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Abstract—Modern supercomputing systems have witnessed
a phenomenal growth in the recent history owing to the advent
of multi-core architectures and high speed networks. However,
the operational and maintenance costs of these systems have
also grown rapidly. Several concepts such as Dynamic Voltage
and Frequency Scaling (DVFS) and CPU Throttling have been
proposed to conserve the power consumed by the compute
nodes during idle periods. However, it is necessary to design
software stacks in a power-aware manner to minimize the
amount of power drawn by the system during the execution of
applications. It is also critical to minimize the performance
overheads associated with power-aware algorithms, as the
benefits of saving power could be lost if the application runs
for a longer time. Modern multi-core architectures such as
the Intel “Nehalem” allow for DVFS and CPU throttling
operations to be performed with little overheads. In this
paper, we explore how these features can be leveraged to
design algorithms to deliver fine-grained power savings during
the communication phases of parallel applications. We also
propose a theoretical model to analyze the power consumption
characteristics of communication operations. We use micro-
benchmarks and application benchmarks such as NAS and
CPMD to measure the performance of our proposed algorithms
and to demonstrate the potential for saving power with 32 and
64 processes. We observe about 8% improvement in the overall
energy consumed by these applications with little performance
overheads.

I. INTRODUCTION

Current generation supercomputing systems are com-

prised of hundreds of compute nodes based on modern

multi-core architectures and high performance networks

to satisfy the computational demands of the High End

Computing (HEC) applications. The number of compute

cores within each node is constantly on the rise with the

current generation systems offering as many as 24 cores

per node. High performance networks such as InfiniBand

[1] and 10GigE [2] have also evolved rapidly to satisfy the

communication requirements of such systems. InfiniBand

Quad Data Rate - QDR [3] offers a data rate of 40Gbit/s

and is increasingly being used in large scale supercomputing

systems.
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The amount of energy consumed by these systems has

rapidly grown in the recent history and this poses a serious

challenge to system designers. The next generation super-

computers need to be designed in a power efficient manner

to minimize their power consumption without sacrificing on

the overall performance delivered to the applications. It is

also necessary to design software and middleware stacks in

a power-aware manner to leverage the benefits offered by

these systems.

Message Passing Interface (MPI) [4] is the de-facto pro-

gramming model used for designing parallel applications.

Researchers have proposed energy aware optimizations to

MPI in [5]–[9]. These approaches involve identifying com-

munication phases of parallel applications that are not CPU

intensive and using Dynamic Voltage and Frequency Scaling

(DVFS) concepts during such phases to conserve power.

However, these studies consider communication operations

to be a “black-box” and try to conserve power during these

regions without analyzing the nature of the algorithms that

are used to implement them. In this paper, we take on

the following broad challenge: Can we design collective

message passing algorithms in a power-aware manner to

offer fine-grained power savings with little performance

overheads. We have addressed the following major problems

in this paper:

• Several optimized collective algorithms have been pro-

posed and their performance and scalability charac-

teristics have been deeply analyzed. But, are these

algorithms power efficient?

• The performance overheads associated with power-

aware algorithms are critical. The benefits of saving

instantaneous dynamic power during the operation will

be lost if the overheads are too high. Is it possible

to leverage the benefits offered by modern multi-core

architectures, such as the Intel “Nehalem”, to minimize

these overheads and deliver fine-grained power savings

to applications?

• Theoretical models have been proposed to analyze the

power consumption characteristics of generic compute-

intensive work-loads. Can we derive models to analyze

the power consumption characteristics of collective

communication algorithms?

The rest of the paper is organized in the following manner:



In Sections II and III, we describe the relevant background

information. In Section IV, we discuss the state-of-the-art

algorithms for collective operations and demonstrate the

potential for conserving power. In Section V and VI, we

propose our power-aware algorithms and our models to

analyze the power consumption characteristics of collective

algorithms. In Section VII, we describe our experimental

methodology and results. In Section VIII, we conclude our

discussion and also provide insights into our future work.

II. BACKGROUND

In this section, we provide the relevant background infor-

mation.

A. Message Passing Interface

The Message Passing Interface (MPI) [4] is one of the

popular programming models used for designing parallel

applications. MPI defines primitives for point-to-point and

collective message exchange operations that can be conve-

niently used by application designers to address the commu-

nication requirements of parallel applications. In our work,

we use the MVAPICH2 [10] software stack to design power-

aware collective algorithms and to demonstrate the perfor-

mance and power characteristics of our proposed designs.

MVAPICH2 is being used by more than 1,175 organizations

world-wide, including several large scale clusters.

B. InfiniBand

InfiniBand has emerged as the popular I/O interconnect

standard and almost 41% of the Top500 Supercomputing

systems [11] rely on InfiniBand to address the communi-

cation requirements of the current generation applications.

InfiniBand networks allow several network protocols to

be offloaded to the Host Channel Adapters (HCA). MPI

implementations that are designed for InfiniBand networks

offer two modes of message progression - “polling” and

“blocking” modes. In the “blocking” mode, an MPI process

waits for a new incoming message for a short period

before yielding the CPU. When a new message arrives,

the InfiniBand HCA generates an interrupt and the process

can resume its execution once it gets scheduled. In the

“polling” mode, the MPI process constantly spins while

it waits for a new arriving message. MPI implementations

that use the “polling” mode deliver better performance,

but require the CPU to be busy during communication.

The “blocking” mode delivers better CPU availability to

applications, but with higher communication latencies. Also,

MPI implementations cannot offer a high performance intra-

node communication mechanism with the “blocking” mode,

as they fall-back to the network loop-back based com-

munication instead of using the shared-memory channels.

Like all high-performance MPI stacks, MVAPICH2 uses the

“polling” mode as the default mode.

C. Power saving features of Intel Architectures

Current generation architectures have a range of opera-

tional frequencies (P-States) and throttling levels (T-States).

The operating system can choose specific CPU frequencies

and throttling states to conserve power and to lower the

temperature when the CPU is not loaded. In this paper, we

perform all our studies on the Intel “Nehalem” architecture

[12]. The Intel “Nehalem” architecture offers 4 cores per

CPU socket and allows frequency scaling and CPU throttling

operations to be performed within 10-15 usecs, which is

significantly better when compared to some of the earlier

Intel multi-core architectures. The “Nehalem” architecture

offers eight throttling levels T0 - T7, with the CPU being

100% active in the T0 state and only 12% active in the T7

state.

D. Collective Algorithms in MVAPICH2

In MVAPICH2, multi-core aware algorithms have been

proposed for collective operations defined in the MPI Stan-

dard. As shown in Figure 1, these algorithms rely on detect-

ing the node-level topology to create sub-communicators.

Processes that are within the same compute node are

grouped within a shared-memory communicator. One pro-

cess per node is assigned as the node-leader process and an-

other communicator is created to include all the node-leader

processes. In [13]–[15], the authors have demonstrated the

performance and scalability benefits of such approaches.

These algorithms involve the following stages:

• Intra-node phase: All the processes within the same

compute node write their buffers into the explicitly

created shared-memory region. This operation involves

no data movement across the network links.

• Network phase: This phase of communication only

involves the node-leader processes and the data is

moved across the network.

• Intra-node phase: Depending on the nature of the col-

lective operation, there might be an optional phase in

which the non-leader processes read the data that was

written into the shared-memory regions by the leader

process after the second step.

Figure 1. Multi-Core Aware Collective Algorithms in MVAPICH2



III. RELATED WORK

In [16], [17], the authors proposed efficient designs to

conserve the power drawn by the network fabric when the

network was not being stressed. Using DVFS to save CPU

power during communication phases have been proposed by

researchers in [5], [6], [9]. Some of these ideas involved au-

tomatically detecting the communication phases and scaling

the voltage and frequency of the CPU around these regions

to conserve power. In [8], the authors proposed theoretical

models to analyze the power consumption characteristics

of applications on multi-core architectures. However, all

communication phases were considered as overheads in the

models that were proposed in that paper. In [18], [19],

the authors have studied the potential for saving CPU

power by using DVFS and CPU throttling operations in

clusters that use RDMA based networks. In [9], the authors

have also proposed a tool, PowerPack, to efficiently profile

the energy consumption characteristics of applications on

clusters. These approaches treat communication operations

as a “black-box” and try to conserve CPU power during

these regions. However, in this paper, we propose a set of

models to analyze the power consumption of the state-of-the-

art algorithms for collective message exchange operations.

We also propose power-aware algorithms that leverage both

DVFS and CPU Throttling to deliver fine-grained power

savings to applications.

IV. CPU USAGE IN CURRENT COLLECTIVE

ALGORITHMS

In this section, we study the characteristics of the state-

of-the-art multi-core aware algorithms for a few important

collective operations.

A. Alltoall Personalized Exchange Operation

In an Alltoall Personalized Exchange operation, every

process in the process group exchanges distinct messages

with every other process. The performance and scalability

issues with MPI Alltoall were discussed in [20]. In MVA-

PICH2, we use the hypercube algorithm [21] for small

messages and the pair-wise exchange algorithm for large

messages. In Figure 2(a), we show the scalability of the

Alltoall operation for large messages. We have run the OSU

Alltoall benchmark [22] with 32 processes in 4-way and 8-

way configurations (4 processes per node across 8 nodes and

8 processes per node across 4 nodes, respectively). We have

also shown the theoretical estimate of the latency involved

for the MPI Alltoall operation with 32 processes for various

message sizes. We can see that even though the size of the

Alltoall job is the same, the change in the process allocation

pattern has lead to a performance difference of almost 54%

with large messages. This is mainly due to contention at

different levels of the system. We expect the effects of

contention to become more severe as the number of cores

per node increases. We would also like to emphasize that

these experiments were performed with InfiniBand QDR

network, which currently offers the highest bandwidth when

compared to other InfiniBand networks. Since we use the

“polling” mode, as the time required for an MPI Alltoall

operation increases, the amount of power consumed by

each core during the operation also increases. Hence, it is

necessary to design efficient algorithms for the MPI Alltoall

operation to address these concerns.

B. Broadcast and Reduction Operations

In Figures 2(b) and (c), we present the comparison

between the overall time taken for a collective operation

and just the network phase of the collective operation for

various message sizes for MPI Bcast and MPI Reduce,

with 64 processes. These figures indicate that the network

communication phase accounts for most of the overall

time required for these collective operations. Since only

one process per compute-node is involved in the network

communication phase and we are using the “polling” mode,

this also leads us to the observation that rest of the processes

are continuously using the CPU, as they wait for the network

communication phase to complete. This implies that there is

a strong potential to conserve the power consumed by the

non-leader processes in every node with the shared-memory

based multi-core aware collective operations.

V. DESIGNING POWER-AWARE COLLECTIVE

ALGORITHMS

In this section, we describe our power-aware algorithms

for collective operations. Since modern architectures such

as the Intel “Nehalem” allow us to perform DVFS and

CPU throttling operations with very small overheads, we

have chosen to perform the DVFS operations on a per-call

basis. At the start of each collective operation, we scale the

frequency of all the compute-cores to the minimum possible

frequency and at the end of the operation, we again scale

the frequency up to the peak frequency. We would like

to note that the methods proposed by authors in [5], [6],

[8] are definitely applicable on these modern architectures.

However, we have also re-designed some of the important

collective algorithms to deliver fine-grained power savings

to applications with small performance overheads.

A. Power-Aware MPI Alltoall algorithm

In Section IV-A, we discussed about the performance

impact of network contention on the performance of an

MPI Alltoall operation. In this section, we propose our

novel algorithm to schedule the inter-node exchanges in

an efficient manner. We also leverage the concept of CPU

throttling to conserve power with very little performance

overheads. Consider an MPI Alltoall operation being per-

formed using the pair-wise exchange algorithm, across

P=N*c processes, such that we have N compute nodes, each
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Figure 2. (a) Alltoall scalability with 32 processes across 4-way and 8-way configurations, (b) Bcast Overall Time Vs Network Time (c) Reduce Overall
Time Vs Network Time

node has c cores and N*c is a power of 2. In the pair-

wise exchange algorithm, each process does P iterations to

send and receive distinct messages from every other process.

The first c steps of this operation will involve intra-node

message exchanges and the remaining (P-c) iterations will

involve data being sent across the network. Since the time

spent in the last P-c steps dominates the time required for

the entire operation, we focus on conserving CPU power

during this part of the operation. Within each node, we

group processes that are on the same CPU socket as shown

in Figure 3. We now have two process groups within each

compute node - A and B. We scale down the frequency of

each core to its minimum frequency, fmin, at the start of the

collective and schedule the entire communication operation

in the following manner:

• Phase 1: All the processes perform c iterations to

exchange data only with other processes that are on

the same compute node.

• Phase 2: Throttle down all processes belonging to

process group B to the lowest state. Allow only the

processes in the process group A to participate in inter-

node communication.

• Phase 3: Once all the processes in process group A are

done with their message exchange operations, throttle

all these processes down, throttle up the processes in

process group B, and allow them to participate in the

inter-node communication.

• Phase 4: The final phase of the algorithm involves N

iterations. In each iteration, we pair the compute nodes

i and j such that i < j. Let Ai and Bi be the two

process groups on node i. Similarly, Aj and Bj be the

two process groups on node j. We first throttle down

process groups Bi and Aj to allow process groups Ai,

Bj to communicate. Then, we throttle down process

groups Ai and Bj , throttle up process groups Bi and

Aj and allow only Bi and Aj to communicate.

In Figure 3, we represent the socket that has been throttled

down by shading it completely and we also indicate the

throttling level as T 7. Once the MPI Alltoall operation is

complete, we perform another DVFS operation to restore

each core to its peak frequency, fmax. Since in phases 2

and 3, only half the processes within each compute node

are involved in inter-node communication, we can expect the

overhead associated with the network contention to be less

than the regular algorithm. Also, we would like to emphasize

that a core that has been throttled down is not involved in

any communication operation.

B. Power-Aware Shared-Memory Based Algorithms

In Section IV-B, we discussed the potential for conserving

power with multi-core aware collective algorithms. This

gives us the opportunity to save CPU power by throttling

down the cores of the non-leader processes during the

network phases of the operations. The current generation

“Nehalem” architecture allows for the CPU throttling opera-

tion to be performed at the socket-level granularity. Suppose

the node-leader process is on socket A, if we throttle this

socket, this will invariably slow down the network phase

of the communication and this will affect the performance

of the collective operation. Hence, we throttle down the

cores on this socket partially to allow for some power

savings without sacrificing on the performance. However, the

cores on socket B are not involved in any communication

and can be throttled down to the lowest possible state

offered by the architecture, as indicated in Figure 4. On

architectures that allow for CPU throttling to be performed at

the core-level granularity, we could easily throttle down the

compute cores of all the non-leader processes to the lowest

possible state, thereby leading to higher power savings and

can also minimize the performance overheads as the cores

corresponding to the leader-processes can remain at the T 0
state. Note that if we were to use the default binomial

exchange algorithm [23] in which every process is involved

in the entire communication operation, we cannot directly

use CPU throttling to conserve power, without observing

significant overheads.

Figure 4. Power-Aware Shared-Memory based Collective Algorithms

C. Impact of Process Affinity on Power Management

As shown in Figure 5, the Intel “Nehalem” architecture

has cores 0 2 4 6 on socket A and cores 1 3 5 7 on socket B.
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Figure 3. Power-Aware Alltoall Personalized Exchange Algorithm

Figure 5. Core-Socket Mapping on the Intel “Nehalem” Architecture

MVAPICH2 binds processes to sockets such that processes

0 1 2 3 will be bound to the cores on socket A and processes

4 5 6 7 will be bound to the cores on socket B. This

mapping is established at job launch time and the processes

remain bound in this manner for the entire duration of the

application’s life-time. The power-aware algorithms that we

have discussed above, rely on this mapping so that we can

perform DVFS and CPU throttling operations in the manner

that we have described in Sections V-A and V-B. We would

like to note that if the processes are mapped in a different

manner, the algorithms may need to be adjusted accordingly

to deliver the desired results

VI. MODELING PERFORMANCE AND POWER FOR

COLLECTIVE OPERATIONS

In [23], the authors proposed a set of models to analyze

some of the classical collective algorithms on systems based

on Ethernet networks and single-core compute nodes. In this

section, we extend these models for analyzing power and

performance on multi-core clusters. As discussed in Section

IV, since the time spent in pure intra-node communication

operations is very small for both MPI Alltoall and shared-

memory based collectives, we are not going to include these

times in our models. We use the terms Odvfs and Othrottle

to represent the overhead involved in performing the DVFS

and CPU Throttling operations.

A. Modeling Performance

Let ts−intra−node be the start-up cost associated with an

intra-node message exchange operation and tw−intra−node

be the cost involved in sending a word of data to a peer

process within the same node. Similarly, let ts−inter−node

and tw−inter−node be the costs associated with an inter-node

message exchange operation. We consider a system with N

nodes, with each node having c cores and the size of the

message to be M bytes. As discussed in Section IV-A, we

need to account for the network contention while modeling

the performance of collective operations. We introduce a

parameter Cnet to consider the effect of network contention

and its value can be any positive integer.

1) Default Algorithms: The cost of performing an

MPI Alltoall or MPI Alltoalv operation with a message size

of M across N*c processes, with the pair-wise exchange

algorithm can be expressed as:

TAlltoall = tw−inter−node(P − c)(Cnet)M (1)

As we discussed in Section II-D, for a collective like

MPI Bcast, the entire operation is performed across the

leader and the shared-memory communicators. For the inter-

leader operation with medium and large messages, the

Scatter-Allgather algorithm is used to broadcast the data

across all the leaders. If the size of the message is M bytes,

first the data is scattered across all the leader processes

in the leader communicator and then an alltoall-broadcast

operation is done across all the leaders. Once all the node-

level leader processes have the entire buffer, they broadcast

the data to all the processes that are within the same compute

node using the shared-memory communicator. Let tscatter

and tallgather be the cost of performing the scatter and

the allgather operations during the broadcast operation. The

performance of a medium or large message MPI Bcast

operation across N*c processes can be modeled as:

tscatter = M ((N − 1)/N) tw−inter−node

tallgather = M(N − 1)tw−inter−node

TBcast = M(N − 1)tw−inter−node(1 + (1/N))(2)

2) Proposed Power-Aware Alltoall Algorithm: As dis-

cussed in Section V-A, we expect the network contention

to improve by 50%, for phases 2 and 3. In phase-2, the

cost of throttling down all the processes on socket-B can

be hidden as the processes on socket-A would have started



their communication operation. In phase-3, the processes on

socket-B can be throttled up only after phase-2 is complete

and each process incurs the cost Othrottle once. In each

iteration of phase-4, the cost associated with one of the CPU

throttling operations can be hidden, but each process will

incur the cost Othrottle once and there are N-1 iterations.

Hence, we can model the performance of our proposed

algorithm in the following manner:
tPhase−2 = tw−inter−nodeNc(Cnet/4)M

tPhase−3 = tw−inter−nodeNc(Cnet/4)M

tPhase−4 = tw−inter−nodeNc(Cnet/4)M

TAlltoall−power = (3/4)tw−inter−nodeNcCnetM +

+2 ∗ Odvfs + N ∗ Othrottle (3)

In equation (3), we can see that the performance overhead

associated with our proposed algorithm is linearly propor-

tional to the number of nodes in the system. If the costs

associated with the DVFS and CPU throttling operations

are further minimized in the next generation multi-core

architectures, it is possible to minimize the performance

overheads associated with our proposed algorithm.

3) Proposed Power-Aware Shared-Memory based Algo-

rithms: As discussed in Section V-B, we are throttling down

the socket on which the leader processes are mapped to and

we expect to see some performance degradation. To account

for the performance degradation associated with the CPU

throttling operations, we introduce a parameter Cthrottle and

its value can be any positive integer. The rest of the cores are

also throttled down at the start of the inter-leader operation

and throttled up at the end of it. But, since the non-leader

cores are not performing any operation, we do not have

to account for performance degradation across these cores.

We can model the performance of our proposed MPI Bcast

algorithm in the following manner:
TBcast−power = (M(N − 1)tw−inter−node ∗

(1 + 1/N))Cthrottle + 2 ∗ Odvfs ∗

+2 ∗ Othrottle (4)

If future architectures allow for the CPU throttling to be

performed at core-level granularity, we could minimize the

performance impact on the inter-leader operation by fully

throttling only the non-leader processes and also allow for

greater power savings.

B. Modeling Power

Suppose there are no power optimizations being used,

each core in the system will operate at its peak frequency,

fmax, when the system is loaded.

If these collective operations are performed without any

power optimizations then each core will operate at its peak

frequency, fmax. Let pcore,i(t) be the instantaneous power

drawn by the core i, at time t. Suppose a collective operation

occurred in the time interval [t1, t2], such that the difference

(t2−t1) is equivalent to the expressions derived in equations

(1) and (2). Since we have a total of N*c cores in the system,

the total power drawn by the system can be expressed as:∫ t2

t1

N∗c∑
i=1

pcore,i,fmax
(t) dt (5)

Suppose we perform only the DVFS operations for all the

compute cores before and after each collective communica-

tion operations, each of the CPU cores will be running at

their minimum frequency, fmin, during the communication

operations and at their peak frequency, fmax, during the

computation phases of the application. Since the commu-

nication operations are now being performed at a lower

frequency, the time required to complete these operations

can be higher. Suppose, the collective operation occurs in the

time interval [t1,t2′], such that (t2′ > t2), then the overall

power consumed by the system during these collective

operations with the DVFS operation can be expressed as:∫ t2′

t1

(

N∗c∑
i=1

pcore,i,fmin
(t)) dt (6)

If the ith core is throttled to the Tj state, at a time instant t,

we consider the power drawn by this core to be cj∗pcore,i(t),

where cj is in the interval [0,1]. Since we have eight different

throttling levels [T1, T7], with T7 being the state where the

CPU is only 12% active, we can say that c1 > c7.

1) Power-Aware MPI Alltoall algorithm: In our algo-

rithm, in phases 2 through 4, a given core will spend half of

the time in the completely throttled state, and the remaining

time in the T0 throttled state, and the frequency of each core

during the operation is fmin. If the time elapsed for the

MPI Alltoall operation is [t1,t3′], we can model the power

consumption of our proposed algorithm in the following

manner: ∫ t3′/2

t1

(

(N∗c)∑
i=1

pcore,i,fmin
(t))dt +

+

∫ t3′

t3′/2

(

(N∗c)∑
i=1

c7 ∗ pcore,i,fmin
(t)) dt (7)

On comparing equations (6) and (7), we can see that our

proposed algorithm can deliver greater power savings, as the

amount of power consumed by each core has been reduced

by a factor of c7 for half of the time interval. Despite the

fact that our algorithm has a slightly higher performance

overhead, we are able to demonstrate power-savings with

applications in Section VII.

2) Power-Aware Algorithms for Shared-Memory Based

Collectives: In Section V-B, we proposed our power-aware

algorithms for shared-memory based collectives. During the

inter-node operation, we are throttling down Socket B to

the T7 state, and socket A to the T4 state. Suppose our

power-aware MPI Bcast operation was executed in the time

interval [t1,t3’], we can model the power consumption of our

proposed power-aware algorithm in the following manner:



∫ t3′

t1

(

(N∗c)/2∑
i=1

c4 ∗ pcore,i,fmin
(t) +

+

(N∗c)/2∑
i=1

c7 ∗ pcore,i,fmin
(t)) dt (8)

From equations (6) and (8), we can see that our proposed

power-aware shared-memory based collective algorithms can

deliver greater power savings as all the cores on socket B

are fully throttled to the T7 state. The amount of processors

on socket A is also lower by a factor of c4, but there is

a performance overhead associated with our algorithm. We

already discussed the potential advantages of architectures

that allow core-level CPU throttling. On such systems, the

amount of power consumed by all the non-leader processors

can be lowered by a factor of c7, leading to greater power

savings without additional performance overheads.

VII. EXPERIMENTAL EVALUATION

In this section, we describe our experimental methodology

and results.

A. Experimental Testbed

Our cluster comprises of eight compute nodes based on

the Intel “Nehalem” architecture. Each node has two CPU

sockets, with each socket having four compute cores that

can operate in the frequency range 1.6GHz to 2.4GHz.

The eight compute nodes are connected together through

InfiniBand QDR adapters and a Mellanox QDR Switch. We

used a MASTECH MS2205 Digital Clamp Power Meter

and it generates instantaneous power consumption readings

with intervals of 0.5s. However, we need a high resolution

meter to capture the power consumption data during every

communication phase in applications. For this paper, we

have profiled the applications to learn about how much

time processes spend in various collective operations and

we use the power consumption data gathered from the

benchmark results to estimate the potential power benefits

with applications.

B. Benchmarks and Applications

We have used OSU MPI Benchmarks [22], to measure

the performance and power consumption characteristics of

communication operations. We have also used NAS Parallel

Benchmarks [24] and the CPMD application [25] to analyze

the performance and potential for power savings of our

proposed power-aware collective algorithms.

C. Polling Vs Blocking Power and Performance Character-

istics

In Figure 6, we demonstrate the performance and power

characteristics of the “blocking” and the “polling” message

progression modes with MPI Alltoall with 64 processes for

medium and large message sizes. In the pair-wise exchange

algorithm, since we spend little time performing intra-node

exchanges, the performance difference in Figure 6(a) can be

considered to be purely due to the interrupt and scheduling

overheads associated with the “blocking” mode. In Figure

6(b), we can see that the power consumption is lower with

the “blocking” mode and this is because, each process yields

the CPU after ”polling” for a short time. The InfiniBand

HCA generates an interrupt when a new message arrives

and the OS schedules the task onto the CPU upon servicing

the interrupt. We can see that the ”blocking” mode has

the potential for conserving power, but since the overall

performance is poor, it is not a desirable option.
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D. MPI Alltoall and MPI Alltoallv

In Figure 7(a), we compare the performance of our

proposed power-aware alltoall algorithm with the original

algorithm that does not involve any power-optimizations

and the version in which we perform only the frequency

scaling operation on a per-call basis. We observe that the

performance difference between the default version and the

power-aware algorithms is only about 10% and that there

is very little difference between our proposed algorithm and

the algorithm that performs only the DVFS operations. We

would also like to stress that our methods can work well

in conjunction with the methods proposed in [5]. In Figure

7(b), we compare the power consumption characteristics of

the three algorithms. In the default and the DVFS based

power-aware algorithms, each node consumes about 2.3 KW

and about 1.8 KW at each sampling point, respectively.

However, with our proposed algorithms, we can minimize



the amount of power consumed to about 1.6 KW at each

sampling point. As discussed in [26], we can observe similar

results even for the MPI Alltoallv operation.

E. MPI Bcast

In Figure 8(a), we compare the performance of the three

designs - default case, the algorithm that performs only

the DVFS operations and our proposed algorithm. With

either of the power-aware algorithms, we can see that there

is an overhead of about 15% when the message size is

1MB. However, there is very little difference between the

two power-aware algorithms. In Figure 8(b), we compare

the power consumption patterns of the three algorithms.

In the default and DVFS based power-aware algorithms,

each compute node consumes about 2.3 KW of power and

about 1.8 KW of power at each point, respectively. But,

with our proposed algorithm, we can minimize the power

consumption to about 1.6 KW at each point. As discussed

in Section V-B, if future architectures allow the throttling

operation to be performed at the core-level granularity, we

would be able to conserve more power by throttling down

all the non-leader processes to the lowest state.

F. CPMD Application

CPMD is a parallelized plane wave/pseudo-potential im-

plementation of Density Functional Theory, particularly de-

signed for ab-initio molecular dynamics [25]. We have used

the datasets wat-32-inp-1, wat32-inp-2 and ta-inp-md for our

experimental evaluation. In Figure 9, we compare the per-

formance of the default and the power-aware schemes with

the CPMD application run across 32 and 64 processes in the

strong-scaling mode. We compare only the overall execution

time and the amount of time spent in the MPI Alltoall

operation, as it dominates the overall communication time.

We can see that with increasing the system size from 32

to 64 processes, the application run-time reduced by almost

50%, as we are using the same problem size. However, the

amount of time spent in the MPI Alltoall operations has

only changed by a small amount. This is because the cost

associated with the pair-wise exchange algorithm is linearly

proportional to both the system size and the message size.

We can also see that with either of the power optimizations,

there is a performance degradation of about 2 - 5% and

there is very little difference between the two versions,

indicating that the overhead of the throttling operations is

very negligible. In Table I, we compare the total amount of

power consumed with the three different data-sets and across

32 and 64 processes. We observe about 8% energy savings

with ta-inp-md dataset with a system size of 64 processes.

G. NAS FT and IS Application Kernels

In Figure 10 and Table II, we compare the performance

and energy consumption statistics of class C FT and IS

NAS kernels. The performance and power characteristics are

similar to what was observed with the CPMD benchmarks

and we observe about 8% energy savings with the IS kernel.

Table II
NAS APPLICATION: POWER STATISTICS IN KILOJOULES(KJ)

32 Processes (KJ) 64 Processes(KJ)

FT IS FT IS

Default (No-Power) 16.36 3.412 17.056 3.8456

Freq-Scaling 15.588 3.248 16.32 3.608

Proposed 15.472 3.16 16.16 3.52

VIII. CONCLUSION

As the size of the systems continues to scale, various

factors affect the performance of collective operations and

several researchers have proposed various algorithms to

improve the performance of collective operations on such

systems. However, with the sharp growth in the amount

of power being consumed by large scale supercomputers,

it is also necessary to design collective algorithms in a

power-aware manner to minimize the total amount of power

consumed by the system with acceptable performance over-

heads. In this paper, we have proposed efficient power-aware

algorithms for collective operations that utilize the Dynamic

Voltage and Frequency Scaling concepts along with CPU

throttling to deliver fine-grained power savings. We have

demonstrated through micro-benchmarks and application

benchmark suites that our proposed methods can deliver

higher power-savings than some of the existing power-aware

algorithms. Our evaluations have shown that we are able

to conserve about 8% of energy with applications such

as CPMD and NAS class C kernels. We are interested in

extending these power-aware optimizations to the topology-

aware algorithms [27] to conserve power on large scale

clusters by throttling down all the processes in a rack, during

the inter-rank communication phases. Also, since the modern

architectures allow for DVFS operations to be performed

at the core-level granularity, it is necessary to explore

how intra-node point-to-point operations can be designed to

conserve power. It is also important to explore various design

challenges involved with conserving InfiniBand network

power dynamically during application execution.
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