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ABSTRACT

There has been an unprecedented increase in the number of large scale comput-

ing clusters in the recent past. The advent of multi-core processors and high speed

interconnects such as InniBand, which provide excellent performance at a reasonable

cost, have contributed to this growth. However, the failure rate on these clusters has

increased due to the increase in the number and scale of components. Thus, it has

become vital for such systems to have fault tolerance capabilities.

Checkpoint / Restart and Job Migration are commonly used techniques for fault

tolerance through failure recovery in computing clusters. Since MPI is the de-facto

standard for parallel programming, it is an excellent candidate where these fault

tolerance features can be implemented without exposing the complexity of the imple-

mentation to end user applications. Furthermore, failure detection and propogation

of the fault information is an equally important topic of research in large peta-scale

clusters.

In this thesis, we propose a design for a Checkpoint / Restart framework for

MPI that facilitates the easy addition of new communication channels into the ex-

isting framework. Additionally, we also propose the use of the Fault Tolerant Back-

plane (FTB), provided by the Coordinated Infrastructure for Fault Tolerance Systems
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(CIFTS), to implement Checkpoint / Restart and Job Migration mechanisms. We

also design the InniBand and IPMI Fault Monitoring FTB components and demon-

strate their use in detecting faults in the HPC system, and to trigger the Checkpoint

/ Restart or Job Migration mechanisms, as necessary. These designs are evaluated

using a range of benchmarks and applications. The designs developed as a part of

this thesis are available in MVAPICH2, a popular open source MPI implementation

with almost a thousand active users.
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CHAPTER 1

INTRODUCTION

Large scale compute clusters continue to grow to ever-increasing proportions. The

Top500[15] list of high performance machines in the world indicates that the total

core count of all the systems on the list as of June 2009 is almost ten times the core

count as of June 2004. There has been an order of magnitude increase in the number

of cores in the last four years. Clearly, this trend is expected to continue for many

years to come.

The increase in the number of cores is mainly due to the advent of Multi-core pro-

cessors. The performance gains that could be obtained in traditional single core pro-

cessors by employing schemes such as frequency scaling and instruction pipelining was

greatly diminished due to problems in power consumption, heat dissipation and funda-

mental limitations in exploiting Instruction Level Parallelism. Multi-core processors

and the availability of commodity high speed interconnects such as InfiniBand[5] has

resulted in the trend of using such large clusters.

Message Passing Interface (MPI) is the de-facto programming model used on such

large scale clusters to write parallel applications. Most scientific applications that

study Molecular Dynamics[3, 2], Finite Element Analysis[9], etc as well as Mathe-

matical Libraries used in such applications[13, 14] are written in MPI.
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The following section provides an overview of MPI and the features it provides.

1.1 Overview of Message Passing Interface

Message Passing Interface (MPI) is a language and machine independent commu-

nication paradigm that is predominantly used in parallel computing for inter-process

communication. The MPI standard is defined by the MPI Forum[37]. MPICH2[10],

MVAPICH2[11] and OpenMPI[29] are some of the popular MPI implementations.

The first version of the MPI standard (MPI-1), was defined in the early 90s. MPI-1

defined the basic point-to-point and collective communication interfaces. The second

version of the MPI standard (MPI-2) was defined in 2003. MPI-2 introduced several

extensions to the existing MPI-1 standard, such as the Dynamic Process Management

interface, the Remote Memory Access interface and MPI File I/O interfaces.

In the following sections, we first provide a basic overview of the MPI communi-

cation model, Point-to-Point and Collective interfaces.

1.1.1 MPI Communicators

An MPI program is comprised of one or more processes, each of which can com-

municate with other processes. Every such MPI Process is identified by a [Rank,

Process Group] tuple. The MPI Communicator encapsulates the process group in-

formation for the MPI process. All MPI operations are performed in the context of

a communicator. MPI provides interfaces through which MPI processes can retrieve

their ranks within a given communicator. All MPI communication primitives use the

rank and the context information provided by a communicator to deliver messages
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Figure 1.1: Overview of MPI
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to the target. MPI COMM WORLD is a pre-defined communicator that facilitates

communication among all processes within a MPI program.

1.1.2 Point-to-Point Communication

Two MPI processes can exchange messages using the Point-to-Point communi-

cation interface. In the Two-Sided Communication Model defined by MPI-1, the

sender sends messages using a “Send” function. The “Send” function accepts the

send buffer, the size and type of data being transmitted (CHAR, INT, FLOAT, etc),

a tag for the data, and the receiver’s rank and communicator. The receiver uses a

“Receive” function to receive messages. The “Receive” function accepts the receive

buffer, the size and type of data being received, the expected tag, and the sender’s

rank and communicator. The MPI Send and MPI Recv interfaces are used for block-

ing communication. These functions return only after the data transfer is completed.

The MPI Isend and MPI Irecv interfaces are used for non-blocking communication.

These functions initiate the data transfer and return immediately with a “Request

Handle”. This handle can be used to wait for the data transfer to complete using

the MPI Wait interface. In the One-Sided Communication Model defined by MPI-2,

the source process can perform a “Put” or “Get” on the target process’s “Window”,

without the involvement of the target. Every MPI process can create a window using

the MPI Win create interface, which returns a “Window Pointer”. The source can

use this window pointer in the MPI Put or MPI Get interfaces, along with the target

rank, buffer, size and type of data to transfer data to the target window.

4



Figure 1.2: Point to Point Communication in MPI

5



1.1.3 Collective Communication

Collective operations are communication operations performed by a group of MPI

processes that are part of a given communicator. The MPI standard defines several

collective operations. MPI Bcast is used to broadcast a certain message from one

rank to all others. MPI Alltoall is used by a set of processes to send data to all their

peers and receive data from all the peers. MPI Barrier, MPI Reduce, MPI Allreduce,

MPI Allgather are examples of other collectives operations.

1.2 Fault Tolerance in MPI

As computing clusters continue to increase in size, the Mean Time Between Fail-

ures (MTBF) for the cluster is diminishing rapidly. Studies[32] indicate that the

MTBF for large scale clusters has reduced from days to a few hours. Many scientific

MPI applications take anywhere from a few hours to a couple of days to complete their

computation. Such applications whose average execution time exceeds the MTBF of

the cluster can expect to see multiple failures during the lifetime of their execution.

Thus, it becomes critical for such systems to be equipped with fault tolerance capa-

bility.

Although the MPI standard defines a rich set of primitives for data communi-

cation, the current MPI-2 specification does not provide any mechanisms for fault

tolerance. As a result, most MPI implementations are designed without any sup-

port for fault tolerance. If the system experiences an error during the execution of

a long running application, the application aborts and has to be executed from the

6



Figure 1.3: Collective Communication in MPI
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beginning. A few MPI implementations [11, 29, 42] provide fault tolerance through

rollback recovery using Checkpoint/Restart.

The following section provides a brief overview of Checkpoint/Restart.

1.2.1 Overview of Checkpoint/Restart

Checkpointing is the process of saving the state of a program at a given point

of time during its execution, usually to stable storage, so that the program may be

reconstructed at a later point in time. The process of reconstructing the program

from a checkpoint is referred to as Restart.

Berkeley Lab’s Checkpoint / Restart (BLCR) package[25] is a popular Checkpoint

/ Restart solution that is used by many MPI implementations. Checkpoint / Restart

has many application in the context of High Performance Computing[24].

Multi-user Scheduling: HPC Clusters usually employ a job scheduler which

enables multiple users to share the cluster’s resources. Based on the scheduling policy

used by the scheduler, there may be a necessity to preempt a long running job to run

a shorter job that arrived much later. Checkpoint/Restart can be used to achieve

this preemption without loss in computation time.

Application Migration: Well designed Checkpoint/Restart schemes allow pro-

cesses to be checkpointed on one node and be restarted on another. This feature can

be exploited to achieve process migration on computing clusters.

Application Backup: Checkpointing provides the backbone for fault tolerance

through rollback recovery. An application maybe checkpointed periodically so that

only the computation performed after the most recent checkpoint is lost in the event of

8



a failure. The rest of the discussion focuses on this application of Checkpoint/Restart.

1.2.2 Coordinated Infrastructure for Fault Tolerance Sys-
tems (CIFTS)

Considerable research has been conducted with respect to Fault Tolerance for sys-

tem software, including the Message Passing Interface (MPI), Network Interconnects,

File Systems, resource management infrastructure and applications. Most of the indi-

vidual hardware and software components within the cluster implement mechanisms

to provide some level of fault tolerance. However, these components work in isolation.

This lack of system-wide fault tolerance features has emerged as one of the biggest

problems on large HPC systems. To overcome this problem, a Coordinated Infrastruc-

ture for Fault Tolerance [1] has been designed to improve the level of fault-awareness

within HPC systems.

The CIFTS Fault Tolerance Backplane[31] is an asynchronous messaging back-

plane that provides communication between the various system software components.

The Fault Tolerance Backplane (FTB) provides a common infrastructure for the Op-

erating System, Middleware, Libraries and Applications to exchange information re-

lated to hardware and software failures in real time. FTB can be used to tie various

system components together as shown in Figure 1.4.

1.3 Problem Statement

Although some effort has been made towards providing fault tolerance to MPI

based parallel programs using checkpointing and rollback recovery, almost all the work
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Figure 1.4: FTB Framework (Courtesy the CIFTS Team)
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exclusively focus only on the network channel. The work in [40] focuses on provid-

ing Checkpoint/Restart capabilities for MPI programs communicating over TCP/IP.

The work in [33] focuses on providing Checkpoint/Restart capabilities for MPI pro-

grams that use Myrinet. The work in [30] focuses on providing Checkpoint/Restart

capabilities for MPI programs that communicate over InfiniBand. However, with the

advent of multi-core processors, the performance of intra-node communication can be

optimized in MPI implementations by using intra-chip and inter-chip operations. As

a result, the solutions proposed in the works mentioned above is sub-optimal, since

the intra-node shared memory channel cannot be used with Checkpoint/Restart.

Furthermore, as discussed in Section 1.2.2, most individual hardware and software

components within the cluster work in isolation, without sharing information about

the faults they encounter.

In this work, we try to address these shortcomings and specifically aim to answer

the following questions:

1. How can we design a Checkpoint/Restart Framework for a Multi-channel MPI?

2. How can we design Checkpoint/Restart and Job Migration schemes for MPI

using the CIFTS Framework?

3. How can we monitor the health of the InniBand network in the HPC Cluster,

as well as the health of the HPC system as a whole?

4. How can we notify middle-ware about impending failures to take corrective ac-

tion?

11



1.4 Organization of Thesis

The rest of this thesis is organized as follows. In Chapter 2, we present the

design of a Checkpoint/Restart framework for MPI to checkpoint applications that

use multiple communication channels. We also show that our design provides high

performance as well as exibility with respect to process re-distribution after restart.

In Chapter 3, we present the design for a Coordinated Fault Tolerance Framework

for MPI using the Fault Tolerance Backplane. We design and evaluate schemes for

Checkpoint/Restart and Job Migration using FTB. We also design the FTB-IB and

FTB-IPMI Components that monitor the health of the InniBand Network and the

HPC system as a whole. We present our conclusions and the direction of future work

in Chapter 4.
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CHAPTER 2

DESIGNING A MULTI-CHANNEL CHECKPOINT /
RESTART FRAMEWORK FOR MPI

Ultra-scale computing clusters with high speed interconnects, such as InfiniBand,

are being widely deployed for their excellent performance and cost effectiveness. How-

ever, the failure rate on these clusters increases along with increase in the number of

augmented components. Thus, it becomes critical for such systems to be equipped

with fault tolerance capability. The previous work[30] uses Checkpoint/Restart to

save the state of the entire MPI job so that rollback recovery can be used to recover

from a failure. However, this work only focuses on the network channel. MPI imple-

mentations optimize the performance of intra-node communication by using intra-chip

and inter-chip operations. As a result, the solution proposed in the previous work is

suboptimal for multi-core clusters since the intra-node shared memory channel cannot

be used with Checkpoint/Restart.

In this chapter, we present the design for a framework to checkpoint multiple

communication channels in MPI. The framework provides high performance as well

as the flexibility to redistribute processes after restart. The design allows new com-

munication channels to be easily incorporated into the framework.
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The rest of the chapter is organized as follows: Section 2.1 provides the necessary

background. Section 2.2 describes the framework. Section 2.3 discusses the design

issues and challenges. Section 2.4 evaluates the performance of the design. Section

2.5 talks about the related work. Finally, we conclude and summarize the results in

section 2.6.

2.1 Background

Checkpointing and rollback recovery is the most commonly used technique for

system-level failure recovery in distributed systems. While various other techniques

using application-level checkpointing[41, 20, 21] exist, system-level solutions are still

popular since they are completely transparent to applications. A detailed compar-

ison of various rollback recovery schemes can be found in [26]. Since MPI is the

de-facto standard for parallel programming, it is the ideal place to integrate system-

level failure recovery mechanisms and hide the complexity from end-user applications.

Earlier studies have targeted various checkpointing and rollback recovery schemes in-

cluding coordinated[30, 40] and uncoordinated checkpointing[17, 26]. In the context

of modern clusters with high speed interconnects, coordinated checkpointing has its

advantages. Uncoordinated checkpointing requires message logging, which adds con-

siderable overhead when the amount of network traffic is significant. Furthermore, un-

coordinated checkpointing is susceptible to the domino effect [39] where inter-process

dependencies may result in all processes rolling back to the initial state.

In our previous work[30], we proposed a coordinated Checkpoint/Restart solution

for MVAPICH2. Figure 2.1 shows the architecture that we proposed. It consists
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of a global Checkpoint/Restart (CR) Manager, Local CR Managers, the InfiniBand

Communication Channel Manager and the CR library.

Figure 2.1: MVAPICH2 Checkpoint / Restart Architecture

When the user requests a checkpoint, a “checkpoint request” is generated by the

global CR manager and is sent to the local CR managers which control the local MPI

processes. The local CR managers inform the InfiniBand communication channel

managers which is part of the MPI process. The InfiniBand communication channel

manager then locks down the all the communication, including drain out and buffer

all in-fly network messages and release the network resources. After that it gives

a callback to the local CR manager to indicate that it is safe to take individual

checkpoint. The local CR manager then invokes the CR library to checkpoint the
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processes. Our implementation uses Berkley Lab’s Checkpoint Restart package[28]

as the the CR library. Once the process state has been locally checkpointed, the local

CR manager informs the InfiniBand communication channel manager to reactivate the

network communication. Similarly, to restart an MPI job, a “restart request” is sent

from the global CR manager to all local CR managers. Upon receiving the request,

the local CR managers launch the local MPI process through BLCR and reactivates

the network by notifying the InfiniBand communication manager. As it can be seen,

apart from saving local process state, a very important step of coordinated checkpoint

is to handle the communication channels to make sure all individual checkpoints are

taken at a consistent point.

However, this solution, like many other works on coordinated Checkpoint/Restart,

selects a specific communication channel (InfiniBand in our, case) and forces all

communication through this channel. This is not an efficient solution, since MPI

implementations designed for multi-core clusters typically optimize communication

primitives to take advantage of shared memory for intra-node communication, and a

high speed interconnect for inter-node communication. The solution proposed in [30]

would nullify this advantage. Efficient intra-node communication is not only impor-

tant for point-to-point communication, but is also necessary to design highly efficient

collective operations [36].

However, having multiple active communication channels during Checkpoint/Restart

poses some interesting challenges which we describe in the following sections.
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2.2 A Framework for Checkpointing Multi-Channel MPI

In this section we present a framework for checkpointing a multi-channel MPI

library. Our approach is based on the coordinated checkpoint protocols. We first

describe the design challenges, followed by the overall framework.

Although many open-source MPI library including [30, 40] provide Checkpoint

/ Restart support through coordinated protocols, few have addressed checkpointing

MPI libraries which have multiple communication channels. To design an efficient

checkpoint framework for multi-channel MPI, we need to achieve the following objec-

tives:

• Abstraction: As we have described in Section 2.1, suspending and resuming

communication is one of the key aspects for coordinated checkpointing. In the

case of multiple communication channels, every communication channel needs

to be suspended and resumed separately. As a result, not only the code be-

comes extremely complex due to handling different channels, it also becomes

hard to extend the checkpoint functionality if new communication channels are

designed. Our aim is to design a clear abstraction between the general sus-

pend/resume functionality, which takes care of the coordination among peer

processes, and the channel specific plug-ins, which provides the necessary func-

tionality to checkpoint/restart individual communication channel.

• Process re-distribution: Checkpoint/Restart protocols achieve fault tolerance by

checkpointing the computing processes and restarting them on new computing

nodes if the old ones are malfunctioned. In this case, it is possible that the

process topology will be changed after restart. For example, processes located
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on the same nodes can be restarted on different ones. Processes communicate

through shared memory, in this case, may have to use network after restart.

Such process re-allocation poses additional challenges to checkpointing multi-

channel MPI, whereas these design complexities may not be there if only one

communication channel is used.

• Collective Operations: Collective operations optimized for multiple communi-

cation channel may also complicate the designs. For example, many collec-

tive operations can benefit from the more efficient intra-node shared memory

communication[36] to minimize the inter-node traffic through network, achiev-

ing better performance. With these designs, however, collective operations are

not simply built on top of point to point communication, but requires special

coordination among peer processes. Thus, while many existing solutions can

ignore additional complexities on collective operations, a multi-channel enabled

design must carefully address such co-ordinations.

Our proposed framework is illustrated in Figure 2.2.

As it can be seen in the figure, we design a CR layer to perform all the generic

checkpoint/restart functions. This CR layer will take care of the coordination with

other parts of the system. For example, the CR layer is responsible to receive the

checkpoint request from the job manager, notify each communication layer to sus-

pend/resume the traffic, decide on a consistent time to issue local checkpoint op-

erations using CR library (BLCR in our case). Many of these functions have been

discussed in Section 2.1. Additionally, the CR layer will have to keep track of the

process’ location. For example, when two processes which were originally on the same

node are restarted on different nodes, it should be able to detect this topology change
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Figure 2.2: Checkpoint / Restart Framework for multi-channel MPI
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and switch the communication channel accordingly from intra-node shared memory

to network, and vice versa. To ensure in-order message delivery while switching the

communication channels, the CR layer maintains two important queues, the outstand-

ing send queue and the temporary receive queue. Once the checkpoint phase starts,

all future send operations will be queued in the outstanding send queue. Meanwhile,

all the channels drain in-flight messages and deliver them to the temporary receive

queue. In this way, no message is left in any communication channel during the

checkpoint. Hence, it is safe to switch communication channels after restart.

Every channel that needs to be suspended during the checkpoint phase will have

to implement these functions and provide suspend/resume hooks to the CR layer

through a standard interface. The CR layer will invoke these interfaces when neces-

sary without having to worry about design details specific to the channel. In the next

section, we will address some detailed design issues to suspend and resume commu-

nication traffic.

2.3 Detailed Design and Challenges

In this section, we will look at the detailed design of the checkpoint/restart frame-

work for point-to-point and collective communication.

2.3.1 Point-to-point Communication

The new checkpoint/restart framework provides hooks that enables every com-

munication channel to register callback functions with the framework. The callback

functions of each of the communication channels are invoked by the framework during
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the checkpointing process. The framework allows each channel to register two call-

back functions for the purpose of providing the ability to checkpoint point-to-point

communication. The two functions, namely the “Suspend callback” function and the

“Resume callback” function are discussed in greater detail in the following sections.

Suspend Callback function

The suspend callback function is invoked by the checkpoint/restart framework

during checkpointing before the CR Library actually takes the checkpoint. It is the

responsibility of this function to prepare the channel before a checkpoint. Since

coordinated checkpointing is used, the suspend routine should ensure that no further

sends are issued to this channel and that there are no messages in flight. This will

ensure that all the processes are in a consistent state.

For the shared memory channel, the suspend callback function can be implemented

to work in two phases.

Initial Synchronization Phase: In the initial synchronization phase, the call-

back function acquires a mutex that the main thread tries to acquire before every

send operation. Once the callback function acquires the mutex, the main thread will

not be able to issue any sends. Hence, the main thread is forced to wait on the mutex

before proceeding with any communication.

Pre-checkpoint Coordination Phase: In the pre-checkpoint coordination phase,

a “Suspend” control message is sent on the shared memory communication channel.

Since the main thread can no longer perform sends and since the shared memory

channel guarantees in order delivery of packets, reception of the Suspend message

indicates that there are no pending messages on the communication channel. Hence,

the channel can be marked as Suspended. Once all the processes have marked all
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their channels as suspended, the shared memory region that was allocated for the

send/receive buffers are released.

At this point, the CR library can save the state of the process to a file on the disk

in the Local checkpointing Phase.

Resume Callback function

The resume callback function is invoked by the checkpoint/restart framework

during checkpointing after the CR library has taken the checkpoint, as well as during

restart after the CR library has restored the previously checkpointed process from

disk.

For the shared memory channel, the resume callback function re-initializes the

shared memory region and other necessary data structures that were destroyed by

the suspend callback function. Once the data structures are restored, a “Resume”

control message is then sent on the Shared Memory Channels to mark them as Active.

The callback function then releases the mutex that the suspend callback function had

acquired. Once the mutex is released, the main thread that was waiting on it now

acquires the mutex.

At this point, the state of the system is identical to what it was before the Suspend

callback was invoked. Hence, communication on all the channels proceed normally.

2.3.2 Challenges While Checkpointing Collective Operations

In the previous sections, we have seen how the checkpoint/restart framework han-

dles point-to-point communication. The same designs are not sufficient to guarantee

correctness of collective communication for the following reasons:
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• Collective operations are invoked by multiple processes. Hence, group synchro-

nization methods are required for coordination.

• Process skews can easily result in deadlocks as the checkpoint request may arrive

at different phases across multiple processes making locking/unlocking complex

to handle.

The rest of the section deals with the solution to these issues.

Synchronization and Consistency Mechanisms: It is imperative to guaran-

tee consistency across all the processes taking part in the collective operation. This

may not always be straightforward for collectives. For example, a typical shared

memory collective operation consists of the following three phases:

• Intra-node communication via shared memory

• Inter-node communication via network point-to-point channels, and

• Intra-node communication for the final part of the algorithm

The point-to-point scheme described in the previous section is sufficient to ensure

consistency of the processes when a checkpoint request arrives during the inter-node

communication phase of all the processes. However, a different protocol is necessary

when the request arrives during the intra-node communication phase of one of the

processes. This is described in the following section.

Avoiding Deadlocks: Unlike the point-to-point scheme, where the Checkpoint

/ Restart framework just invokes the callbacks registered by each channel, the col-

lectives explicitly have to notify the framework when it is all right to proceed with

the checkpointing, after the processes have been synchronized. Due to this two way
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communication between the collectives and the framework, there are possibilities of

deadlock. Hence, special care has to be taken while designing the locking mechanism

to avoid such scenarios.

The following section discusses the framework for checkpointing collective opera-

tions and the specifics of the implementation for the shared memory collectives.

2.3.3 Checkpointing Collective Operations

Figure 2.3 shows the overall operation of the collectives checkpointing. Due to the

nature of the collective operations, the semantics of the callback functions necessary

to implement checkpoint/restart are significantly different from those required for

point-to-point communication. To be able to checkpoint collective operations, two

callback functions, namely the “Request to Checkpoint callback” and the “Checkpoint

Complete callback” are introduced. These functions are discussed in detail in the

following sections.

Request to Checkpoint Callback function

The Request to Checkpoint callback function (RTC) is invoked by the local CR

manager when a checkpoint is requested to be taken. This call notifies the collectives

about the checkpoint request and returns immediately. Once the call returns, the

local CR manager waits for a notification from the collectives indicating that they

are ready to be checkpointed.

As discussed in the previous section, a different synchronization protocol is needed

during the intra-node communication phase. We use the following protocol in our

implementation.
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Figure 2.3: Checkpointing protocol for Shared Memory Collectives
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The processes involved in the intra-node operation stop their communication and

atomically increment a special field in the shared memory region. Each process con-

tinues to examine this field after incrementing it. Once the count becomes equal to

the number of processes on local node, it indicates that all processes have stopped

collective communication. At this point, all the local processes are in a consistent

state. A leader is now chosen to copy the contents of the shared memory region to a

local buffer and tear down the collectives’ shared memory region. Once this is done,

all the processes on the node call CTC and wait for checkpoint completion.

The notification is achieved thorough the “Clear to Checkpoint” function (CTC)

whose pointer is passed down to the collectives during the RTC Call. The collective

calls CTC when it is ready to be checkpointed. The checkpoint/restart framework

proceeds with the checkpointing after receiving the CTC.

The checkpoint/restart framework now invokes the CR library to take a check-

point.

Checkpoint Complete Callback function

Once the checkpoint has been taken, or when the processes have been restarted

from a previously taken checkpoint, the framework invokes the Checkpoint Com-

plete callback function (CC) to indicate that the checkpoint/restart operation has

completed.

When CC is invoked, processes in a collective operation that were waiting for the

checkpoint to complete are activated. The leader process initializes the collectives’

shared memory region and restores the data structures that it had saved in its local

buffer. Once the leader completes creating the shared memory region, all processes

return from the callback.
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At this point, the state of the system is identical to what it was before RTC was

invoked. Hence, communication on all the channels proceed normally.

2.4 Performance Evaluation

 0

 2

 4

 6

 8

 10

 12

4K 512 64 8 1

La
te

nc
y 

(u
s)

Message size (bytes)

NOCR
CR-MC

CR-NET
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In this section, we evaluate and analyze the performance of the proposed design

using point-to-point, collective, and application level benchmarks. In Sections 2.4.1,

2.4.2, and 2.4.3, the experiments were conducted without taking the checkpoints to
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examine the basic performance of the proposed design. Then we show checkpointing

overhead and time breakdown in Section 2.4.4, and process re-distribution effect in

Section 2.4.5.

Testbed: We use an Intel Clovertown cluster. Each node is equipped with dual

quad-core Xeon processor, i.e. 8 cores per node, running at 2.0GHz. Each node has

4GB main memory. The nodes are connected by Mellanox InfiniBand DDR cards.

The operating system is Linux 2.6.18 and the BLCR library used is version 0.6.5.

The file system we use is ext3 on top of a local SATA disk.

In this section we will use the following acronyms for different settings:

• NOCR - No Checkpoint/Restart support

• CR-MC - Checkpoint/Restart support with Multi-Channel enabled (design pro-

posed in this paper)

• CR-NET - Checkpoint/Restart support with only the Network channel enabled

(design proposed in [30])

It is to be noted that the shared memory channel is available in both NOCR and

CR-MC cases (both point-to-point and collectives), but not available in CR-NET.

2.4.1 Impact on Latency and Bandwidth

In this section, we examine the impact of the proposed CR-MC design on MPI

intra-node latency and bandwidth. The results are shown in Figures 2.4 and 2.5.

From Figure 2.4 we can see that compared with CR-NET, CR-MC reduces latency

significantly. The 4-byte message latency is reduced from 4.55us to 0.76us. This is
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because memory copy is much faster than network loopback. Similarly, Figure 2.5

shows that CR-MC increases bandwidth from 1510MB/s to 1954MB/s compared with

CR-NET which is 30% improvement.

Comparing with NOCR, we observe that CR-MC adds little overhead, only around

0.1us on latency and almost no overhead on bandwidth. The overhead comes from

acquiring and releasing CR locks. This indicates that with CR-MC, users can al-

ways run applications with CR support on and decide whether to take checkpoints

at run time. If the applications do not take checkpoints, then the performance is not

affected. On the other hand, if using CR-NET, the users need to make a decision

whether to use CR support at compile time, because with CR-NET the performance

may degrade even if no checkpoints are actually taken.

2.4.2 Impact on Collective Operations

In this section, we use IMB[6] to evaluate the performance impact of CR-MC on

collective operations. The results of MPI Allreduce and MPI Broadcast on 8 cores

and 64 cores are shown in Figures 2.6 and 2.7, respectively. It is to be noted that

MPI Allreduce in MVAPICH2 is implemented on top of point-to-point communica-

tion for smaller message sizes and uses a special shared memory aware algorithm for

larger message sizes. NOCR and CR-MC can exploit the faster intra-node point-to-

point communication for MPI Allreduce while CR-NET cannot. MPI Broadcast in

MVAPICH2 uses the special shared memory aware algorithm which has optimized

performance and is available in NOCR and CR-MC, but not in CR-NET.
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From Figure 2.6 we see that on a single node, CR-MC improves MPI Allreduce

latency over CR-NET by 90%, 67% and 32% for 16 byte, 4KB and 16KB messages,

respectively. The corresponding improvements for MPI Broadcast are 71%, 17% and

72%. On 64 cores, CR-MC improves MPI Allreduce latency by 85%, 63% and 33%

for 16 byte, 4KB and 16KB messages, respectively, and improves MPI Broadcast

latency by 76%, 22% and 37% (Figure 2.7). In all cases, CR-MC and NOCR perform

comparably.

2.4.3 Impact on Application Performance

In this section, we evaluate the performance of CR-MC using application level

benchmarks, NAS [45], and compare with NOCR and CR-NET. The normalized ex-

ecution time on 8 cores and 64 cores are shown in Figures 2.8 and 2.9, respectively.

From the figures we can see the improvements in latency, bandwidth, and collective

operations have been translated into applications. With CR-MC the execution time

is reduced by up to 6% compared with CR-NET, which indicates that users can have

both CR support and high performance at the same time by using the CR-MC design.

2.4.4 Checkpointing Overhead

In this section, we use the NAS Benchmark Suite [45] to measure the checkpointing

overhead. We run the BT and LU applications (Class C) with one checkpoint and

compare the execution time to that without any checkpoints. The result is shown in

Figure 2.10. It can be seen that the overhead is around 22% for BT and 16% for LU.

The size of the checkpoints is shown in Table 2.1.
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(a) 16 Bytes

(b) 4KB

(c) 16KB

Figure 2.6: Performance of MPI Allreduce and MPI Broadcast on 8 Cores (1x8)
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(a) 16 Bytes

(b) 4KB

(c) 16KB

Figure 2.7: Performance of MPI Allreduce and MPI Broadcast on 64 Cores (8x8)

33



0.4

0.6

0.8

1

1.2

N
o

r
m

a
li

z
e

d
 E

x
e

c
u

t
io

n
 T

im
e

0

0.2

CG.B.8 LU.B.8 MG.B.8

N
o

r
m

a
li

z
e

d
 E

x
e

c
u

t
io

n
 T

im
e

Benchmarks

NOCR CR-MC CR-NET

Figure 2.8: Performance Impact of Checkpointing NAS on 8 Cores (1x8)
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Table 2.1: NAS Checkpoint File Size
NAS Application File Size (MB)

BT 2368
LU 1280

The checkpointing time can be broken down into two parts. The coordination

time and the file writing time. The coordination time is less than 2% of the overall

checkpointing overhead. The file writing time is the dominant factor, which increases

with the size of the checkpoint data.

Figure 2.10: Performance Impact of Checkpointing NAS
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The file writing time can be reduced by using good parallel file systems (such as

Lustre, PVFS2, etc) and high performance storage nodes. Since the focus of this

paper is not to optimize the file writing time with parallel file systems, these results

are not included here.

2.4.5 Process Re-distribution

In this section, we present the results of process re-distribution. When faults

occur and applications need to restart from the previous checkpoint, the processes

may need to be re-distributed, e.g. processes previously on different nodes may be

re-distributed on the same node or the other way around. This is because the original

distribution may not be available after restart. In this set of experiments, we run MPI

latency and bandwidth tests with two processes on two different nodes initially, and

after 5 iterations we take a checkpoint, and restart the processes on the same node.

So starting from the 6th iteration, the processes get re-distributed. The message size

is 2KB. The results are shown in Figures 2.11 and 2.12. From the results we see that

our design allows process re-distribution and utilizes different channels dynamically.

2.5 Related Work

Fault tolerance in MPI has become a very popular topic in recent times. A lot

of research is aimed towards tolerating network faults, including LA-MPI[42], which

enables data reliability using multiple network interfaces. Many researchers have

proposed multiple schemes to achieve fault tolerance at the MPI application level,
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including work from FT-MPI[27] and from Schulz et al.[41]. From these, it is appar-

ent that a lot of work has been proposed for library based application transparent

checkpoint. For example, MPICH-V[17] has developed and evaluated several roll-back

recovery protocols. Their work includes uncoordinated checkpointing with message

logging[17, 18, 19], and coordinated checkpointing, such as Vcl[35], which is based

on the Chandy-Lamport Algorithm[22], and Pcl[23], which is based on coordinated

checkpointing. BLCR is a library that provides process-level checkpoint/restart[25]

capabilities. Many MPI libraries use BLCR for Checkpointing [40, 30] as well as effi-

cient failure recovery through process migration[44]. In our earlier work [30], we had

proposed a framework to checkpoint MPI programs over InfiniBand using a blocking

coordinated checkpointing protocol and BLCR.

Most of the work described above assumes a single communication channel. They

almost exclusively work on TCP/IP based MPI except our earlier work is on Infini-

Band. In reality, however, modern clusters are deployed with multi-core computing

nodes connected through high speed interconnects like InfiniBand. Thus, it is impor-

tant to design a checkpoint framework that can efficiently handle both inter-node and

intra-node communication. The work proposed here addresses just that, by proposing

a multi-channel enabled checkpoint/restart framework.

2.6 Conclusion

In this chapter, we have presented the design for a framework to checkpoint MPI

application that use multiple communication channels. We have also shown that
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the framework provides high performance, ease to incorporate new channels into the

framework, as well as the flexibility to redistribute processes after restart.
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CHAPTER 3

COORDINATED FAULT TOLERANCE FRAMEWORK
FOR MPI

High Performance Computing (HPC) Clusters continue to grow to ever increas-

ing proportions. However, since processor speeds no longer double every two years,

modern HPC Clusters have begun to scale out, rather than scale up. As a result,

there has been an exponential increase in the number of components in the cluster.

This has led to considerable deterioration in the MTBF of the cluster. As a result,

the support for Fault Tolerance has become an absolute necessity on these clusters.

Although considerable research has been conducted with respect to fault tolerance

for the individual components in the Hardware / Software stacks, these schemes work

in isolation. The lack of a system-wide fault tolerance feature has emerged as one of

the big problems on HPC systems.

In this chapter, we present the design for a Coordinated Fault Tolerance Frame-

work for MPI. The framework uses the Fault Tolerance Backplane that has been

designed as part of the Co-ordinated Infrastructure for Fault Tolerance Systems

(CIFTS). The design enables the MPI software stack to handle faults occurring in

the operating environment in a holistic manner.
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The rest of the chapter is organized as follows. In section 3.1, we provide a back-

ground of the existing state of fault tolerance in MPI. In section 3.2, we provide some

information about the Fault Tolerance Backplane. In section 3.3, we provide a brief

overview of the design of various FTB components. In section 3.4, we provide a de-

tailed design of the components. In section 3.5, we evaluate our design. Finally, in

section 3.6, we present the summary of this chapter.

3.1 Background

Modern High Performance Computing (HPC) Clusters continue to grow to ever

increasing proportions. However, performance gains that could be obtained in tra-

ditional single core processors by employing schemes such as frequency scaling and

instruction pipelining have greatly diminished due to problems in power consumption,

heat dissipation and fundamental limitations in exploiting Instruction Level Paral-

lelism. Processor speeds no longer double every 18 - 24 months. As a result, HPC

systems have ceased to rely on the speed of a single processing element to achieve the

desired performance. They instead tend to exploit the parallelism available in a mas-

sive number of moderately fast distributed processing elements which are connected

together using a high performance network interconnect.

A quick look at the Top 500 list of high performance machines in the world [15]

clearly indicates this trend. The total core count of all the systems on the list as of

June 2009 is almost ten times the core count as of June 2004. There has been an order

of magnitude increase in the number of cores in the last four years. The Roadrunner

System[16], which is currently the world’s fastest Supercomputer, has over 128k cores.
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Multi-core processors and the availability of commodity high speed interconnects such

as InfiniBand[5] has resulted in the trend of using such large clusters. As we usher the

era of peta-flop and exa-flop computing, we expect this trend to continue for many

more years to come.

However, as these clusters scale out, their Mean Time Between Failures (MTBF)

rapidly deteriorates. With this exponential increase in the number of components

in the cluster, the MTBF has reduced from days to a couple of hours[32]. Many

real world applications that study Molecular Dynamics[3, 2, 12], Finite Element

Analysis[9, 38], etc. take anywhere from a few hours to a couple of days to com-

plete their computation. Given that the MTBF of such modern clusters is smaller

than the average running time of these applications, multiple failures can be expected

during the lifetime of the application. As a result, it has become imperative for these

clusters to be equipped with Fault Tolerant capabilities.

Considerable research has been conducted with respect to Fault Tolerance for sys-

tem software, including the Message Passing Interface (MPI), Network Interconnects,

File Systems, resource management infrastructure and applications.

MPI[37] is the de-facto standard for Parallel Programming and is widely deployed

on most large scale clusters. Most scientific applications [3, 2, 12, 9, 38] as well as

Mathematical Libraries used in such applications [13, 14] are written in MPI. Many

MPI Libraries provide Fault Tolerance through Checkpointing, Message Logging and

redundancy at the network level.

InfiniBand, a high speed low latency cluster interconnect that is commonly used

on HPC Clusters, provides features like Automatic Path Migration and Partitioning

which can be used for Fault Tolerance.
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Although most of the individual hardware and software components within the

cluster implement mechanisms to provide some level of fault tolerance, these com-

ponents work in isolation. They work independently, without sharing information

about the faults they encounter. This lack of a system-wide fault tolerance feature

has emerged as one of the biggest problems on leadership-class HPC systems.

3.2 The CIFTS Fault Tolerance Backplane

The CIFTS Fault Tolerance Backplane[31] is an asynchronous messaging back-

plane that provides communication between the various system software components.

The Fault Tolerance Backplane (FTB) provides a common infrastructure for the Oper-

ating System, Middleware, Libraries and Applications to exchange information related

to hardware and software failures in real time. Different components can subscribe

to be notified about one or more events of interest from other components, as well as

notify other components about the faults it detects.

The FTB physical infrastructure is shown in Figure 3.1. The FTB framework

comprises of a set of distributed daemons, called FTB Agents which contain the bulk

of the FTB logic and manage most of the book-keeping and event communication

throughout the system. FTB agents connect to each other to form a tree-based

topology. If an agent loses connectivity during its lifetime, it can reconnect itself to

a new parent in the topology tree, making the tree fault tolerant and self-healing.

From the software perspective, the FTB Software Stack consists of three layers,

namely, the Client Layer, the Manager Layer, and the Network Layer.
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Figure 3.1: FTB Architecture (Courtesy the CIFTS Team)
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The Client Layer consists of a set of APIs for the clients to interact with each other.

These FTB Client APIs consist of a small set of simple but powerful routines. The

“FTB Connect” API is used by the clients to connect to the FTB framework. Each

client has to register itself for a given “Namespace”. Once registered, the Namespace

to which the client belongs cannot be changed during its lifetime. “FTB Publish” is

used by the clients to advertise a specific event to other clients. All events thrown by

the client will belong to the Namespace to which the client had registered. The events

can have varying severity such as INFO, WARNING, ERROR or FATAL. Clients

which have subscribed to that event will be notified through either synchronously if

they poll for events or asynchronously through a registered callback. In addition to

the event name, the “FTB Publish” also allows clients to include a small amount of

data as a ”payload”. This proves to be a useful feature, as will be seen in the future

section. “FTB Subscribe” is used to indicate the Namespace of Events for which the

client needs to be notified. The “FTB Unsubscribe” and “FTB Disconnect” APIs

are used by clients to disassociate from the FTB infrastructure.

The Manager Layer handles the book-keeping and decision making logic. It han-

dles the client subscriptions, subscription mechanisms and event notification criteria.

This layer is responsible for event matching and routing events across to other FTB

Agents. This layer exposes a set of APIs for the Client Layer to interact with it. The

interface is internal to FTB and is not exposed to external clients.

The Network Layer is the lowest layer of the software stack. This layer deals with

the sending and receiving of data. The Network Layer is transparent to the upper

layers and is designed to support multiple communication protocols such as TCP/IP
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and shared-memory communication.

3.3 Design Overview

In this section we present an overview of the design for a Coordinated Fault Tol-

erance Framework for MPI.

3.3.1 Job Launcher

Modern multi-core HPC environments deploy a Job Launcher to launch multiple

instances of the MPI process on the Compute Nodes. ScELA[43], a modern, extensible

and high performance Job Launcher used with the MVAPICH2, divides this operation

into two phases. In the first phase, the Job Launcher launches a Node Launch Agent

(NLA) on each of the Compute Nodes. In the second phase, the NLA on each

Compute Node launches the desired number of application instances on its Compute

Node. This phase proceeds in parallel on all the Compute Nodes. This process is

outlined in Figure 3.2.

In addition to launching the user’s MPI application, the Job Launcher is also

involved during the Checkpoint / Restart phase. When the MPI Application is re-

quested to be checkpointed, either by the user, or by the Application itself, the Job

Launcher is responsible for propagating this request to the MPI Library. The Job

Launcher is similarly involved during the Restart as well. The detailed design has

been described in [34] and [30].

In this work, we propose the addition of a “FTB Manager” to the Job Launcher.

This component is responsible for sending and receiving fault related information from
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Figure 3.2: ScELA - Launch Process

48



the rest of the system. This would include user-initiated Checkpoint and Restart re-

quests, as well as information pertaining to the health of the compute nodes. Based

on the information received, the FTB Manager would take necessary actions, includ-

ing, triggering a checkpoint, migrating processes away from a failing node, etc.

3.3.2 MPI Library

The MPI Library as described in [34] consists of a “CR Manager” which waits

for Checkpoint / Restart requests from the Job Launcher. However, the existing

framework uses a closed scheme for this communication. As a result, Job Launchers

that are not CR-aware cannot be used on such systems. Some amount of effort is

necessary to enable this functionality.

In this work, we propose the inclusion of an “FTB Layer” in the “CR Manager”

to use FTB for the communication. This “FTB Layer” would be responsible for

communicating fault information from the Job Launcher to the MPI library, and by

the MPI library to send notification to the Job Launcher about failures during the

Checkpoint or Restart phases.

3.3.3 InfiniBand Component

The InfiniBand Architecture Specification[5] defines APIs as part of the Verbs

Interface that can be used by system and application software to access information

about Asynchronous Events from the InfiniBand Adapter. The InfiniBand Verbs

library provides facilities wherein the application can register an “Event Handler”

which would be invoked to signal an Event.
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The FTB-IB component[4], designed as part of this work, uses the FTB Infras-

tructure to notify other FTB enabled components about failures in the InfiniBand

network. FTB-IB uses the Asynchronous Event Handler provided by the native In-

finiBand Verbs library to receive information about faults in the InfiniBand network.

Figure 3.3: FTB-IB - Current State and Future Plans

Figure 3.3 shows the overall architecture of FTB-IB. The Network Fault Monitor-

ing block is responsible for monitoring the InfiniBand fabric for changes in state of

the point-to-point links. The Network Fault Prediction block is responsible for using

information exported by statistics counters to record network congestion events, in an

effort to proactively predict network faults. The Network Fault Prevention block uses

techniques such as Automatic Path Migration, provided by InfiniBand to workaround
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faults. These three blocks work with each other to achieve User-Transparent Recov-

ery. Network Fault Prevention is implemented as a layer in the MVAPICH2 [11] MPI

Library. The current version of FTB-IB implements Network Fault Monitoring.

Appendix A contains a list of supported events that are exposed by FTB-IB to

the FTB Framework.

3.3.4 IPMI Component

The Intelligent Platform Management Interface (IPMI) [7] defines a set of common

interfaces to a computer system which can be used to monitor system health. IPMI

consists of a main controller called the Baseboard Management Controller (BMC)

and other management controllers distributed among different system modules that

are referred to as Satellite Controllers (SC). The BMC connects to SCs within the

same chassis through the Intelligent Platform Management Bus/Bridge (IPMB) and

to other SCs or BMCs on another chassis through the Intelligent Chassis Management

Bus/Bridge (ICMB). The overall architecture of IPMI is shown in Figure 3.4.

Amongst other pieces of information, IPMI maintains a Sensor Data Records

(SDR) repository which provides the read outs from individual sensors present on the

system, including, sensors for voltage, temperature and fan speed. System adminis-

trators can use IPMI calls to query these values.

In this work, we design a FTB-IPMI component, which uses the IPMI interface

to gather information about the system’s health and notifies other FTB enabled

components about these events using the FTB Infrastructure.
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Figure 3.4: IPMI System Architecture (Courtesy, IPMI Specification)
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Appendix B contains a list of supported events that are exposed by FTB-IPMI to

the FTB Framework.

3.4 Detailed Design

The architecture proposed in this work is as shown in Figure 3.5. The FTB

Agent is active on every node, including Login and Compute Nodes, as depicted in

the Figure. These agents connect with each other to form a reliable communication

framework, as described in Section 3.2. The other entities on the node, such as the Job

Launcher, MPI Processes and FTB-IPMI use the FTB API to communicate with each

other, through the FTB Agents. The solid lines indicate the actual communication

path, while the dashed lines depict the logical communication between the different

components. The arrow heads indicate the direction of information flow.

The Job Launcher, NLA, MPI Library and FTB-IPMI register themselves un-

der the “FTB.JL”, “FTB.NLA”, “FTB.MPI” and “FTB.IPMI” Namespaces, respec-

tively. The Job Launcher subscribes to the “FTB.NLA”, “FTB.MPI” and “FTB.IPMI”

Namespaces. The NLA and MPI Library subscribe to the “FTB.JL” namespace. The

directed communication graph is shown in Figure 3.6.

We now proceed to discuss the protocols used to Checkpoint, Restart and Migrate

MPI Processes using FTB.

3.4.1 Checkpoint / Restart Protocol

When a Checkpoint needs to be taken, the “FTB CHECKPOINT” message is

published by the Job Launcher. The MPI Library on all processes receives this
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Figure 3.5: Coordinated Fault Tolerance Framework for MPI
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Figure 3.6: Directed Communication Graph of FTB Components

message. On receiving the message, the MPI Libraries take a checkpoint as described

in Section 2.3. Once the MPI Library completes taking the Checkpoint, it publishes

the “FTB CHECKPOINT DONE” message. When the Job Launcher receives this

message from the MPI Library, it checkpoints itself. The checkpoint images of the

MPI Library and Job Launcher collectively constitute the MPI Job’s Checkpoint. The

NLA is not involved in the Checkpoint process. The process is depicted in Figure 3.7.

When an MPI Job needs to be Restarted from a previous Checkpoint, the Job

Launcher is first restarted from its checkpoint image. On restart, the Job Launcher

launches the NLAs on the specified nodes, which in turn restart the MPI Processes

from the checkpoint images. FTB is not involved during the Restart process.

3.4.2 Process Migration Protocol

When an MPI Job is executed, a list of “Hot Spare Nodes” is specified to the Job

Launcher. During the first phase of the Job Launch process, as described in Section

3.3.1, the Job Launcher launches the NLAs on the Hot Spare Nodes, in addition
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Figure 3.7: FTB based Checkpoint
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to launching them on the Primary Compute Nodes. The NLAs on all the Primary

Compute Nodes are in the “MIGRATION READY” state, while those on the Hot

Spare Nodes are in the “MIGRATION SPARE” state.

When processes need to be migrated away from a Primary Compute Node, the

Job Launcher publishes the “FTB MIGRATE” message, along with the hostname of

the Migration Source Node as the Payload. This message is received by all the NLAs

and all MPI Processes. On receiving, this message, the NLA on the Migration Source

Node transitions its state from “MIGRATION READY” to “MIGRATION ARM”

preparing itself for the Migration.

At the same time, all the MPI Processes, which also receive the “FTB MIGRATE”

message, suspend all their MPI communication activity and tear down their commu-

nication end-points. MPI Processes that are not on the Migration Source Node enter

a “Migration Barrier”. Like any other barrier, processes which enter the Barrier leave

only when all the processes are in the barrier. MPI Processes that are on the Mi-

gration Source Node take a checkpoint using BLCR and exit without entering the

Migration Barrier. As a result, processes on the other nodes continue to wait in the

barrier.

The NLA on the Migration Source Node, which is in the “MIGRATION ARM”

state, waits for all its child MPI Processes to exit after taking a checkpoint. Once

the MPI Processes exit, the NLA publishes the “FTB MIGRATE PIC” message, to

indicate the completion of Phase I of the Migration Process to the Job Launcher.

After doing so, the NLA transitions to the “MIGRATION INACTIVE” state, which

indicates that the NLA’s node is no longer active.
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On receiving the “FTB MIGRATE PIC” message, the Job Launcher selects a

node from the list of Hot Spare Nodes as the Migration Target Node. Once the

node is selected, the Job Launcher copies the checkpoint images from the Migration

Source Node to the Migration Target Node. Once the images are copied, it sends the

“FTB MIGRATE IPT” message to request the initiation of Phase II of the Migration

Process. The Payload of this message contains the hostname of the Migration Target

Node and the list of ranks of the MPI Job that were running on the Migration Source

Node. Using this information, the NLA on the Migration Target Node restarts the

MPI Processes from their checkpoint images. The NLA on the Migration Target

Node transitions its state from “MIGRATION SPARE” to “MIGRATION READY”,

to indicate that it is now active.

The MPI Processes that have been restarted on the Migration Target Node enter

the Migration Barrier. At this point of time, all processes are in the barrier. As

a result, all the process are now free to leave the barrier. Once out of the barrier,

all the processes re-establish their communication end-points and resume their MPI

communication activity.

At this point of time, the Process Migration cycle is complete and is ready for the

next migration request. The entire process is depicted in Figure 3.8.

3.4.3 Checkpoint / Migration Trigger

Sections 3.4.1 and 3.4.2 discuss the Checkpoint, Restart and Migrate mechanisms

once the Job Launcher receives the request to do so. This section deals with the

mechanisms to deliver the request. As has been discussed in Section 3.1, the ability
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Figure 3.8: FTB based Migration
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to receive fault related information from a variety of sources is of utmost importance.

In this section, we consider the example of the FTB-IPMI Daemon.

The FTB-IPMI daemon uses the IPMI subsystem to query the Sensor Data Repos-

itory for events of interest. And excerpt of the information obtained from IPMI is

shown in Tables 3.1 through 3.4.

Table 3.1: IPMI Sensor Data Repository - BaseBoard Voltages
Record Name Record Status EntityID. Value

Locator Instance

BB +1.2V Vtt 10h ok 7.1 1.20 Volts
BB +1.5V AUX 12h ok 7.1 1.49 Volts
BB +1.5V 13h ok 7.1 1.47 Volts
BB +1.8V 14h ok 7.1 1.80 Volts
BB +3.3V 15h ok 7.1 3.37 Volts
BB +3.3V STB 16h ok 7.1 3.32 Volts
BB +1.5V ESB 17h ok 7.1 1.48 Volts
BB +5V 18h ok 7.1 5.07 Volts
BB +12V AUX 1Ah ok 7.1 12.03 Volts
BB 0.9V 1Bh ok 7.1 0.90 Volts

Table 3.2: IPMI Sensor Data Repository - Thermal Data
Record Name Record Status EntityID. Value

Locator Instance

Baseboard Temp 30h ok 7.1 29 degrees C
P1 Therm Margin 99h ok 3.1 -40 degrees C
P2 Therm Margin 9Bh ok 3.2 -41 degrees C
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Table 3.3: IPMI Sensor Data Repository - Fan Speed
Record Name Record Status EntityID. Value

Locator Instance

CPU 1 FAN 50h ok 29.1 2244 RPM
CPU 2 FAN 51h ok 29.3 2046 RPM
SYS FAN 2 TACH 53h ok 29.9 17850 RPM
SYS FAN 3 TACH 54h ok 29.4 4200 RPM
SYS FAN 4 TACH 55h ok 29.2 4270 RPM

Table 3.4: IPMI Sensor Data Repository - Memory Status
Record Name Record Status EntityID. Value

Locator Instance

DIMM A1 E0h ok 32.1 Device Installed
DIMM A2 E1h ok 32.2
DIMM B1 E2h ok 32.3 Device Installed
DIMM B2 E3h ok 32.4
DIMM C1 E4h ok 32.5 Device Installed
DIMM C2 E5h ok 32.6
DIMM D1 E6h ok 32.7 Device Installed
DIMM D2 E7h ok 32.8
MemA Error ECh ok 7.1
MemB Error EDh ok 7.2
MemC Error EEh ok 7.3
MemD Error EFh ok 7.4
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Table 3.1 contains information pertaining to the BaseBoard’s Voltages. For exam-

ple, the “BB +1.5V” record indicates that the voltage on the +1.5V line is currently

1.47V. The Status shows “ok” since it is within the acceptable tolerance. Table 3.2

provides Thermal Data. The “Baseboard Temp” record indicates that the tempera-

ture of the system’s BaseBoard is 29 degrees Celsius. The next two records indicate

the two CPU sockets’ Thermal Margin. For instance, the CPU on the first socket

can withstand a 40 degree Celsius increase in temperature. Table 3.3 lists the status

and speed of the various Cooling Fans on the system. Table 3.4 displays information

about the available DIMMs. It shows that Banks A1, B1, C1 and D1 have memory

modules installed and that no errors have been detected on any of them. Based on

all this information, FTB-IPMI can make an informed decision about the status of

the system.

Consider the scenario in which the Fan on one of the Sockets has failed. In this

case, there would be a rapid deterioration in that Socket’s Thermal Margin. FTB-

IPMI will observe this and publish the “FTB IPMI FANFAIL” event. On receiving

this event, the Job Launcher would immediately migrate MPI Processes away from

the failing node.

Consider a scenario in which systems on a certain rack are not sufficiently cooled

due to improper air circulation in the air conditioning ducts in their vicinity. This

would result in those servers over-heating. In this case, FTB-IPMI on those nodes

would detect this thermal deterioration and publish the “FTB IPMI OVERTEMP”

event. The Job Launcher could then try to migrate processes away from those nodes

and mark those nodes as unusable. Once the problem is fixed, the temperature on

those nodes would return to normal, in which case, FTB-IPMI on those nodes would
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publish the “FTB IPMI NORMAL” event. The Job Launcher could then mark those

nodes as usable again.

Consider another scenario in which the Data Center, housing the HPC Systems,

experiences a failure in the Air Conditioning Unit. This would translate to a gradual

deterioration in the Thermal Margin of all CPU Sockets on all systems. In this case,

FTB-IPMI on all nodes would publish the “FTB IPMI OVERTEMP” event. The

Job Launcher would observe this trend and see an impending failure across the entire

cluster. It would take a checkpoint of the entire MPI Job to be able to recover at a

later point in time.

3.5 Performance Evaluation

In this section, we evaluate the different aspects of the FTB based design. We use

MVAPICH2 [11], a High Performance MPI Library for InfiniBand, to evaluate our

designs. The hardware setup consists of an Intel Clovertown cluster. Every node in

the cluster is equipped with 2 Sockets, each having a Quad-Core Intel E5345 Xeon

Processor, and has 4GB of Main Memory. The nodes are connected using Mellanox

MT25418 InfiniBand DDR adapters. The nodes run RHEL Server 5.2. All perfor-

mance numbers have been obtained using BLCR 0.8.0, and FTB 0.6.0.

3.5.1 Code Complexity

A major advantage of using FTB to propagate fault information across the cluster

lies in the fact that, components which publish the fault information do not have

to be aware of components that have subscribed to that information. The FTB
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infrastructure handles the message delivery to all intended targets. As a result, the

messaging layer of all components is greatly simplified. In this section, we evaluate

this benefit of using the Fault Tolerance Backplane to handle the communication

of fault information, in the implementation of the Checkpoint / Restart feature, in

terms of the code complexity.

Figure 3.9: FTB Code Complexity

From Figure 3.9, it can be observed that using the Fault Tolerance Backplane to

handle the communication of the control messages between the Job Launcher and

MPI Library significantly reduces the code complexity. The size of the messaging

layer in the Job Launcher reduces from 488 lines to 235 lines, a 52% reduction in

code complexity. Similarly, the messaging layer in the MPI Library reduces from 361
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lines to 119 lines, a 67% reduction in code complexity. The overall code complexity

is reduced by 58%, from 849 lines to 354 lines. This reduction is primarily due to the

simple but powerful set of APIs that FTB provides.

3.5.2 FTB Agent CPU Utilization

FTB Agents, running on the Login and Compute Nodes, are responsible for send-

ing messages from the event source to the target entities. It is of paramount impor-

tance for the agents to consume as little CPU time as possible. In this section, we

measure the CPU Utilization of the FTB Agents at various loads.

Figure 3.10: FTB Agent CPU Utilization
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To measure the CPU Utilization, we conduct an experiment by starting the FTB

Agents on thirty three Nodes. On the first Node, we start “FTB Notifier”, an FTB

component which receives all FTB events. On the remaining thirty two nodes, we

launch “FTB Thrower”, a component to publish FTB events at a specified rate. The

FTB messages are routed by the agents, through the tree topology and eventually

reach the first node. The agent on the first node performs the event matching. Figure

3.10 shows the CPU Utilization of the FTB Agent on the first node for varying mes-

sage rates. It can be observed that the CPU Utilization is significant only when the

Publish Rates are larger than 100K messages per second. Publish rates would never

be this high in any real HPC environment. Hence, the FTB Agent’s CPU Utilization

is reasonable.

3.5.3 Impact of FTB-IPMI on Application Performance

As discussed in Section 3.4.3, FTB-IPMI can be used to trigger a Checkpoint or

Migration, based on the health of the nodes. As a result, an instance of the FTB-

IPMI daemon will be running on every compute node. Since the MPI application

itself would also be executing on the node, it is important for FTB-IPMI to have as

little an impact on the application as possible.

To measure the effect, of FTB-IPMI on MPI Applications, we run applications

from the NAS Parallel Benchmark Suite[45] on a set of compute nodes, while the

FTB-IPMI daemons monitor the nodes’ health. FTB-IPMI queries the Sensor Data

Repository once every 10 seconds. Figure 3.11 shows the impact of this operation on

the NAS Benchmarks.
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Figure 3.11: Impact of FTB-IPMI on Application Performance
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It can be observed that the Execution Time of the Class C applications goes up

marginally by 2% to 4%. This is due to the fact that FTB-IPMI makes an IPMI

request to the IPMI Driver. The driver spawns a kernel thread, which sends the

request to the IPMI hardware and polls for the request’s completion. The polling

operation consumes CPU cycles which degrades the Application’s performance.

The application’s performance degradation can be decreased by reducing the fre-

quency with which FTB-IPMI queries the Sensor Data Repository. This would how-

ever negatively impact the response time of the Fault Tolerance Framework in the

event of an impending failure. The performance degradation can also be decreased by

using an event-driven mechanism provided by certain IPMI Management Utilities[8].

By doing so, FTB-IPMI would be asynchronously notified about any event of interest,

rather than having to poll the IPMI hardware, which consumes CPU cycles.

3.5.4 Impact on the File System

In this section, we evaluate the impact of Process Migration on the File System,

compared to a full fledged checkpoint. We use the 64 process Class C, LU, CG and

BT applications, and the 128 process Class D LU, CG and BT applications from the

NAS Parallel Benchmark Suite[45] for this study. Figure 3.12 compares the sizes of

the images written to disk in the case of a Checkpoint and Migration.

It is observed that the Process Migration scheme consumes much lesser disk re-

sources than a full fledged checkpoint. As a result, the overall migration sequence

complete more quickly than a checkpoint and substantially reduces the stress on the

file system. Furthermore, by enhancing the checkpointing library, the MPI processes
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Figure 3.12: Impact of Process Migration on the File System
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could be migrated away from the failing node without actually writing the images to

disk.

3.5.5 Process Migration Performance

In this section, we evaluate the cost of migrating MPI Processes in the event of

an impending node failure. Again, we use the LU, CG and BT applications from the

NAS Parallel Benchmark Suite[45] for the evaluation. We first measure the execution

time of the applications without any migration. We then measure the execution time

with one migration, where we migrate all the processes of the MPI job running on

one node to another spare node.

From Figure 3.13 it can be seen that impact of this migration is about 10% to

14%. About half the overhead is due to the time involved in copying the process

images from the Migration Source Node to the Migration Target Node. Using a bet-

ter copying scheme, or using a fast parallel file system can help alleviate this overhead.

3.6 Summary

In this chapter, we have presented a design for a Coordinated Fault Tolerance

Framework for MPI which can be used to handle faults in an MPI environment. We

have presented protocols for performing Checkpoint / Restart and Process Migration,

as well as a framework for other FTB components, like FTB-IPMI, to cooperatively

work with the Job Launcher. To the best of my knowledge, this is the first work to

use the Fault Tolerant Backplane for coordinated fault handling.
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Figure 3.13: Overhead of Process Migration

71



CHAPTER 4

CONTRIBUTIONS AND FUTURE WORK

In this thesis, we have designed a Checkpoint / Restart framework for MPI that

is interconnect-agnostic. This work greatly improves the reliability of the MPI mid-

dleware library. Our framework makes it easy for new communication channels to be

integrated into the existing design. Our design also allows the flexibility of process

redistribution after restart. Evaluation shows that our design provides very good per-

formance. These designs have been available in the MVAPICH2 [11] software stack

since MVAPICH2-1.2. This work can be extended by studying the performance and

scalability on larger scale clusters on parallel file systems.

We have also designed a Coordinated Fault Tolerant framework for MPI that uses

the Fault Tolerance Backplane. We have presented protocols to Checkpoint an MPI

job, as well as Migrate processes on a node to another with very little overhead. We

have also demonstrated that our design is highly extensible, where new components

can be added without any modification to the existing components. In the future, we

propose to incorporate an Event Driven infrastructure for the FTB-IPMI to minimize

its CPU Utilization. FTB-IB has been available as an open source software since
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August 2008. FTB-IPMI will be available as an open source component, as part of

the MVAPICH2 release in future.
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APPENDIX A

FTB-IB - LIST OF EVENTS

• FTB IB ADAPTER AVAILABLE (INFO)

Thrown when one or more InfiniBand HCAs are found on the system.

Payload - “NUM ADAPTERS:<N>”

N - Number of HCAs found on the system

• FTB IB ADAPTER UNAVAILABLE (WARNING)

Thrown when no InfiniBand HCAs are found on the system.

Payload - “”

• FTB IB ADAPTER INFO (INFO)

Throws information about each HCAs found on the system.

Payload - “ADAPTER:<i>::NAME:<name>::PORTS:<P>”

i - Index of the Adapter, ranging from 0 to (N-1)

name - Name of the HCA

P - Number of Ports on the Adapter
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• FTB IB PORT INFO (INFO)

Throws information about the State of each Port on the HCA.

Payload - “ADAPTER:<i>::PORT:<j>::STATE:<S>”

i - Index of the Adapter, ranging from 0 to (N-1)

j - Port of the Adapter, ranging from 1 to P

S - State of the Port [DOWN — INIT — ARMED — ACTIVE]

• FTB IB PORT ERR (ERROR)

Thrown when a Port becomes unavailable on the HCA.

Payload - “ADAPTER:<i>::PORT:<j>”

i - Index of the Adapter, ranging from 0 to (N-1)

j - Port of the Adapter, ranging from 1 to P

• FTB IB PORT ACTIVE (INFO)

Thrown when a Port becomes available on the HCA.

Payload - “ADAPTER:<i>::PORT:<j>”

i - Index of the Adapter, ranging from 0 to (N-1)

j - Port of the Adapter, ranging from 1 to P

• FTB IB EVENT DEVICE FATAL (INFO)

Thrown when the HCA’s state transitions to FATAL.

Payload - “ADAPTER:<i>”
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i - Index of the Adapter, ranging from 0 to (N-1)

• FTB IB EVENT LID CHANGE (INFO)

Thrown when the LID is changed on a Port.

Payload - “ADAPTER:<i>::PORT:<j>”

i - Index of the Adapter, ranging from 0 to (N-1)

j - Port of the Adapter, ranging from 1 to P

• FTB IB EVENT PKEY CHANGE (INFO)

Thrown when the Protection Key is changed on a Port.

Payload - “ADAPTER:<i>::PORT:<j>”

i - Index of the Adapter, ranging from 0 to (N-1)

j - Port of the Adapter, ranging from 1 to P

• FTB IB EVENT SM CHANGE (INFO)

Thrown when the Subnet Manager is changed on a Port.

Payload - “ADAPTER:<i>::PORT:<j>”

i - Index of the Adapter, ranging from 0 to (N-1)

j - Port of the Adapter, ranging from 1 to P
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APPENDIX B

FTB-IPMI - LIST OF EVENTS

• FTB IPMI FANFAIL (ERROR)

Thrown when the Cooling Fan on the Processor Socket Fails.

Payload - “<node>”

node - Hostname of the Node where the failure is detected

• FTB IPMI OVERTEMP (ERROR)

Thrown when the Thermal Margin on a Processor deteriorates.

Payload - “<node>”

node - Hostname of the Node where the failure is detected

• FTB IPMI NORMAL (INFO)

Thrown when the node regains its health.

Payload - “<node>”

node - Hostname of the Node where the failure is detected
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Lemarinier, and Frédéric Magniette. MPICH-V2: a fault tolerant MPI for volatile
nodes based on pessimistic sender based message logging. In SC ’03: Proceedings
of the 2003 ACM/IEEE conference on Supercomputing, page 25, Washington,
DC, USA, 2003. IEEE Computer Society.

[19] Aurelien Bouteiller, Boris Collin, Thomas Herault, Pierre Lemarinier, and Franck
Cappello. Impact of event logger on causal message logging protocols for fault
tolerant MPI. In IPDPS ’05: Proceedings of the 19th IEEE International Parallel
and Distributed Processing Symposium (IPDPS’05) - Papers, page 97, Washing-
ton, DC, USA, 2005. IEEE Computer Society.

[20] Greg Bronevetsky, Daniel Marques, Keshav Pingali, and Paul Stodghill. Au-
tomated application-level checkpointing of MPI programs. SIGPLAN Not.,
38(10):84–94, 2003.

[21] Greg Bronevetsky, Keshav Pingali, and Paul Stodghill. Experimental evaluation
of application-level checkpointing for OpenMP programs. In ICS ’06: Proceedings
of the 20th annual international conference on Supercomputing, pages 2–13, New
York, NY, USA, 2006. ACM.

[22] K. Mani Chandy and Leslie Lamport. Distributed snapshots: determining global
states of distributed systems. ACM Trans. Comput. Syst., 3(1):63–75, 1985.

[23] Camille Coti, Thomas Herault, Pierre Lemarinier, Laurence Pilard, Ala
Rezmerita, Eric Rodriguez, and Franck Cappello. Blocking vs. non-blocking
coordinated checkpointing for large-scale fault tolerant MPI. In SC ’06: Pro-
ceedings of the 2006 ACM/IEEE conference on Supercomputing, page 127, New
York, NY, USA, 2006. ACM.

79



[24] Duell, J., Hargrove, P., and Roman, E. Requirements for Linux Check-
point/Restart. Technical Report LBNL-49659, Lawrence Berkeley National Lab-
oratory, Berkeley, CA 94720, 2002.

[25] Duell, J., Hargrove, P., and Roman, E. The Design and Implementation of Berke-
ley Lab’s Linux Checkpoint/Restart. Technical Report LBNL-54941, Lawrence
Berkeley National Laboratory, Berkeley, CA 94720, 2002.

[26] E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B. John-
son. A survey of rollback-recovery protocols in message-passing systems. ACM
Comput. Surv., 34(3):375–408, 2002.

[27] G. E. Fagg, E. Gabriel, G. Bosilca, T. Angskun, Z. Chen, J. Pjesivac-Grbovic,
K. London, and J. J. Dongarra. Extending the MPI Specification for Process
Fault Tolerance on High Performance Computing Systems. In Proceeding of
International Supercomputer Conference (ICS), Heidelberg, Germany, 2003.

[28] Future Technologies Group (FTG). http://ftg.lbl.gov/CheckpointRestart/
CheckpointRestart.shtml.

[29] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Don-
garra, Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett,
Andrew Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L. Graham, and
Timothy S. Woodall. Open MPI: Goals, concept, and design of a next generation
MPI implementation. In Proceedings, 11th European PVM/MPI Users’ Group
Meeting, pages 97–104, Budapest, Hungary, September 2004.

[30] Qi Gao, Weikuan Yu, Wei Huang, and Dhabaleswar K. Panda. Application-
transparent checkpoint/restart for MPI programs over infiniband. In ICPP ’06:
Proceedings of the 2006 International Conference on Parallel Processing, pages
471–478, Washington, DC, USA, 2006. IEEE Computer Society.

[31] R. Gupta, P. Beckman, B.H. Park, E. Lusk, P. Hargrove, A. Geist, D. K. Panda,
A. Lumsdaine, and J. Dongarra. CIFTS: A Coordinated Infrastructure for Fault-
Tolerant Systems. In Proceedings of Int’l Conference on Parallel Processing
(ICPP ’09), 2009.

[32] I.R. Philp. Software failures and the road to a petaflop machine. In First
Workshop on High Performance Computing Reliability Issues (HPCRI), Febru-
ary 2005.

[33] Hyungsoo Jung, Dongin Shin, Hyuck Han, Jai W. Kim, Heon Y. Yeom, and
Jongsuk Lee. Design and implementation of multiple fault-tolerant MPI over
myrinet. In SC ’05: Proceedings of the 2005 ACM/IEEE conference on Super-
computing, page 32, Washington, DC, USA, 2005. IEEE Computer Society.

80



[34] K. Gopalakrishnan and L. Chai and W. Huang and A. Mamidala and D. K.
Panda. Efficient Checkpoint/Restart for Multi-Channel MPI over Multi-core
Clusters. Technical Report OSU-CISRC-5/09-TR22, Department of Computer
Science and Engineering, The Ohio State University, Columbus, OH, May 2009.

[35] P. Lemarinier, A. Bouteiller, T. Herault, G. Krawezik, and F. Cappello. Improved
message logging versus improved coordinated checkpointing for fault tolerant
MPI. In CLUSTER ’04: Proceedings of the 2004 IEEE International Confer-
ence on Cluster Computing, pages 115–124, Washington, DC, USA, 2004. IEEE
Computer Society.

[36] Amith R. Mamidala, Rahul Kumar, Debraj De, and D. K. Panda. MPI collec-
tives on modern multicore clusters: Performance optimizations and communi-
cation characteristics. In CCGRID ’08: Proceedings of the 2008 Eighth IEEE
International Symposium on Cluster Computing and the Grid, pages 130–137,
Washington, DC, USA, 2008. IEEE Computer Society.

[37] MPI-Forum. http://www.mpi-forum.org/.

[38] Jun Peng, Jinchi Lu, Kincho H. Law, and Ahmed Elgamal. ParCYCLIC: Finite
element modeling of earthquake liquefaction response on parallel computers. In
International Journal for Numerical and Analytical Methods in Geomechanics,
pages 1207–1232, 2004.

[39] B. Randell. System structure for software fault tolerance. In Proceedings of the
international conference on Reliable software, pages 437–449, New York, NY,
USA, 1975. ACM.

[40] Sriram Sankaran, Jeffrey M. Squyres, Brian Barrett, Andrew Lumsdaine, Ja-
son Duell, Paul Hargrove, and Eric Roman. The LAM/MPI checkpoint/restart
framework: System-initiated checkpointing. International Journal of High Per-
formance Computing Applications, 19(4):479–493, Winter 2005.

[41] Martin Schulz, Greg Bronevetsky, Rohit Fernandes, Daniel Marques, Keshav
Pingali, and Paul Stodghill. Implementation and evaluation of a scalable
application-level checkpoint-recovery scheme for MPI programs. In SC ’04: Pro-
ceedings of the 2004 ACM/IEEE conference on Supercomputing, page 38, Wash-
ington, DC, USA, 2004. IEEE Computer Society.

[42] Jeffrey M. Squyres and Andrew Lumsdaine. A Component Architecture for
LAM/MPI. In Proceedings, 10th European PVM/MPI Users’ Group Meeting,
number 2840 in Lecture Notes in Computer Science, pages 379–387, Venice,
Italy, September / October 2003. Springer-Verlag.

81



[43] J. Sridhar, M. Koop, J. Perkins, and D. K. Panda. ScELA: Scalable and Exten-
sible Launching Architecture for Clusters. In International Conference in High
Performance Computing (HiPC08), December 2008.

[44] Chao Wang, Frank Mueller, Christian Engelmann, and Stephen Scott. A Job
Pause Service under LAM/MPI+BLCR for Transparent Fault Tolerance. In Int’l
Parallel and Distributed Processing Symposium (IPDPS ’07), 2007.

[45] Frederick C. Wong, Richard P. Martin, Remzi H. Arpaci-Dusseau, and David E.
Culler. Architectural requirements and scalability of the NAS parallel bench-
marks. In Supercomputing ’99: Proceedings of the 1999 ACM/IEEE conference
on Supercomputing (CDROM), page 41, New York, NY, USA, 1999. ACM.

82


