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Abstract

A large number of clusters are being used in all dif-
ferent organizations such as universities, laboratories, etc.
These clusters are, however, usually independent from each
other even in the same organization or building. To pro-
vide a single image of such clusters to users and utilize
them in an integrated manner, cluster-of-clusters has been
suggested. However, since research groups usually do not
have the actual backbone networks for cluster-of-clusters,
which can be reconfigured with respect to delay, packet
loss, etc. as needed, it is not feasible to carry out practi-
cal research over realistic environments. Accordingly, the
demand for an efficient way to emulate the backbone net-
works for cluster-of-clusters is overreaching. In this pa-
per, we suggest a novel design for emulating the backbone
networks of cluster-of-clusters. The emulator named NemC
can support the fine-grained network delay resolution min-
imizing the additional overheads. The experimental results
show that NemC can emulate the low delay and high band-
width backbone networks more accurately than existing em-
ulators such as NISTNet and NetEm. We also present a case
study showing the performance of MPI applications over
cluster-of-clusters environment using NemC.

Keywords: Network Emulator, Cluster-of-Clusters,
High-Speed Backbone Networks, and MPI

1. Introduction

Cluster systems are becoming more popular for a wide
range of applications owing to their cost-effectiveness. A
large number of such clusters are being used in all different
organizations such as universities, laboratories, etc. These
clusters are, however, usually independent from each other
even in the same organization, i.e., applications (e.g., scien-

∗ This research is supported in part by the Faculty Research Fund
of Konkuk University, Department of Energy’s Grant #DE-FC02-
01ER25506, National Science Foundation’s grants #CNS-0403342,
and #CNS-0509452; and equipment donations from Ammasso, Inc.

tific parallel applications) can run only on a single cluster
and cannot utilize the idle resources of other clusters. Thus
it is highly desired that the clusters in the same organization
provide a single image to users and are utilized in an inte-
grated manner. To cater to such needs, researchers have sug-
gested Cluster-of-Clusters [2, 17], which aims to construct
a cluster combining few or many clusters with high-speed
backbone networks. Though this term can be also referred
as Grid, in this paper, we consider it as a cluster of clus-
ters that is geographically distributed in a small area (i.e.,
the same campus or building), which is more tightly cou-
pled system than Grid. This computing environment will be
beneficial to the organizations that want to fully utilize their
clusters providing a single image without exposing the sys-
tem to the out side.

The cluster-of-clusters environment poses several re-
search challenges including performance, compatibility, se-
curity, authentication, etc. However, before addressing such
research challenges, one of the foremost critical issues is
how to construct the experimental environment of cluster-
of-clusters. Since research groups usually do not have the
actual backbone networks for cluster-of-clusters, which can
be reconfigured with respect to delay, packet loss, etc. as
needed, it is hard to carry out practical research over re-
alistic environments. Accordingly, the demand for an effi-
cient way to emulate the backbone networks for cluster-of-
clusters is overreaching. Approaches involving simulations
and modeling are widely accepted [7, 3, 5]; however, these
approaches have the limitations that they cannot run actual
software (i.e., applications, middleware, and system soft-
ware). On the other hand, if we can emulate only the back-
bone networks running actual clusters, it will provide very
close environments to the real-world systems but also give
flexibility to change the system parameters, such as network
delay, packet loss, etc. For the emulation, a workstation can
be configured as a router with multiple Network Interface
Cards (NICs), of which each is connected to a cluster. By
running a network emulation software that generates arti-
ficial network delay, packet loss, etc. on the workstation-
based router we can emulate the backbone networks for
cluster-of-clusters while running actual software over the



clusters in a transparent manner.
Though there are several existing network emulators [6,

11, 14, 15], they are focusing on large scale Wide Area Net-
works (WANs) such as Internet. However, there are many
prominently different characteristics between such WANs
and the backbone networks for cluster-of-clusters. For ex-
ample, the backbone networks usually have a much lower
delay than typical WAN environments though the backbone
networks have a higher delay than the intra-cluster LAN en-
vironments. The emulators that can emulate a millisecond
network delay resolution may not be enough to emulate the
high-speed backbone networks. In addition, the bandwidth
provided by the backbone networks for cluster-of-clusters
is higher than the WAN case. Hence the emulator should be
able to emulate higher bandwidth networks.

In this paper, we suggest a novel design for emulating
the backbone networks of cluster-of-clusters. The emulator
named NemC (Network Emulator for Cluster-of-Clusters)
can support the fine-grained network delay resolution min-
imizing the additional overheads. We design a new packet
scheduling mechanism that performs on-demand schedul-
ing, which is independent on any system timers. Also we
minimize the additional overhead by designing it at the
kernel-level to emulate high bandwidth networks. In addi-
tion to the network delay emulation, current implementa-
tion of NemC can emulate packet losses and out-of-order
packets. To the best of our knowledge, no research has fo-
cused on the network emulation for cluster-of-cluster envi-
ronments and NemC is the first emulator to address this.

The experimental results show that NemC can emulate
the low delay and high bandwidth backbone networks more
accurately than existing emulators such as NISTNet [6] and
NetEm [11]. We also present the performance evaluation
results of MPI [9] applications such as NAS [1] and Gro-
macs [4] over cluster-of-clusters environment using NemC
as a case study.

Rest of this paper is organized as follows: Section 2 sug-
gests a new network emulator for cluster-of-clusters and de-
tails its design. The experimental evaluation of the emulator
and example of its use are presented in Section 3. The re-
lated work is discussed in Section 4. Finally, this paper con-
cludes in Section 5.

2. Design and Implementation of NemC

In this section, we detail the design and implementa-
tion of our network emulator for cluster-of-clusters named
NemC. NemC is implemented using the netfilter
hooks provided by Linux, which can be dynamically in-
serted to the kernel’s chain of packet processing. A run-time
loadable kernel module which runs on Linux-based routers
is used to perform all operations. Its design does not re-
quire any kernel modifications. The current implementa-
tion can insert network delay with fine-grained resolution,
packet drops, and out-of-order packets.

Figure 1 shows the overall design of NemC. As shown
in the figure, NemC consists of four components: (i) NemC
netfilter, (ii) NemC scheduling demon, (iii) NemC kernel
module and (iv) NemC user applications. The NemC net-
filter intercepts the packets arrived at the router node af-
ter the IP routing decision. Based on the parameters set by
the user applications, the NemC netfilter can drop packets,
generate out-of-order packets, or introduce network delays.
These parameters can be controlled at run-time by using the
NemC user applications. The NemC scheduling daemon is a
user-level process, which requests the netfilter to search the
packets that has been sufficiently delayed and reinject them
into the network. The kernel module takes care of insertion
of the netfilter in the initialization phase but also provides
access to the internal data structures and parameters of the
NemC netfilter to the scheduling daemon and the user ap-
plications.
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Figure 1. Overall Design of NemC

2.1. Packet Scheduling for Fine-Grained Delay
Resolution

The backbone networks for cluster-of-clusters have low
network delay compared to general WANs such as Inter-
net. To emulate such networks, the emulator is required
to support fine-grained delay resolution. The delay resolu-
tion of a network emulator is mainly decided by the trig-
gering mechanism of packet scheduling. The packets de-
layed more than the given time, net delay, at the router
node are reinjected into the network by the packet schedul-
ing routine. The most widely used mechanism to trigger the
packet scheduling is to invoke the scheduling routine for ev-
ery timer interrupt. This mechanism is simple to design and
implement; however, since it depends on the system timer
resolution, it may not be able to support fine-grained de-
lay resolution. For example, if the network emulator uses
Linux timer then it can support only 10ms (with kernel ver-
sion 2.4) or 1ms (with kernel version 2.6) delay resolution,
which is too coarse-grained to emulate the backbone net-
works for cluster-of-clusters. On the other hand, if the net-
work emulator directly uses a hardware timer in the system,



the interrupt can be generated very high frequency and can
delay the actual packet processing.

To overcome these limitations of the timer based mech-
anism, we suggest the on-demand packet scheduling mech-
anism. In this mechanism, the packet scheduling routine
is triggered by either incoming packet or scheduling dae-
mon. That is, whenever there is a new packet arrived at the
router node, it triggers the packet scheduling routine, while
the user-level scheduling demon continually tries to invoke
the packet scheduling routine if there are no packets wait-
ing to be processed in the protocol stacks and the system
is idle. It is to be noted that the user-level scheduling dae-
mon has lower priority than the kernel-level packet process-
ing context. Thus, if packets arrive at the router node in a
bursty manner the scheduling routine will be invoked very
frequently by those packets. On the other hand, if packets
arrive intermittently then the user-level daemon will contin-
uously trigger the packet scheduling. In this manner, we can
trigger the scheduling routine as much as possible (i.e., in a
fine-grained mode) without any effect on the actual packet
processing of the protocol stacks. In this mechanism, since
both newly arrived packets and the user-level daemon in-
voke the scheduling routine, which accesses the same data
structures in the NemC netfilter, we guarantee that only one
can access the data structures at a time by locking. We
use the time stamp in the sk buff data structure of the
Linux kernel to calculate the total time duration spent by
the packet in the router node.

2.2. Low Overhead Emulation for High Band-
width Support

Another important characteristic of the backbone net-
works for cluster-of-clusters is high bandwidth. To emulate
the high bandwidth networks, we need to address two criti-
cal issues: i) delay cascading and ii) emulation overhead.

If an emulator holds a packet for a given time to add
a delay without yielding the CPU resource, this delay will
be cascaded to the next packets that have been already ar-
rived at the router node. For example, if an emulator is im-
plemented as a high priority kernel-level process and polls
the timer occupying the CPU resource, the delay can be cas-
caded on subsequent packets. To avoid this delay cascading
problem, we place the packets that need to be delayed into
a queue and immediately return the context to the original
routine. The packets queued are re-injected by the packet
scheduling mechanism described in Section 2.1.

On the other hand, higher emulation overheads can re-
duce the effective bandwidth between the clusters in the
experimental systems, which is a undesired side effect.
Broadly, the emulator can be implemented at the user-level
or the kernel-level. The user-level emulation requires two
data copies between user and kernel buffers for each packet.
This copy operation is a well-known bottleneck of packet
processing. Hence, our network emulator is designed at the
kernel-level to prevent any additional data copy.

2.3. Packet Drop and Out-of-Order Packet Gener-
ation

Since the backbone networks for cluster-of-clusters
can use store-and-forward networks there can be packet
drops because of network congestion. To emulate such
case, we generate packet drops based on the packet
drop rate value, drop rate, given by a NemC user applica-
tion. NemC chooses a packet randomly for every drop rate

packets and simply drops this packet freeing all the re-
sources occupied by this packet.

Out-of-order packets can occur in cluster-of-clusters due
to multi-path and adaptive routing. To emulate such case,
we generate out-of-order packets using a given out-of-order
packet generation rate, ooo rate, and a delay for out-of-
order packets, ooo delay. These values are set by a NemC
user application. It is guaranteed that the value of ooo delay

is always larger than that of net delay. NemC chooses a
packet randomly for every ooo rate packets and delays this
packet as much as ooo delay. Since this packet has been
delayed more than other packets it becomes an out-of-order
packet if the packet interval between this packet and the next
is smaller than ooo delay.

3. Experimental Evaluation of NemC

In this section, we describe our experimental method-
ology. In Section 3.1, we compare our network emulator,
NemC, with popular existing network emulators and eval-
uates the benefits of NemC. In Section 3.2, we outline the
overall usage of NemC and demonstrate the main uses of
NemC. For all our experiments we used two clusters whose
descriptions are as follows:

Cluster A: A cluster system consisting of 4 nodes built
around SuperMicro SUPER P4DL6 motherboards which
include 64-bit 133 MHz PCI-X interfaces. Each node has
two Intel Xeon 2.4 GHz processors and 512 MB of main
memory. We used the RedHat 9.0 Linux distribution.

Cluster B: A cluster system consisting of 4 nodes
built around SuperMicro SUPER X5DL8-GG moth-
erboards which include 64-bit 133 MHz PCI-X inter-
faces. Each node has two Intel Xeon 3.0 GHz proces-
sors and 512 MB of main memory. We used the RedHat 9.0
Linux distribution.

The nodes are connected with Ammasso Gigabit Ether-
net interface cards. The software (SDK) version used is 1.2-
ga2. These cluster nodes are internally connected with Net-
gear GS524T Gigabit Switches. As shown in Figure 1 these
switches are connected each other through the workstation-
based router that is similar in configuration to Cluster B
nodes’. This router node runs emulators to emulate the
backbone networks.
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Figure 3. TCP Flow Analysis for (a) NemC and (b) NISTNet

3.1. Microbenchmarks

In this section, we compare NemC with existing emula-
tors such as NISTNet [6] and NetEm [11]. We measure the
latency and the bandwidth with nttcp (version 1.47) vary-
ing the emulated network delay. Since the focus of the pa-
per is the fine-grained network delay emulation, we do not
include the experimental results for packet drop and out-of-
order packet cases.

Figure 2(a) shows the 512B message latency between
two nodes in different clusters, Clusters A and B, while
emulating the network delay using NemC, NISTNet, and
NetEm. We vary the network delay from 0µs to 1600µs. As
we can see in the figure, NetEm shows almost constant la-
tency regardless of the expected network delay. Also this la-
tency is much higher than the given delay. It is because the
packet scheduling of NetEm uses the Linux system timer,
which has milliseconds timer resolution. Hence, it cannot
generate the fine-grained network delay. On the other hand,
NemC and NISTNet generate the network delay very close
to the given delay value.

To closely look at NemC and NISTNet, we measure the
512B message latency again with finer network delay val-
ues. Figure 2(b) presents the results. We can observe that
NISTNet shows interestingly the almost same latency for
100µs and 150µs delay values. We can observe the same
trend with 200µs, 250µs, and 300µs delay values. It is due
to the fact that NISTNet uses the MC146818 real-time clock

for the packet scheduling of which the tick resolution is ap-
proximately 122µs. Therefore, it cannot support finer net-
work delay resolution than 122µs. On the other hand, as
we can see in the figure, NemC is emulating the given de-
lay values very accurately. The reason why we see around
200µs latency with 100µs network delay is because of the
default latency between two nodes, which is roughly 100µs.

Table 1. Comparisons with Real Network La-
tency

Message Real Emulation Error
Size Network (%)

(Bytes) (µs) NemC NISTNet NetEm
512 336.6 6.8 22.3 1088.4

16384 2206.5 3.3 30.3 225.4

In order to see how much NemC can emulate accurately
the real network, we measure the latency of a real intra-
building network and compare it with the emulation results.
Table 1 shows the 512B and 16KB message latency of the
real network and the emulation errors of each emulator. As
we can see NemC shows very few errors compared to other
emulators.

We also measure the 512B message bandwidth between
two nodes in different clusters. Similar to the latency re-
sults, we have observed that NetEm shows almost the same
bandwidth no matter what delay value has been given.
Since NetEm adds too much delay for small delay val-



ues the bandwidth is also very low. More importantly, we
have observed that NemC can achieve higher bandwidth
(up to 37%) than NISTNet for small network delay val-
ues. To compare NemC and NISTNet in detail, we execute
tcpdump on the router node, in which the emulator is run-
ning, and observe the behavior of each emulator while per-
forming the bandwidth test. For this experiment, we have
set the network delay into 250µs. The message size is 512B.
Figures 3(a) and (b) present a snapshot for the first 2ms of
NemC and NISTNet, respectively. The graphs show when
each packet has been arrived at the router node (indicated
with empty circles in the figures) and when it has left (plot-
ted with filled rectangles in the figures). With these figures,
we can clearly see how long the packets have been delayed
in the router node by the emulator. As we can observe in
the figure, NemC emulates 250µs network delay very ac-
curately while NISTNet adds more than 350µs, which ac-
counts for 40% error. This explains why we see better band-
width with NemC than NISTNet.

3.2. Case Study: MPI Applications over Cluster-
of-Clusters

In this section, we evaluate and analyze the performance
of MPI applications over cluster-of-clusters using our net-
work emulator, NemC. We choose the following applica-
tions as a representative set for evaluation: (i) NAS version
2.3 (Class B) - EP, IS and MG and (ii) Gromacs version
3.3 - d.villin. We have used the MPI library, MPICH Ver-
sion 1.2.7p1 [10].

Each evaluation is divided into two parts: (i) Execution
on a single cluster (represented by 4x1 in the graphs) and
(ii) execution on a cluster-of-clusters with varying emulated
network delay (represented by the corresponding network
delay in the graphs). Each single cluster contains 4 nodes.
The cluster-of-clusters experiments utilize the nodes of both
the clusters.

Figure 4(a) shows the performance of EP, IS, and MG.
The single cluster execution of EP takes 82.5s. Further,
we notice that the execution times of EP over a cluster-of-
clusters do not depend largely on the network delay. Perfor-
mance and execution time of applications like EP can hence
be improved immensely by utilizing the nodes of cluster-
of-clusters. In addition, since the network delay does not af-
fect the execution time of EP executed on cluster-of-clusters
significantly, this application can benefit even from cluster-
of-clusters formed by widely separated clusters with high
network delay. In the figure, we also observe that the net-
work delay shows a fair impact on the execution times of
IS and MG. The execution times of these applications ex-
ecuted on single clusters (50.3s and 24.4s respectively) are
higher than the their execution times with well-connected
cluster-of-clusters (about 30.0s and 16.4s respectively for
network delay of 100µs). This shows that these applications
can perform up to 40% and 33% faster using the cluster-of-
clusters setup. Further, we notice that the benefit of using

cluster-of-clusters diminishes with increasing network de-
lay. Hence these applications can benefit from running on
multiple clusters for network delays up to some extent.

Performance of Gromacs - d.villin shown in Figure 4(b)
shows that the single cluster execution of this application
performs significantly better than its execution on cluster-
of-clusters (with all delays). It is to be noted that the y-
axis of this graph is Simulations/Day. Since this application
is highly communication intensive, the execution on more
number of nodes spread over the high delay networks in-
crease its communication overheads heavily. Hence appli-
cations like these can rarely benefit from cluster-of-clusters
systems.

In aggregate, we have demonstrated that our network
emulator NemC can accurately answer the following ques-
tions: (i) Can a given application execute faster on a cluster-
of-clusters? (ii) What is the maximum network delay that
can sustain this benefit? and (iii) What is the measure of the
extent of benefit possible? The capability of NemC to em-
ulate fine-grained delay enables us to evaluate and predict
these trends accurately.

4. Related Work

There has been a significant research on network em-
ulation. NISTNet [6] and NetEm [11] are the widely em-
ployed network emulators running on Linux systems. How-
ever, these emulators are focusing on how to emulate gen-
eral WANs. Hence fine-grained network delay resolution
was not an important factor to these emulators as shown
in Section 3.1. On the other hand, NemC has been de-
signed carefully to deal with low delay and high bandwidth
network characteristics of cluster-of-clusters. For FreeBSD
based systems, Dummynet [14] and ModelNet [15] have
been suggested. Again, these emulators target large scale
WANs rather than cluster-of-clusters environment.

There are also well designed Grid emulators. For exam-
ple, MicroGrid [13] provides a virtual Grid environment for
Grid applications. Netbed [16] provides integrated access to
simulated, emulated, and wide-area network testbeds. These
emulators are beneficial to develop and evaluate applica-
tions over large scale Grid environments.

We also have introduced a simple delay generator for
network emulation in one of our previous works to evalu-
ate RDMA over IP [12]. This emulator, however, does not
consider all the design issues discussed in this paper and has
only limited features.

5. Conclusions and Future Work

In this paper, we suggest a novel design for emulating
the backbone networks of cluster-of-clusters. The emula-
tor named NemC can support the fine-grained network de-
lay resolution minimizing the additional overheads. To re-
flect the low delay and high bandwidth characteristics of
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the backbone networks, we design a new packet scheduling
mechanism that performs on-demand scheduling. In addi-
tion to the network delay emulation, current NemC imple-
mentation can emulate packet losses and out-of-order pack-
ets.

The experimental results clearly show that NemC can
emulate the low delay and high bandwidth backbone net-
works more accurately than existing emulators such as
NISTNet and NetEm. We also present the performance
evaluation results of MPI applications such as NAS and
Gromacs over cluster-of-clusters environment using NemC
as a case study. On the whole, we demonstrate the ability of
NemC to accurately evaluate the possible benefits (or lack
thereof) for applications executing over cluster-of-clusters
environments with varying network characteristics.

As future work, we plan to add more features such as sta-
tistical generation of delay. In addition, we intend to eval-
uate NemC with 10 Gigabit Ethernet [8] and its scalability.
We try to see how much the multi-processor system can im-
prove the scalability and whether the Linux kernel needs to
be optimized further for better scalability. We plan to eval-
uate the applications over a larger system size. We also like
to extend our target emulation system to even Grid environ-
ment.
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