40% are larger than 256 KB.

56

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

BT CG EP FT IS LU MG SP

N
or

m
al

iz
ed

 T
im

e

Benchmark (Class C)

MVAPICH-0.9.8 SRQ
UD (Progress)

UD (Hybrid)
UD (Thread)

(a) Normalized Time

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

M
VAPICH

UD M
VAPICH

UD M
VAPICH

UD M
VAPICH

UD M
VAPICH

UD M
VAPICH

UD M
VAPICH

UD M
VAPICH

UD

M
em

or
y

U
sa

ge
 (

M
B

 /
T

as
k)

Connection
Communication
Data Structures

MGLUISFTEPCGSPBT

(b) Memory Usage Per Process

Figure 5.6: Characteristics of NAS Benchmarks (256 processes, Class C)

The performance of sPPM with increasing numbers of processes is shown in Figure 5.8.

From the figure we observe that performance between the default configuration of MVA-

PICH and our prototype is similar. For 4K processes, the UD prototype is within 1% of the

performance of MVAPICH. The lower performance and lack of zero-copy for large mes-

sage transfers with UD and the high percentage of messages over 256KB likely combine

for the observed lower performance. Table 5.3 shows statistics related to the MPI messag-

ing characteristics of sPPM. Memory usage per process is nearly constant, regardless of the

total number of processes. Given the low number of communicating peers for each process,

maximum 15, the MVAPICH RC connection memory is kept less than 1MB. Communica-

tion buffer memory per process is 68MB for MVAPICH and 36MB for our UD prototype.

No packet drops were observed for any number of processes.

57

Table 5.3: Application Characteristics

Application Characteristic
Processes

128 256 512 1024 2048 4096

sPPM
Total MPI Messages (millions) 0.11 0.24 0.52 1.08 2.25 4.74
RC: Connections (max per process) 10 10 12 13 14 15
UD: Total Packet Drops 0 0 0 0 0 0

Sweep3D
Total MPI Messages (millions) 0.17 0.32 0.63 1.28 2.65 5.48
RC: Connections (max per process) 9 9 9 9 10 11
UD: Total Packet Drops 0 0 0 0 1 8

SMG2000
Total MPI Messages (millions) 29.9 64.4 146.1 312.7 652.1 1376.6
RC: Connections (max per process) 111 195 340 438 631 992
UD: Total Packet Drops 0 0 0 0 10 27

 0

 20

 40

 60

 80

 100

 120

1M256K64K16K4K1K25664

%
 M

es
sa

ge
s

B
el

ow

Message Size (Bytes)

Sweep3D-4096
sPPM-4096

SMG2000-4096

Figure 5.7: Total MPI Message Size Distribution

58

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

128 256 512 1024 2048 4096

N
or

m
al

iz
ed

 T
im

e

Processes

MVAPICH-0.9.8 SRQ
UD (Progress)

Figure 5.8: sPPM Performance Com-
parison

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

128 256 512 1024 2048 4096

N
or

m
al

iz
ed

 T
im

e

Processes

MVAPICH-0.9.8 SRQ
UD (Progress)

Figure 5.9: Sweep3D Performance
Comparison

Sweep3D

Sweep3D [25, 32] uses a multi-dimensional wavefront algorithm to solve the 3D, time-

independent, particle transport equation on an orthogonal mesh. Profiling of the MPI mes-

sage sizes, shown in Figure 5.7 reveals that 38% of messages are 64 bytes or less and the

remaining volume is between 32 and 64 KB in size.

Figure 5.9 shows the normalized time of running Sweep3D at increasing scale. Per-

formance is roughly comparable, with the UD-based design getting slightly faster with

increasing numbers of processes: 5% faster at 4K processes. From Table 5.3 we observe

that the as the number of processes in a job increases, the number of packet drops increases.

The percentage is still low, at 4K processes only 8 packets were dropped. As with sPPM,

the memory required for RC connections for MVAPICH is quite low with a maximum of

11. As such, the difference in memory required for the UD prototype and MVAPICH is

minimal.

59

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

128 256 512 1024 2048 4096

N
or

m
al

iz
ed

 T
im

e

Processes

MVAPICH-0.9.8 SRQ
UD (Progress)

(a) Performance Comparison

 0

 20

 40

 60

 80

 100

 120

 140

M
VAPICH

UD M
VAPICH

UD M
VAPICH

UD M
VAPICH

UD M
VAPICH

UD M
VAPICH

UD

M
em

or
y

U
sa

ge
 (

M
B

 /
T

as
k)

Connection
Communication
Data Structures

409620481024512256128

(b) Memory Usage

Figure 5.10: SMG2000 Characteristics with increasing processes

SMG2000

SMG2000 [15] is a parallel semi-coarsening multigrid solver, which is part of the ASC

Purple Benchmarks. Analysis of the MPI message distribution, as shown in Figure 5.7

reveals the majority of messages are quite small, 90% of MPI messages are less than 4KB.

From Figure 5.10(a) we observe superior performance for our UD-based design as the

number of processes increases. At 4K processes our prototype is 60% faster than MVA-

PICH. As noted in Table 5.3, the number of connected peers is significant, nearly 1000

connected peers per process for 4K processes. Further inspection of the communication

pattern shows a regular frequency of communication with many peers. As such, the QP

context caching and management of ACKs at the application layer is the likely reason for

the benefit, particularly since the size of each message is very small. Unfortunately, there is

no direct mechanism to measure the cache misses on the HCA ICM cache. When sending

to such a large number of peers the ICM cache is likely being thrashed for RC, while the

60

UD QPs will remain in cache. We also observe increasing numbers of packet drops with

scale; at 2K processes 10 packets are dropped and 27 packets are dropped for 4K processes.

Figure 5.10(b) shows the memory usage of SMG2000 with increasing numbers of pro-

cesses. Since the number of connected peers increases with the overall number of pro-

cesses, the connection memory similarly increases for MVAPICH. The UD prototype main-

tains constant connection memory. At 4K processes, the maximum number of RC connec-

tions for MVAPICH made by a single process is nearly 1000, requiring over 60MB of

memory per process just for connections, totaling 240 GB of memory across the cluster.

5.5 Zero-Copy Design

As noted in Section 2.1.2, the UD transport does not allow RDMA semantics. Also,

InfiniBand/OpenFabrics [55] does not implement any Matched Queues interface. Thus,

two of the popular methods mentioned in Section 2.3 to design a zero-copy protocol are

not available over UD transport. However, for scalability reasons mentioned in the previous

sections, using the UD transport is highly desired on very large scale clusters. In this section

we present a novel design for zero-copy protocol over UD transport. We first describe the

various design challenges in detail, followed by the proposed design.

5.5.1 Design Challenges

The challenges of providing high-performance reliable transport at the software level

over UD are significant. The first UD-based design, presented in Section 5.2 used the

traditional TCP-style reliability over UD with significantly lower performance for large

messages due to extra memory copies. In this section we discuss these challenges that

must be overcome for a high-performance true zero-copy design.

61

Limited MTU Size: A significant disadvantage of using the UD transport is that mes-

sages are limited to the maximum MTU size. The maximum MTU available on current

Mellanox HCAs is 2 KB; the specification allows for an MTU of up to 4 KB. Segmentation

of larger messages is required before posting the send operation since the hardware will not

perform this action for UD.

Lack of Dedicated Receive Buffers: As discussed in Section 2.1.1, to receive mes-

sages using channel semantics the receive buffers must be posted to a QP. While using the

UD transport, the UD QP is shared for all remote peer processes. In this scenario, it is dif-

ficult to post receive buffers for a particular peer as they are all shared. Additionally, using

the UD transport, if no buffer is posted to a QP, any message sent to that QP is silently

dropped. A high-performance design must always strive to avoid dropping packets due to

unavailability of buffers.

Lack of Reliability: There are no guarantees that a message sent will arrive at the

receiver. Traditional approaches used by TCP-style reliability algorithms can assist in

achieving reliability, but adding packet headers for sequence numbers, acknowledgments,

and tracking send operations is non-optimal for high-performance. Adding these fields in-

side packets can lead to memory copies, since these fields would have to be placed in each

packet individually.

Lack of Ordering: Messages may not arrive in the same order they were sent. Each

buffer is consumed in a FIFO manner, so the first buffer filled may not be the first packet

sent from a process. The MPI library must now take care of re-arranging the arrived packets

in the correct order and form the message from the individual packets.

62

Lack of RDMA: The lack of RDMA is the most significant deficiency of UD in terms

of implementing a high-performance large message transfer mechanism. If RDMA were

provided the sender and receive buffers could be pinned and transferred directly without

regard to ordering since messages are directly placed in the user buffer. Reliability could

be ensured through tracking of completions on the receiver side. This mechanism is similar

to the implementation of RDMA on the IBM HPS adapter where the HCA can directly

place the incoming data to the user buffer since each packet describes its own placement

location [73]. Unfortunately, InfiniBand does not provide such a capability for UD.

Extra headers in application UD packets: The Global Routing Header (GRH) is used

by InfiniBand switches to route packets between subnets. The InfiniBand specification

mandates that these headers be present in UD based multi-cast packets. However, current

InfiniBand hardware and software stack place this 40-byte GRH header inside the appli-

cation packets. This is particularly frustrating since even if reliability and ordering were

guaranteed, it would not be straight-forward to simply post the user application receive

buffers directly to the QP.

5.5.2 Proposed Design

Large message transfers are typically done through a “rendezvous” protocol: the sender

notifies the receiver of intent to send a message, a Request To Send (RTS). The receiver

will reply with a Clear To Send (CTS) message as soon as the receive has been posted.

Such a technique is used in traditional large message transfers in InfiniBand to perform an

RDMA Write/Read operation to directly place the data into the receive buffer. In this case

the CTS message will contain the address of the receive buffer to allow RDMA operations.

Finally, a finish message (FIN) is sent to notify the receiver of data placement.

63

Our design uses a similar CTS/RTS protocol as is common in other MPI implemen-

tations, however, there are important differences due to the lack of RDMA and unreliable

transfer. An overview of our proposed protocol is shown in Figure 5.11.

Main QP

...

QP PoolMain QP

RTS

CTS + QPN

FIN

ACK

Post receive
buffer directly

to QPi

Check for
proper

completion

Sender Receiver

DATA

Figure 5.11: UD Zero-Copy Protocol

Enabling Zero-Copy

Our proposed design to implement zero-copy transfers over UD is based on a serial-

ized communication model since RDMA and tag matching are not specified for the UD

transport. “Serialized” is used here to denote that communication on a given QP can be

serialized – the order of transfer is agreed on beforehand and only one sender will transmit

to a QP at a single time.

After receiving a RTS message from a sender, the receiver will select a UD QP for this

transfer; we will denote this QPtrans f er. If the receive operation as not been posted, the

receiver queues the RTS message until a matching receive is posted. When the receive is

posted, the buffer is directly posted in MTU size chunks to QPtrans f er. In this way, the

first message sent to QPtrans f er will be directly placed into the first MTU size chunk of the

64

receive buffer. The rest of the received data will continue to fill the buffer in the order of

arrival.

Efficient Segmentation

One of the challenges for using the UD transport is the lack of support for messages

larger than the MTU size. Although this is not a problem that can be solved without chang-

ing the specification, steps can be made to reduce the detrimental effects. One of the major

overheads is the mechanism used to report completion of packet send operations. Since

large messages can generate lots of packets, the overhead might be higher. In our design,

we choose to get “completion signal” only for the last packet of the message. The under-

lying reliability layer would mark packets as missing at the receiver side and the sender

would be notified. Hence, the intermediate completions at the sender are unnecessary, as

long as we know the last packet was sent out of the node, it is enough.

Zero-Copy QP Pool

Receive requests for UD QPs are shared for all remote peers. This makes it harder to

dedicate a set of resources for a particular remote process for sending large messages. In

order to solve this problem, we maintain a pool of UD QPs which can be used as required.

When a large message transfer is initiated, a QP is taken from the pool and the application

receive buffer is posted to it (in MTU chunks). For the duration of the message transfer,

this QP is bound to the specific remote process. When the transfer is finished, the QP is

returned to the pool. Obtaining and returning QPs from a pool are very cheap, hence our

design is expected to perform reasonably well for up to as many large incoming sends as

the size of the pool. For the purpose of our evaluation, the pool size is 64, although this is

tunable at runtime.

65

Optimized Reliability and Ordering for Large Messages

As mentioned earlier in this section, the UD transport does not guarantee any reliability

or ordering. In our zero-copy protocol, we need to take care of these issues for maintaining

data integrity and MPI semantics.

The first challenge is determining if message re-ordering has occurred. One method

would be to perform a checksum of the final receive buffer, however, such a scheme negates

much of the benefit of using a zero-copy protocol since the data buffer must now be tra-

versed. Instead we propose leveraging the immediate data field of InfiniBand. In addition

to the normal data payload, send operations can also specify a 32-bit immediate field that

will be available to the receiver as part of the completion entry. In our design the imme-

diate field is filled with a sequence number that identifies the order in which data was sent

and should be received. Since each QP is associated with a CQ, upon receiving the FIN

message the associated CQ can be polled for completions. If any completion is out of or-

der or missing, re-ordering or drops have occurred during transfer. If a message has been

dropped or re-ordered there are various techniques that can be used. The most simple, and

the approach we have implemented, will send a negative acknowledgment (NACK) to the

sender to request retransmission of the entire message. More optimized approaches, such

as copying only re-ordered parts of the receive buffer or selective retransmission may be

helpful in high-loss environments. In our previous work, however, we have observed ex-

tremely low data loss for even large-scale systems with thousands of processes. Upon a

successful reception of the message, the receiver will send an ACK to the sender, allowing

the sender to mark the send operation complete.

66

Dealing with GRH Data

As noted in Subsection 5.5.1, the GRH data is placed into the first 40 bytes of the

receive buffer. Since the GRH data is for routing and not data that we wish to have in the

receive buffer, we must avoid placing the GRH data there. As such, we use a scatter list of

InfiniBand to specify two buffers in a receive descriptor – the first with a length of 40 bytes

that maps to a temporary buffer and a second entry that maps to the receive buffer.

5.6 Zero-Copy Evaluation

Our experimental test bed is an InfiniBand Linux cluster. Each compute node has

dual 2.8 GHz Opteron 254 single-core processors. Each node has a Mellanox MT25208

dual-port Memfree HCA. InfiniBand software support is provided through the OpenFab-

rics/Gen2 stack [55], OFED 1.1 release. The proposed design is integrated into the UD

communication device of MVAPICH [53] previously designed in Section 5.2.

We evaluate the following three transfer methods at the MPI layer:

• Reliable Connection (RC-rdma): For measuring RC MPI characteristics we use MVA-

PICH 0.9.9. Large messages are transferred using the rendezvous RDMA write op-

eration described in Section 2.3.

• Unreliable Datagram - Copy-Based (UD-copy): The MPI library used for evaluating

this is the same as used in Section 5.2, which was shown to scale to thousands of

processes with good performance.

• Unreliable Datagram - Zero-Copy (UD-zcopy): This is an implementation of the

proposed design in Section 5.5.2. Aside from the zero-copy protocol, the MPI library

67

is identical to that of UD-copy. The zero-copy threshold is set to be 32 KB, meaning

all messages 32 KB and above will use the zero-copy protocol.

5.6.1 Basic Performance

In this subsection we evaluate the microbenchmark performance of latency, uni-directional

bandwidth, and bi-directional bandwidth using the OSU Benchmarks [54].

Latency

To measure latency we use a ping-pong test and report one half of the value as the one-

way latency. The latency results for large messages are shown in Figure 5.12. Latencies

for messages smaller than 32 KB do not change with our method since we have set the

threshold to 32 KB for zero-copy transfers. The gap between UD-copy and RC-rdma is

very significant – UD-copy latency is nearly double that of RC-rdma for a 1 MB message.

Due to the overhead incurred through segmentation and posting of receive buffers, UD-

zcopy does not fully close the gap. The proposed design, however, shows only a 28%

increase in latency over the RC-rdma implementation, a significant improvement over the

copy-based approach.

When compared to RC-rdma, the performance of the UD-zcopy design performs very

well, although many overheads discussed in Section 5.5.2 do reduce the performance from

the RC-rdma level. In particular, posting explicit receive buffers instead of RDMA and an

additional DMA operation to split the GRH field are significant costs.

Uni-Directional Bandwidth

In the uni-directional bandwidth benchmark, we evaluate the bandwidth of increasing

message sizes for each of the transfer methods. This benchmark performs a throughput

68

Figure 5.12: One-way Latency

test between a sender and receiver where for each message size the sender sends a window

of 64 messages and waits for an acknowledgment of the entire window from the receiver.

This step is repeated for many iterations and the average is reported.

Figure 5.13: Uni-Directional Bandwidth Figure 5.14: Bi-Directional Bandwidth

69

Figure 5.13 shows the results of the experiment. We can clearly observe the 32 KB

threshold where the zero-copy protocol begins to be used. Already at 64 KB the differ-

ence between the UD-copy and UD-zcopy methods reaches 275 MB/sec, a nearly 30%

improvement. The difference is even greater for larger message sizes; 1 MB messages are

transferred over 500 MB/sec faster using the proposed UD-zcopy design. Due to the var-

ious overheads incurred, the bandwidth as compared to RC-rdma is lower, however, the

performance is within 9% of the performance at 64KB.

Bi-Directional Bandwidth

The bi-directional bandwidth benchmark is similar in design to the uni-directional

bandwidth benchmark presented earlier. However, in this case, both sides of the com-

munication send as well as receive data from the remote peer.

From Figure 5.14 we can observe a steep increase in performance at the zero-copy

threshold of 32 KB. At 64 KB the difference in performance between UD-copy and UD-

zcopy is over 1 GB/sec. As compared to RC-rdma, the UD-zcopy design is slightly worse

– as expected from the additional overheads, however, for all message sizes where the

zero-copy protocol is being used the bandwidth difference is only 150 MB/sec, or a 7%

degradation for a 1 MB message versus a nearly 60% degredation for the copy-based ap-

proach.

5.6.2 Application Benchmarks

In this section we evaluate the three messaging transfer modes against application-based

benchmarks. These are more likely to model real-world use than microbenchmarks. We

evaluate a molecular dynamics application and the NAS Parallel Benchmarks (NPB).

70

Table 5.4: Messaging Characteristics (16 processes)

App. Benchmark
Percentage Total Messages

0-2KB 2-32KB 32KB+ 0-2KB 2-32KB 32KB+

LAMMPS
in.chain 29.65 70.35 0.00 166308 394618 0
in.rhodo 41.37 47.31 11.31 150238 171804 41088

NPB

CG.B 57.62 0.00 42.38 257902 0 189696
EP.B 100.00 0.00 0.00 384 0 0
FT.B 19.50 0.00 80.50 1364 0 5632
IS.B 61.77 6.04 32.20 5402 528 2816
LU.B 99.00 0.00 1.00 2401046 0 24192
MG.B 57.99 24.74 17.28 56706 24192 16896
SP.B 0.48 0.00 99.52 744 0 154080

LAMMPS Benchmark

Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [60] is a clas-

sical molecular dynamics simulator from Sandia National Laboratories. Several benchmark

datasets are available from the LAMMPS website. They are meant to represent a range of

simulation styles and computational expense for molecular-level interaction forces. In our

experimental analysis, we used the Rhodospin protein (in.rhodo) and Polymer chain melt

(in.chain) datasets available from the LAMMPS website. LAMMPS reports the “Loop

Time” for a particular benchmark as a measure of CPU time required to simulate a set of

interactions.

Figure 5.15(a) shows the normalized time to complete the simulation and Table 5.4

shows the messaging characteristics of the different data sets. For the in.rhodo dataset the

performance of UD-zcopy is significantly increased over that of UD-copy and near equal

to that of RC-rdma. This improvement can be attributed to the 11% of messages that are

greater than or equal to 32 KB and are benefiting from the zero-copy transfer mechanism.

71

(a) LAMMPS (b) NAS Parallel Benchmarks

Figure 5.15: Evaluation Normalized Time (16 processes)

Since the in.chain dataset does not have messages 32 KB or over, the performance of

both UD-copy and UD-copy are the same. RC-rdma performs similarly due to the lack of

large messages as well.

NAS Parallel Benchmarks

The NAS Parallel Benchmarks [8] are a selection of kernels that are typical in vari-

ous Computational Fluid Dynamics (CFD) applications. As such, they are a good tool to

evaluate the performance of the MPI library and parallel machines.

The results of evaluating each of the methods on the NAS benchmarks can be found

in Figure 5.15(b). For many of the benchmarks where there is a significant number of

large send operations (FT, IS, and CG), we see a large difference in performance between

UD-copy and RC-rdma – for IS the performance of UD-copy is nearly 40% worse. Our

proposed zero-copy design, however, reduces this overhead considerably. Performance is

72

increased by 4%, 3%, 16%, 2%, and 3% for CG, FT, IS, MG, and SP, respectively. As we

can observe from comparing Table 5.4 and our percentage improvement, although some

benchmarks use many large messages, such as SP, it may not be bandwidth limited and

communication can be overlapped with communication.

Aside from IS, where the application is extremely short running and the communica-

tion time can become dominated by setup overheads, the absolute application time is very

similar between RC-rdma and UD with the addition of the zero-copy protocol.

5.7 Related Work

The issue of memory consumption for connection-oriented transports has also been

studied by other researchers. Gilfeather and Maccabe proposed a connection-less TCP

method that activates and deactivates connections as needed to save memory [22]. Scala-

bility limitations of the connection-oriented VIA interconnect were explored in [12] and an

on-demand connection management method for VIA was proposed in [89].

InfiniBand, the successor of VIA, has also been studied in regards to resource usage.

Early versions of MVAPICH exhibited significant memory usage as the number of connec-

tions increased as studied by Liu, et al in [36]. Yu, et al. proposed an adaptive connection

setup method where UD was used for the first sixteen messages before an RC connection

was setup [90]; in this case RC was the primary transport. Work by Sur, et al. in [75] sig-

nificantly reduced the per connection memory usage in MVAPICH using InfiniBand Shared

Receive Queue (SRQ) support and a unique flow control method. Similar techniques have

been used in Open MPI by Shipman, et al in [69]. In both of these studies, the memory us-

age was reduced mostly through a reduction in communication memory buffer usage while

73

still using the RC transport layer. We instead focus on reducing the connection memory

usage by leveraging the connection-less UD transport.

Other researchers have explored providing reliability at the MPI layer as part of the

LA-MPI project [23, 6], however, their work had a different goal. LA-MPI is focused

on providing network fault-tolerance at the host to catch potential communication errors,

including network and I/O bus errors. Their reliability method works on a watchdog timer

with a several second timeout, focusing on providing checksum acknowledgment support

in the MPI library. Conversely, in this work we explore using the connection-less UD

transport of InfiniBand to provide superior scalability and near-equal to better performance

compared to RC for ultra-scale clusters.

UD has also been used in other work to suport enhanced collective operations for MPI.

Researchers have previously shown the benefit of using hardware-based multicast over UD

to increase collective performance in MVAPICH [38, 44]. Mamidala, et al., has also shown

the benefit of using UD for MPI Alltoall operations [45]. Our work instead focuses on

a complete MPI stack over UD for high-performance and scalable point-to-point perfor-

mance.

Zero-copy protocols have been widely used in MPI implementations. MPICH-PM [16]

used a zero-copy protocol over the PM communications library. The design of the protocol

uses a Request to Send (RTS), Clear to Send (CTS) and Send FIN messages. MPI-BIP [61]

also used zero-copy message transfers to reduce copy overhead and boost application per-

formance. This work noted that the communication bandwidth was comparable to memory

bandwidth and thus, zero-copy would be an attractive protocol. This observation holds

good for modern systems. RDMA had been emulated over InfiniBand UD in [45] using a

copy-based method, however no zero-copy operations were designed or evaluated. RDMA

74

is provided using a UD-based approach with reliability provided by MPI in the IBM HPS

adapter [73], however, each UD packet is self-identifying as to its address. This is unlike

InfiniBand where RDMA is not enabled for UD.

Although these research works focused on utilizing zero-copy protocols for perfor-

mance reasons, there was no special treatment of these protocols with regard to scalability.

While there are many research works which focus individually on zero-copy protocols and

scalability of MPI libraries, to the best of our knowledge, this is the first work on combin-

ing both these objectives in a scalable, high-performance MPI design and implementation

for InfiniBand.

75

CHAPTER 6

UNRELIABLE CONNECTION: HARDWARE VS. SOFTWARE
RELIABILITY

Given that both the MPI library and the network interconnect are so critical to per-

formance in cluster environments, it is important to examine the assumptions traditionally

made in each. In many modern interconnects, such as InfiniBand and Quadrics, the most

commonly used interface is a reliable one where reliability is provided in the network de-

vice hardware or firmware. With this hardware support the MPI can be designed without

explicit reliability checks or protocols.

In this chapter we examine this common assumption. InfiniBand hardware supports

three transports, Reliable Connection (RC), Unreliable Connection (UC), and Unreliable

Datagram (UD). On Mellanox [1] hardware, the reliability for the RC transport is handled

in firmware on the network device. Given this, we use InfiniBand as a platform to evaluate

the tradeoffs associated with providing reliability in the MPI layer as compared with a

hardware-based design. We compare all three InfiniBand transports, RC, UC and UD in

a common codebase with and without software reliability on a variety of communication

patterns in this study. To the best of our knowledge, this is the first work to address this

issue in such a comprehensive manner on high-speed interconnects.

76

There are two main questions this work seeks to address:

• Can software-based reliability outperform hardware-based reliability methods, and if

so, under what conditions?

• What are the costs associated with providing reliability in software?

As part of our work we design an MPI library that allows independent evaluation of

each of the three InfiniBand transports in a common codebase. Additionally, software-

level reliability can be turned on and off for each of the transports. We evaluate these

combinations using two molecular dynamics packages on a 512-core cluster and report up

to a 25% increase in performance over the RC transport by using a software-level reliability

layered over the UC transport.

The rest of the chapter is organized as follows: In Section 6.1 we describe our method-

ology to determine the costs of reliability. Section 6.2 provides our MPI design that we use

for evaluation. The design implementation is described in Section 6.3 and the performance

evaluation and analysis is in Section 6.4.

6.1 Methodology

We design our study to evaluate the tradeoffs associated with providing reliability

within the network hardware and in the MPI library. In particular, we seek to evaluate

the performance and resource requirements of the host for a variety of messaging patterns.

6.1.1 Native Performance

Before measuring software reliability, the native hardware performance for both reli-

able and unreliable communication modes must be evaluated. This baseline gives the basic

77

communication performance differences. In the case of InfiniBand, the Reliable Connec-

tion (RC) mode has likely been significantly more optimized than the Unreliable Connec-

tion (UC) mode due to its more prominent usage in libraries and applications. Since many

modern networks provide link level flow control, packet loss is minimal and real-world

workloads can be run over unreliable protocols for the purposes of evaluation. The time

difference between the reliable and unreliable mode application executions of a workload

represent the maximum improvement that can be obtained by using a software-based reli-

ability mechanism.

6.1.2 Reliability Performance

The main evaluation criteria is the performance that can be obtained through providing

reliability in the MPI library instead of hardware. To perform this evaluation, the same

messaging workloads must be used on both a software-based implementation of reliability

and a hardware implementation of reliability. To isolate this difference, the rest of the

hardware and software stack should be identical.

Since InfiniBand provides both reliable and unreliable semantics on the same hardware

it offers an ideal platform for our study. Current generation Mellanox InfiniBand adapters

allow us to study three transports and isolate the reasons for performance differences:

• Reliable Connection (RC): Reliability and message segmentation are provided in

hardware

• Unreliable Connection (UC): Message segmentation is provided in hardware

• Unreliable Datagram (UD): Neither reliability or segmentation is provided in hard-

ware.

78

These three transports allow us to isolate the tradeoffs of providing hardware reliability

and segmentation. In particular, comparing RC and UC gives the difference of hardware-

level reliability and software-level reliability. The difference between RC and UC gives

insight into the differences between connection-oriented and connection-less transports as

well as hardware and software level segmentation.

6.1.3 Resource Usage

Another important metric to be measured is the additional memory usage incurred by

the software to provide reliability support. To provide high performance message passing

over an unreliable transport, significant buffering of unacknowledged messages may be re-

quired. The maximum memory usage for message buffering will be tracked. Additionally,

the number of ACKs issued by the MPI library to provide reliability will also be tracked.

6.2 Proposed Design

The reliability protocol used has a significant influence on two of our evaluation metrics

from Section 6.1 – performance and resource usage. In this section we discuss the suitable

reliability protocols.

6.2.1 Reliability Engine

Earlier in Chapter 5 we have evaluated three possible reliability protocols for MPI over

the UD transport of InfiniBand. In this work we select the “progress engine” style of

reliability, which provided the best performance in the previous evaluation. More details

on this can be found in our prior work.

In this method, shown in Figure 6.1, message segments are acknowledged lazily when

the application makes calls into the MPI library. If there is a large skew between processes,

79

SEQ=100

SEQ=101
SEQ=100

ACK=101

t100 Computation

Figure 6.1: Progress-Based Acknowledgments

there is the possibility of unneeded message retries. Our previous work has showed this

level to be acceptable. The next subsection gives the protocol details.

Note that additional reliability modes, particularly those based on kernel involvement,

are not evaluated here. This work specifically targets providing reliability within the MPI

library. It is anticipated that a kernel-level interrupt scheme may in some cases be able to

provide even higher performance than the strictly user-level method that we are evaluating.

6.2.2 Reliable Message Passing

For small messages, those less than 8KB, our design uses the traditional sliding window

protocol. The sender issues packets in order as there is available space in the window. In

this manner the window represents the maximum number of unacknowledged message

segments outstanding. Additional send operations occurring when the send window is

already full are queued until outstanding operations have been acknowledged.

To enable reliability, after each message segment is sent it is tagged with a timestamp

and added to an unacknowledged queue. This timestamp is provided through the Read Time

80

Stamp Counter (RDTSC) assembly instruction. If the MPI library detects that the times-

tamp has aged past a pre-configured timeout value (ttimeout) without an acknowledgment,

the message segment is retransmitted. The receiver will discard all duplicate messages and

send an explicit ACK to prevent additional retransmissions.

ACKs are also “piggybacked” onto all other messages being sent to the sender since

many applications have bi-directional communication patterns. This significantly reduces

the number of explicit ACKs that are required. If an ACK has not been piggybacked after

ttimeout/2 usec, the receiver issues an explicit ACK to the sender.

Our design also uses ACKs for flow control in both the reliable and unreliable modes.

This signaling is used to relay the number of free receive buffers available to the sender.

Our reliability method also makes use of these control messages that are already being

issued in the background.

RTS

CTS

FIN

Match tags.
Register

buffer

Sender Receiver

DATA

Mark complete

Get local
send

completion.
Mark

complete

Figure 6.2: Traditional Zero-Copy Rendezvous over RC

81

RTS

CTS

FIN

ACK

Register
buffer

Add to completed
queue

Sender Receiver

DATA

Check queue.
Mark complete

Mark
complete

(a) Non-Error Case

RTS

CTS

FIN

NACK

Register
buffer

Sender Receiver

DATA

Check queue.
Start timer

Mark
complete

DATA
Check queue.
Mark completeACK

X

Timeout

(b) Retry Case

Figure 6.3: Zero-Copy over Unreliable Connection

Preserving Zero-Copy over Unreliable Connection

On interconnects with RDMA capabilities, a zero-copy protocol is often used to trans-

mit large messages. In zero copy protocols the sender and receiver use small control mes-

sages to match the message and then the message data is placed directly in user memory.

A zero-copy protocol can significantly increase bandwidth and reduce cache pollution. In-

stead of performing data copies in the send and receive paths, within user-space or the

kernel, a zero-copy approach directly sends the data from the source application buffer to

the final destination buffer.

On InfiniBand, a handshake protocol (rendezvous) is used. As shown in Figure 6.2,

the sending process sends a Request to Send (RTS) message with message tag information.

Upon discovery of the message by the MPI layer at the receiver end, the receiver will send

a Clear to Send (CTS) to the sender. If the sender receives a CTS, then it can use RDMA

Write to send the message data directly to user application buffer at remote side. Thus,

82

RDMA Write provides a convenient method to perform zero-copy protocols when MPI

message tags are matched by the MPI library.

To maintain these zero-copy semantics for an unordered and unreliable transport, this

protocol must be adjusted. The traditional RDMA Write rendezvous protocol over RC

makes use of both of the assumptions of ordering and reliability. A Finish (FIN) message

is issued directly after the RDMA write data message and upon receipt the receiver knows

the data has already arrived and can mark the receive as complete. Similarly, upon getting

a local send completion from the CQ for the FIN message, the sender can mark the send

complete.

Unfortunately, with an unreliable transport, neither of these mechanisms can be used.

Since UC is unordered, the FIN message may arrive before the data is placed by the RDMA

Write operation. Additionally, the local send completion on the sender no longer indicates

successful data placement on the receiver.

To adapt the protocol for UC, the RDMA write operation must signal the receiver as

well. InfiniBand has the option to send a 32-bit immediate data field with an RDMA write

operation that generates a CQ entry on the target. We leverage this capability to allow

the receiver to match the RDMA Write and FIN data messages. The FIN message is sent

through the usual reliability channels with a sender-side retry – thus guaranteeing it will

be received by the receiver. As seen in Figure 6.3(b), if the RDMA Write immediate data

is not received within a timeout period, a NACK message is sent to the sender, which will

trigger a resend of the RDMA Write data message. However, if the immediate data is

received within the timeout a ACK message is immediately returned, allowing the sender

to mark the send operation complete (Figure 6.3(a)).

83

It is important to note that the additional ACK requirement may decrease application

performance in some cases. In particular for blocking MPI Send operations, the sender

cannot mark the send complete and proceed with application execution until the ACK is

received.

6.3 Implementation

We have implemented our design over the verbs interface of the OpenFabrics/Gen2

stack [55].

We extend the UD-based ADI device described in Chapter 5 to include support for both

RC and UC transports, as well as the zero-copy reliability design described earlier. All

transports are incorporated into a single codebase to allow isolation of hardware perfor-

mance characteristics and avoid software differences. UC and RC message handling code

paths are identical aside from setup code. Since UC does not currently support Shared

Receive Queue (SRQ), both UC and RC messaging layers are implemented without it.

Additionally, the library is instrumented to give insight into performance differences

by tracking message statistics. Information such as the memory usage of the reliability

protocol as well as message rates and sizes are tracked.

6.4 Evaluation and Analysis

In this section we evaluate each of the following combinations to determine the cost of

reliability:

• RC - Native: RC transport with no software reliability

84

• RC - Reliable: RC transport with the software reliability layer enabled. Although in

production such a combination would not be used, it allows us to observe the cost of

reliability above the RC transport.

• UC - Native: UC transport with no software reliability. This is not a ‘safe’ configura-

tion for production since message drops can occur. For research purposes, however,

it gives an upper bound on the performance improvement that can be provided by a

software reliability method.

• UC - Reliable: UC transport with software reliability.

• UD - Native: UD transport with no reliability. Same caveats and rationale as ‘UC -

Native’ apply here.

• UD - Reliable: UD transport with software reliability.

We evaluate first with microbenchmarks to observe the basic performance of each of

the transports. Next we evaluate each of the combinations on two molecular dynamics

applications, NAMD and LAMMPS.

6.4.1 Experimental Setup

Our experimental test bed is a 560-core InfiniBand Linux cluster. Each of the 70 com-

pute nodes have dual 2.33 GHz Intel Xeon “Clovertown” quad-core processors for a total

of 8 cores per node. Each node has a Mellanox MT25208 dual-port Memfree HCA. Infini-

Band software support is provided through the OpenFabrics/Gen2 stack [55], OFED 1.2

release.

85

6.4.2 Microbenchmarks

In this section we evaluate each of the combinations on three microbenchmarks: ping-

pong latency, uni-directional bandwidth, and uni-directional message rate.

 0

 2

 4

 6

 8

 10

 12

1 4 16 64 256 1K

La
te

nc
y

(u
se

c)

Message Size (bytes)

RC-Native
RC-Reliable

UC-Native
UC-Reliable

UD-Native
UD-Reliable

(a) Ping-Pong Latency

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 4 16 64 256 1K 4K 16K 64K 256K 1M

B
an

dw
id

th
 (M

B
/s

ec
)

Message Size (bytes)

RC-Native
RC-Reliable

UC-Native
UC-Reliable

UD-Native
UD-Reliable

(b) Uni-Directional Bandwidth

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

1 4 16 64 256 1K 4K 16K

Th
ro

ug
hp

ut
 (m

es
sa

ge
s/

se
c)

Message Size (bytes)

RC-Native
RC-Reliable

UC-Native
UC-Reliable

UD-Native
UD-Reliable

(c) Message Rate

Figure 6.4: Microbenchmark Transport Performance Comparison

Ping-Pong Latency: Figure 6.4(a) shows the latency of each of the transports with the

software reliability toggled on and off. The latency for all transports is nearly identical.

For messages under 64 bytes, UD-Native provides the lowest latency.

86

Uni-Directional Bandwidth: To measure the uni-directional bandwidth, we use the osu bw

benchmark [53], which sends a window of sends from one task to another and measures the

time until an acknowledgment from the receiver is received. Figure 6.4(b) shows the results

for each of the evaluation configurations. There is little difference between the UC and RC

transports when natively used. The software reliability layer adds a noticeable but minimal

decrease of 50 MB/sec in throughput between 8KB and 32KB. The UD transport shows

lower performance for all message sizes above the MTU size since all messages above that

level must be segmented by the MPI library instead of the HCA.

Message Rate: The message rate is measured in a similar manner as the uni-directional

bandwidth. In this case, however, we report the number of messages sent per second instead

of the bandwidth achieved. This shows the ability of the HCA to inject messages into the

network. The results are shown in Figure 6.4(c). The results show that the unreliable

transports, UC and UD, natively achieve nearly 10% higher throughput than RC. Even

when layered with reliability the unreliable transports are able to outperform RC.

6.4.3 Application Benchmarks

In this section we evaluate each of the reliability combinations with two molecular

dynamics applications. We evaluate with both NAMD and LAMMPS applications.

NAMD

NAMD is a fully-featured, production molecular dynamics program for high perfor-

mance simulation of large biomolecular systems [59]. NAMD is based on Charm++ par-

allel objects, which is a machine independent parallel programming system. Of the stan-

dard data sets available for use with NAMD, we use the apoa1, f1atpase, er-gre, and

jac2000 datasets. We evaluate all data sets with 512 tasks.

87

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

apoa1 er-gre f1atpase jac

N
or

m
al

iz
ed

 T
im

e

Data Set

RC-Native
RC-Reliable

UC-Native
UC-Reliable

UD-Native
UD-Reliable

(a) NAMD Normalized Time

 0

 20

 40

 60

 80

 100

64 256 1K 4K 16K 64K 256K 1M

%
 M

es
sa

ge
s

B
el

ow

Message Size (bytes)

apoa1
er-gre

f1atpaste
jac

(b) MPI Message Distribution

Figure 6.5: NAMD Evaluation Results

Figure 6.5(a) shows the results for each of the evaluation combinations and datasets.

Characteristics of the application execution are provided in Table 6.1. In most of the cases

UC-Reliable performs within 1% of RC-Native. Our software-based reliability adds 2%,

1%, and 1% of overhead above UC-Native for apoa1, er-gre, f1atpase, respectively –

matching that of the hardware.

One particular dataset, the Joint Amber-Charm benchmark (jac2000), shows a large

performance difference between each of the transports. Table 6.1 shows that there is a very

high message rate used by this application. Per process there are nearly 7000 messages per

second transmitted. Given this higher message rate the overhead caused by the reliability

protocol is increased to 7% in the case of UC-Reliable. Even with the software reliability

layer, however, the execution time is 25% reduced from RC-Native. The UD transport

shows even higher performance, likely due to the lack of connection cache thrashing [79]

in addition to the software reliability.

88

Additionally, as shown in Table 6.1, there is very little memory required to provide

the software-layer reliability. Less than 1MB of memory is used per process at the high-

watermark of memory usage for all datasets. The average maximum number of entries per

process waiting for acknowledgments at any time was between 50 and 200. This value will

depend on the application behavior and synchronization of the application. This number

could be limited if needed, although it was not in this evaluation.

LAMMPS

Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [60] is a clas-

sical molecular dynamics simulator from Sandia National Laboratories. Several benchmark

datasets are available from the LAMMPS website. They are meant to represent a range of

simulation styles and computational expense for molecular-level interaction forces. In our

experimental analysis, we used the Rhodospin protein (in.rhodo), Polymer chain melt

(in.chain) and EAM Metal (in.eam) datasets available from the LAMMPS website.

LAMMPS reports the “Loop Time” for a particular benchmark as a measure of time re-

quired to simulate a set of interactions.

The results of our evaluation can be found in Figure 6.6(a). Characteristics of the

communication are supplied in Table 6.2. As with NAMD, the performance between RC-

Native and UC-Reliable is nearly identical in most cases. The software-based reliability

layer for UC-Reliable adds a 1% and 2% overhead from UC-Native for in.chain and

in.eam, respectively. The combinations with the UD transport perform significantly worse

with these datasets, 17% and 6% worse than RC-Native. This is due to the segmentation

costs incurred for the large messages in these datasets. As shown in Figure 6.6(b) 40% of

the messages for in.chain and 80% of those for in.eam are over 8KB.

89

Table 6.1: NAMD Characteristics Summary (Per Process)

Data Sets

Characteristics apoa1 er-gre f1atpase jac2000

General

MPI Message Rate (msg/sec/process) 1579.14 1958.28 2338.16 6979.33

MPI Volume Rate (MB/sec/process) 6.27 13.43 9.16 15.89

Communicating Peers (peers/process) 504 504 504 504

Transport Specific

RC

Native Flow ACKs 234.60 216.02 565.85 193.63

Reliable

Flow Control ACKs 257.79 50.38 1717.47 26.06

Reliability ACKs 43106.37 16786.32 118445.53 56299.19

Avg. Max Reliability Memory 0.68 MB 0.44 MB 0.82 MB 0.33 MB

Avg. Max Queue Length 124.01 71.34 170.45 65.08

UC

Native Flow Control ACKs 234.65 216.07 560.28 194.28

Reliable

Flow Control ACKs 210.32 41.79 1301.50 37.09

Reliability ACKs 43149.78 16830.40 118914.76 57981.19

Avg. Max Reliability Memory 0.64 MB 0.47 MB 0.79 MB 0.35 MB

Avg. Max Queue Length 144.06 69.00 158.22 61.85

UD

Native Flow Control ACKs 287.88 103.82 801.51 301.94

Reliable

Flow Control ACKs 0.65 0.06 3.56 0.04

Reliability ACKs 41897.84 16649.10 114419.89 57428.87

Avg. Max Reliability Memory 0.22 MB 0.11 MB 0.41 MB 0.12 MB

Avg. Max Queue Length 33.19 14.82 38.42 20.20

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

chain eam rhodo

N
or

m
al

iz
ed

 T
im

e

Data Set

RC-Native
RC-Reliable

UC-Native
UC-Reliable

UD-Native
UD-Reliable

(a) LAMMPS Normalized Time

 0

 20

 40

 60

 80

 100

64 256 1K 4K 16K 64K 256K 1M

%
 M

es
sa

ge
s

B
el

ow

Message Size (bytes)

chain
eam

rhodo

(b) MPI Message Distribution

Figure 6.6: LAMMPS Evaluation Results

90

Table 6.2: LAMMPS Characteristics Summary (Per Process)

Data Sets

Characteristics chain eam rhodo

General

MPI Message Rate (msg/sec/process) 372.34 332.73 4849.74

MPI Volume Rate (MB/sec/process) 9.33 7.14 13.2

Communicating Peers (peers/process) 15 8 90

Transport Specific

RC

Native Flow Lacks 37.39 0.51 428.86

Reliable

Flow Control ACKs 11.34 0.12 54.53

Reliability ACKs 1817.20 9310.43 28696.25

Avg. Max Reliability Memory 0.08 MB 0.04 MB 0.13 MB

Avg. Max Queue Length 16.83 7.67 65.09

UC

Native Flow Control ACKs 37.26 0.53 428.86

Reliable

Flow Control ACKs 11.39 0.11 55.31

Reliability ACKs 1814.69 8992.67 28670.16

Avg. Max Reliability Memory 0.08 MB 0.04 MB 0.13 MB

Avg. Max Queue Length 16.73 7.84 65.30

UD

Native Flow Control ACKs 21.24 0 164.70

Reliable

Flow Control ACKs 0 0 0.19

Reliability ACKs 1983.67 10443.20 29322.30

Avg. Max Reliability Memory 0.07 MB 0.07 MB 0.12 MB

Avg. Max Queue Length 8.82 7.61 8.47

91

The in.rhodo dataset shows higher performance for both the unreliable transports,

even after adding the software reliability layer. The MPI message rate of this dataset is

nearly 5000 messages/sec, an order of magnitude higher than the other datasets. As seen in

the NAMD jac2000 dataset, the higher message rate seems to favor the unreliable trans-

ports.

As with NAMD, the memory required to support reliability at the MPI layer is minimal.

Less than 128KB of memory was required at maximum for the evaluated datasets. A large

number of explicit ACK messages were sent by the reliability layer, but this had minimal

impact on performance.

Analysis

In both of the application runs it was observed that datasets where message rates were

relatively low – less than 3000 messages/sec – the performance between UC and RC was

similar and the software-based reliability protocols added little overhead.

When the message rate is increased the performance of the unreliable transports im-

proves dramatically over RC. It is likely that HCA resources are becoming exhausted and

the software-based approach that makes use of the host CPU and delayed ACKs leads to

the improvement. This seems to be particularly prevalent when there are a large number of

communicating peers.

In the case of the jac2000 benchmark for NAMD there was a significant overhead to

provide reliability in software. Upon further examination, it appears that the communi-

cation pattern is not as bi-directional as others. As a result, after controlling for execution

time, the number of explicit (non-piggybacked) ACKs is nearly double that of other datasets

(including that of in.rhodo for LAMMPS).

92

Our work shows that providing reliability at the MPI layer is not only feasible, but

in some cases may provide higher performance. Furthermore, it can be done with little

memory usage on the host.

6.5 Related Work

Other researchers have explored providing reliability at the MPI layer as part of the

LA-MPI project [23, 6]. LA-MPI is focused on providing network fault-tolerance at the

host to catch potential communication errors, including network and I/O bus errors. Their

reliability method works on a watchdog timer with a several second timeout, focusing

on providing checksum acknowledgment support in the MPI library. Saltzer et al. [65]

discusses about the need for end-to-end reliability instead of a layered design.

Fast Messages (FM) [56] implements an ordering and reliability layer on top of Myrinet.

This lightweight layer implements internal message buffering for performance and relia-

bility.

Our work is different in that our focus is on evaluating the cost of reliability in hardware

versus software. We believe this is the first such study where the hardware and software

are fixed, with the only difference being the location of the reliability implementation. We

leverage the work of other traditional reliability schemes to ensure a fair comparison.

93

CHAPTER 7

MULTI-TRANSPORT HYBRID MPI DESIGN

As InfiniBand clusters continue to expand to ever increasing scales, the need for scal-

ability and performance at these scales remains paramount. As an example, the “Ranger”

system at the Texas Advanced Computing Center (TACC) includes over 60,000 cores with

nearly 4000 InfiniBand ports [81]. By comparison, the first year an InfiniBand system ap-

peared in the Top500 list of fastest supercomputers was in 2003 with a 128 node system

at NCSA [2]. The latest list shows over 28% of systems are now using InfiniBand as the

compute node interconnect.

Its popularity growing, InfiniBand-based MPI benefits from ongoing research and im-

proved performance and stability. The Message Passing Interface (MPI) [48] is the dom-

inant parallel programming model on these clusters. Given the role of the MPI library as

the communication substrate for application communication, the library must take care to

provide scalability both in performance and in resource usage. As InfiniBand has gained

in popularity, research has continued on improving the performance and scalability of MPI

over it. Various optimizations and techniques have been proposed to optimize for perfor-

mance and scalability, however, as InfiniBand reaches unprecedented sizes for commodity

clusters it is necessary to revisit these earlier works and take the best aspects of each.

94

As an example, our previous studies have shown that the memory footprint for Infini-

Band communication contexts can be significant at such large scales, impeding the ability

to increase problem resolution due to memory constraints. A significant reason for this is

the Reliable Connection (RC) transport used in most MPIs over InfiniBand, which requires

a few KB of dedicated memory for each communicating peer. Our earlier proposed so-

lution in Chapter 5 to this issue uses the Unreliable Datagram (UD) transport exclusively.

Even this method has limitations, however, since the performance of UD is below that of

RC in many situations, particularly for medium and large messages.

In this chapter we seek to address two main questions:

• What are the current message channels developed over InfiniBand and how do they

perform with scale?

• Given this knowledge, can an MPI be designed to dynamically select suitable trans-

ports and message channels for the various types of communication to improve per-

formance and scalability for the current and next-generation InfiniBand clusters?

As part of this work we develop a multi-transport MPI for InfiniBand, MVAPICH-

Aptus2, which dynamically selects the underlying transport protocol, Unreliable Datagram

(UD) or Reliable Connection (RC), as well as the message protocol over the selected trans-

port on a per message basis to increase performance over MPIs that only use a single

InfiniBand transport. We design flexible methods to enable the MPI library to adapt to

different network and applications.

Our results on a variety of application benchmarks are very promising. On 512 cores,

MVAPICH-Aptus shows a 12% improvement over an RC-based design and 4% better than

2‘Aptus’ is Latin for “appropriate or fitting”

95

a UD-based design for the SMG2000 [15] application benchmark. In addition, for the

molecular dynamics application NAMD [59] we show a 10% improvement over an RC-

only design.

The rest of the chapter is organized as follows: We give a brief overview of all available

channels in Section 7.1. A variety of microbenchmarks and evaluations are used to ex-

amine the performance and overall scalability of each message channel in Section 7.2. In

Section 7.3 we propose our framework, “Aptus,” that allows multiple message channels to

be used simultaneously for increased performance. We evaluate our design in Section 7.4.

7.1 Message Channels

In this section we describe each of the communication channels that are available for

message transfer in an InfiniBand-based cluster. As described in Section 2.2, MPI designs

typically use two protocols: eager and rendezvous. We briefly summarize all of the com-

munication channels that have been used previously in MVAPICH as well as those designed

as part of this thesis.

7.1.1 Eager Protocol Channels

Reliable Connection Send/Receive (RC-SR): We refer to RC-SR as the channel built di-

rectly on the channel semantics of InfiniBand. It is the primary form of communication

for small messages on nearly all MPI implementations over InfiniBand. Two designs have

been proposed, one with per-peer credit-based flow control and the other using the Shared

Receive Queue (SRQ) support of InfiniBand. In this work we use only the SRQ-based

design since it has superior scalability (detailed and shown in earlier work [75, 69]), and

96

since it allows receive buffers to be pooled across QPs (connections) instead of posted on a

per-peer basis.

Reliable Connection Fast-Path (RC-FP): Current InfiniBand adapters only reach their low-

est latency when using RDMA write operations, with channel semantics having a 2µsec

additional overhead (e.g. 5µsec vs. 3µsec) on our evaluation hardware. The newest Mel-

lanox adapter, ConnectX [47], reduces this gap to less than a microsecond, however RDMA

write operations still achieve the lowest latency [77].

To leverage this capability, small message transfer has been designed over the RDMA

write mechanism to facilitate the lowest latency path of communication [42]. Dedicated

buffers are required for each communicating peer – the default MVAPICH configuration

requires over 300KB of memory per RC-FP channel created. To limit memory usage,

channels are currently setup adaptively and limited to a configurable number of channels

in current MPIs over InfiniBand. In addition, each RC-FP channel requires polling an

additional memory location for detection of message arrival. For example, communication

with n peers using the RC-FP channel requires polling n memory locations for message

arrival.

Unreliable Datagram Send/Receive (UD-SR): As designed and described in Section 5.2,

the UD-SR message passing channel is message transfer implemented over the channel

semantics of the UD transport of InfiniBand. Message segmentation and reliability must be

handled within the MPI library to provide the guarantees made by the MPI specification to

applications. Advantages of using this channel include superior memory utilization since

a single UD QP can communicate with any other UD QPs; each QP is not dedicated to a

specific peer as with the RC transport.

97

7.1.2 Rendezvous Protocol Channels

Reliable Connection RDMA (RC-RDMA): The RC-RDMA channel is the mechanism for

sending large messages. Using this method, the sender can use an RDMA write operation

to directly write into the application buffer of the receiver without intermediate copies.

Additional modes have also been suggested based on RDMA read [76] and a pipelined

RDMA write [72]; however, in this work we consider only RDMA write.

Unreliable Datagram Zero-Copy (UD-ZCopy): In Section 5.5, a zero-copy protocol for

transferring large messages over the UD transport of InfiniBand was proposed. Bandwidth

for large messages is significantly increased due to the lack of copies on both sides of

communication. The primary motivation for this channel is to provide high bandwidth and

to avoid scalability problems with RC QPs.

Copy-Based Send: If neither of the previously noted rendezvous channels are available,

large messages can be segmented within the MPI library into many small sends and sent

using an eager protocol channel (after negotiating buffer availability). This method, how-

ever, introduces intermediate copies and degrades performance.

7.1.3 Shared Memory

Clusters with multiple tasks running per node often use shared memory communication

to communicate within a single node. This reduces contention on the network device and

can provide lower latency and higher performance. In this work we will consider the design

described in [17], which is included in current versions of MVAPICH [53]. This provides

both an eager and rendezvous protocol design for intra-node communication.

98

7.2 Channel Evaluation

Our experimental test bed is 560-core InfiniBand Linux cluster. Each of the 70 compute

nodes has dual 2.33 GHz Intel Xeon “Clovertown” quad-core processors for a total of 8

cores per node. Each node has a Mellanox MT25208 dual-port Memfree HCA. InfiniBand

software support is provided through the OpenFabrics/Gen2 stack [55], OFED 1.2 release.

The RC-based message channels we evaluate follow the design of MVAPICH [53]. The

UD-based message channels are based on the design included in MVAPICH-UD, described

in Chapter 5.

We evaluate the basic performance of latency and bandwidth of the channels, followed

by an investigation into the scalability of each channel.

7.2.1 Basic Performance Microbenchmarks

In this section we investigate the basic characteristics of each message passing channel

that is available.

Ping-Pong Latency: Figure 7.1 shows the latency of each of the eager message channels.

RC-FP shows the lowest latency, with a minimum of slightly less than 3µsec. RC-SR and

UD-SR have very similar latency results up to 2KB; at this point UD-SR is sending 2KB

of data as well as the required MPI header information – resulting in a message size of

over 2KB, which is the MTU on our evaluation HCA. This requires segmentation within

the MPI library due to limits of the UD transport; this cost is clearly visible.

Uni-directional Bandwidth: To measure the uni-directional bandwidth, we use the osu bw mr

benchmark [53], which sends a window of sends from one task to another and measures

the time until an acknowledgment from the receiver is received. In addition, the benchmark

99

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

1 4 16 64 256 1024 4096
La

te
nc

y
(u

se
c)

Message Size (Bytes)

RC-FP
RC-SR
UD-SR

Figure 7.1: Channel Latency Comparison

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 4 16 64 256 1K 4K 16K64K256K1M

B
an

dw
id

th
 (M

B
/s

ec
)

Message Size (bytes)

1 Pairs
2 Pairs
4 Pairs
8 Pairs

(a) UD-SR/UD-ZCopy

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 4 16 64 256 1K 4K 16K64K256K1M

B
an

dw
id

th
 (M

B
/s

ec
)

Message Size (bytes)

1 Pairs
2 Pairs
4 Pairs
8 Pairs

(b) RC-SR/RC-RDMA

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 4 16 64 256 1K 4K 16K64K256K1M

B
an

dw
id

th
 (M

B
/s

ec
)

Message Size (bytes)

1 Pairs
2 Pairs
4 Pairs
8 Pairs

(c) RC-FP/RC-RDMA

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 4 16 64 256 1K 4K 16K64K256K1M

B
an

dw
id

th
 (M

B
/s

ec
)

Message Size (bytes)

RC-FP
RC-SR
UD-SR

(d) 8 Pairs

Figure 7.2: Multi-Pair Uni-Directional Bandwidth Comparison

100

measures the aggregate bandwidth achieved by multiple pairs of communicating tasks be-

tween nodes.

Figure 7.2 shows the results for each of the eager message channels, paired with the

rendezvous channel of the same transport. For small message sizes we see that UD-SR

demonstrates high bandwidth and there is no decrease in performance with additional pairs

of tasks. By contrast, RC-FP and RC-SR show performance degradation from 4 to 8 pairs of

concurrent communication. The UD transport requires less HCA overhead since hardware-

level ACKs are not sent for UD messages and state information does not need to be retained

on the HCA. As in the latency evaluation, we note a decrease in performance for UD-SR

after 1KB due to segmentation overhead.

For large message bandwidth we note that UD-ZCopy achieves significant throughput

but is slightly lower than RC-RDMA for a single pair. Additional overheads, such as

posting in 2KB chunks, are required in the UD-ZCopy protocol that lower the performance

below the fabric limits that RC-RDMA achieves.

7.2.2 Evaluation of Channel Scalability

In this section we evaluate several other characteristics of each message channel, in

particular those that have scalability aspects.

Memory Footprint: While a channel may provide high-performance it may come only at

the cost of host memory usage. Figure 7.3(a) shows our measurement of channel memory

usage per task. From the graph we immediately note that RC-FP consumes significant

amounts of memory, making a large number of RC-FP channels infeasible. RC-SR/RC-

RDMA also have a significant memory footprint as the number of connections increases

since RC-SR/RC-RMDA are built on the RC transport. Recall from Section 2.1 that each

101

RC QP must be dedicated to another RC QP in the peer task. Memory usage for UD-based

transports is negligible since a single UD QP can communicate with any other UD QP in

any task, leading to superior memory scalability.

Performance with Increasing Channel Count: Another important aspect to evaluate is the

effect of multiple channels on performance. In the earlier subsection we evaluated only two

tasks, which does not show scalability related effects.

As described earlier, RC-FP requires dedicated receive buffers for each communicating

peer. As a result, a byte for each RC-FP channel must be polled to detect message arrival.

To explore the cost of this polling we modify the RC-FP channel to poll on a configurable

numbers of buffers. Figure 7.3(b) shows the 4-byte latency with increasing poll counts. We

also plot the line for RC-SR latency, since polling RC-FP buffers also delays the detection

of messages arriving on any other channel. Based on this result it becomes clear that more

than 100 RC-FP channels will lead to performance degradation over a RC-SR only design.

By contrast, RC-SR and UD-SR maintain the same latency as the number of allocated

channels increases. All completions are placed in a single CQ, where the library can poll

for message arrival.

Impact of HCA Architecture: Although RC-SR shows similar performance to UD-SR with

increasing numbers of allocated channels, performance differs from UD-SR when each of

the channels is used instead of simply allocated.

InfiniBand HCAs cache QP information using on-card memory, called the InfiniBand

Context Memory (ICM) cache. The ICM cache has a limited size and cannot hold more

than a limited number of QP entries at any one time; context information outside of the

cache must be fetched from host memory.

102

 0

 50

 100

 150

 200

 250

 300

16 64 256 1K 4K 16K

M
em

or
y

U
sa

ge
 (M

B
/p

ro
ce

ss
)

Number of Channels Created

RC-FP
RC-SR
UD-SR

(a) Channel Memory Usage

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 64 128 192 256
La

te
nc

y
(u

se
c)

Number of RCFP Buffers Polled

RC-FP
RC-SR base

RC-SR

(b) RC-FP Polling

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1 4 16 64 256 1024 4096

La
te

nc
y

(u
se

c)

Number of RC QPs Accessed (Round-Robin)

Verbs Level Send/Recv Latency

(c) Effect of HCA ICM Cache

Figure 7.3: Channel Scalability Evaluation

103

Table 7.1: Channel Characteristics Summary

Type Channel Transport Latency Throughput Scalability

Eager

RC Send/Receive (RC-SR) RC Good Fair Fair
RC Fast-Path (RC-FP) RC Best Good Poor

UD Send/Receive (UD-SR) UD
< 2KB, Good < 2KB, Best

Best
≥ 2KB, Poor ≥ 2KB, Poor

Rendezvous
RC-RDMA RC - Best Fair
UD Zero-Copy (UD-ZCopy) UD - Good Best
Copy-Based UD or RC - Poor -

We replicate the evaluation from [79] to measure the cache size for our newer-generation

HCAs by evaluating the 4-byte latency at the lowest software layer, the InfiniBand “verbs.”

Figure 7.3(c) shows that the ICM cache of the HCA is still limited in size with large in-

creases in latency when multiple QPs are accessed in a round-robin order. All protocols

based on the RC transport have this issue. Furthermore, this problem is exacerbated by the

increase in core counts which lead to larger number of tasks sharing the same HCA (and

ICM cache). UD-SR does not have this issue since a single UD QP can communicate with

any other number of UD QPs – thus remaining in the HCA cache.

7.3 Proposed Design

In this section we describe our multi-transport design that incorporates all available

communication channels. Since neither the RC or UD transport provides all of the desired

features – scalability and best performance – a hybrid of the two transports is required. In

this section we propose our design, MVAPICH-Aptus, that encompasses all of the avail-

able channels into a unified design that allows flexibility in channel selection. Based on

104

MPI

Message Processing

Reordering and Reliability
Engine

Shared
Memory

Unreliable Datagram (UD)

Channel Selection
(Send Chains)

Channel Allocation
(Allocation Rules)

Aptus Management Components

UD-SR UD-ZCopy

Reliable Connection (RC)

RC-SR RC-FP RC-RDMA

Figure 7.4: MVAPICH-Aptus Design Overview

the results from the previous section, a summary of channel characteristics is provided in

Table 7.1. Figure 7.4 shows the general overview of the design.

We first describe the initial state of Aptus at startup, followed by a discussion of how

Aptus multiplexes channels and provides reliability. Next we explain the channel selection

algorithm of Aptus and the channel allocation strategies used.

7.3.1 Initial Channel Allocation

At job startup, MPI Init, Aptus only creates UD QPs and exchanges their information

to the other tasks in the job. At this point all tasks in the job are able to communicate with

any other task using the UD-SR and UD-ZCopy channels. If tasks are sharing the same

physical host, the SMP channel is also automatically allocated.

After communication begins, Aptus tracks communication characteristics to determine

the peers that each task communicates most frequently with as well as the message sizes.

Using these statistics Aptus dynamically allocates more resource intensive channels, such

as RC-SR or RC-FP, to reduce the communication overhead between sets of peers. The

105

interpretation of these statistics must be done in consideration with the architecture and

characteristics of each channel. Details are provided later in Section 7.3.4.

In addition, since performance characteristics for different message sizes vary with the

channel, multiple channels between tasks may be required to obtain the best performance.

For this reason Aptus allows for multiple channels to be active between tasks.

7.3.2 Channel Multiplexing and Reliability

As mentioned earlier, Aptus allows for multiple communication channels to be active

simultaneously. As part of the support for UD-SR, Aptus must contain a reliability and

re-ordering engine since the UD transport that underlies UD-SR is unreliable and subject

to message drops and reordering. To support this, we design a generalized framework to

re-order messages from all message channels since depending on the channel there may be

out-of-order receives. In addition, each message channel can be independently configured

to use the message reliability support. For example, is is not necessary for reliability to

be enabled for RC-SR or RC-FP, so we can disable reliability. This elegant integration

also allows other features such as an end-to-end CRC check to be done across all channels

very simply if reliability is turned on for all channels and a CRC is computed on send and

receive.

7.3.3 Channel Selection

Given the framework described, one area left unresolved is how to determine which

message channel should be used of those allocated. The factors that motivate this selec-

tion are almost entirely from the architecture characteristics. Factors such as the different

overheads between RC-SR and RC-FP may change with the HCA model and should be

reflected in the way messages are sent. Our main observation is that factors that drive

106

message channel selection are fluid – they may change based on cluster architecture or the

number of ranks in the MPI job.

To support a flexible model we design a send rule chain method of determining how

messages should be sent. A single send rule is in the form of {COND, MESG CHANNEL}, e.g.

{MSG SIZE <= 1024, UD-SR }. If COND evaluates to true and MESG CHANNEL is already

allocated, then MESG CHANNEL will be used for this message. Multiple of these send rules

can be chained together, with earlier rules taking priority over later rules in the chain. The

last rule in the chain must have a conditional of TRUE with UD-based channel to be valid.

Based on our evaluation in Section 7.2, we found that RC-FP has superior latency and

should be used if available. In addition, RC-SR and UD-SR perform similarly in latency for

small messages, however UD-SR has better throughput for messages under 2KB. Larger

messages always gain performance using RC-RDMA if available. In keeping with these

findings, we develop the following default send rule chain for our system:

{ MSG_SIZE <= 2048, RC-FP }, { MSG_SIZE <= 2008, UD-SR },

{ MSG_SIZE <= 8192, RC-SR }, { MSG_SIZE <= 8192, UD-SR },

{ TRUE, RC-RDMA }, { TRUE, UD-ZCOPY }

[Note that these rules do not take into account whether a channel should be
created, just whether to use it if it has already been allocated.]

Using this flexible framework, send rules can be changed on a per-system or job level

to meet application and hardware needs without changing code within the MPI library and

re-compiling.

Although our current prototype does not support any other variables besides MSG SIZE

and NUM RANKS in the conditional, other rules could potentially be designed to allow for

additional flexibility.

107

7.3.4 Channel Allocation

The previous section explored how messages can be sent over different channels using

a configurable send rule chain. In this section we discuss how each of those channels is

allocated initially.

As discovered earlier in our channel evaluation, it is detrimental to performance as well

as the memory footprint to create certain channels after a number of them have already

been created. For example RC-FP adds latency to all other channels as well as itself as

more peers are communicated with over RC-FP. Similarly, too many RC connections use a

significant amount of memory and can overflow the HCA ICM cache, leading to significant

latency.

It is important to use the minimal number of these channels while allocating high per-

formance channels only to those peers that will benefit most from them. In our current

prototype we use a variation of the send rules described in the previous section to incre-

ment counters to determine which peers would benefit most from a new connection. After

the counter for a rule has reached its configured limit, the channel of that type is created

provided per-task limits have not been passed.

Based on our evaluation, in our configuration we limit the number of RC-SR/RC-

RDMA channels to 16 per task, meaning a task can only use the RC transport to a maximum

of 16 of its peers. Similarly we limit RC-FP to 8 channels per task. These limits represent

a tradeoff between the performance provided by each channel and the performance degra-

dation that occurs with too many channels of these types. These limits are run-time tunable

to allow flexibility based on HCA type and architecture. Limiting the RC QPs limits the

potential for HCA cache thrashing.

108

7.4 Application Benchmark Evaluation

In this section we evaluate a prototype of our Aptus design on the NAS Parallel Bench-

marks, NAMD, and SMG2000. Our evaluation platform is the same as described in Sec-

tion 7.2. To explore performance changes based on the hybrid model of Aptus, we evaluate

four different configurations:

• RC: In this configuration we evaluate using MVAPICH 0.9.9, in the default configura-

tion, aside from additional receive buffers posted to the SRQ. This is the baseline per-

formance expected for an RC-based MPI. Includes RC-SR, RC-FP, and RC-RDMA.

• UD: Our design using only UD-SR and UD-ZCopy (MVAPICH-UD)

• UD-copy: Our design using only UD-SR

• Aptus: The prototype of our design presented in this work with the parameters men-

tioned in Section 7.3.3 using UD-SR, UD-ZCopy, RC-SR, RC-FP, and RC-RDMA.

In addition, each of the configurations uses the same shared memory channel for all com-

munication to peers on the same node.

In terms of channel designs, our Aptus prototype is based on MVAPICH-UD and MVA-

PICH, however, the codebase itself is almost entirely new. It is implemented as a device

layer for MPICH.

For our evaluation we collect message statistics for each message channel. We track

both the number of messages sent and the data volume sent over each channel. In addition,

we track this on a per-peer basis to determine how many message channels are allocated

and to what peers. We also determine the message distribution of the application from

within the MPI library, including control messages. Figure 7.5 shows these distributions

109

 0 20 40 60 80 100

NPB.BT
NPB.CG
NPB.LU
NPB.EP
NPB.MG
NPB.FT
NPB.SP

NAMD
SMG2000

Percent of Total Messages

Figure 7.5: Message Size Distribution: Darker blocks denote larger message sizes (Bright-
ness Index: 100%: ≤ 64 bytes, 50% ≤ 4KB, 25% ≤ 64KB , 0% ≥ 512KB)

with darker blocks denoting larger messages. For example, 95% of messages for LU are

greater than 512 bytes, however, very few are greater than 4KB.

7.4.1 NAS Parallel Benchmarks

The NAS Parallel Benchmarks [8] (NPB) are a set of programs that are designed to be

typical of several MPI applications, and thus, help in evaluating the performance of parallel

machines. We evaluate using the largest of the problem datasets, Class ’D’. We run CG,

EP, FT, LU, and MG with 512 tasks and both BT and SP with 529 tasks.

Figure 7.6 shows execution time normalized to RC of the NAS Benchmarks. In each

case the Aptus prototype maintains equal or better performance than the other configura-

tions. We note that in general UD-Copy performs the worst since large messages incur

intermediate copy overheads.

For both CG and LU the RC configuration outperforms that of UD. Figure 7.7(b) shows

the percentage of messages sent over each message channel. We observe that over 40%

of messages are able to be transferred over the low-latency RC-FP channel, which is not

available in a UD-only implementation. For CG, we note from Figure 7.5 that over 30%

110

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

NPB.BT

NPB.CG

NPB.EP

NPB.FT

NPB.LU

NPB.MG

NPB.SP

NAMD

SMG2000

N
or

m
al

iz
ed

 T
im

e

UD-copy
UD
Aptus
RC

Figure 7.6: Application Benchmark Performance

Table 7.2: Average Number of Channels Used/Allocated Per Task (Aptus)

App. Message Channels
SMP UD-{SR,ZCopy} RC-{SR,RDMA} RC-FP

NPB.BT 4.11 20.17 10.60 7.88
NPB.CG 3.00 6.94 2.94 2.94
NPB.EP 3.00 6.00 0.00 0.00
NPB.FT 7.00 504.00 16.00 8.00
NPB.MG 4.31 9.00 5.63 5.63
NPB.LU 3.75 7.06 2.23 2.23
NPB.SP 4.11 20.17 10.62 7.88
NAMD 6.30 120.80 16.47 8.00

SMG2000 4.25 120.19 16.34 8.00

111

 0

 20

 40

 60

 80

 100

NPB.BT

NPB.CG

NPB.LU

NPB.EP

NPB.MG

NPB.FT

NPB.SP

NAMD

SMG2000

P
er

ce
nt

 o
f T

ot
al

 V
ol

um
e

SMP
UD-SR
UD-ZCopy
RC-SR
RC-FP
RC-RDMA

(a) Data Transfer Volume

 0

 20

 40

 60

 80

 100

NPB.BT

NPB.CG

NPB.LU

NPB.EP

NPB.MG

NPB.FT

NPB.SP

NAMD

SMG2000

P
er

ce
nt

 o
f T

ot
al

 M
es

sa
ge

s

SMP
UD-SR
UD-ZCopy
RC-SR
RC-FP
RC-RDMA

(b) Number of Messages

Figure 7.7: Aptus Channel Usage Distributions

of messages are over 256KB, where RC-RDMA can provide a significant benefit. Aptus

takes the benefits of both RC-FP for small messages and RC-RDMA for large messages,

while using UD-SR for less frequently communicating peers. As a result, for both LU and

CG, Aptus performs 2% better than RC and 4% better than UD.

In other benchmarks, FT in particular, we note that UD outperforms the RC configura-

tion. From Table 7.2 we note that FT performs communication with all peers and in the RC

case will require 504 RC QPs, leading to QP thrashing as the HCA ICM cache is exceeded.

By comparison, the UD QPs in the UD configuration will remain in the ICM cache and

lead to increased performance, 9% in this case. Aptus shows a small improvement over

UD since a few large messages can be sent using RC, reducing the load on the host.

112

7.4.2 NAMD

NAMD is a fully-featured, production molecular dynamics program for high perfor-

mance simulation of large biomolecular systems [59]. NAMD is based on Charm++ paral-

lel objects, which is a machine independent parallel programming system. Of the various

data sets available with NAMD, we use the one called f1atpase. We evaluate with 512

tasks.

From Figure 7.6 we observe that NAMD performs much better (10%) using the UD

transport than the RC transport. From Table 7.2 we observe that each NAMD task com-

municates with a large number of peers (120.8) on average. With so many communicating

peers RC will overflow the ICM cache. In addition, many of the messages are below the

2KB segmentation threshold for UD-SR where performance exceeds that of RC-SR. Aptus

performs similarly to UD with a 10% improvement over RC, which can be explained by

Figure 7.7(b), which shows nearly 80% of messages are sent over UD-SR, meaning Aptus

receives little benefit from RC-RDMA or RC-FP.

Note that although we have set the threshold for the number of RC-SR/RC-RDMA

channels to 16, both NAMD and SMG2000 have an average above 16. This is due to

the handshake involved in connection setup and the fact that both sides must create the

connection. This is a benign race condition that can lead to a maximum of two additional

connections.

7.4.3 SMG2000

SMG2000 [15] is a parallel semi-coarsening multigrid solver, which is part of the ASC

Purple Benchmarks. We run SMG2000 for 512 tasks and report the solve time produced

by the benchmark.

113

Figure 7.6 shows the execution time of SMG2000 normalized to RC, where we observe

clear differences between each of our configurations. Aptus delivers the highest perfor-

mance, a full 12% over RC and 4% over UD. As with NAMD, from Table 7.2, SMG2000

communicates on average with over 120 peers of the 512 in the job. Such a large number

of peers favors the UD transport, which we observe in the increased performance of UD

over RC. Aptus, however, further improves on the performance of UD by using RC-SR and

RC-RDMA for larger messages. From Figure 7.7(a) we observe Aptus is able to send 50%

of data volume over one of the RC-based message channels, which have better bandwidth

than UD-SR for messages over 2KB.

7.5 Related Work

MPIs that dynamically use all available interconnects have been designed in the past,

including Intel MPI, Open MPI, Scali MPI, and others. Research work has been done with

Mad-MPI [7] from the Madeleine project that seeks to incorporate multiple interconnects

and provides scheduling across them. Our work is different in that we are targeting differ-

ent transports on the same network device, and optimizing for the memory footprint and

performance.

Current MPI designs over InfiniBand such as MVAPICH, Open MPI, and Intel MPI

offer dynamic creation of RC QPs as needed; however, none of them include support for

both the UD and RC transports simultaneously and cannot limit the number of RC QPs that

are created. If a peer communicates with all others in the job a QP will be created to each

one. Our design by contrast allows the amount of allocated resources to be limited.

To the best of our knowledge, our work is the first to show the combination of both the

RC and UD transports.

114

CHAPTER 8

SCALABLE MPI OVER EXTENDED RELIABLE CONNECTION

Current implementations of MPI over InfiniBand, such as MVAPICH, Open MPI, HP

MPI, and others, use the Reliable Connection (RC) transport of InfiniBand as the primary

transport. Earlier work has shown, however, that the RC transport requires several KB of

memory per connected peer, leading to significant memory usage at large-scale. MVAPICH

can also support the Unreliable Datagram (UD) transport for communication (Chapter 5),

however, implementing MPI over UD requires software-based segmentation, ordering and

re-transmission within the MPI library. Neither of these transports are ideal for MPI on

large-scale InfiniBand clusters.

The latest InfiniBand cards from Mellanox include support for a new InfiniBand trans-

port – eXtended Reliable Connection (XRC). The XRC transport attempts to give the same

feature set of RC while providing additional scalability for multi-core clusters. Instead of

requiring each process to have a connection to every other process in the cluster for full

connectivity, XRC allows a single process to require only one connection per destination

node. Given this capability, the connection memory required can potentially reduce by

a factor equal to the number of cores per node, a potentially large degree as core counts

continue to increase.

115

In this chapter we design MPI over the XRC transport of InfiniBand and discuss the

connection requirements and opportunities it offers. An implementation of our design is

evaluated using standard MPI benchmarks and memory usage is also measured. Applica-

tion benchmark evaluation shows a 10% speedup for the jac2000 NAMD dataset over an

RC-based implementation. Other benchmarks show increased memory scalability but near-

equal performance using the XRC transport. For a 16-core per node cluster, XRC shows a

nearly 100 times improvement in connection memory scalability over a similar RC-based

implementation.

This chapter is organized as follows: More details on the XRC transport of InfiniBand

are described in Section 8.1. We present our XRC designs in Section 8.2. Evaluation and

analysis of an implementation of our designs is covered in Section 8.3. This is followed by

a discussion of work related to ours in Section 8.4.

8.1 eXtended Reliable Connection

In this section we describe the new eXtended Reliable Connection (XRC) transport for

InfiniBand. We first start with the motivation for this new transport followed by the XRC

connection model and addressing.

8.1.1 Motivation

The motivation for creating the XRC transport comes from the explosive growth in

multi-core clusters. While node counts continue to increase, core counts are increasing at

an even more rapid rate. The Sandia Thunderbird and TACC Ranger show this trend:

The Sandia Thunderbird [67] was introduced in 2006 with 4K compute nodes each

with dual CPUs for a total of 8K processing cores. The TACC Ranger [81] was put into

116

P1
P0

P7
P6

Node 1 Node4

P5P4
No

de
 3

P3P2
No

de
 2

(a) RC Connection Model

P1
P0

P7
P6

Node 1 Node4

P5P4
No

de
 3

P3P2
No

de
 2

(b) XRC Connection Model

Figure 8.1: InfiniBand Reliable Connection Models

production in 2008 with nearly 4K compute nodes. Each compute node has four quad-

core CPUs, for a total cluster size of nearly 64K processing cores. Each at the time of

introduction were in the upper echelon of the fastest machines in the world.

Existing InfiniBand transports made no distinction between connecting a process (gen-

erally one per core for MPI) and connecting a node. Thus, the associated resource con-

sumption increased directly in relation to the number of cores in the system. Our earlier

investigation in Chapter 4 showed that memory usage for the RC transport can reach hun-

dreds of MB of memory/process at 16K processes.

To address this problem XRC was introduced. Instead of having a per-process cost,

XRC was designed to allow a single connection from one process to an entire node. In

doing so, the maximum number of connections (QPs) per process can grow with the number

of nodes instead of the number of cores in the system.

117

8.1.2 Connection Model

XRC provides the services of the RC transport, but defines a very different connection

model and method for determining data placement on the receiver in channel semantics.

When using the RC transport of InfiniBand, the connection model is purely based on

processes. For one process to communicate with another over InfiniBand, each side must

have a dedicated QP for the other. There is no distinction as to the node in terms of allowing

communication.

Figure 8.1(a) shows a fully-connected job, with each node having two processes, each

fully connected to the other processes on other nodes. To maintain full connectivity in

a cluster with N nodes and C cores per node, each process must have (N − 1)×C QPs

created. In this figure and equation we do not account for intra-node IB connections since

the focus of this work is on MPI and libraries generally use a shared-memory channel for

communication within a node instead of network loopback.

By contrast, XRC allows connection optimization based on the location of a process.

Instead of being purely process-based, the node of the peer to connect to is now taken

into account. Consider a situation where a process A on host1 wants to communicate

with both process B and process C on host2. After A creates a QP with B, A is also now

connected to process C. The addressing required is discussed in the next section. The

additional complication here is that although A can now send to C, it is not reciprocal since

C cannot send to A. To send a message, a process must have one XRC QP to the node of

the destination process and in our example B has the QP to A (and can send to A). Thus, if

C wants to send to A it would need to create a QP to A. Note, if C had a QP to a process D

on the same node as A it would be able to communicate with A.

118

Figure 8.1(b) shows a fully-connected XRC job. Instead of requiring a new QP for each

process, now each process needs to only have one QP per node to be fully connected. In the

best case the number of QPs required for a fully-connected job in a cluster with N nodes

and C cores per node, is only N QPs. This reduces the number of QPs required by a factor

of C, which is significant as the number of cores per node continue to increase.

8.1.3 Addressing Method

In the past, when using RC each process would communicate with a peer using a dedi-

cated QP. Recall from Section 2.1, there are two forms of communication semantics: chan-

nel and memory. In channel semantics the sender posts a send descriptor to the QP and the

receive descriptor is consumed on the receive queue (RQ) connected to the QP. The sender

does not know if the receiver is using an SRQ or a dedicated RQ. Thus, traditionally when

using channel semantics the sender has no knowledge or control over the receive buffer.

XRC allows a more flexible form of placement on the receiver. When posting a send

descriptor to an XRC QP, the destination SRQ number is specified. This allows a sender to

specify a different “bucket” for different message sizes as suggested by Shipman, et. al.,

but without a separate QP.

This same addressing scheme also allows a process to communicate with other pro-

cesses on the same node as one that it has a QP connection with. Only the SRQ number

is needed for addressing, so as long as the SRQ number of the destination is known and at

least one XRC QP is connected to a process on the node of the destination, a separate QP

is not required.

119

SRQ
QP

Node

Process

QP

(a) RC-based Multi-SRQ (RC-
MSRQ)

(b) Exclusive XRC-based Multi-
SRQ (EXRC-MSRQ)

(c) Shared XRC-based Multi-
SRQ (SXRC-MSRQ)

Figure 8.2: Multi-SRQ Designs: Each figure shows two nodes, each with two processes in
a fully-connected configuration. Each small white box denotes a QP.

8.2 Design

In this section we describe our MPI design using the new XRC transport. We first begin

with an overview of the goals in the design, and discuss issues related to the Shared Receive

Queues (SRQs) possible connection setup methods.

The main goals of the design are two-fold: First, the design should reduce the memory

consumption required for QPs and communication contexts. Second, the design should

provide better communication buffer utilization. For example, this means that messages of

900 bytes should only consume a 1KB buffer instead of an 8KB buffer. This means we wish

to reduce memory in two ways – both the connection memory as well as the communication

buffer memory.

8.2.1 Shared Receive Queues

As noted earlier, previous work [70] has shown that communication buffers are not used

efficiently when a single pool of receive buffers is used. Instead of using a single pool of

120

buffers, multiple pools (SRQs) can be allocated. In this section we describe the possible

configurations available by using the RC and XRC transports and multiple SRQs.

When using the RC transport this requires a QP for each SRQ available. Figure 8.2(a)

shows the connection between two nodes, each with two processes. Despite increasing

communication buffer efficiency, this requires a significant amount of connection context

memory.

Using the XRC transport and the SRQ addressing scheme, a different QP is no longer

required to have this same functionality of selecting a receive buffer pool based on the data

size. This allows two different connection models:

• Exclusive XRC (EXRC): In this model each process still creates a connection (QP)

to every other process in the job if needed. There is no use of the XRC ability to

connect to processes on the same node with an existing connection. The destination

SRQ ability is used to eliminate the additional QPs required in the RC case. This

model is shown in Figure 8.2(b).

• Shared XRC (SXRC): Using this model both the additional QPs for multiple SRQs

and for processes on the same node are eliminated. This is the method that makes

the most of the XRC capabilities. Figure 8.2(c) shows this configuration.

Table 8.1 shows the number of QPs required using these difference schemes. Additional

information on best-case and worst-case connection patterns is discussed below.

8.2.2 Connection Setup

As mentioned in Section 8.1, XRC allows one connection per node in the optimal case.

121

P0

P1

P2

P3

P4

P5

P6

P7

Node 1 Node 2

(a) Ideal-Case Connection Setup

P0

P1

P2

P3

P4

P5

P6

P7

Node 1 Node 2

(b) Worst-Case Connection Setup

Figure 8.3: Depending on communication characteristics, connections may be created dif-
ferently

To achieve an optimal fully-connected connection pattern each process must have only a

single connection to another node. In this chapter, fully-connected means that all processes

can send and receive from all other processes in the job.

Depending on the connection setup method an ideal setup or worst-case fully-connected

pattern may emerge, as shown in Figure 8.3. We isolate two main issues that need to be

addressed in a connection setup model:

• Equal Layout: Each node must have the same number of processes running on them.

In other cases, such as 2 processes on node A and 4 on another node B, each of the

two processes on node A will require 2 QPs in the best case since each process on B

will require one QP to host A in order to send to that host. Clearly, there will be cases

where a single connection will then not be possible.

122

• Balanced Mapping: Each process must connect with a peer that has not already

created a connection with another process on its same node, otherwise the peer will

create two connections to a single node.

We propose three different connection models that are possible for an XRC-based MPI

implementation and discuss their advantages and disadvantages:

Preconnect Method: If the job will require communication between all peers, connec-

tions can be setup at the beginning of the job. This is a static pre-connect method. In this

case the optimal connection setup can be made assuming each node has the same num-

ber of processes. Even if there are non-equal numbers of nodes, the minimal number of

connections can be created. This design has the problem that in many applications many

processes do not directly communicate with every other process in the job. Preconnecting

the connections can waste a significant amount of memory for a large job.

Predefined Method: In this alternative, the connections map is predefined (as in the pre-

connect method), so the minimal number of connections will be created for each process.

The difference between the predefined and preconnect alternatives is that predefined is

setup only as needed. The problem with such a design is that it will in many cases require

a QP to be setup to a process that it doesn’t need to communicate with. This process may

also not be expecting any communication either and may be in a computation loop. Unless

the connection setup can be done asynchronously, a deadlock could potentially occur.

On-Demand Method: In the on-demand method, the minimal connection map is not com-

puted at all. Instead, whenever a process needs to send a message to a process on a node it

doesn’t have a connection to already, it sends a connect request to the process it needs to

123

communicate with. In this way a non-minimal connection pattern may emerge. The pattern

is dependent on the application.

8.3 Experimental Evaluation

In this section we evaluate the designs we described in the previous section. We first

start with a description of the experimental platform and methodology. Then we evaluate

the memory usage and performance on microbenchmarks and application benchmarks.

8.3.1 Experimental Platform

Our experimental test bed is a 64-core ConnectX InfiniBand Linux cluster. Each of the

8 compute nodes has dual 2.33 GHz Intel Xeon “Clovertown” quad-core processors for a

total of 8 cores per node. Each node has a Mellanox ConnectX DDR HCA. InfiniBand

software support is provided through the OpenFabrics/Gen2 stack [55], OFED 1.3 release.

The proposed designs are integrated into the MVAPICH-Aptus communication device of

MVAPICH [53] presented in Chapter 7. We extend the device to allow multiple RC QPs

per peer and multiple SRQs. We also extend it to support the XRC transport in both the

ESXRC and SXRC modes with any number of SRQs.

All of the designs are implemented into the same code base and the same code flows.

As a result, performance differences can be attributed to the transport instead of software

differences.

8.3.2 Methodology

We evaluate six different combinations:

• Reliable Connection: Using the RC transport with a single SRQ (RC-SRQ) as well

as multiple SRQs (RC-MSRQ).

124

Table 8.1: Comparison of Number of Queue Pairs for Various Channels

Attributes QPs per Process QPs per Node
SRQs Transport Shared Best Case Worst Case Best Case Worst Case

RC-SRQ 1 RC N n× c n× c n× c2 n× c2

RC-MSRQ 6 6×n× c 6×n× c 6×n× c2 6×n× c2

EXRC-SRQ 1

XRC
N n× c n× c n× c2 n× c2

EXRC-MSRQ 6
SXRC-SRQ 1 Y n n× c n× c 2×n× cSXRC-MSRQ 6

• Exclusive eXtended Reliable Connection: No sharing connections, but using XRC.

Both single SRQ (EXRC-SRQ) and multiple SRQs (EXRC-MSRQ).

• Shared eXtended Reliable Connection: Share connections across nodes. This is using

the on-demand connection setup from Section 8.2. Both single (SXRC-SRQ) and

multiple (SXRC-MSRQ) SRQ configurations

Table 8.1 shows a summary of the characteristics of each of these combinations where

n is the number of nodes in the job and c is the number of cores per node. We assume for

this table that processes are equally distributed. Note that RC-SRQ and EXRC-SRQ are

equivalent in the amount of resources required as well as memory efficiency for commu-

nication buffers. The EXRC-SRQ case is a control to evaluate whether there are inherent

performance differences between the XRC and RC hardware implementations and if the

addressing method of XRC adds overhead.

In all of our evaluations we use the “on-demand” connection setup method for XRC.

The other connection setup methods will have standard patterns. This method will provide

the most insights.

125

For the multiple SRQ modes, we use 6 SRQs. We use the following sizes: 256 bytes,

512 bytes, 1KB, 2KB, 4KB, and 8KB. Messages above 8KB follow a zero-copy rendezvous

protocol.

8.3.3 Memory Usage

 0

 500

 1000

 1500

 2000

 2500

 3000

128 256 512 1K 2K 4K 8K 16K 32K

M
em

or
y

U
sa

ge
 (M

B
/p

ro
ce

ss
)

Number of Processes

RC-SRQ/EXRC
RC-MSRQ

SXRC (8-core)
SXRC (16-core)

Figure 8.4: Fully-Connected MPI Memory Usage

We first assess the scalability of each of the configuration. Figure 8.4 shows the memory

usage when fully-connected. RC-SRQ is the default configuration for most MPIs, one

connection per peer process. RC-MSRQ shows the memory usage when 6 SRQs are created

per process and therefore the memory usage is six times higher than that of RC-SRQ.

The last two lines are the memory usage for the Shared XRC implementations in the best

case when in 8-core/node and 16-core/node configurations. EXRC has the same memory

footprint as RC-SRQ since a single QP is required still to each process in the job.

From the figure we can observe that a fully-connected job at 32K processes will con-

sume 2.6GB of memory with the RC-MSRQ configuration and 400 MB/process for the

126

 0

 50000

 100000

 150000

 200000

 250000

 300000

1 4 16 64 256 1K 4K 16K

Th
ro

ug
hp

ut
 (m

es
sa

ge
s/

se
c)

Message Size (bytes)

RC
EXRC
SXRC

(a) Message Rate

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

1 4 16 64 256 1K 4K 16K 64K

B
an

dw
id

th
 (M

B
/s

ec
)

Message Size (bytes)

RC
EXRC
SXRC

(b) Bandwidth

Figure 8.5: Many-to-Many Benchmark Evaluation

RC-SRQ and EXRC-{M}SRQ configurations. The SXRC designs reduce the memory

usage in the best case to 54MB/process and 26MB/process for the 8-core and 16-core con-

figurations, respectively. In the worst case the SXRC design will consume as much as the

“RC-Single” model.

8.3.4 MPI Microbenchmarks

To assess if there are basic performance differences between the different combinations

we ran various standard microbenchmarks. The basic latency, bandwidth, and bi-direction

bandwidth results remained very similar across all combinations and are not presented here.

To further assess performance when many peers are being communicated with simulta-

neously we design a new microbenchmark. In this benchmark each process communicates

with a variable number of random peers in the job during each iteration. In this throughput

test each process sends and receives a message from 32 randomly selected peers 8 times.

We ran this benchmark with 64 processes and report the results in Figure 8.5. From the

127

figure we can see the SXRC mode is able to achieve higher throughput than the EXRC and

RC configurations. In top-end bandwidth the XRC modes are able to outperform the RC

mode.

8.3.5 Application Benchmarks

In this section we evaluate the configurations against two application-based bench-

marks. These are more likely to model real-world use than microbenchmarks. We eval-

uate using the molecular dynamics application NAMD and the NAS Parallel Benchmarks

(NPB). We evaluate all application benchmarks using 64 processes.

NAMD

NAMD is a fully-featured, production molecular dynamics program for high perfor-

mance simulation of large bimolecular systems [59]. NAMD is based on Charm++ parallel

objects, which is a machine independent parallel programming system. Of the standard data

sets available for use with NAMD, we use the apoa1, f1atpase, er-gre, and jac2000

datasets.

Figure 8.6(a) shows the overall performance results of the different combinations on

the various datasets. From the figure we observe that for both apoa1 and f1atpase perfor-

mance is very similar across all modes. For jac we see that the RC-MSRQ performs 11%

worse than the standard RC-SRQ implementation. We believe this is due to HCA cache

effects when large numbers of QPs are being used at the same time. By contrast, we see

that the SXRC modes provide over 10% improvement. For the same reason as RC-MSRQ

performs poorly, the SXRC modes perform well. Since a fewer number of QPs are used

they are more likely to stay in the HCA cache. This mirrors what we observed in the many-

to-many benchmark in Figure 8.5. We can see in Figure 8.6(b) that communication buffer

128

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

apoa1 er-gre f1atpase jac

N
or

m
al

iz
ed

 T
im

e

Data Set

RC-SRQ
RC-MSRQ

 EXRC-SRQ
 EXRC-MSRQ

 SXRC-SRQ
 SXRC-MSRQ

(a) Normalized Time

 0

 0.2

 0.4

 0.6

 0.8

 1

apoa1 er-gre f1atpase jac2000

M
em

or
y

E
ffi

ci
en

cy

Datasets

Single SRQ Multiple SRQs

(b) Memory Efficiency

Figure 8.6: NAMD Evaluation

Table 8.2: NAMD Characteristics Summary (Per Process)

Benchmark Configuration A
vg

.C
om

m
Pe

er
s

M
ax

C
om

m
Pe

er
s

A
vg

.Q
Ps

/p
ro

ce
ss

M
ax

Q
Ps

/p
ro

ce
ss

c

A
vg

Q
Ps

/n
od

e

M
ax

Q
Ps

/n
od

ee

apoa1

RC-MSRQ

54.41 63

285.54 336 2284.50 2340
RC-SRQ 47.59 56 380.75 390

EXRC-{M}SRQ 47.59 51 380.75 390
XRC-{M}SRQ 9.09 33 72.75 80

f1atpase

RC-MSRQ

62.19 63

331.50 336 2652 2688
RC-SRQ 55.25 56 442 448

EXRC-{M}SRQ 55.25 56 442 448
XRC-{M}SRQ 9.22 33 15 82

jac2000

RC-MSRQ

63 63

336 336 2688 2688
RC-SRQ 56 56 448 448

EXRC-{M}SRQ 56 56 448 448
XRC-{M}SRQ 9.22 33 73.75 82

er-gre

RC-MSRQ

25.38 63

122.28 336 978 1188
RC-SRQ 19.55 56 160.25 193

EXRC-{M}SRQ 20.03 56 160.25 194
XRC-{M}SRQ 8.28 33 66.25 79

129

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

BT CG EP FT IS LU MG SP

N
or

m
al

iz
ed

 T
im

e

Data Set

RC-SRQ
RC-MSRQ

 EXRC-SRQ
 EXRC-MSRQ

 SXRC-SRQ
 SXRC-MSRQ

(a) Normalized Time

 0

 0.2

 0.4

 0.6

 0.8

 1

IS CG MG LU FT SP BT EP

M
em

or
y

E
ffi

ci
en

cy

NAS Parallel Benchmarks (Class C)

Single SRQ Multiple SRQs

(b) Memory Efficiency

Figure 8.7: NAS Parallel Benchmarks (Class C) Evaluation

usage is much improved when using multiple SRQs. This figure shows the ratio of the total

amount of received messages to the total amount of memory in the communication buffers

used to service those messages.

Table 8.2 shows the connection characteristics of each of the datasets. We can see

that each of the datasets requires significant communication, especially jac where every

process communicates with every other process. For that dataset, we observe for that the

sum of the connections for the processes on a single node are only 82 as compared to 448

for RC-SRQ and EXRC modes. The RC-MSRQ configurations require even more QPs, a

total of 3136 QPs per node.

NAS Parallel Benchmarks

The NAS Parallel Benchmarks [8] are a selection of kernels that are typical in various

Computational Fluid Dynamics (CFD) applications. As such, they are a good tool to eval-

uate the performance of the MPI library and parallel machines. In this evaluation the Class

“C” benchmark size was used.

130

The performance results for each of the configurations are shown in Figure 8.7(a). Very

little performance variation was observed in nearly all of the benchmarks. Only one bench-

mark, IS, showed a consistent improvement with the SXRC transport. The dominating

factor in the IS benchmark performance is the MPI Alltoall collective for large message

sizes. For large message sizes the MPI Alltoall collective sends directly to each pro-

cess in the job. In the SXRC configurations, connections can be shared and can reduce

connection thrashing in the HCA cache. There seems to be little difference between the

SXRC-MSRQ and SXRC-SRQ modes in terms of performance.

Figure 8.7(b) shows the memory efficiency obtained by using multiple SRQs compared

to a single SRQ. In all benchmarks efficiency was greatly increased. In the case of SP,

efficiency rose from less than 6% to 75%. Using XRC we are able to acheive this buffer

efficeincy as well as a reduction in connection memory.

The connection characteristics for the NAS benchmarks are shown in Table 8.3. The

benchmarks have a variety of patterns. IS, the benchmark where the SXRC modes outper-

formed, we notice that all connections are required. Using SXRC each process on average

only needs to create 9.25 connections as apposed to 56 connections for the ESRQ and RC-

SRQ modes (the shared memory channel is used for 7 others). The on-demand connection

setup method seems to work well, although not always setting up the minimal number of

connections.

8.4 Related Work

Sur, et. al. previously evaluated ConnectX, which is the first HCA to support XRC

[77, 47]. Other groups have expressed interest in providing XRC support in MPI, such

131

Table 8.3: NAS Characteristics Summary (Per Process)

Benchmark Configuration A
vg

.C
om

m
Pe

er
s

M
ax

C
om

m
Pe

er
s

A
vg

.Q
Ps

/p
ro

ce
ss

M
ax

Q
Ps

/p
ro

ce
ss

c

A
vg

Q
Ps

/n
od

e

M
ax

Q
Ps

/n
od

ee

IS

RC-MSRQ

63 63

336 336 2688 2688
RC-SRQ 56 56 448 448

EXRC-{M}SRQ 56 56 448 448
XRC-{M}SRQ 9.25 25 74 74

CG

RC-MSRQ

6.88 7

23.28 24 186 186
RC-SRQ 3.88 4 31 31

EXRC-{M}SRQ 3.88 4 31 31
XRC-{M}SRQ 3.50 4 28 28

MG

RC-MSRQ

9 9

30 30 240 240
RC-SRQ 5 5 40 40

EXRC-{M}SRQ 5 5 40 40
XRC-{M}SRQ 4 4 32 32

LU

RC-MSRQ

7.50 8

22.50 24 180 192
RC-SRQ 3.75 4 30 32

EXRC-{M}SRQ 3.75 4 30 32
XRC-{M}SRQ 3.75 4 30 32

FT

RC-MSRQ

63 63

336 336 2688 2688
RC-SRQ 56 56 448 448

EXRC-{M}SRQ 56 56 448 448
XRC-{M}SRQ 7 7 56 56

SP

RC-MSRQ

10 10

36 36 288 288
RC-SRQ 6 6 48 48

EXRC-{M}SRQ 6 6 48 48
XRC-{M}SRQ 4 4 32 32

BT

RC-MSRQ

10 10

36 36 288 288
RC-SRQ 6 6 48 48

EXRC-{M}SRQ 6 6 48 48
XRC-{M}SRQ 4 4 32 32

EP

RC-MSRQ

6 6

18 18 144 144
RC-SRQ 3 3 24 24

EXRC-{M}SRQ 3 3 24 24
XRC-{M}SRQ 3 3 24 24

132

as HP MPI and Open MPI [82]. However, there is no detailed study on how this XRC

implementation works, the associated design challenges and interactions with applications.

Recently Shipman, et al. in [70] presented a mechanism for efficient utilization of

communication buffers using multiple SRQs for different data sizes. For example, a 500

byte message should only consume 512 bytes and a 1.5KB message should only consume

2KB. Current designs have used a single SRQ, where any message will consume a fixed

size such as 8KB. This evaluation and design, however, was with the Reliable Connection

(RC) transport of InfiniBand, not the XRC transport.

After publication of our work Shipman, et al. proposed X-SRQ [71] for Open MPI,

which is similar to our work. It lacks, however, a full analysis of the different methods that

are available when using XRC.

133

CHAPTER 9

INCREASING OVERLAP WITH THE XRC TRANSPORT

MPI provides synchronous and asynchronous data transfer methods, the most basic

examples of these being the MPI Send and MPI Isend functions. An MPI Isend does not

need to complete when the function returns, instead it can wait for completion at some

time in the future. This type of functionality allows for the MPI library to send the data in

the background while computation performed. When using an interconnect that provides

off-loading of data transfer, meaning the sending and receiving of data can be done without

processor involvement, it is even more important that this progress be able to be done in

the background. InfiniBand is one such interconnect.

Due to this capability of data transfer offload in many high-performance interconnects,

application writers have often tried to restructure their code to use asynchronous MPI calls.

Unfortunately for application performance, many MPI libraries do not take advantage of

this hardware capability.

In this chapter we explore this problem in depth with InfiniBand and propose TupleQ, a

novel approach to providing communication and computation overlap in InfiniBand with-

out using threads and instead relying on the network architecture. Instead of using the

traditional protocols with RDMA Put and Get operations, we propose using the network

hardware to directly place the data into the receive buffers without any control messages or

134

DataData

Poor Sender
Overlap

Poor Receiver
Overlap

(a) RDMA Write Protocol

Data

Good Sender
Overlap

Poor Receiver
OverlapData

(b) RDMA Read Protocol

Figure 9.1: Overlap of Existing RDMA Protocols

intermediate copies. We build on top of the XRC transport described earlier in Chapter 8.

We show that our solution is able to provide full overlap with minimal overhead and is able

to achieve performance gains of 27% on the SP kernel in the NAS Parallel Benchmarks for

64 processes.

The rest of the chapter is organized as follows: In Section 9.1 we motivate our work

by describing the problems with current MPI design for overlap of communication and

computation overlap. In Section 9.2, we describe the current implementations of MPI

over InfiniBand. TupleQ, our fully-asynchronous design is presented in Section 9.3. We

evaluate our prototype on both an overlap benchmark and the NAS Parallel Benchmarks in

Section 9.4. We discuss related work in Section 9.5.

9.1 Motivation

As noted earlier, MPI allows the application writer to use non-blocking communication

with MPI Isend to overlap communication and computation. Unfortunately, the method of

135

implementing large message transfer, is often done with control messages and an RDMA

operation.

Since MPI libraries generally poll for incoming messages, an incoming control mes-

sage cannot be discovered unless it is in the progress engine (within an MPI call). If the

application is trying to achieve overlap of communication with computation, the applica-

tion will by definition not be in the MPI library. As a result, the control messages can be

delayed, leading to no overlap in many cases.

Figure 9.1 shows the overlap that can be achieved with the current designs. The RDMA

Write-based design has 3 control messages and leads to poor sender and receiver side over-

lap. If the sends immediately goes into a computation loop after sending the message there

will be no overlap. Similarly, the receiver has no overlap as well. For RDMA Read, the

sender has good overlap, however the receiver will have very poor overlap if the receiver

has gone into a computational loop. Neither of these existing designs provides good per-

formance.

Others have proposed using threads, however, this increases the overhead since signaled

completion in InfiniBand is quite a bit slower than that of polling. This also can decrease

performance due to locking required. Signaling has also been suggested to avoid locks [33],

however, many calls within the MPI progress engine are not signal-safe.

9.2 Existing Designs of MPI over InfiniBand

MPI has been implemented over InfiniBand by many implementors and organizations,

however, all of them generally follow the same set of protocols and design:

• Eager Protocol: In the eager protocol, the sender task sends the entire message to

the receiver without any knowledge of the receiver state. In order to achieve this, the

136

Copy
Copy

Network

Application
Buffer

MPI Library
Buffer

MPI Library
Buffer

Application
Buffer

(a) Eager Protocol

Application
Buffer

Application
BufferNetwork

Control Messages

(b) Rendezvous Protocol

Figure 9.2: Data Movement of Protocols

receiver must provide sufficient buffers to handle incoming unexpected messages.

This protocol has minimal startup overhead and is used to implement low latency

message passing for smaller messages.

• Rendezvous Protocol: The rendezvous protocol negotiates buffer availability at the

receiver side before the message is sent. This protocol is used for transferring large

messages, when the sender wishes to verify the receiver has the buffer space to hold

the entire message. Using this protocol also easily facilitates zero-copy transfers

when the underlying network transport allows for RDMA operations.

9.2.1 Eager Protocol

This mode is generally used for small messages and is designed for low-latency and

overhead. In this mode the sender pushes the data over to the receiver without contacting

the receiver. In this case the sender has no knowledge of the receiver state. This is important

for two reasons:

• Unknown Receive Address: The address of the application receive buffer is not

known. Since the address is not known the RDMA capability of InfiniBand cannot

be used for a zero-copy transfer.

137

• Unknown Availability: The sender also has no idea if the receiver has posted a receive

for this send operation yet.

As a result of this, the eager protocol for InfiniBand-based MPI libraries is done using

copies:

• Sender Side: Take a pre-allocated buffer (send buffer and place header information

(tag, context, and local source rank) at the beginning. Next the application send

buffer is copied into the send buffer.

• Receiver Side: The message is received into a receive buffer by the network hard-

ware. On reception the receiver reads the header and checks the receive queue for a

matching receive. If it is found then the data is copied into the corresponding appli-

cation receive buffer. If it is not available the message is buffered and will be copied

when the receive is posted.

This process is shown in Figure 9.2(a). This shows there are two copies as well as the

network transfer.

9.2.2 Rendezvous Protocol

The rendezvous protocol is generally implemented with one of the RDMA operations

of InfiniBand, RDMA Write or RDMA Read.

In each case the sender sends a “Request to Send (RTS)” message to the receiver. Upon

receipt of the RTS message the queue of posted receives is searched. Then depending on

the protocol different steps are taken:

• RDMA Write (RPUT): If the receive for this send has already been posted the address

of the application receive buffer is sent back to the sending process. If the receive has

138

Data

Good Sender
Overlap

Data

 Good Receiver
Overlap

Figure 9.3: TupleQ Overlap

not been posted the address is sent whenever the receive is posted. Upon receipt of the

receiver buffer, the sender directly RDMA writes the data from the sender application

buffer to the receiver application buffer on the remote node. A finish message (FIN)

is also sent to the receiver to notify the completion of the send peration.

• RDMA Read (RGET): If the receive has already been posted, the receiver directly

reads the data from the sender’s application buffer and places it into the receive buffer

with an RDMA Read operation. If the receive has not been posted then the operation

will occur after the receive has been posted. After completion of the RDMA Read the

receiver sends a FIN to the sender to indicate that the send can be marked complete.

In both of these cases the application buffer undergoes no intermediate copies, “zero-

copy transfer,” but does require at least two control messages to be sent. This data move-

ment path is shown in Figure 9.2(b). As we will show in the next section, these control

messages often prevent communication and computation overlap.

139

Application

MPI LibraryQP

Copy

Intermediate Buffers

SRQ Application Buffer

(a) Traditional Copy-based

QP

Zero-Copy

Zero Copy Copy

(b) TupleQ Zero-Copy

Figure 9.4: Transfer Mechanism Comparison

9.3 Proposed Design

In this section we describe our design that allows full overlap of communication and

computation for all message sizes. We first describe the mechanism that we use to provide

zero-copy transfers without needing to exchange control messages, then we discuss the

option to use sender-side copies, creation of receive queues, and discuss handling of the

MPI wildcards.

9.3.1 Providing Full Overlap

As noted in Section 2.1, InfiniBand offers two sets of semantics to transfer data, channel

and memory. Traditionally memory semantics (RDMA) has been seen as the only efficient

method by which to transfer large messages without copies for MPI. Our design shows that

this is not the case.

In channel semantics the receive buffers are consumed in order from a receive queue.

In contrast, MPI semantics require messages to be matched in order, not necessarily in the

same order that they are posted. This semantic gap has been seen as a need for exchanging

control messages.

140

After studying various applications and patterns we have found that relatively few tags

and communicators are used in MPI libraries. As such, we propose to have separate queues

for each matching tuple. The matching tuple contains the tag, communicator ID and rank.

If each matching tuple has a separate queue, MPI semantics can match those of InfiniBand

as long as only messages with that tuple are sent to that receive queue. In this way we are

able to provide full overlap as seen in Figure 9.3.

In addition to being zero-copy without control messages, this is fully asynchronous and

receives are now “matched” by the hardware. If a receive buffer is not posted to a queue

and a send operation is sent to that queue, the sender HCA will block until the receive

buffer is posted. In this case the HCA is handling all operations and neither the sender or

receiver CPU has any involvement with these retries.

9.3.2 Creating Receive Queues

The RC transport of InfiniBand only allows a Queue Pair (QP) to be connected to a

single SRQ or RQ. As a result, a new connection would be required for each new queue.

This approach would not be scalable. In contrast, the XRC transport allows addressing of

receive queues, so multiple QPs are not required. Instead we just create a new SRQ for

each matching tuple. When sending a message, the sender simply sends to the previously

agreed upon SRQ number of the matching tuple.

Given the very large space of possible matching tuples, the receive queues are created

“on demand.” Only when the sender needs to send a message of a given tuple is an out-

of-band message sent to the receiver to setup a queue for that tuple. The receiver responds

with the SRQ number for the tuple. This value is then cached on the sender, so all future

sends of that tuple will use that queue. Similarly, the receiver will post all application

141

receive buffers directly to the receive queue for that tuple. If the tuple has not been created

when the receive queue will be created for that tuple.

9.3.3 Sender-Side Copy

In MPI buffer availability determines when a blocking send call (MPI Send) call can

complete. So as long as the send buffer is available to be overwritten, the call can com-

plete. As a result, as described earlier, since many MPI implementations already copy the

send buffer to another buffer the send can be marked complete directly after the buffer has

been copied. This option is also possible in TupleQ as well since there may be benefits

to allowing the sender to go on even if the receiver has not posted the receive. We will

evaluate this option.

9.3.4 MPI Wildcards

MPI specifies two wildcards that may be used when posting a receive. MPI ANY SOURCE

and MPI ANY TAG. The first, MPI ANY SOURCE, means that the source of the message is

unknown and can match any source. The second, MPI ANY TAG, allows a receive operation

to match any tag. Both can be used together to match any incoming send operation.

These wildcards are a challenge for for a number of reasons:

• There is no “wildcard” receive that can be placed in many receive queues at a time

and then removed from all when it is consumed

• A sender will try to always send to the designated tuple queue and the hardware will

not complete the message until a receive is posted. The receiver will not know what

buffer to post the receive to since it has been given a wildcard.

142

To address this issue we introduce a wildcard fallback mechanism. When a wildcard

receive is posted all connections to the receiver are shutdown. This prevents any messages

to be retried by the HCA and all will end up connecting back to the receiver with a tradi-

tional eager/rendezvous mechanisms described in Section 2.2. After the wildcard has been

matched the receiver will notify the senders and the tuple queues can be used again.

This fallback can be quite expensive if it occurs too often, so TupleQ will fall back

to a traditional implementation model if it occurs too frequently. Alternatively, it can be

disabled for applications that are known to contain wildcards. Further, the MPI-3 standard

that is under discussion may contain support for “asserts”, in which the application could

inform the MPI library that it will or will not be using wildcards.

To provide full functionality we would like to see a hardware matching mechanism that

allows a single receive descriptor to be posted to multiple queues simultaneously and be

removed from all queues once it is consumed.

9.4 Evaluation

In this section we evaluate the design described in the previous section. We first mea-

sure the overlap potential of our design as well as the overhead incurred as compared to

the traditional implementation. We also evaluate our design with the SP kernel of the NAS

Parallel Benchmarks.

9.4.1 Experimental Platform

Our experimental platform is a 128-core InfiniBand Linux cluster. Each of the 8 com-

pute nodes has 4 sockets each with a Quad-Core AMD Opteron 8350 2GHz Processor with

512 KB L2 cache and 2 MB L3 cache per core. Each node has a Mellanox MT25418

143

dual-port ConnectX HCA. InfiniBand software support is provided through the OpenFab-

rics/Gen2 stack [55], OFED 1.3 release.

9.4.2 Experimental Combinations

We evaluate four different combinations to observe their effect on overlap and perfor-

mance. For the MPI library, we use MVAPICH [53], a popular open-source MPI imple-

mentation over InfiniBand. It is based on MPICH [24] and MVICH [34] and is used by

over 760 organizations worldwide. We implement our TupleQ design into MVAPICH as

well.

The combinations we evaluate are:

• TupleQ: This is the design described in Section 9.3 with no data copies.

• TupleQ-copy: This is the design described in Section 9.3 with sender-side copies for

messages under 8KB.

• RPUT: This is the RDMA Write based design from MVAPICH

• RGET: This is the RDMA Get based design from MVAPICH

9.4.3 Overlap

We use the Sandia Benchmark [66] to evaluate the overlap performance of our design.

Figure 9.5(a) shows the Application Availability that the protocol allows. Due to the control

messages, the RGET and RPUT designs have poor overlap. 8KB is the threshold where the

rendezvous protocol is used for RPUT and RGET and thus the steep drop in overlap. Since

the TupleQ design is fully asynchronous nearly full overlap is obtained for all message

sizes, including small ones. Figure 9.5(b) shows the overhead incurred with each send

144

 0

 20

 40

 60

 80

 100

1 4 16 64 256

1K 4K 16K

64K

256K

1M

A
pp

lic
at

io
n

A
va

ila
bi

lit
y

(%
)

Message Size

TupleQ
TupleQ-copy

RPUT
RGET

(a) Application Availability

-100

 0

 100

 200

 300

 400

 500

 600

 700

1 4 16 64 256

1K 4K 16K

64K

256K

1M

O
ve

rh
ea

d
(u

se
c)

Message Size

TupleQ
TupleQ-copy

RPUT
RGET

(b) Communication Overhead

Figure 9.5: Sandia Overlap Benchmark

operation – what is not overlapped. Since the TupleQ design does full overlap there is

minimal overhead, whereas the RGET and RPUT designs have high overhead since none

of the message transfer can be overlapped.

9.4.4 NAS Parallel Benchmarks (NPB) - SP

The NAS Parallel Benchmarks [8] (NPB) are a set of programs that are designed to be

typical of several MPI applications, and thus, help in evaluating the performance of parallel

machines.

Of these kernels, the SP kernel attempts to provide overlap of communication and com-

putation overlap with MPI Isend operations. As such, this is the kernel that we evaluate

for the performance of our new design.

We evaluate this benchmark using 64 processes. Further, we disable shared memory

for all combinations since the shared memory implementation is not overlapping (future

145

 0

 50

 100

 150

 200

sp.B sp.C

Ti
m

e
(s

)
NAS Benchmark.Class

TupleQ
TupleQ-copy

RPUT
RGET

Figure 9.6: NAS SP Benchmark

designs have been proposed that do allow overlap) and will negate some of the benefit

seen.

As shown in Figure 9.6, the new TupleQ design does very well for both Class B and

Class C. For Class B, the TupleQ design gives 27.38 seconds and the copy design gives

28.74 seconds. The RGET and RPUT designs do similar with 36.78s and 36.69, respec-

tively. The same pattern is shown for Class C. The TupleQ design is able to give 27%

higher performance. Again the RPUT and RGET designs perform similarly. There is very

little difference between the TupleQ and TupleQ-copy modes. There are smaller messages

being transfered, but the majority of the transfers are large with these datasets. Given that

the TupleQ design requires no buffering it is the better option.

9.5 Related Work

Achieving good overlap between computation and communication in MPI libraries has

been a hot topic of research. Brightwell et al. [14] have demonstrated the application

146

benefit from good overlap. Eicken et al. [88] have proposed hardware mechanisms to

provide better overlap between computation and communication.

In terms of InfiniBand, Surs et al. [80] proposed a RDMA read based rendezvous

protocol with a separate communication thread to achieve overlap. Kumar et al. [33] have

proposed a lock free variant of the RDMA based design based on signals and a thread.

Our work is different as we do not use any threads to perform progress, as both of the

previous designs have done. As a result we do not require any locking, signals, or other

library interaction. Additionally, we do not use RDMA operations, which all other MPI

libraries over InfiniBand use to implement large message transfer.

147

CHAPTER 10

SCALABLE AND EFFICIENT RDMA SMALL MESSAGE
TRANSFER

To obtain the lowest latency, MPI library implementations over InfiniBand generally

include support for small message transfer using Remote Data Memory Access (RDMA)

Write operations [43]. This transfer mode is referred to as “RC-FP,” “RDMA Fast Path” or

“Eager RDMA,” depending on the developer, however, they all follow the same implemen-

tation and design. This basic design is used in other libraries other than MPI including its

usage in some GASNet [11] implementations.

Although this “Fast Path” design has been shown to improve latency, it requires a large

amount of memory to be used within the implementing library. This is because the de-

sign uses fixed-sized persistent buffers. This means that the sender and the receiver must

both have dedicated memory for each other. This typically means 256 KB of memory is

required for both the sender and receiver. For bi-directional communication using RDMA

fast path an additional 256 KB is required for each side for a total of 1 MB per bi-directional

connection. For a large number of channels, the memory usage can be significant.

In this chapter we propose a new design, Veloblock3, for message transfer using RDMA

Write operations. This novel design eliminates the need for persistent fixed-size buffers.

3‘Velo-’ is the Latin root for ‘fast’, and ‘block’ refers to the view of memory in the design.

148

Messages only take up as much memory as they require and the sender side no longer needs

to have a set of dedicated buffers. Instead of small 32 byte message taking up a full 8 KB

buffer, it can now only consume 32 bytes. This can significantly reduce the memory by

a factor of 16 times from 512 KB per pair to 32 KB. We show that our design is able to

outperform a non-RDMA fast path enabled design by 13% for the AMG2006 multigrid

physics solver. We also outperform a traditional RDMA fast path design by 3%, while

using 16 times less memory.

The remaining parts of the chapter are organized as follows: Section 10.1 presents

the existing RDMA fast path design. New design options for RDMA fast path and our

proposed Veloblock design is presented in Section 10.2. Evaluation and analysis of an

implementation of our design is covered in Section 10.3. Section 10.4 discusses work

related to our own.

10.1 RDMA Fast Path and Existing Design

In this section we describe the existing designs for RDMA Fast Path. The first RDMA

Fast Path design was described in 2003 [43] and has remained mostly unchanged since

then. We first give a brief overview of what “RDMA Fast Path” means and how current

designs have been implemented.

10.1.1 What is RDMA Fast Path?

In general RDMA fast path refers to a message passing mode where small messages are

transferred using RDMA Write operations. Instead of waiting for completion queue (CQ)

message, the receiver continually polls a memory location waiting for a byte change.

Waiting for a byte change leads to lower latency than waiting for a completion queue

entry. Using any sort of notification negates the performance benefit. When this mode

149

was originally proposed the difference in latency on the first-generation InfiniBand cards

between RDMA fast path and the normal channel semantics of InfiniBand was 6µsec to

7.5µsec [43]. The difference on our fourth-generation ConnectX InfiniBand is much lower,

but there is still a processing overhead for the card to signal receive completion.

This mode can be achieved since some adapters, such as all Mellanox InfiniBand HCAs,

guarantee that messages will be written in order to the destination buffer. The last byte will

always be written last.

10.1.2 Existing Structure

The structure of existing RDMA fast path designs is to have fixed-size chunks within a

large buffer. Figure 10.1 shows this structure.

On the sending side, the sender selects the next available send buffer and copies the mes-

sage into the buffer and performs an RDMA Write operation to the corresponding buffer

on the receiver. The receiver polls on the next buffer where it is expecting a message. Upon

detecting the byte change it can process the message. It can send either an explicit message

to the sender to notify it that the buffer is available again or piggyback that information

within message headers.

10.1.3 Detecting Message Arrival

To detect the byte change the receiver must set the buffer into a known state prior to

any data being allowed to be placed into it. Recall that to use this mode the hardware must

write data in order, so the last byte must be changed to know that the entire message has

been received. This traditional mode uses a head and tail flag mode. As seen in Figure 10.2,

the head flag is first detected. If the head flag has been changed, then see if the tail flag

at base address + size is equal to the head value. If it is equal, the data has arrived. To

150

Sender

RDMA Write
Next to
send

Next to
receive

Receiver

Figure 10.1: Basic structure of paired buffers on sender and receiver in the RDMA fast path
design

ensure that the tail flag differs from the previous value at that address the sender must keep

a copy of the data that it previously sent. Thus the sending side must have the same amount

of buffer reserved as the receiver for this channel. Since the message is filled from the

beginning or “top” of the buffer we refer to this design as “top-fill.”

Size

Head Flag

Data

Tail Flag

1. Poll for
Head != 0

2. Poll for
Tail == Head

-unused-

Zeroed prior to
marking as
available

Figure 10.2: Message Detection Method for fixed-length segments

151

10.2 Veloblock Design

In this section we describe the design issues for our new RDMA fast path design,

Veloblock. First we describe the goals of the design, followed by our solutions to achieve

these goals, the various options available, and then finally the design that we select.

The broad goal for a new RDMA Fast Path design is to retain the benefits of lower

latency and overhead by using RDMA Write operations for small messages, but reduce

the amount of memory required. Memory usage for the RDMA fast path for each process

comes from:

Nbuffers×Bsize× (Psend +Precv)

Where Psend and Precv are the number of send and receive fast path peers, Nbuffers is the

number of buffers and Bsize is the size of each buffer. While simply reducing P, N or B can

save memory, it can also reduce the performance.

Our approach to reduce the memory usage is two-fold:

• Remove the sender-side buffer. This will reduce the amount of memory required by

half.

• Use memory as a “block” instead of as fixed 8 KB segments.

10.2.1 Remove Sender-Side Buffer

The sender-side buffer is a requirement due to the tail flag in the existing design. The

head/tail flag must be selected to be something other than the current value at the tail buffer

location. If the value at that position the buffer was already set to the head value it would

incorrectly think the message had arrived resulting in invalid data.

152

To remove the sender-side buffer we propose using a “bottom-fill” approach. Using

such an approach there is only a need for a tail flag instead of both head and tail flags.

Addionally, there is no need to know the previous value of the tail byte – this byte can

just be zeroed out at the receiver before a message arrives. This design can be seen in

Figure 10.4(b). Note, an approach of doing a memset of zeros on the entire receiver buffer

could also remove the need for a sender-side buffer in the top-fill design, but this also incurs

a prohibitively large overhead.

10.2.2 Supporting Variable-Length Segments

To the best of our knowledge, all current designs of RDMA fast path use fixed-size

buffers. In general these messages blocks are 8 KB or larger. However, as mentioned

earlier, using fixed width buffers can be very inefficient. Clearly a variable width buffer

can increase memory efficiency since a 32 byte message now only consumes 32 bytes

rather than an entire 8 KB chunk.

Detecting Arrival

Note that a decision here has an impact on how a message can be detected. If a mes-

sage no longer arrives at a pre-established location the next arrival bit will still need to be

changed to zero via some method.

In existing designs the arrival bit can be zeroed out since the next arrival location is

always known. Without zeroing out an entire buffer, it is not possible to always zero out

the next byte on the receiver side without an additional operation.

To achieve the zeroing of the next arrival byte we propose sending an extra zero byte at

either the beginning or the end of the message. Figure 10.3 shows how an extra byte can

be sent in the variable bottom-fill design. In a top-fill design the extra zero byte is sent at

153

Tail Flag

Size

Blank Byte

Data

Poll Tail Flag

Size

Blank Byte

Data

PollTail Flag

Size

Data

Blank Byte

Overlap

First Message Arrival Second Message Arrival

... ...

Figure 10.3: Message Detection Method for variable-length segments

the end of the message instead of the beginning. By sending this extra byte of data we are

able to reset the bit where the next section of data is to arrive.

Flow Control

When using fixed-width segments flow control is generally ‘credit-based,’ where each

buffer is a credit. So after the receiver consumes the message and the receive buffer is free

the receiver can signal the sender that the buffer is available again. When using the remote

memory as a block (variable length) instead of fixed-segments the credit is now based on

bytes. When a receiver processes a message it can tell the sender the number of additional

bytes in the buffer that are now available. This can be done as a piggyback in message

headers, or an explicit message. This type of notification is similar to credit control in

existing designs.

154

Table 10.1: Comparison of RDMA Fast Path Designs

Characteristics Memory Usage
Top/Bottom Fill Variable/Fixed Sender Buffer Efficiency

Fixed Top-Fill Top Fill Fixed Required Low
Fixed Bottom-Fill Bottom Fill Fixed Not Required Low
Variable Top-Fill Top Fill Variable Required High

Variable Bottom-Fill Bottom Fill Variable Not Required High

10.2.3 Possible Designs

Using these parameters there are four possible design options that can be created with

these parameters. Each of these options is shown in Figure 10.4. Table 10.1 shows the

features of each design.

• Fixed Top-fill: In this design fixed buffers are used and filled from the top. This de-

sign requires buffers on the sender and receiver to be dedicated to each other. This is

the most memory inefficient design. This is the design employed by MVAPICH [53],

Open MPI [82] and others.

• Fixed Bottom-fill: This method uses fixed buffers, however, unlike the top-fill design

it does not require dedicated buffers on the send side.

• Variable Top-fill: In this mode only the required amount of buffer space is used,

however, it does require a dedicated sender-side buffer.

• Variable Bottom-fill / Veloblock: This mode is the most memory efficient. Messages

only take as much memory as required and does not require a dedicated sender-side

buffer.

155

Size
Head, Tail Value

Data
Tail

Size
Head

Data

Tail

Unused

Unused

(a) Fixed Top-fill (Origi-
nal)

Data

Tail

Size

Data

Tail

Size

Unused

Unused

(b) Fixed Bottom-fill

Size
Head, Tail Value

Data
Tail
Size
Head

Data

Tail

(c) Variable Top-fill

Size

Data

Tail
Data

Tail
Size

(d) Variable Bottom-fill
(Veloblock)

Figure 10.4: Fast Path Designs: Each figure shows one of the options available for design-
ing a RDMA fast path. Note that all “top-fill” designs also need a mirrored sender-side
buffer.

10.2.4 Veloblock Design

Given these options, the highest memory efficiency will come from using the Variable

Bottom-fill method. This is the method that we propose using and give the name Veloblock.

Using this method messages only take as much room as they need rather than an entire

block.

With this design the memory requirements can be described as the following:

Bnsize×Precv

Note that Psend is eliminated from this equation. Here only the block size and number of

peers that a process is receiving from are involved. Bnsize here is larger than that of the

156

original case (Bsize), but since small messages only take up as much space as required it can

be significantly less than Nbu f f ers×Bsize of the original case.

The basic MVAPICH implementation allocates 32 buffers, each of size 8 KB for each

connection. This means that a receiver must allocate 32×8 KB = 256 KB of memory and

since it is a top-fill design 256 KB on the sender side as well for a total of 512 KB. With

the variable bottom-fill Veloblock design we can instead allocate one larger buffer and have

messages flow in as needed. In the next section we will run Veloblock with only a 32 KB

buffer and observe the performance.

10.3 Veloblock Evaluation

In this section we evaluate the design we proposed in the previous section. We first

start with a description of the experimental platform and methodology. Then we evaluate

the memory usage and performance on microbenchmarks and application benchmarks.

10.3.1 Experimental Platform

Our experimental test bed is a 128-core ConnectX InfiniBand Linux cluster. Each of

the 8 compute nodes a quad socket, quad core AMD “Barcelona” processors for a total

of 16 cores per node. Each node has a Mellanox ConnectX DDR HCA. InfiniBand soft-

ware support is provided through the OpenFabrics/Gen2 stack [55], OFED 1.3 release.

The proposed designs are integrated into the MVAPICH-Hybrid communication device of

MVAPICH [53] explored in Chapter 7.

All of the designs are implemented into the same code base and the same code flows.

As a result, performance differences can be attributed to our design instead of software

differences. All experiments are run using the Reliable Connection (RC) transport of In-

finiBand.

157

10.3.2 Methodology

We evaluate three different combinations:

• Original: The existing design described in Section 10.2 as Fixed Top-fill. This de-

sign consumes 512 KB of memory total per uni-directional channel (256KB on the

receiver and 256KB on the sender).

• Original-Reduced: This is the same design as Original, however, we restrict the

amount of memory to 32 KB to match that of our new design. This will show if

our proposed design is necessary or if buffers could simply be reduced in the basic

design.

• Veloblock: This is our new design proposed in Section 10.2 that uses memory as a

block instead of chunks of pre-determined size. This uses 32 KB of memory total

per channel.

We also want to observe the effect of the number of fast path channels on application

performance. In particular, we want to see if additional channels can increase performance.

Due to the memory usage many implementations limit the number of fast path channels

allowed – Open MPI for example allows only 8 by default. We will also track the amount

of memory required for fast path communication.

10.3.3 Application Benchmarks

In this section we evaluate each of our configurations using two application bench-

marks: AMG2006 and LAMMPS.

158

Table 10.2: Communication Characteristics

Application Dataset Remote Peers Configuration Fast Path Memory Remote Messages
(per process) over Fast Path (%)

AMG2006

Refinement 3 103.92
Original 51.95 MB 89.75

Original-Reduced 3.25 MB 49.54
Veloblock 3.25 MB 87.22

Refinement 4 107.16
Original 53.58 MB 90.25

Original-Reduced 3.35 MB 43.49
Veloblock 3.35 MB 89.23

Refinement 5 109.12
Original 54.56 MB 89.99

Original-Reduced 3.41 MB 49.38
Veloblock 3.41 MB 88.36

NAMD

jac 59.13
Original 29.57 MB 83.51

Original-Reduced 1.85 MB 52.79
Veloblock 1.85 MB 83.53

ergre 18.88
Original 9.44 MB 64.69

Original-Reduced 0.59 MB 56.71
Veloblock 0.59 MB 64.75

apoa1 90.16
Original 45.08 MB 72.51

Original-Reduced 2.81 MB 58.26
Veloblock 2.81 MB 72.52

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0 8 16 32 64 128

0 8 16 32 64 128
0 8 16 32 64 128

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Original Original-Reduced Veloblock

Refinement (5)Refinement (4)Refinement (3)

Figure 10.5: AMG2006 Performance (higher bars are better). The “0, 8, . . . , 128” values
refer to the number of RDMA fast path connections allowed to be created per process.

159

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0 8 16 32 64 128

0 8 16 32 64 128

0 8 16 32 64 128

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Original Original-Reduced Veloblock

apoa1ergrejac

Figure 10.6: NAMD Performance (higher bars are better)

AMG2006

AMG2006 is a parallel algebraic multigrid solver for unstructured meshes. It is part of

the ASC Benchmark Suite [5]. The benchmark and results we show are given using the

default driver for the benchmark. It is very communication intensive and communication

time can be a significant portion of the overall performance [5].

Figure 10.5 shows the performance of AMG2006 with varied refinement levels. Lower

refinement values result in higher degrees of communication. We can see from the figure

that using RDMA fast path channels clearly increases performance. For a refinement value

of 3 an increase in performance of 13% for 128 Veloblock channels over the configuration

where no RDMA fast path channels are created is observed. We also note that the Original-

Reduced mode with 128 channels performs only 3% higher than the base case with no

channels created. Additionally, the Veloblock design outperforms the Original design by

3%, while using significantly less memory.

160

Table 10.2 shows the characteristics of each of the configurations. For the refinement

value of 3, the number of remote peers is on average 103.92. This average is fractional

since some processes have more peers than others. When allowing up to 128 fast path

connections to be created, the Original design will consume 52 MB of memory per process.

By contrast, our new design will use only 3.25 MB/process. Note that fast path connections

are created “on demand,” so only if a process is communicating with a remote process will

a fast path buffer be allocated.

In Table 10.2 we also present the percentage of remote messages that are able to use the

RDMA fast path channel. If there is not an available remote buffer the sender cannot use

RDMA fast path. Thus, for the Original-Reduced configuration which has less buffers we

note that only 50% of remote messages can use the RDMA fast path, where as for Original

and Veloblock nearly 90% take the fast path. Note that some messages are larger than 8KB

and cannot take the fast path, so 100% is often not possible.

NAMD

NAMD is a fully-featured, production molecular dynamics program for high perfor-

mance simulation of large bimolecular systems [59]. NAMD is based on Charm++ parallel

objects, which is a machine independent parallel programming system. It is known to scale

to thousands of processors on high-end parallel systems. Of the standard data sets available

for use with NAMD, we use the apoa1, er-gre, and jac2000 datasets. We evaluate all

data sets with 128 tasks.

Figure 10.6 shows the performance of each of these three datasets with increasing

numbers of allowed fast path connections. The first of the benchmarks, jac, is the Joint-

Amber Charmm Benchmark and is very communication intensive. For this benchmark the

Veloblock design again performs the best with a 14% improvement over the case with no

161

RDMA fast path. The original configuration is a 12% improvement, but requires a sig-

nificant amount of memory. The Original-Reduced configuration, which uses the same

amount of memory as our new design, shows only a 4% improvement.

From Table 10.2 we can see that for the jac benchmark nearly 84% of messages are

able to use the fast path for both Original and Veloblock and only 53% for Original-

Reduced. This explains the performance gap in the results. The new Veloblock design

additionally consumes 42 MB of memory less per process than the Original mode.

For the apoa1 benchmark the Veloblock continues to show benefits with up to a 6%

improvement over the base case with no RDMA fast path connections. We do notice that

after 32 connections performance gets slightly worse. We attribute this to the additional

time to poll for message arrival when additional connections are added. If not enough

messages are transferred over this path then the polling overhead can exceed the benefit.

For example, with apoa1, increasing from 32 fast path connections to 64 the number of

messages taking the fast path only increases from 36.40% to 47.78%.

The ergre benchmark shows a similar trend where the polling for the Original designs

seems to lower performance. To avoid these types of problems RDMA fast path implemen-

tations can tear down connections that do not meet a pre-configured message rate.

10.4 Related Work

Many other works have proposed methods of increasing the efficiency of communica-

tion buffers. The work most similiar to ours is Portals [13], in which buffers are allocated

from a block as they arrive, so space is the limiting factor rather than the number of mes-

sages. This work, however, was not done with the InfiniBand and had additional NIC

162

features to allow this flow. This style of support was also suggested for VIA, a predecessor

of InfiniBand, but was never adopted into hardware [12].

Balaji also explored the idea of a block-based flow control for InfiniBand for the Sockets

Direct Protocol (SDP) [9]. In this work RDMA Write with Immediate operations were

used, which eliminates the benefit of lower latency. It also does not have to address the

issues to clearing out the arrival bytes since it uses the Completion Queue (CQ) entry.

163

CHAPTER 11

PROVIDING EXTENDED RELIABILITY SEMANTICS

Clusters featuring the InfiniBand interconnect are continuing to scale. As an exam-

ple, the “Ranger” system at the Texas Advanced Computing Center (TACC) includes over

60,000 cores with nearly 4000 InfiniBand ports [81]. The latest list shows over 28% of

systems and over 50% of the top 100 are now using InfiniBand as the compute node inter-

connect.

Along with this increasing scale of commodity-based clusters is a concern with the

the Mean Time Between Failure (MTBF). As clusters continue to scale higher, it becomes

inevitable that some failure will occur in the system and hardware and software need to be

designed to recover from these failures. One very important aspect of providing reliability

is to guard against any network failures.

In this chapter we design a light-weight reliability protocol for message passing soft-

ware. As an example, we use the InfiniBand interconnect given its prominence in many

HPC deployments. We explain our design that leverages network features to provide a

high-performance yet resilient design. We refer to resiliency as being able to recover from

network failures including core switches and cables, but also failures on the end-node net-

work devices themselves. We propose designs for both the eager and rendezvous protocols

164

in MPI and support for both Remote Direct Memory Access (RDMA) read and put op-

erations. We show that our proposed method has an insignificant overhead and is able to

recover from many categories of network failures that may occur. We show that our design

also uses limited memory for additional buffering of messages.

This chapter is organized as follows: Section 11.1 describes the reliability semantics

and error notification of InfiniBand. Our reliability design is presented in Section 11.2.

Section 11.3 gives our experimental setup and Section 11.4 is an evaluation and analysis of

an implementation of our design. Work related to our design is presented in Section 11.5.

11.1 InfiniBand States and Reliability Semantics

In this section we first describe the Queue Pair (QP) states followed by a discussion on

the reliability semantics of InfiniBand. Lastly, we describe how error states are communi-

cated from the hardware.

11.1.1 Queue Pair States

InitializedReset

Ready to
Receive

Ready to
SendSQ Error

Error
SQ Drain

Modify QP

Modify QP

Modify QP

Create QP

Processing Error

Modify QP

Modify QP

Modify QP

Figure 11.1: Queue Pair State Diagram

165

Queue Pairs (QPs) are communication endpoints. In the case of RC, a single QP is a

connection to another QP in another process. Each QP has its own state, each with different

characteristics. Figure 11.1 shows the state diagram for each of these states:

• Reset: This is base state of a QP after creation. No work requests can be processed.

• Init: After moving from Reset, new receive requests can be issues, but no incoming

or outgoing requests are satisfied.

• Ready to Receive (RTR): In this mode a QP can process receive requests, but will not

process any outgoing send requests.

• Ready to Send (RTS): This is the working state of the QP. Incoming and outgoing

requests are serviced.

• Send Queue Drain (SQD): In this mode send operations will halt except for those

that were already underway.

• Send Queue Error (SQE): This state is entered if a completion error occurs when

processing an outgoing send request. For Reliable Connection (RC) this state is not

used and the QP will directly enter the ”Error State” instead.

• Error: In this state the QP is “broken” and all requests that have errored out and not

completed will be placed onto the CQ.

11.1.2 Reliability Semantics

The reliable transports of InfiniBand: Reliable Connection (RC), eXtended Reliable

Connection (XRC) and Reliable Datagram (RD) provide certain reliability guarantees. As

166

with other transports, there is both a variable CRC and end-to-end CRC that makes sure

that data is not corrupted in transit across the network.

Further, the reliable transports of InfiniBand guarantee ordering and arrival of messages

sent. When a message is placed into the Send Queue (SQ), it will not be placed into the

Completion Queue (CQ) until the complete data has arrived at the remote HCA. Therefore,

upon send completion the sender knows that the data has reached the remote node, but not

that the data has arrived in the memory of the other node. This is an important aspect to

note. It is not sufficient simply to wait for a send completion if the sender wants to make

sure that data has been placed into the end location. Errors on the HCA or over the PCIe

bus may prevent data completion.

Further, the lack of a send completion on the sender does not imply that the receiver has

not received the data. For example, if before the receiver can send the ACK of a message

there becomes a network partition the sender QP will move to an error.

Note that InfiniBand does provide an Automatic Path Migration (APM) feature that can

automatically failover to another network path. Using this approach, however, would not

be able to try more than one path since after one more failure the QP will again fall into an

error state.

11.1.3 Error Notification

Errors in InfiniBand are provided both via asynchronous events as well as through the

CQ. In many cases the errors will eventually be provided to the CQ, where they can be

pulled out and reprocessed if needed. When an error occurs the QP moves into the Error

state and must be moved to the Init stage to become usable again.

167

MPI Messages

MPI Message

(a) Eager Piggy-
back

ACK

MPI Messages

...

(b) Eager ACK

RDMA Put

RTS

CTS

ACK

(c) RPUT

RDMA Get

RTS

FIN

(d) RGET

Figure 11.2: Reliability Protocols

11.2 Design

The goal of our design is to provide a resilient MPI for InfiniBand that can survive both

general network errors as well as failure of even the HCA. Further, our goal is to keep the

overhead of providing this resiliency at a minimum.

As noted in Section 11.1, the InfiniBand network provides certain guarantees and error

notifications when using reliable transports. These guarantees, however, are not enough for

many MPI applications.

11.2.1 Message Completion Acknowledgment

Since InfiniBand completions are not a strong guarantee of resiliency, we must pro-

vide message acknowledgments from within the MPI library. Unlike our previous work

that showed reliability for unreliable transports in Chapter 5, there is no need to record

timestamps and retransmit after a timeout though. InfiniBand will signal an error to the

168

upper-level if there has been a failure. With this level of hardware support, the acknowl-

edgment design can have lower overhead. Thus, we only need to maintain the messages in

memory until a software-level acknowledgment is received from the receiver.

MPI is generally implemented with two protocols: Eager and Rendezvous. Eager is

generally used for smaller messages and can be sent to the receiver without checking if the

corresponding receive has already been posted. Rendezvous is used when the communi-

cation must be synchronized or there are large messages. In the following paragraphs we

describe our designs for these two protocols:

Eager Protocol

For the eager protocol we follow a traditional mechanism to signal message completion

that is common in flow control protocols [29]. The acknowledgment can be piggybacked

on the next message back to that process. As shown in Figure 11.2(a), this requires no

additional messages. If the communication is not bi-directional, then after a preconfig-

ured number of messages or data size an explicit acknowledgment is sent as shown in

Figure 11.2(b). Thus, very little additional messages are required.

Since there are no timeouts, the only additional cost in providing this support is to hold

onto the message buffers longer. In the case of a normal Eager design over InfiniBand,

a copy of the of data into registered memory is already made, so the send operation has

already been marked complete.

Rendezvous

When transferring messages, the usual process of data transfer is to use a zero-copy

protocol. These are generally classified into two categories: RPut and RGet. We examine

reliability designs for each of these methods.

169

• RPut: In this mode the sender notifies the receiver with a Request to Send (RTS) mes-

sage and the receiver will respond with a Clear to Send (CTS) message that includes

the address where the message should be placed. The sender can then perform an

RDMA write operation to directly put the message into the memory of the receiver.

Normally the sender can mark the send complete as soon as the RDMA write com-

pletion is placed in the CQ. With our strengthened semantics though, it cannot be

freed until the receiver sends an explicit acknowledgment. (Figure 11.2(c))

• RGet: With this protocol the sender sends the source address in the RTS message.

The receiver can then do an RDMA read to directly place the data from the source

into the destination buffer. Then the receiver then sends a finish message (FIN) to the

sender. There is no need for an additional ACK in this case. Thus, there should be

no additional overhead. (Figure 11.2(d))

11.2.2 Error Recovery

There are two main forms of errors that can occur to the MPI library. These can be

classified as Network Failures or Fatal Events. Figure 11.3 shows the basic recovery flow

that is attempted in the design.

Network Failure

In this case the error is internal to the network. It may come in the form of a “Retry Ex-

ceeded” error, which can denote either a cable or switch failure or even severe congestion.

In this case we should be able retry the same network path again since it may be a transient

issue.

170

Error State

Normal

QP Reset

Success Failure Re-Open HCA Migrate HCARetransmit

Request Reconnect

1

2

Figure 11.3: Recovery Flow Chart: Upon failure, a reconnect request will take place out-
of-band. If this fails or if a fatal HCA event was received then attempt to reopen the HCA
or switch to another HCA.

To attempt to reconnect, each side will attempt to send another out-of-band message to

the other side. In our prototype, this is done using the Unreliable Datagram (UD) transport

where QPs do not fall into the error state due to network errors. If the remote peer replies

then the QPs can be repaired and the messages that have not arrived can be re-transmitted.

If the remote peer does not respond it could be an internal network failure so we can attempt

different paths within the network, with timeouts for each. After a pre-configured length of

time the job could be configured to fail.

Fatal Event

If we receive an asynchronous event from the InfiniBand library of a “Fatal Event”

from the HCA meaning it is not able to continue, we attempt to reload the HCA driver. In

this case we must unload all InfiniBand resources (QPs, unpin memory and others). The

resources must be freed since after a driver reload these resources are not valid. After

reloading we must recreate most of these resources. Some resources, such as QPs, will be

re-created once communication restarts by the connection manager. If the same HCA is

171

not available after a driver reset the library should move connections over to another HCA,

if available.

We will then attempt to re-connect with the remote peer. The remote peer will have to

reload the connections and memory, but this can be conveyed with control messages.

Note that the sender will interpret a fatal event on the receiver as a Network Failure,

so the receiver must reconnect to the sender. In the case of fatal events on both the sender

and receiver, reconnect requests must be sent through the administrative network since no

InfiniBand resources will be available for either side to reconnect.

11.3 Experimental Setup

Our experimental test bed is a 576-core InfiniBand Linux cluster. Each of the 72 com-

pute nodes have dual 2.33 GHz Intel Xeon “Clovertown” quad-core processors for a total

of 8 cores per node. Each node has a Mellanox MT25208 dual-port Memfree HCA. Infini-

Band software support is provided through the OpenFabrics/Gen2 stack [55], OFED 1.3

release.

We have implemented a prototype our design over the verbs interface of the OpenFab-

rics stack [55]. Our prototype design is designed within the MVAPICH MPI library [53].

Our design uses only InfiniBand primitives for re-connection and can recover from network

failures and fatal events. Currently the prototpye does not recover from simultanuous fatal

events on communicating nodes, which should be extremely rare, but the design described

can withstand those events if fitted with an additional TCP/IP out-of-band channel.

We have verified the correctness of our prototype by using both specialized firmware to

introduce errors, defective switches and directly moving QPs to error states.

172

11.4 Experimental Evaluation

In this section we describe the evaluation of our prototype design. We first present an

evaluation on both microbenchmarks and application kernels. Then we examine the the

cost of recovering from an error using this design.

Methodology

In this section we evaluate each of the following combinations to determine the cost of

reliability:

• RPut-Existing (RPut): This configuration is the base MVAPICH 1.1 version with

the RPut rendezvous protocol.

• RGet-Existing (RGet): Same as RPut-Existing, but using the RGet protocol.

• RPut-Resilient (RPut-Rel): In this configuration we use the modified MVAPICH

version that uses the design from Section 11.2 with the RPut protocol.

• RGet-Resilient (RGet-Rel): This configuration is the same as Resilient-RPut, but

uses the RGet protocol instead.

Microbenchmark Performance

We performed an evaluation of base-level microbenchmarks to determine if our re-

siliency design incurs any overhead. We found that for all standard microbenchmarks in-

cluding latency, bandwidth and bi-directional bandwidth there is no overhead. Results for

latency and bandwidth are shown in Figure 11.4.

173

 0

 2

 4

 6

 8

 10

 12

1 4 16 64 256 1K 4K

La
te

nc
y

(u
se

c)

Message Size (bytes)

RPut
RPut-Rel

RGet
RGet-Rel

(a) Latency

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 4 16 64 256 1K 4K 16K 64K 256K 1M

B
an

dw
id

th
 (

M
B

/s
ec

)

Message Size (bytes)

RPut
RPut-Rel

RGet
RGet-Rel

(b) Bandwidth

Figure 11.4: Microbenchmark Results

Application Benchmarks

In this section we evaluate the performance of all of our configurations on the NAS

Parallel Benchmark suite to expose any additional overhead.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

BT.B
BT.C

CG.B
CG.C

FT.B
FT.C

IS.B
IS.C

LU.B
LU.C

M
G.B

M
G.C

SP.B
SP.C

N
or

m
al

iz
ed

 T
im

e

RPut
RPut-Rel
RGet
RGet-Rel

Figure 11.5: NAS Parallel Benchmarks Performance (256 processes)

Figure 11.5 shows the results of our evaluation of each of the NAS benchmarks. All

of these results are with 256 processes on classes B and C, as indicated on the graph. The

results show very low overhead, with nearly unnoticeable overhead in the RGet-Rel cases.

174

Table 11.1: Comparison of average maximum memory usage per process for message
buffering

Class BT.C CG.C FT.C IS.C LU.C MG.C SP.C

Reliable 3.46 MB 6.92 MB 0.07 MB 0.01 MB 1.65 MB 0.16 MB 5.33 MB
Normal 3.20 MB 6.48 MB 0.07 MB 0.01 MB 1.53 MB 0.13 MB 4.95 MB

Difference 0.26 MB 0.44 MB 0.00 MB 0.00 MB 0.12 MB 0.03 MB 0.38 MB

The RPut-Rel configuration, however, has higher overhead. Recall from Section 11.2, that

a reliable form of RPut requires an additional acknowledgment message. For SP.C, which

has many large messages, the overhead reaches 4% with only a 1.5% overhead for RGet-

Rel. From these results we can determine that the RGet-Rel configuration should be the

default configuration.

A different potential overhead of our design is the requirement to buffer messages un-

til they are acknowledged. Large messages will take the rendezvous path and will not be

buffered, so only smaller messages will take this path. Table 11.1 shows the memory per

process on average required for buffering in both the normal case as well as our design.

From the table we can observe that no process requires 500 KB of memory for the addi-

tional reliability semantics.

Recovery Cost

In this initial evaluation we determine the overhead to detect failures and reconnect

required connections. For this evaluation we add a series of transitions to the Error state

within a microbenchmark between two nodes and track the amount of time from setting the

failure to response and reconnection.

175

Our evaluations show that a single reconnection due to an error takes on average 0.335

seconds. This is a very short period of time and is much faster than could be achieved using

timeout methods.

11.5 Related Work

Other researchers have explored providing reliability at the MPI layer as part of the

LA-MPI project [23, 6]. LA-MPI is focused on providing network fault-tolerance at the

host to catch potential communication errors, including network and I/O bus errors. Their

reliability method works on a watchdog timer with a several second timeout, focusing

on providing checksum acknowledgment support in the MPI library. Saltzer et al. [65]

discusses about the need for end-to-end reliability instead of a layered design.

Other MPI designs have included support for failover in the past. Vishnu, et. al., showed

how to provide failover for uDAPL to other networks if there was a network partition [86].

Again, this work did not address the issue of HCA failure and relied only on the network

guarantees of the underlying InfiniBand hardware. Open MPI [20] also provides support

for network failover using their Data Reliability component, but this component can occur

a very large overhead on performance since it does not take into account any reliability

provided by the hardware and is similar to the support in LA-MPI.

176

CHAPTER 12

OPEN-SOURCE SOFTWARE DISTRIBUTION

Designs from this dissertation are being used in MVAPICH, a high-performance MPI

over InfiniBand. MVAPICH is very widely used, including the largest InfiniBand cluster

to-date: a Sun Consellation cluster, “Ranger,” at the Texas Advanced Computing Center

(TACC) [81]. This machine includes 62,976 cores on 3,936 nodes. MVAPICH provides

MPI-1 semantics and MVAPICH2 provides MPI-2 semantics.

These software releases are in use by over 900 organizations worldwide and are also

incorporated into a number of different vendor distributions. It is also distributed in the

OpenFabrics Enterprise Edition (OFED). Many of our designs have already been released

or will be released in the near future:

• MVAPICH 0.9.9 (April 2007): In this release the coalescing design from Chap-

ter 4 and has been included into the release to enhance scalability and small message

throughput.

• MVAPICH2 1.0 (September 2007): A more advanced version of the coalescing de-

sign design from Chapter 4 and has been included in this and future releases.

177

• MVAPICH 1.0 (Feburary 2008): The full Unreliable Datagram (UD) design from

Chapter 5 has been released with this version. This design has already been deployed

on “Ranger” (TACC) and “Atlas” (Lawrence Livermore National Lab).

• MVAPICH 1.1 (November 2008): For this release the full hybrid design from Chap-

ter 7 with support for both UD and RC transports simultaneously was included. Also,

the XRC transport support from Chapter 8 was included in this release.

• MVAPICH 1.2 (Summer 2009): For this release the network reliability design from

Chapter 11 is planned.

Additionally, some of the designs, including the message coalescing design have al-

ready been adopted by other MPIs, such as Open MPI [82] and HP MPI [26]. The UD-

based design is already being discussed by other vendors for possible future integration into

their products as well. The work performed for this dissertation will enable applications to

execute at even larger scales and achieve the maximal performance.

178

CHAPTER 13

CONCLUSION AND FUTURE DIRECTIONS

This chapter includes a summary of the research contributions of this dissertation and

concludes with future research directions.

13.1 Summary of Research Contributions

This dissertation has explored the various transports available with the InfiniBand in-

terconnect and investigated their characteristics. Based on this investigation MPI designs

were created for each of the transports, three of which had never had MPI designed for

them prior to this work. Further, additional designs to lower memory consumption and

increase communication-computation overlap were designed and developed.

13.1.1 Reducing Memory Requirements for Reliable Connection

In Chapter 4 the causes of memory usage when using the connection-oriented transports

of InfiniBand were investigated. This included the widely-used Reliable Connection (RC)

transport and showed a breakdown of memory usage. A key component of the memory

usage was found to be the number of outstanding send operations allowed on a single con-

nection. As a result, a coalescing method to pack messages was introduced and evaluated.

179

Although the hybrid MPI design showed a significant decrease in memory usage and

increase in performance, some of the protocols over the different transports can be further

optimized. In Chapter 10 the procotol for sending small messages using RDMA operations

was addressed. A novel bottom-fill technique was used to reduce the memory required for

these small message channels by an order of magnitude.

13.1.2 Designing MPI for Unreliable Datagram

Although the coalescing method can achieve lowered memory usage for the RC trans-

port, the connection-oriented transports have the inherent limitation of needing one QP

per peer. This increases memory usage and it is also found to decrease performance. The

performance characteristics of the Unreliable Datagram (UD) transport were investigated

in Chapter 5. An MPI design over UD was designed and implemented and evaluated on

over 4,000 processors. This showed a nearly-flat memory usage with increasing numbers

of processes and also increased performance in many cases.

13.1.3 Designing Reliability Mechanisms

Although the RC transport is often considered the highest-performing, Chapter 5 found

that this was not always the case. It is also often considered that reliability should be within

the network hardware. In many modern interconnects, such as InfiniBand and Quadrics, the

most commonly used interface is a reliable one where reliability is provided in the network

device hardware or firmware. With this hardware support the MPI can be designed without

explicit reliability checks or protocols. In Chapter 6 we examined this common assumption

by evaluating designs with Reliable Connection (RC), Unreliable Connection (UC) and

Unreliable Datagram (UD) all within the same codebase. We showed that in many cases a

180

software-based reliability protocol can perform equal or better than those with a hardware-

based reliability.

Clusters with InfiniBand are continuing to scale, yet the frequency of errors per node is

not dramatically reducing. Thus, as the number of nodes scales, the Mean Time Between

Failure (MTBF) is reducing, so jobs are aborting more frequently. In Chapter 11 we inves-

tigated how to leverage software techniques and hardware features to allow an MPI library

to withstand network failures both within the network and on the node HCAs.

13.1.4 Investigations into Hybrid Transport Design

In Chapters 4 and 5 it was shown that both the RC and UD transports each have their

own sets of benefits. In Chapter 7 we looked at how multiple transports can be used to-

gether. First, in this chapter a detailed analysis of the network hardware and scalability

aspects of each transport mode was evaluated. Second, a new MPI design was proposed

that can dynamically switch between transports and messaging modes. Then we evaluated

the design and showed that it can perform at least as well as the better of UD and RC. In

many cases it could outperform a mode in which only transport is used.

13.1.5 MPI Designs for eXtended Reliable Connection Transport

In reaction to the memory scalabilty problems for the RC transport, a new transport eX-

tended Reliable Connection (XRC) was developed by an InfiniBand vendor. In Chapter 8

this new transport was explored along with the new MPI design possibilities that arise from

the features of this new transport. Support for XRC was added into the hybrid MPI from

Chapter 7 and was evaluated.

181

13.1.6 Designing Communication-Computation Overlap with Novel
Transport Choices

With the new XRC transport, it is possible to address another issue that is very pertinent

for large-scale clusters. If an application can overlap communication with computation,

then higher performance can be obtained. Chapter 9 described a novel technique of de-

signing an MPI library that allows full overlap of communication with computation. This

leveraged the new XRC transport to allow this availability.

13.2 Future Work

InfiniBand is very feature-rich and has achieved a large-degree of acceptance in the

field of high-performace computing. In this disseration many different designs relating to

the transports were explored and evaluated. There are still several research areas that are

left to be explored.

Additional Programming Model Support: While this dissertation has focused on

MPI as the primary programming model, there are other models that are being developed

for next-generation clusters. These languages include X10 [27], Chapel [19], Fortress [74],

UPC [83], and others. At the core, each programming model requires messaging between

nodes. These new programming models offer new sets of semantics though that will offer

a new set of challenges both in application design as well as the network-support layers for

these models.

QoS Features of InfiniBand: InfiniBand specifies Quality-of-Service (QoS) features

that will be available in the next generation of HCAs and switches. These allow features

such as setting bandwidth guarantees and latency guarantees. This rich set of features

can allow novel techniques for giving different priorities to different MPI message types,

182

particularly as the upcoming MPI-3 standard will include non-blocking collectives and a

revised Remote Memory Access (RMA) semantics.

183

BIBLIOGRAPHY

[1] Mellanox Technologies. http://www.mellanox.com.

[2] TOP 500 Supercomputer Sites. http://www.top500.org.

[3] A. S. Tanenbaum. Computer networks. Prentice-Hall 2nd ed., 1989, 1981.

[4] ASC. ASC Purple Benchmarks. http://www.llnl.gov/asci/purple/benchmarks/.

[5] ASC. ASC Sequoia Benchmarks. https://asc.llnl.gov/sequoia/benchmarks/.

[6] Rob T. Aulwes, David J. Daniel, Nehal N. Desai, Richard L. Graham, L. Dean
Risinger, Mitchel W. Sukalski, and Mark A. Taylor. Network Fault Tolerance in
LA-MPI. In Proceedings of EuroPVM/MPI ’03, September 2003.

[7] Olivier Aumage, Luc Bougé, Lionel Eyraud, Guillaume Mercier, Raymond Namyst,
Loı̈c Prylli, Alexandre Denis, and Jean-François Méhaut. High performance comput-
ing on heterogeneous clusters with the madeleine ii communication library. Cluster
Computing, 5(1):43–54, 2002.

[8] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, D. Dagum,
R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon,
V. Venkatakrishnan, and S. K. Weeratunga. The NAS parallel benchmarks. volume 5,
pages 63–73, Fall 1991.

[9] P. Balaji, S. Bhagvat, D. K. Panda, R. Thakur, and W. Gropp. Advanced Flow-control
Mechanisms for the Sockets Direct Protocol over InfiniBand. In ICPP ’07: Proceed-
ings of the 2007 International Conference on Parallel Processing, page 73, 2007.

[10] N.J. Boden, D. Cohen, R.E. Felderman, A.E. Kulawik, C.L. Seitz, and J.N. Seizovi-
cand Su Wen-King. Myrinet: a gigabit-per-second local area network. IEEE Micro,
15(1):29–36, Feb 1995.

[11] Dan Bonachea. GASNet Specification, v1.1. Technical report, Berkeley, CA, USA,
2002.

184

[12] Ron Brightwell and Arthur B. Maccabe. Scalability Limitations of VIA-Based Tech-
nologies in Supporting MPI. In Fourth MPI Developer’s and User’s Conference,
2000.

[13] Ron Brightwell, Arthur B. MacCabe, and Rolf Riesen. Design and Implementation
of MPI on Portals 3.0. In Proceedings of the 9th European PVM/MPI Users’ Group
Meeting on Recent Advances in Parallel Virtual Machine and Message Passing Inter-
face, pages 331–340. Springer-Verlag, 2002.

[14] Ron Brightwell and Keith D. Underwood. An analysis of the impact of MPI overlap
and independent progress. In ICS ’04: Proceedings of the 18th annual international
conference on Supercomputing, pages 298–305, New York, NY, USA, 2004. ACM.

[15] Peter N. Brown, Robert D. Falgout, and Jim E. Jones. Semicoarsening multigrid on
distributed memory machines. SIAM Journal on Scientific Computing, 21(5):1823–
1834, 2000.

[16] F. Carroll, H. Tezuka, A. Hori, and Y. Ishikawa. MPICH-PM: Design and implemen-
tation of zero copy MPI for PM. 1998.

[17] L. Chai, A. Hartono, and D. K. Panda. Designing Efficient MPI Intra-node Commu-
nication Support for Modern Computer Architectures. In Proceedings of Int’l IEEE
Conference on Cluster Computing, September 2006.

[18] Compaq, Intel, and Microsoft. VI Architecture Specification V1.0, December 1997.

[19] Cray, Inc. Chapel Programming Language. http://chapel.cs.washington.edu/.

[20] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Dongarra,
Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew
Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L. Graham, and Timothy S.
Woodall. Open MPI: Goals, concept, and design of a next generation MPI imple-
mentation. In Proceedings, 11th European PVM/MPI Users’ Group Meeting, pages
97–104, Budapest, Hungary, September 2004.

[21] M. Gerla and L. Kleinrock. Flow control: A comparative survey. Communications,
IEEE Transactions on [legacy, pre - 1988], 28(4):553–574, Apr 1980.

[22] Patricia Gilfeather and Arthur B. Maccabe. Connection-less TCP. In 19th IEEE In-
ternational Parallel and Distributed Processing Symposium (IPDPS’05) - Workshop
9, 2005.

[23] R. L. Graham, S.-E. Choi, D. J. Daniel, N. N. Desai, R. G. Minnich, C. E. Rasmussen,
L. D. Risinger, and M. W. Sukalksi. A Network-Failure-Tolerant Message-Passing
System for Terascale Clusters. International Journal of Parallel Programming, 31(4),
August 2003.

185

[24] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-Performance, Portable Imple-
mentation of the MPI, Message Passing Interface Standard. Technical report, Argonne
National Laboratory and Mississippi State University.

[25] Adolfy Hoisie, Olaf M. Lubeck, Harvey J. Wasserman, Fabrizio Petrini, and Hank
Alme. A general predictive performance model for wavefront algorithms on clusters
of SMPs. In International Conference on Parallel Processing, pages 219–, 2000.

[26] HP. HP-MPI. http://www.docs.hp.com/en/T1919-90015/ch01s02.html.

[27] IBM. The X10 Programming Language. http://www.research.ibm.com/x10/.

[28] InfiniBand Trade Association. InfiniBand Architecture Specification.
http://www.infinibandta.com.

[29] J. Liu and D. K. Panda. Implementing Efficient and Scalable Flow Control Schemes
in MPI over InfiniBand. In Workshop on Communication Architecture for Clusters
(CAC 04), April 2004.

[30] Jonathan Stone and Craig Partridge. When the CRC and TCP checksum disagree.
SIGCOMM Comput. Commun. Rev., 30(4):309–319, 2000.

[31] S. P. Kini, J. Liu, J. Wu, P. Wyckoff, and D. K. Panda. Fast and Scalable Barrier using
RDMA and Multicast Mechanisms for InfiniBand-Based Clusters. In Euro PVM/MPI,
2003.

[32] K.R. Koch, R.S. Baker, and R.E. Alcouffe. Solution of the first-order form of the 3-d
discrete ordinates equation on a massively parallel processor. Trans. AMer. Nuc. Soc.,
pages 65–, 1992.

[33] R. Kumar, A. Mamidala, M. Koop, G. Santhanaraman, and D. K. Panda. Lock-
free Asynchronous Rendezvous Design for MPI Point-to-point communication. In
EuroPVM/MPI 2008, September 2008.

[34] Lawrence Berkeley National Laboratory. MVICH: MPI for Virtual Interface Archi-
tecture. http://www.nersc.gov/research/FTG/mvich/ index.html, August 2001.

[35] J. Liu. Designing High Performance and Scalable MPI over InfiniBand. PhD disser-
tation, The Ohio State University, Department of Computer Science and Engineering,
September 2004.

[36] J. Liu, B. Chandrasekaran, J. Wu, W. Jiang, S. Kini, W. Yu, D. Buntinas, P. Wyckoff,
and D. K. Panda. Performance Comparison of MPI Implementations over InfiniBand,
Myrinet and Quadrics. In SuperComputing(SC), 2003.

186

[37] J. Liu, A. Mamidala, and D. K. Panda. Fast and Scalable MPI-Level Broadcast using
InfiniBand’s Hardware Multicast Support. In International Parallel and Distributed
Processing Symposium, 2004.

[38] J. Liu, A. Mamidala, and D. K. Panda. Fast and Scalable MPI-Level Broadcast us-
ing InfiniBand’s Hardware Multicast Support. In Proceedings of Int’l Parallel and
Distributed Processing Symposium (IPDPS 04), April 2004.

[39] J. Liu and D. K. Panda. Implementing Efficient and Scalable Flow Control Schemes
in MPI over InfiniBand. In Workshop on Communication Architecture for Clusters
(CAC) held in conjunction with IPDPS, 2004.

[40] J. Liu, A. Vishnu, and D. K. Panda. Building Multirail InfiniBand Clusters: MPI-
Level Design and Performance Evaluation. In SuperComputing (SC), 2004.

[41] J. Liu, J. Wu, , and D. K. Panda. High performance RDMA-based MPI implementa-
tion over InfiniBand. Int’l Journal of Parallel Programming, 32(3), June 2004.

[42] Jiuxing Liu, Jiesheng Wu, Sushmitha P. Kini, Pete Wyckoff, and Dhabaleswar K.
Panda. High Performance RDMA-Based MPI Implementation over InfiniBand. In
17th Annual ACM International Conference on Supercomputing (ICS ’03), June 2003.

[43] Jiuxing Liu, Jiesheng Wu, and Dhabaleswar K. Panda. High Performance RDMA-
based MPI implementation over InfiniBand. Int. J. Parallel Program., 32(3):167–198,
2004.

[44] Amith R. Mamidala, Jiuxing Liu, and Dhabaleswar K. Panda. Efficient Barrier and
Allreduce on InfiniBand Clusters using Hardware Multicast and Adaptive Algorithms
. In Proceedings of IEEE Cluster Computing, 2004.

[45] Amith R. Mamidala, Sundeep Narravula, Abhinav Vishnu, Gopal Santhanaraman,
and Dhabaleswar K. Panda. On using connection-oriented vs. connection-less trans-
port for performance and scalability of collective and one-sided operations: trade-offs
and impact. In PPoPP ’07: Proceedings of the 12th ACM SIGPLAN symposium on
Principles and practice of parallel programming, pages 46–54. ACM Press, 2007.

[46] D. Mayhew and V. Krishnan. PCI Express and Advanced Switching: Evolution-
ary path to building next generation interconnects. High Performance Interconnects,
2003. Proceedings. 11th Symposium on, pages 21–29, 20-22 Aug. 2003.

[47] Mellanox Technologies. ConnectX Architecture.
http://www.mellanox.com/products/connectx architecture.php.

[48] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard, Mar
1994.

187

[49] A. A. Mirin, R. H. Cohen, B. C. Curtis, W. P. Dannevik, A. M. Dimits, M. A.
Duchaineau, D. E. Eliason, D. R. Schikore, S. E. Anderson, D. H. Porter, P. R. Wood-
ward, L. J. Shieh, and S. W. White. Very high resolution simulation of compressible
turbulence on the ibm-sp system. In Supercomputing ’99: Proceedings of the 1999
ACM/IEEE conference on Supercomputing (CDROM), page 70, New York, NY, USA,
1999. ACM Press.

[50] Myricom Inc. MPICH-MX. http://www.myri.com/scs/download-mpichmx.html.

[51] Myricom Inc. Portable MPI Model Implementation over GM, March 2004.

[52] Network-Based Computing Laboratory. MVAPICH: MPI for InfiniBand.
http://nowlab.cse.ohio-state.edu/projects/mpi-iba.

[53] Network-Based Computing Laboratory. MVAPICH: MPI over InfiniBand and
iWARP. http://mvapich.cse.ohio-state.edu.

[54] Network-based Computing Laboratory. OSU Benchmarks. http://mvapich.cse.ohio-
state.edu/benchmarks.

[55] OpenFabrics Alliance. OpenFabrics. http://www.openfabrics.org/, April 2006.

[56] Scott Pakin, Mario Lauria, and Andrew Chien. High performance messaging on work-
stations: Illinois Fast Messages (FM) for Myrinet. In Supercomputing ’95: Proceed-
ings of the 1995 ACM/IEEE conference on Supercomputing (CDROM), page 55, New
York, NY, USA, 1995. ACM.

[57] Fabrizio Petrini, Wu chun Feng, Adolfy Hoisie, Salvador Coll, and Eitan Frachten-
berg. The Quadrics Network: High Performance Clustering Technology. IEEE Micro,
22(1):46–57, January-February 2002.

[58] Fabrizio Petrini, Darren J. Kerbyson, and Scott Pakin. The case of the missing super-
computer performance: Achieving optimal performance on the 8,192 processors of
asci q. In SC ’03: Proceedings of the 2003 ACM/IEEE conference on Supercomput-
ing, page 55. IEEE Computer Society, 2003.

[59] J. C. Phillips, G. Zheng, S. Kumar, and L. V. Kale. NAMD: Biomolecular Simulation
on Thousands of Processors. In Supercomputing, 2002.

[60] S. J. Plimpton. Fast Parallel Algorithms for Short-Range Molecular Dynamics. Jour-
nal of Computational Physics, 117:1–19, 1995.

[61] L. Prylli and B. Tourancheau. BIP: a new protocol designed for high. performance
networking on Myrinet. In IEEE Parallel and Distributed Processing Symposium
(IPDPS), 1998.

188

[62] QLogic. InfiniPath. http://www.pathscale.com/infinipath.php.

[63] Quadrics. MPICH-QsNet. http://www.quadrics.com.

[64] S. Reinemo, T. Skeie, T. Sodring, O. Lysne, and O. Trudbakken. An overview of QoS
capabilities in InfiniBand, Advanced Switching Interconnect, and ethernet. Commu-
nications Magazine, IEEE, 44(7):32–38, July 2006.

[65] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system design.
ACM Trans. Comput. Syst., 2(4):277–288, 1984.

[66] Sandia National Laboratories. Sandia MPI Micro-Benchmark Suite.
http://www.cs.sandia.gov/smb/.

[67] Sandia National Laboratories. Thunderbird Linux Cluster.
http://www.cs.sandia.gov/platforms/ Thunderbird.html.

[68] David E. Shaw, Martin M. Deneroff, Ron O. Dror, Jeffrey S. Kuskin, Richard H. Lar-
son, John K. Salmon, Cliff Young, Brannon Batson, Kevin J. Bowers, Jack C. Chao,
Michael P. Eastwood, Joseph Gagliardo, J. P. Grossman, C. Richard Ho, Douglas J.
Ierardi, István Kolossváry, John L. Klepeis, Timothy Layman, Christine McLeavey,
Mark A. Moraes, Rolf Mueller, Edward C. Priest, Yibing Shan, Jochen Spengler,
Michael Theobald, Brian Towles, and Stanley C. Wang. Anton, a special-purpose
machine for molecular dynamics simulation. In ISCA ’07: Proceedings of the 34th
annual international symposium on Computer architecture, pages 1–12, New York,
NY, USA, 2007. ACM.

[69] G. Shipman, T. Woodall, R. Graham, and A. Maccabe. Infiniband Scalability in
Open MPI. In International Parallel and Distributed Processing Symposium (IPDPS),
2006.

[70] Galen M. Shipman, Ron Brightwell, Brian Barrett, Jeffrey M. Squyres, and Gil Bloch.
Investigations on infiniband: Efficient network buffer utilization at scale. In Proceed-
ings, Euro PVM/MPI, Paris, France, October 2007.

[71] Galen M. Shipman, Stephen Poole, Pavel Shamis, and Ishai Rabinovitz. X-SRQ -
Improving Scalability and Performance of Multi-core InfiniBand Clusters. In Pro-
ceedings of the 15th European PVM/MPI Users’ Group Meeting on Recent Advances
in Parallel Virtual Machine and Message Passing Interface, pages 33–42, 2008.

[72] Galen Mark Shipman, Tim S. Woodall, George Bosilca, Rich L. Graham, and
Arthur B. Maccabe. High performance RDMA protocols in HPC. In Proceedings,
13th European PVM/MPI Users’ Group Meeting, Lecture Notes in Computer Sci-
ence, Bonn, Germany, September 2006. Springer-Verlag.

189

[73] Rajeev Sivaram, Rama K. Govindaraju, Peter Hochschild, Robert Blackmore, and
Piyush Chaudhary. Breaking the connection: Rdma deconstructed. In HOTI ’05:
Proceedings of the 13th Symposium on High Performance Interconnects, pages 36–
42, 2005.

[74] Sun Microsystems. Fortress Programming Language. http://fortress.sunsource.net/.

[75] S. Sur, L. Chai, H.-W. Jin, and D. K. Panda. Shared Receive Queue Based Scal-
able MPI Design for InfiniBand Clusters. In International Parallel and Distributed
Processing Symposium (IPDPS), 2006.

[76] S. Sur, H.-W. Jin, L. Chai, and D. K. Panda. RDMA Read Based Rendezvous Pro-
tocol for MPI over InfiniBand: Design Alternatives and Benefits. In Symposium on
Principles and Practice of Parallel Programming (PPOPP), 2006.

[77] S. Sur, M. Koop, L. Chai, and D. K. Panda. Performance Analysis and Evaluation
of Mellanox ConnectX InfiniBand Architecture with Multi-Core Platforms. In 15th
IEEE Int’l Symposium on Hot Interconnects (HotI15), Palo Alto, CA, August 2007.

[78] S. Sur, M. J. Koop, and D. K. Panda. High-Performance and Scalable MPI over
InfiniBand with Reduced Memory Usage: An In-Depth Performance Analysis. In
Super Computing, 2006.

[79] S. Sur, A. Vishnu, H. W. Jin, W. Huang, and D. K. Panda. Can Memory-Less Network
Adapters Benefit Next-Generation InfiniBand Systems? In Hot Interconnect (HOTI
05), 2005.

[80] Sayantan Sur, Hyun-Wook Jin, Lei Chai, and Dhabaleswar K. Panda. RDMA read
based rendezvous protocol for MPI over InfiniBand: design alternatives and benefits.
In PPoPP ’06: Proceedings of the eleventh ACM SIGPLAN symposium on Principles
and practice of parallel programming, pages 32–39, New York, NY, USA, 2006.
ACM.

[81] Texas Advanced Computing Center. HPC Systems.
http://www.tacc.utexas.edu/resources/hpcsystems/.

[82] The Open MPI Team. Open MPI. http://www.open-mpi.org/.

[83] UPC Consortium. UPC Language Specifications, v1.2, Lawrence Berkeley National
Lab Tech Report LBNL-59208. Technical report, Berkeley, CA, USA, 2005.

[84] J. Vetter and F. Mueller. Communication characteristics of large-scale scientific ap-
plications for contemporary cluster architectures. In IPDPS ’02: Proceedings of the
16th International Symposium on Parallel and Distributed Processing, page 27.2,
Washington, DC, USA, 2002. IEEE Computer Society.

190

[85] Jeffrey S. Vetter and Andy Yoo. An empirical performance evaluation of scalable
scientific applications. In Supercomputing ’02: Proceedings of the 2002 ACM/IEEE
conference on Supercomputing, pages 1–18, Los Alamitos, CA, USA, 2002. IEEE
Computer Society Press.

[86] A. Vishnu, P. Gupta, A. Mamidala, and D. K. Panda. A Software Based Approach
for Providing Network Fault Tolerance in Clusters Using the uDAPL Interface: MPI
Level Design and Performance Evaluation. In Proceedings of SuperComputing,
November 2006.

[87] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-net: a user-level network interface
for parallel and distributed computing. In SOSP ’95: Proceedings of the fifteenth ACM
symposium on Operating systems principles, pages 40–53. ACM Press, 1995.

[88] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus Erik
Schauser. Active messages: a mechanism for integrated communication and com-
putation. In ISCA ’92: Proceedings of the 19th annual international symposium on
Computer architecture, pages 256–266, New York, NY, USA, 1992. ACM.

[89] Jiesheng Wu, Jiuxing Liu, Pete Wyckoff, and Dhabaleswar Panda. Impact of on-
demand connection management in mpi over via. In CLUSTER ’02: Proceedings
of the IEEE International Conference on Cluster Computing, page 152, Washington,
DC, USA, 2002. IEEE Computer Society.

[90] W. Yu, Q. Gao, and D. K. Panda. Adaptive Connection Management for Scalable MPI
over InfiniBand. In International Parallel and Distributed Processing Symposium
(IPDPS), 2006.

191

