
Reducing Network Contention with Mixed Workloads on Modern Multicore
Clusters

Matthew J. Koop, Miao Luo and Dhabaleswar K. Panda
Network-Based Computing Laboratory

The Ohio State University
Columbus, OH USA

Email: { koop, luom, panda }@cse.ohio-state.edu

Abstract—Multi-core systems are now extremely com-
mon in modern clusters. In the past commodity systems
may have had up to two or four CPUs per compute node.
In modern clusters, these systems still have the same num-
ber of CPUs, however, these CPUs have moved from single-
core to quad-core and further advances are imminent. To
obtain the best performance, compute nodes in a cluster
are connected with high-performance interconnects. On
nearly all clusters, the number of network interfaces is
the same on current multi-core systems as in the past
when there were fewer cores per node. Although these
networks have increased bandwidth with the shift to multi-
core, there still exists severe network contention for some
application patterns.

In this work we propose mixed workload (non-exclusive)
scheduling of jobs to increase network efficiency and
reduce contention. As a case-study we use Message Passing
Interface (MPI) programs on the InfiniBand interconnect.
We show through detailed profiling of the network that
accesses of the network and CPU of some applications
are complementary to each other and lead to increased
network efficiency and overall application performance
improvement. We show improvements of 20% and more
for some of the NAS Parallel Benchmarks on quad-socket,
quad-core AMD systems.

I. INTRODUCTION

Over the last few years, multi-core systems have
come to dominate computing as well as high-
performance computing platforms. In the past there may
have been only two or four single-core processors per
node, now platforms can have 16 or more cores per
node. However, to efficiently utilize the full benefit of
multicore systems, many problems that may have been
minor in single-core systems need to be overcome. The
network is one of these areas that can quickly become
saturated in a multi-core system.

Nearly all of the resources in multi-core system, such
as memory, network, and I/O devices, are shared by
processes on a single node. An issue of increasing
importance is how to schedule jobs on high-performance
clusters to best utilize these shared resources more

efficiently and to avoid constraints. “Symbiotic space-
sharing” [1] has been suggested as a technique to
alleviate pressure on shared resources for Massive Par-
allel Processing (MPP) systems by executing parallel
applications in a mixed pattern. Areas that have been
explored were largely to reduce contention for memory
and disk resources.

This previous work, however, has not deeply explored
the network. Some of the issues, such as the memory
bandwidth are being addressed by NUMA systems
developed by AMD and Intel. The question of how to
effectively use the network across jobs, however, is still
an open issue.

In this paper, we seek to address this issue of network
contention. We propose splitting jobs up by network-
level access patterns to maximize performance. Our
case studies are all carried out using Message Passing
Interface (MPI) [2], which is one of the most popular
programming models for cluster computing. We also
focus on the InfiniBand interconnect since it is used on
over 30% of the clusters in the Top 500 supercomputing
list. The concept should be applicable to other networks
and programming models as well.

We first use microbenchmarks to show the effects
of network contention. We then use the NAS Parallel
Benchmarks as examples to determine the effect of
network patterns on performance. We show up to a
20% improvement in application performance numbers
over a traditional exclusive scheduling by using mixed
workloads with complementary applications that share
the same set of nodes and network interfaces.

As part of our evaluation we develop a network
profiling tool to determine the detailed usage of the
network. We can directly view different time slices and
view how different applications interact. This differs
from other existing tools that simply look at MPI-level
message patterns. We instead can directly track when
InfiniBand messages are sent. We include this analysis
when discussing application communication patterns.

The rest of the paper is organized as follow: We start
with related work in Section II. We give the necessary
background on InfiniBand in Section III. In Section IV,
we introduce the concept of mixed workloads and
the motivation. We describe our design for capturing
network-level traffic patterns from different applications
in Section V. In Section VI we use microbenchmarks
and analyze the performance of pairing different NAS
Parallel Benchmarks together to look at speedups pos-
sible by reducing network contention. We conclude and
point out future work in Section VII.

II. RELATED WORK

Many other researchers have previously looked at job
scheduling based on the alleviation of shared resource
contention, however, these studies have been focused on
cache, memory bus and synthesized resource contention.

Cache contention is a critical topic in job schedul-
ing for multicore systems along with additional cache
sharing between cores on the same node. Kim et al. [3]
studied the fairness in cache sharing between threads
in a CMP architecture. Jiang et al. [4] proposed an
algorithm that finds the optimal co-schedules in polyno-
mial time for job co-scheduling systems to reduce cache
contention.

Liedtke et al. [5] first raised the memory bus con-
tention problem in SMP system, where multiple pro-
cessors on n-process system share a single memory
bus and propose memory-bus scheduling. Kondo et
al. [6] proposed a technique to mitigate memory bus and
memory bank contention by controlling execution speed
of each thread running on each core through Dynamic
Voltage and Frequency Scaling (DVFS).

Weinberg and Snavely proposed “symbiotic space-
sharing” [1], which is a technique to alleviate pressure
on shared resources on MPP system by executing paral-
lel applications in combinations. They first investigated
constraints on memory and I/O resources for modern
parallel systems and then proposed a prototype sym-
biotic scheduler to implement symbiotic space-sharing.
This work is the most similar to ours, however, we are
investigating network-level accesses and contention.

Cong et al. [7] have addressed job scheduling prob-
lem on Reconfigurable high-performance computing
(RHPC) systems. They have proposed algorithm to
assign jobs to processors with consideration of copro-
cessors at global optimization steps and coprocessor
selection in the local optimization step.

Sondag et al. [8] propose an approach for automatic
thread-to-core assignment for heterogeneous multicore
processors, which are presented to address the matching
problem of resources needs of a thread and resource

availability at the assigned core. They first use a pre-
liminary static analysis-based approach for determining
similarity among program sections, then they use a
thread-to-core assignment algorithm to make scheduling
decision based on statically generated information and
execution information from a small fraction of the
program.

The cache and memory bus contention are also being
addressed by vendors, while network contention prob-
lem still remains as an open topic. To the best of our
knowledge, our work is the first attempt to address
the severe network contention that exists in modern
multicore systems, profile network-level communication
information and propose solutions to avoid such con-
tention.

III. INFINIBAND

InfiniBand [9] was designed as a high-speed, general-
purpose I/O interconnect, and in recent years it has
become a popular interconnect for high-performance
computing to connect commodity machines in large
clusters.

The communication model in InfiniBand is based off
of Queue Pairs (QPs). A QP consists of two queues,
a Send Queue (SQ) and a Receive Queue (RQ) for
initiating send and receive operations, respectively. Each
QP is associated with a Completion Queue (CQ), al-
lowing an application to poll or use an event-based
interface to receive notification of operation completion.
All completions, both send and receive operations are
placed into the CQ.

There are two sets of communication semantics in
InfiniBand: channel and memory semantics. Channel
semantics include send and receive operations that are
similar to those found in traditional interfaces, such
as sockets, where both sender and receiver must be
aware of communication. Memory semantics include
one-sided operations where one host can access or
modify memory on a remote node without a posted
receive; such operations are referred to as Remote Direct
Memory Access (RDMA).

To receive a message on a QP using channel se-
mantics, a receive buffer must be posted to that QP.
Buffers are consumed in a FIFO ordering. Using a
Shared Receive Queue (SRQ) allows receive buffers to
be shared across QPs for scalability.

IV. REDUCING NETWORK CONTENTION

Traditional scheduling of jobs assumes that each node
is exclusive to a single job. In this way it is known
that there will not be any other processes on the node
other than those in the same job. There are benefits

(a) Two communication-intensive

applications

(b) Two applications with

rare communication

(c) Two applications with medium

communication demands

: Communication time

Figure 1. Application Sharing Combinations

to this mode including allowing shared memory com-
munication for more processes. However, since many
applications are very synchronous in communication,
all of the processes within a job will typically require
simultaneous access to the network and thus create a
significant bottleneck.

A. Shared vs. Exclusive

To alleviate the contention for the shared network
resource, one method is to reduce the number of pro-
cesses on a single node. Using this method may reduce
contention, but cores will remain idle and is not an effi-
cient use of resources. To keep all the cores utilized but
achieve less contention in shared resource, one possible
method is to break the synchronization among processes
on the single node. The simplest implementation is
to instead of having a single application occupying m
nodes with n cores on each node, we can schedule k
applications sharing k*m nodes. Then on each node,
every application can use n/k cores.

We term the traditional scheduling as Exclusive-Full
mode, and the new scheduling method of sharing the
compute nodes as Shared mode.

When sharing nodes for two concurrent jobs, the
total number of cores required by the application is
the same as in Exclusive-Full mode, however, double
the number of nodes is required. Another job can run

simultaneously on the other cores on the nodes. Given
the synchronicity of many applications, it means that
half of the cores will use the network simultaneously
instead of all of them. Note that this concept could be
further extended to have only 1/4 of the cores for a job
with four concurrent jobs.

B. Sharing Combinations

As a result of this new mapping of processes, over-
lapping link usage can be reduced. There are several
possible combinations that can occur when splitting the
cores of the node:

• Dual Communication-Intensive: Figure 1(a) shows
this kind of combination. This is the worst case,
when both of the two applications use the same
network link to communicate with other nodes
frequently, especially when the message size is
large. In this situation, the results of shared mode
may be similar as that of exclusive mode.

• Dual Communication-Infrequent: Figure 1(b)
shows this mode where communication is rare
or only small amounts of data are transferred.
Even in exclusive mode, this kind of application
seldom has network contention, so only trivial
improvement can be gained in shared mode.

• Communication Compatible: These combinations
generally include one application that communi-
cates infrequently and one that communicates more
often. This class also includes applications that
may make frequent use of the network, but gen-
erally less than 50% of the time. This ideal situa-
tion is shown in Figure 1(c). The communication
patterns of the two applications are complimentary
with each other. Every application is able to have
the same performance as if it has exclusive access
to the network.

In the ideal Communication Compatible mode, if the
link contention is the main performance bottleneck, the
performance of shared mode should be the same as
the performance of Exclusive-Half mode. By Exclusive-
Half mode, we refer to a job working on half of the
cores on each node while the other half of the cores are
idle.

In this paper we will evaluate the performance of
different application combinations. We will also trace
and examine the communication patterns of different
applications. Using this data it should be possible to
create the best application sharing arrangements by
combining most complimentary applications together
based on the communication patterns exhibited.

V. NETWORK PROFILING DESIGN

In this section we discuss existing profiling tools for
MPI and InfiniBand. Then we discuss our proposed
profiling method and the various techniques that can
be employed in the absence of perfect timestamps.

A. Existing Profiling Techniques

Current MPI profiling tools such as mpiP [10], Sun
Studio Analyzer [11], Vampir [12] and others can be
exceedingly beneficial to look at MPI message patterns.
These tools rely on the PMPI interface of MPI that
allows tools to interposition the tool between the appli-
cation and the MPI library. This PMPI interface allows
current MPI tools to view when the application sends a
message or makes a collective call. They can also track
the completion of a MPI call as well.

While these are extremely useful for debugging, this
interface lacks the detailed knowledge of the network
that is needed. For example, many MPIs will copy
smaller messages into another buffer and then send the
message. According to the MPI semantics, the send can
be marked complete once the send buffer is free again.
This means that the PMPI interface is disconnected from
the actual network operations and and cannot capture
the network traffic behavior accurately.

B. Proposed Profiling Design

In this subsection we explore network profiling op-
tions for tracking message patterns across processes on
the same node.

1) Tracking Messages: The only entities that know
when messages are sent in InfiniBand are the HCA
and the MPI library. Since InfiniBand is an OS-bypass
network there are no kernel calls in the send/receive
path. Thus, there is no opportunity to track such usage
in the kernel as it is possible with TCP/IP.

The HCA would be an ideal place to track these send
requests, however, there are not any options given by the
hardware manufacturers to get this information.

Thus, we propose to use profiling from within the
MPI library of each process. The MPI library knows
when each message is sent. We can record a CPU
timestamp for each message that the MPI library sends.
Thus, messages can be tracked for every process on a
node that is using a given HCA.

2) Message Send Completion: As discussed in Sec-
tion III, InfiniBand has an asynchronous interface for
sending and receiving messages. When a message send
is complete, an entry is placed into the CQ. Unless the
library uses an interrupt to detect completion, which
incurs high overhead, the only method is to poll the CQ
for the completion. Thus, since MPIs over InfiniBand

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

1M256K64K16K4K1K256641641

B
a
n
d
w

id
th

 (
M

B
/s

e
c
)

Message Size (bytes)

1 Pair
2 Pairs
4 Pairs
8 Pairs

18 Pairs

Figure 2. Aggregate bandwidth with increasing numbers of concur-
rent pairs

generally poll only when in the MPI library, the time
when the send completion is noticed may be signifi-
cantly after when the message was sent.

3) Extrapolating Data: Since the message comple-
tion data may not be current, we devise a method for
determining message completion after collecting all data
from each of the processes on a node.

We base our model of the network based on a few
experiments. We take throughput numbers of increasing
numbers of pairs of processes. For example, we collect
aggregate bandwidth from concurrent bandwidth tests
between multiple pairs of processes. Figure 2 shows
an example of this data. This allows us to determine
approximate completion times for messages.

For example, if Process 0 of Job A started sending
out a message whose size is L through network port of
Node 0 at time t start, assume the bandwidth is w, then
Process 0 will occupy this network port of Node 0 until
t start + L/w. But if Process 1 on Node 0 started another
sending action before t start + L/w, Process 1 has to
“wait” until Process 0 finished transferring its message,
so the bandwidth is approximated based on the above
throughput experiments. We can roughly approximate
the bandwidth using a modified leaky bucket method.

Developing a model for the reception of messages
is somewhat more difficult. We can use the completion
time for a base and then use a reverse approximation in
much the same way as the send operations.

From this data we can develop a timeline of the
communication on a single node. This gives insight into
the performance of how applications perform when they
share a network interface. We believe such profiling
would also be beneficial to other application writers to
understand how to better utilize the network within even

a single job.

VI. EXPERIMENTAL EVALUATION

In this section we evaluate the concept of mixed
workload scheduling. We first describe the experimental
platform and methodology and then look into the per-
formance of different application kernel combinations
using our profiling tool.

A. Experimental Setup

Our experimental platform is a 128-core InfiniBand
Linux cluster. Each of the 8 compute nodes has 4
sockets each with a Quad-Core AMD Opteron 8350
2GHz Processor with 512KB L2 cache and 2 MB L3
cache per core. Each node has a Mellanox MT25418
dual-port ConnectX HCA. InfiniBand software support
is provided through the OpenFabrics/Gen2 stack [13],
OFED 1.3 release.

We implement our profiling design into the MVA-
PICH2 MPI library. MVAPICH2 [14] is an MPI-2
implementation over InfiniBand, which is optimized for
InfiniBand. MVAPICH and MVAPICH2 are currently
being used by more than 940 organizations worldwide.

B. Methodology

In this evaluation we use three different execution
modes:

• Exclusive-Full: This is the traditional job schedul-
ing where each node only contains processes from
a single job.

• Exclusive-Half: This combination is the same as
Exclusive-Full, but the processes are spread out
over twice as many nodes and the half the cores
of each node are idle. This shows the maxiumum
speedup possible using a mixed workload.

• Shared: This is the proposed mixed workload
scheduling where there are two jobs sharing each
node.

Figure 3 is a simple example that shows the difference
between Shared mode and Exclusive-Full mode. Job A
and Job B both have 64 processes. In the exclusive
mode, Job A exclusively occupies node 1 to node 4,
Job B exclusively occupies node 5 to node 8; In Shared
mode, Job A and Job B share each node by taking up
half of the CPUs separately.

Figure 3(b) shows a basic configuration of Shared
mode. However, more complicated configurations, such
as unbalanced cores distribution based on the commu-
nication pattern of different combinations, or k (>2)
jobs combination are also possible. However, in the
rest of this paper, we will restrict our study to the case
of only two jobs per node to explore the existence of

Table I
AVERAGE LOOP COMMUNICATION EXECUTION TIME FOR THE

MICROBENCHMARK

Exclusive-Half Shared Exclusive-Full
Sleeping time = 0s 0.14s 0.27s 0.27s
Sleeping time = 1s 0.14s 0.18s 0.27s

network contention and its effects. The investigation of
more complicated combinations will be left as future
work. Also, since AMD Opteron 8350 in our experiment
platform has a 2MB L3 cache shared by CPUs on the
same socket, we map processes of the two different jobs
on different sockets, in order to avoid possible effects
of the shared L3 cache.

C. Microbenchmark Evaluation

To explore the existence and strength of link con-
tention in multicore systems, we use a microbenchmark
to test the bandwidth and communication time. The mi-
crobenchmark performs MPI_Alltoall functions and
sleep operations (to simulate computation) in a loop. In
every loop, every process sleeps for n second(s) and then
performs one MPI_Alltoall and one MPI_Barrier.
Since this microbenchmark focuses only on exchanging
messages, no file I/O or computation exists. We run the
microbenchmark in three settings as mentioned in Sec-
tion VI-B: 1) Exclusive-Full mode: the microbenchmark
runs with 64 processes on 8 nodes, on each node, all the
16 cores are used by this microbenchmark. 2) Exclusive-
Half mode: we have the microbenchmark running with
64 processes on 16 nodes, on each node, only half
of the cores are used and another half of the cores
are idle; 3) Shared mode: we have two of the same
microbenchmarks (each has 64 processes) running at the
same time on 16 nodes, on each node, cores are equally
divided for two jobs. The result shown in Table I is the
average time length for an interation in each of the three
modes.

From the communication time result, we observe that
when no sleep (or computation) exists, communication
times of Exclusive-Full mode and Shared mode are
nearly identical, and both are twice of that of Exclusive-
Half mode. This is because when the sleeping time is
set to 0, the MPI_Alltoall function will be running
constantly, leading to continous utilization of network.
As a result, this combination of the two microbench-
marks falls into the first category of combinations as we
present in Section IV: dual communication-intensive.
Thus the shared mode can not provide any benefit since
the utilization of network are in the same pattern as
in exclusive mode. At the same time, the number of

Job A 64 processes

Job B 64 processes

Job A 32 of 64 processes

Job B 32 of 64 processes

Job A 32 of 64 processes

Job B 32 of 64 processes

(a) Exclusive-Full Mode

(c) Shared Mode

Node 1 Node 2 Node 3 Node 4

Node 5 Node 6 Node 7 Node 8

Node 1 Node 2 Node 3 Node 4

Node 5 Node 6 Node 7 Node 8

(b) Exclusive-Half Mode

Node 7

Job A 32 of 64 processes

Job A 32 of 64 processes

Node 1 Node 2 Node 3 Node 4

Node 5 Node 6 Node 8

Figure 3. Exclusive-Full vs. Exclusive-Half vs. Shared modes

processes who are fighting for the network port at the
same time in Exclusive-Half mode is only half of that
in exclusive and shared mode, which results in the half
communication time.

However, when the sleep time (or computation) is
increased to 1 second, the average loop time for Shared
mode is reduced to 0.18 seconds, which is a 33% per-
cent improvement. This improvement can be explained
by a contrast between Figure 4(a) and Figure 4(b),
which are the profiling results for these microbench-

marks. The network utilization information was tracked
and plotted for a single node. In this figure the x-axis is
time and y-axis represents each process. From bottom
up, each row shows how frequently a single process on
this node utilizes the network port to send out data, from
process 0 to process 15.

From Figure 4(a), we can observe that synchroniza-
tion exists between all the 16 processes on the same
node. But in shared mode (Figure 4(b)), the synchro-
nization has been limited only between 8 processes on

(a) Exclusive-Full Mode (b) Shared Mode

Figure 4. Node-Level Network Usage

the same node. The communication pattern of the two
microbenchmarks now complement with each other. As
the sleeping time increases, the combination of two
microbenchmarks moves from dual communication-
intensive to communication compatible.

D. Application Evaluation

In the microbenchmark evaluation section, the re-
sults show that when the application is very network-
intensive, the shared mode doesn’t provide any benefit.
However, real applications seldom perform communica-
tion all the time. Most parallel applications fall into a re-
peated loop of communication and computation, which
is decided by the parallel algorithm of the application.

To explore the real effects of this shared model
on various workloads, we evaluate the NAS Parallel
Benchmarks on a quad-core AMD multicore clusters.
Since we are using NUMA AMD systems and processes
within the same job are pinned to the same CPU sockets,
the memory bandwidth between processes is isolated
between jobs. Thus, the performance differences seen
are primarily due to the network traffic.

The NAS Parallel Benchmarks (NPB) [15] are a small
set of application kernels designed to help evaluate the
performance of parallel supercomputers. The bench-
marks, which are derived from computational fluid
dynamics applications, consist of five kernels and three
pseudo-applications. We run in all of the three modes
described earlier.

1) Maximum Performance Improvement: Table II is
a comparison of the results for Exclusive-Full and
Exclusive-Half modes. By comparing these results we
can determine the maximum possible performance that
the Shared mode configurations are capable of acheiving

since in the Exclusive-Half mode half of the cores on
the node are idle. We see that for CG, FT and IS there
are large performance improvements that are possible if
we can reduce the contention with the runtimes reduced
to 75%, 89.4% and 74.8% of the normal Exclusive-Full
configuration.

This difference in performance is dependant on the
communication pattern of these benchmarks. EP, which
is a compute-bound program with little communication,
has no link contention even in the Exclusive-Full mode
and no improvement is possible even if half of the
cores are idle. For other benchmarks that have more
significant communication demands, such as FT, which
performs an All-to-all, significant performance improve-
ment is possible.

2) Mixed Workload Performance: In this set of ex-
periments we evaluate each of the NAS benchmarks run-
ning with each of the other benchmarks. In this case one
benchmark is run and then another benchmark from the
suite is run in the background multiple times so no cores
are ever idle. Table III shows the percentage of Shared
mode execution time divided by Exclusive-Full mode
execution time, in every possible combination. There is
a significant improvement for many application combi-
nations with very little degradation of performance in
the worst case. This shows that using mixed workloads
can improve overall performance significantly in many
cases.

3) Understanding Mixed Workload Performance:
While the performance of the mixed workload (Shared)
configuration is very compelling, in this section we
further look into how this is achieved. We use the
profiling tool that we described in Section V to look
at the detailed network usage.

Table II
BENCHMARK RUNTIME FOR EXCLUSIVE-FULL AND EXCLUSIVE-HALF

Benchmark
BT CG EP FT IS LU MG SP

Exclusive-Full 198.22 34.82 28.53 44.19 3.10 180.46 15.14 196.29
Exclusive-Half 196.71 26.17 29.07 38.89 2.29 179.86 14.78 188.84

Half / Full 99% 75.2% 99% 88.0% 73.9% 99.6% 97.6% 96.2%
Table III

PERCENTAGE OF SHARING MODE RUNTIME COMPARED WITH EXCLUSIVE-FULL MODE

Measured Application
BT CG EP FT IS LU MG SP

Background
Application

BT 99.1% 77.3% 100.2% 91.9% 81.6% 99.7% 98.4% 96.6%
CG 100.5% 101.8% 100.5% 96.0% 90.2% 100.9% 100.8% 102.0%
EP 98.8% 75.2% 99.6% 93.8% 80.1% 100.1% 97.9% 97.2%
FT 99.4% 84.3% 99.9% 89.6% 87.6% 100.5% 99.5% 98.9%
IS 100.2% 79.0% 99.1% 91.0% 84.4% 99.6% 98.8% 96.2%

LU 99.2% 76.2% 100.0% 88.0% 80.7% 100.4% 98.9% 97.0%
MG 99.0% 77.3% 100.4% 89.4% 73.9% 99.6% 98.1% 100.5%
SP 99.6% 79.2% 100.4% 93.2% 86.7% 100.3% 97.6% 99.5%

We first examine the performance of the FT bench-
mark, which has significant performance benefit in
all combinations. Fig. 5(a) shows the 64-process FT
benchmark in the Exclusive-Full mode running. As in
the microbenchmark section, the network utilization
information was tracked and plotted for a single node.
In this figure the x-axis is time and y-axis represents
each process. From bottom up, each row shows how
frequently a single process on this node utilizes the
network port to send out data, from process 0 to process
15. The figure clearly shows synchronization among
processes belonging to the same job result network
contention: all processes need the network port during
the same short period of time, resulting in severe
overlaps and delays in transmission of message. It is
also important to note that the network is idle for
a significant amount of time – it is effectively being
wasted since there is a bottleneck for other parts of the
application.

Fig. 5(b) shows the same FT benchmark, but in
Shared mode. Here we have two different 64-process
FT benchmarks split onto twice the number of nodes,
and occupy 8 cores per node. The axes are the same as
in the previous figure and denote the network usage by
different processes. From bottom up, processes 0 to 7
show the network port usage of the first FT benchmark
while processes 8 to 15 show the network port usage of
the second FT benchmark. This figure is quite different
from exclusive mode. Since the synchronization only
exists between processes of the same job, processes
are divided into two groups. After the first group of
conflicts, the communication periods of the two groups
of processes tends to stagger with each other. Then

the delay caused by waiting for a free network port
is reduced to half during the communication period.
Though one of the job is slower than another, the final
execution time of both of them are shorter than that
in exclusive mode. From Table III we can observe that
using shared mode we achieve a runtime of 89.6% of
the Exclusive mode. Referring to the ideal speedup from
Table II we see that the ideal is only 89.4%, so we have
achieved over 99% of the possible improvement with
this combination.

The big improvement is due to the basic communi-
cation pattern of the FT benchmark. The concentration
of large message transmission in short period of time
makes it perfect for running with another benchmark in
the Shared mode with it.

Not all the benchmarks have this same pattern. EP is
an extreme example, which seldom utilizes the network
due to the rare communication between processes. So
the mixed workload Shared mode can not bring any
benefits to EP. However, the infrequent communication
of EP means that it can be an ideal partner for another
benchmark. Figure 5(c) shows the network port utiliza-
tion when EP and CG are run in Shared mode (both EP
and CG are 64-process jobs). The CG benchmark is at
the extreme from EP: the CG kernel is communicating
nearly all the time. As a result, when CG shares nodes
with EP, it is as if CG is running on the nodes with half
of the cores idle. This can be shown by the result in
Table II and Table III: CG has the best performance
when combined with EP, which results in a 26.6s
execution time, nearly the same time as in Exclusive-
Half mode.

To explore why some applications do not benefit from

(a) Exclusive-Full FT/FT (b) Shared FT/FT

(c) Shared CG/EP (d) Shared FT/LU

Figure 5. Node-Level Network Usage

the mixed-workload Shared mode, we study the commu-
nication pattern when combining FT and LU in Shared
mode. From the network traffic diagram in Figure 5(d),
LU should be able to improve due to the computation
period in FT. However, the result in Table III shows that
the performance of LU is the same as in Exclusive-
Full regardless of which benchmark it is paired. This
can be explained by examining the proportion of large
messages, which will often overlap in the network port
utilization, in LU and FT separately. After profiling the
message size for these benchmarks, we find out that FT
has large message proportion of 24% while LU only
has 0.6%. As a result, LU can be recognized as one
of the applications in the second category showed in
Section IV, which has rare overlapping communication
even in the exclusive mode due to the small message

sizes. Thus, there is little room left for improvement in
Shared mode to improve the performance of LU and
other similar applications.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have demonstrated the potential of
mixed workloads running on shared sets of nodes. We
show that significant improvement can be gained when
applications are paired such that the network contention
is lessened. As part of our work we designed a profiling
interface within the MPI library to track when messages
are sent and the network is busy. With this data we can
evaluate which applications are complementary in terms
of network usage.

We first focused on microbenchmarks and saw how
shared network usage of complementary applications
could increase the available bandwidth for a process

when it needed it. We evaluated the NAS Parallel
Benchmarks on a 128-core InfiniBand cluster and
showed that through these mixed workloads the exe-
cution times can be reduced by up to 20%. We run
with Exclusive-Full, Exclusive-Half and Shared modes.
This allowed us to measure the effects of combining
different applications to eliminate the contest for con-
tention of links connected nodes between processes of
same application. The compared result shows that the
shared mode can achieve the same performance as half-
exclusive mode in the ideal situation.

To further investigate the deeper reason of the differ-
ent improvement percentage in different combinations,
we used the results from our network profiling tool to
look at the communication pattern of different NAS
Parallel Benchmarks. The result proves that shared
mode can help to break the synchronization between
processes on the same node and then reduce the network
contention, for certain combinations of benchmarks.

In the future, we plan to utilize the time-profiling
information to implement job scheduler to automatically
match the best suitable group of jobs. The job scheduler
will first trace and record the time-profiling information
of different applications. Then it will match all the
existing applications in pairs to reduce the overlapping
of usage of network to minimum. We also plan to
explore more into the sharing mode such as unbalanced
CPU distribution and multiple job striping.

ACKNOWLEDGMENTS

This research is supported in part by U.S. Department
of Energy grants #DE-FC02-06ER25749 and #DE-
FC02-06ER25755; National Science Foundation grants
#CNS-0403342, #CCF-0702675, and #CCF-0833169;
grant from Wright Center for Innovation #WCI04-010-
OSU-0; grants from Mellanox, Intel, Cisco, QLogic
and Sun Microsystems; Equipment donations from Intel,
Mellanox, AMD, Advanced Clustering, Appro, QLogic,
and Sun Microsystems.

REFERENCES

[1] J. Weinberg and A. Snavely, “User-Guided Symbiotic
Space-Sharing of Real Workloads,” in Proceedings of the
20th annual international conference on Supercomputing
(ICS ’06), June 2006.

[2] MPI: A Message-Passing Interface Standard, Message
Passing Interface Forum, Mar 1994.

[3] S. Kim, D. Chandra, and Y. Solihin, “Fair Cache Sharing
and Partitioning in a Chip Multiprocessor Architecture,”
in Proceedings of the 13th International Conference
on Parallel Architectures and Compilation Techniques
(PACT ’04), September 2004.

[4] Y. Jiang, X. Shen, C. Jie, and R. Tripathi, “Analysis and
Approximation of Optimal Co-Scheduling on Chip Mul-
tiprocessors,” in Proceedings of the 17th International
Conference on Parallel Architectures and Compilation
Techniques (PACT ’08), October 2008.

[5] J. Liedtke, M. Volp, and K. Elphinstone, “Preliminary
Thoughts On Memory-Bus Scheduling,” in Proceedings
of the 9th workshop on ACM SIGOPS European work-
shop: beyond the PC: new challenges for the operating
system (EW 9), September 2000.

[6] M. Kondo, H. Sasaki, and H. Nakamura, “Improving
Fairness, Throughput and Energy-Efficiency on a Chip
Multiprocessor through DVFS,” in SIGARCH Computer
Architecture News , Volume 35 Issue 1, March 2007.

[7] J. Cong, K. Gururaj, and G. Han, “Synthesis of Recon-
figurable High-Performance Multicore Systems,” in Pro-
ceeding of the ACM/SIGDA international symposium on
Field programmable gate arrays (FPGA ’09), February
2009.

[8] T. Sondag, V. Krishnamurthy, and H. Rajan, “Predictive
Thread-to-Core Assignment on a Heterogeneous Multi-
core Processor,” in Proceedings of the 4th workshop on
Programming languages and operating systems (PLOS
’07), October 2007.

[9] InfiniBand Trade Association, “InfiniBand Architecture
Specification,” http://www.infinibandta.com.

[10] J. Vetter and C. Chambreau, “mpiP: Lightweight, Scal-
able MPI Profiling,” http://mpip.sourceforge.net/.

[11] Sun Microsystems, “Sun Studio Performance Analyzer,”
http://developers.sun.com/sunstudio/overview/topics
/analyzerindex.html.

[12] W. E. . Nagel, M. W. A. Arnold, H.-C. Hoppe, and
K. Solchenbach, “VAMPIR: Visualization and Analysis
of MPI Resources,” http://www.vampir.eu/.

[13] OpenFabrics Alliance, “OpenFabrics,”
http://www.openfabrics.org/.

[14] Network-Based Computing Laboratory, “MVAPICH:
MPI for InfiniBand,” http://nowlab.cse.ohio-
state.edu/projects/mpi-iba.

[15] NASA Advanced Supercomputing,
“The NAS Parallel Benchmarks,”
http://www.nas.nasa.gov/Resources/Software/npb.html.

