
High Performance MPI-2 One-Sided Communication over InfiniBand
�

Weihang Jiang Jiuxing Liu Hyun-Wook Jin Dhabaleswar K. Panda

William Gropp
�

Rajeev Thakur
�

Computer and Information Science
The Ohio State University

Columbus, OH 43210�
jiangw, liuj, jinhy, panda � @cis.ohio-state.edu

�
Mathematics and Computer Science Division

Argonne National Laboratory
Argonne, IL 60439�

gropp, thakur � @mcs.anl.gov

Abstract

Many existing MPI-2 one-sided communication imple-
mentations are built on top of MPI send/receive operations.
Although this approach can achieve good portability, it suf-
fers from high communication overhead and dependency
on remote process for communication progress. To address
these problems, we propose a high performance MPI-2 one-
sided communication design over the InfiniBand Architec-
ture. In our design, MPI-2 one-sided communication op-
erations such as MPI Put, MPI Get and MPI Accumulate
are directly mapped to InfiniBand Remote Direct Memory
Access (RDMA) operations.

Our design has been implemented based on MPICH2
over InfiniBand. We present detailed design issues for this
approach and perform a set of micro-benchmarks to char-
acterize different aspects of its performance. Our per-
formance evaluation shows that compared with the de-
sign based on MPI send/receive, our design can improve
throughput up to 77%, lantency up to 19%, and reduce syn-
chronization overhead up to 13%. It also has other advan-
tages such as making communication progress independent
of the remote process and better overlap of communication
and computation.

1 Introduction

In the area of high performance computing, MPI [9]
has been the de facto standard for writing parallel applica-
tions. The original MPI standard (MPI-1) specifies a mes-
sage passing communication model based on send and re-
ceive operations. In this model, communication involves

�
This research is supported in part by Department of Energy’s Grant

#DE-FC02-01ER25506, and National Science Foundation’s grants #CCR-
0204429 and #CCR-0311542.

both the sender side and the receiver side, and synchroniza-
tion is achieved implicitly through communication opera-
tions. This model is also called two-sided communication.

As an extension to MPI-1, the MPI-2 [14] standard in-
troduces the one-side communication model. In this model,
one process specifies all communication parameters and
synchronization is done explicitly to ensure the completion
of communication. One-sided communication operations in
MPI-2 include MPI Put, MPI Get and MPI Accumulate.

One common way to implement MPI-2 one-sided com-
munication is to use existing MPI two-sided communication
operations such as MPI Send and MPI Recv. This approach
has been used in several popular MPI implementations, in-
cluding the current MPICH2 [1] and SUN MPI [5]. Al-
though this approach can improve portability, it has some
potential problems:

� Protocol overhead. Two-sided communication oper-
ations incur many overheads such as memory copy,
matching of send and receive operations and hand-
shake in Rendezvous protocol. These overheads
decrease communication performance for one-sided
communication.

� Dependency on remote process. The communication
progress of one-side communication operations are de-
pendent on the remote process in this approach. As a
result, process skew may significantly degrade com-
munication performance.

Recently, InfiniBand [11] has entered the high perfor-
mance computing market. InfiniBand architecture supports
Remote Direct Memory Access (RDMA). RDMA opera-
tions enable direct access to the address space of a remote
process and their semantics match quite well with MPI-2
one-sided communication. In our recent work [13], we have
proposed a design which uses RDMA to implement MPI

1

two-sided communication. However, since its MPI-2 one-
sided communication operations are implemented on top of
two-sided communication, this implementation still suffers
from the problems mentioned above.

In this paper, we propose using InfiniBand RDMA op-
erations directly to provide efficient and scalable one-sided
communication in MPI-2. Our RDMA based design maps
MPI Put and MPI Get directly to InfiniBand RDMA write
and RDMA read operations. Therefore, one-sided commu-
nication can avoid the protocol overhead in MPI send and
receive operations. Since RDMA write and RDMA read
in InfiniBand are transparent to the remote side, MPI one-
sided communication can make progress without its partic-
ipation. Therefore, our design is less prone to process skew
and also allows better communication/computation overlap.

In this work, we present detailed design issues in our
RDMA based approach. We have implemented our design
based on our MPICH2 implementation over InfiniBand. We
use a set of micro-benchmarks to evaluate its performance.
These micro-benchmarks characterize different aspects of
MPI-2 one-sided communication, including communica-
tion performance, synchronization overhead, dependency
on remote process, communication/computation overlap
and scalability. Our performance evaluation shows that the
RDMA based design can bring improvements in all these
aspects. It can improve bandwidth up to 77%, latency up to
19%, and reduce synchronization overhead up to 13%.

The remaining part of the paper is organized as follows:
In Section 2, we provide background information about
MPI-2 one-sided communication and InfiniBand. In Sec-
tion 3, we introduce the current design for MPI-2 one-sided
communication in MPICH2. We describe our design in Sec-
tion 4. In Section 5, we present performance evaluation re-
sults. We discuss related work in Section 6 and conclude
the paper in Section 7.

2 Background

2.1 MPI-2 One-Sided Communication

In MPI-2 one-sided communication model, a process can
access another process’s memory address space directly.
Unlike MPI two-sided communication in which both sender
and receiver are involved for data transfer, one-sided com-
munication allows one process to specify all parameters
for communication operations. As a result, it can avoid
explicit coordination between the sender and the receiver.
MPI-2 defines origin as the process that performs the one-
sided communication, and target as the process in which
the memory is accessed. A memory area on target to which
origin can access through the one-sided communication is
called a window. Several one-sided communication opera-
tions are defined in MPI-2. They are MPI Put, MPI Get and

MPI Accumulate. MPI Put and MPI Get functions transfer
the data to and from a window in a target process, respec-
tively. The MPI Accumulate function combines the data
movement to target process with a reduce operation.

It should be noted that returning from communication
operations such as MPI Put does not guarantee the comple-
tion of the operations. To make sure an one-sided opera-
tion is finished, explicit synchronization operations must be
used. In MPI-2, synchronization operations are classified
as active and passive. Active synchronization involves both
sides of communication while passive synchronization only
involves the origin side. In Figure 1, we show an example of
MPI-2 one-sided communication with active synchroniza-
tion. We can see that synchronization is achieved through
four MPI functions: MPI Win start, MPI Win complete,
MPI Win post and MPI Win wait. MPI Win post and
MPI Win wait specify an exposure epoch in which other
processes can access a memory window in this process.
MPI Win start and MPI Win complete specify an access
epoch in which the current process can use one-side com-
munication operations such as MPI Put to access memory
in the target process. Multiple operations can be issued in
the access epoch to amortize the overhead of synchroniza-
tion. The completion of these operations are not guaranteed
until the MPI Win complete returns. Active synchroniza-
tion can also be achieved through MPI Win fence.

Figure 1. MPI-2 Communication with Active
Synchronization

2.2 InfiniBand

The InfiniBand Architecture is an industry standard
which defines communication and infrastructure for inter-
processor communication and I/O. InfiniBand supports both
channel and memory semantics. In channel semantics,
send/receive operations are used for communication. In
memory semantics, InfiniBand supports RDMA operations
such as RDMA write and RDMA read. RDMA operations
are one-sided and do not incur software overhead at the
other side. In these operations, memory buffers must first be
registered before they can be used for communication. Then

2

the sender (initiator) starts RDMA by posting an RDMA de-
scriptor which contains both the local data source addresses
(multiple data segments can be specified at the source) and
the remote data destination address. The operation is trans-
parent to the software layer at the receiver side. We should
note that the semantic of InfiniBand RDMA operations is
similar to that of MPI-2 one-sided communication. There-
fore, it is expected that if we implement the one-sided com-
munication with RDMA operations, we can achieve high
performance and offload the communication from the target
completely.

InfiniBand also provides remote atomic operations such
as Compare-and-Swap and Fetch-and-Add. These opera-
tions can read and then change the content of a remote mem-
ory location in an atomic manner.

3 Send/Receive Based MPI-2 One-Sided
Communication Design

As we have mentioned, MPI-2 one-sided communica-
tion can be implemented using MPI two-sided communi-
cation operations such as MPI Send, MPI Recv and their
variations (MPI Isend, MPI Irecv, MPI Wait, etc.). (In the
following discussions, we use “send” and “receive” to re-
fer to different forms of MPI Send and MPI Recv, respec-
tively.) We call this send/receive based approach. The cur-
rent MPICH2 implementation uses such an approach. Next,
we will use MPICH2 as an example to discuss the imple-
mentation of one-sided communication.

MPICH [8], developed by Argonne National Laboratory,
is one of the most popular MPI implementations. The orig-
inal MPICH provides supports for MPI-1 standard. As a
successor of MPICH, MPICH2 [1] supports not only MPI-
1 standard, but also MPI-2 extensions such as one-sided
communication, dynamic process management, and MPI
I/O. Although MPICH2 is still under development, beta ver-
sions are already available for developers. Our discussion is
based on MPICH2 over InfiniBand (MVAPICH2)1 [13].

3.1 Communication Operations

For the MPI Put operation, the origin process first sends
information about this operation to the target. This infor-
mation includes target address, data type information, etc.
Then the data itself is also sent to the target. After re-
ceiving the operation information, the target then uses an-
other receive operation for the data. In order to perform
the MPI Get operation, first the origin process sends a re-
quest to the target, which informs it the data location, data
type and length. After receiving the request, the target pro-
cess sends the requested data to the origin process. The

1The current MVAPICH2 implementation is based on MPICH2 version
0.94b1.

origin finishes the operation by receiving the data to its lo-
cal buffer. For MPI Accumulate, the origin process uses a
similar approach to send the data to the target process. Then
the target receives the data and performs a local reduce op-
eration.

The send/receive based approach has very good porta-
bility. Since it only depends on MPI two-sided communi-
cation, its implementation is completely platform indepen-
dent. However, it also has many drawbacks. First, it suf-
fers from high protocol overhead in MPI send/receive oper-
ations. For example, MPI send/receive operations uses Ren-
dezvous protocol for large messages. In order to achieve
zero-copy, the current MPICH2 uses a handshake in the
Rendezvous protocol to exchange buffer addresses. How-
ever, since in one-sided communication, target buffer ad-
dress information is available at the origin process, this
handshake is unnecessary and can be used to avoid degrada-
tion of communication performance. MPI send/receive may
involve other overheads such as send/receive matching and
extra copies.

Since the target is actively involved in the send/receive
based approach, the overhead at the target process increases.
The target process may become a performance bottleneck
because of this increased overhead.

The send/receive based approach also makes the origin
process and the target process tightly coupled in communi-
cation. The communication of origin process depends heav-
ily on the target to make progress. As a result, process skew
between the target and the origin may significantly degrade
communication performance.

3.2 Synchronization Operations

MPICH2 implements the active synchronization for the
one-sided communication, the passive synchronization is
still under development. Therefore, we focus on active syn-
chronization in this paper.

In MPI-2 one-side communication, synchronization
can be done using MPI Win start, MPI Win complete,
MPI Win post and MPI Win wait. At the origin
side, communication is guaranteed to finish only after
MPI Complete. Therefore, implementors have a lot of flex-
ibility with respect to when to carry out the actual com-
munication. In the send/receive based approach, com-
munication involves both sides. Since the information
about the communication is only available at the ori-
gin side, the target needs to be explicitly informed about
this information. One way to address this problem in
send/receive based approaches is to delay communication
until MPI Win complete. Within this function, the ori-
gin sends information about all possible operations. In
MPI Win wait, the target receives this information and
takes appropriate actions. An example of send/receive

3

based implementation is shown in Figure 2. Delayed com-

Figure 2. Send/Receive Based One-Sided
Communication Implementation

munication used in send/receive based approach allows for
certain optimizations such as combining of small messages
to reduce per-message overhead. However, since the ac-
tual communication does not start until MPI Complete,
the communication cannot be overlapped with computation
done in the access epoch. This may lead to degraded overall
application performance.

In the current MPICH2 design, the actual communica-
tion starts when there are enough one-sided communication
operations posted to cover the cost of synchronization. This
design can potentially take advantage of the optimization
opportunities in delayed communication and also allow for
communication/computation overlap. However, since one-
sided communication is built on top of send/receive, the ac-
tual overlap depends on how the underlying send/receive
operations are implemented. In many MPI implementa-
tions, sending/receiving a large message goes through Ren-
dezvous protocol, which needs host intervention for a hand-
shake process before the data transfer. In these cases, good
communication/computation overlap is difficult to achieve.

4 RDMA Based MPI-2 One-Sided Commu-
nication Design

As we have described in Section 3, one-sided commu-
nication in MPICH2 is currently implemented based on
MPI send/receive operations. Therefore, it still suffers from
the limitation of the two-sided communication design even

though the MVAPICH2 [13]. In this section, we discuss
how to utilize InfiniBand features such as RDMA opera-
tions to address these potential problems. MPICH2 has a
flexible layered architecture in which implementations can
be done at different levels. Our MVAPICH2 implementa-
tion over InfiniBand [13] was done using the RDMA Chan-
nel Interface. However, this interface currently does not
provide us with direct access to all the RDMA and atomic
functions in InfiniBand. To address this issue, we use a
customized interface to expose these functionalities to the
upper layer and implement our design directly over this in-
terface. The basic structures of our design and the original
design are shown in Figure 3.

Original One−Sided Communication Implementation

RDMA Based One−Sided Communication Implementation

ChannelChannel

MPICH2 One−Sided
Communication

MPICH2 Two−Sided
Communication

CH3

ADI3

RDMA

Sys V

Shared Memory

Multi−Method

Channel
SHMEMTCP Socket

SHMEM

RDMA Read/Write

Atomic Operations

InfiniBand

Figure 3. Design Architecture

4.1 Communication Operations

We implement the MPI Put operation with RDMA write.
Through exchanging memory addresses at window creation
time, we can keep record of all target memory addresses on
all origin processes. When MPI Put is called, an RDMA
write operation is used which directly transfers data from
memory in the origin process to remote memory in the
target process, without involving the target process. The
MPI Get operation is implemented with the RDMA read
operation in InfiniBand. Based on InfiniBand RDMA and
atomic operations, we have designed the accumulate oper-
ation as follows: The origin fetches the remote data from
target using RDMA read, performs a reduce operation, and
updates remote data by using RDMA write. Since there
may be more than one origins, we use the Compare-and-
Swap atomic operation to ensure mutual exclusive access.

4

By using RDMA, we can avoid protocol overhead of
two-sided communication. For example, the handshake in
Rendezvous protocol is avoided. Also, the matching be-
tween send and receive operations is no longer needed. So
the overhead associated with unexpected/expected message
queue maintenance, tag matching and flow control is elimi-
nated.

More importantly, the dependency on remote pro-
cess for communication progress is reduced. Unlike the
send/receive based approach, using RDMA operations di-
rectly does not involve the remote process. Therefore, the
communication can make progress even when the remote
process is doing computation. As a result, our implemen-
tation suffers much less from process skew. Moreover, our
design exploiting RDMA operations can make implemen-
tation of passive one-sided communication much easier be-
cause the target is not required to respond to one-sided com-
munication operations.

4.2 Synchronization Operations

In some send/receive based designs, actual communica-
tion is delayed until MPI Win complete is called. In our
design, the one-sided communication will start as soon as
the post operation is called. In our implementation, the ori-
gin process maintains a bit vector. Each bit represents the
status of a target. A target uses RDMA write to change the
corresponding bit. By checking the bits, the origin process
can get synchronization information and start communica-
tions.

Targets can not leave MPI Win wait until communica-
tion has been finished. Therefore origin processes need to
inform the targets after they have completed communica-
tion. For this purpose we also use RDMA write to achieve
better performance. Before leaving the MPI Win wait op-
eration, the targets check to make sure all origin pro-
cesses have completed communication. An example of this
RDMA based implementation is shown in Figure 4.

4.3 Other Design Issues

By using RDMA, we potentially can achieve better per-
formance. However, it also introduces several design chal-
lenges.

An important issue we should consider in exploiting
RDMA operations is the memory registration. Before per-
forming any RDMA operation, both source and destination
data buffers need to be registered. The memory registration
is an expensive operation. Therefore, it can degrade com-
munication performance significantly if done in the critical
path. All memory buffers for the one-sided communication
on the target processes are declared when the window is cre-
ated. Thus, we can avoid memory registration overheads by

Figure 4. RDMA Based One-Sided Communi-
cation Implementation

registering the memory buffers at the window creation time.
For memory buffers at the origin side, pin-down cache [10]
is used to avoid registration overhead for large messages.
For small messages, we copy them to a pre-registered buffer
to avoid registration cost.

Another important issue is to handle user-defined data
type. The original approach requires data type processing
at the target side. With RDMA operations, we can avoid
this overhead by initiating multiple RDMA operations. Cur-
rently, our design only deals with simple data types. For
complicated non-contiguous data types, we fall back on the
original send/receive based implementation.

5 Performance Evaluation

In this section, we perform a set of micro-benchmarks to
evaluate the performance of our RDMA based MPI-2 one-
sided communication design and compare them with the
original design in MPICH2. We have considered various
aspects of MPI-2 one-sided communication such as syn-
chronization overhead, data transfer performance, commu-
nication and computation overlap, dependency on remote
process and scalability with multiple origin processes.

We focus on active one-sided communication in the
performance evaluation. Our tests use MPI Win start,
MPI Win complete, MPI Win post and MPI Win wait
functions for synchronization. However, most of the con-
clusions in this section are also applicable to programs us-
ing MPI Win fence.

5

 12

 14

 16

 18

 20

 22

 24

 26

4 16 64 256 1K 4K

T
im

e
(u

s)

Message Size (Bytes)

Original
RDMA

 0

 50

 100

 150

 200

 250

 300

 350

 400

8K 16K 32K 64K 128K 256K

T
im

e
(u

s)

Message Size (Bytes)

Original
RDMA

Figure 5. Ping-Pong Latency

5.1 Experimental Testbed

Our experimental testbed consists of a cluster system
with 8 SuperMicro SUPER P4DL6 nodes. Each node
has dual Intel Xeon 2.40 GHz processors with a 512K L2
cache and a 400 MHz front side bus. The machines are
connected by Mellanox InfiniHost MT23108 DualPort 4X
HCA adapter through an InfiniScale MT43132 Eight 4x
Port InfiniBand Switch. The HCA adapters work under the
PCI-X 64-bit 133MHz interfaces. We used the Linux Red
Hat 7.2 operating system with 2.4.7 kernel. The compilers
we used were GNU GCC 2.96 and GNU FORTRAN 0.5.26.

5.2 Latency Tests

For MPI two-sided communication, a ping-pong latency
test is often used to characterize its performance. In this
subsection, we use a similar test for MPI-2 one-side com-
munication. The test consists of multiple iterations using
two processes. Each iteration consists of two epochs. In
the first epoch, the first process does an MPI Put operation.
In the second epoch, the second process does an MPI Put
operation. We then report the time taken for each epoch.

Figure 5 compares the ping-pong latency of our RDMA
based design with the original MPICH2. We can see that the
RDMA based approach can improve the latency. For small
messages, it reduces latency from 15.6 � s to 12.6 � s (19%
improvement). For large messages, since the handshake in
Rendezvous protocol is avoided, it also gives better perfor-
mance. The improvement is up to 17 � s.

A bi-directional latency test is often used to compare
the performance of one-sided communication to two-sided
communication. In this test, both sides send a message
to the other side. In the one-sided version, the test is
done using MPI Put and MPI Win fence. In the two-sided
version, the test is done using MPI Isend, MPI Irecv and
MPI Waitall. Figure 6 shows the performance results. We
can observe that for very small messages, two-sided com-

munication performs better because it does not use ex-
plicit synchronization. For one-sided communication, our
RDMA based design always performs better than the orig-
inal design. For messages larger than 4KB, it even outper-
forms two-sided communication.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 4 16 64 256 1024 4096

T
im

e
(u

s)

Message Size (Bytes)

Original
RDMA

Two-Sided

Figure 6. Bi-Directional Test

5.3 Bandwidth

In applications using MPI-2 one sided operations, usu-
ally multiple communication operations are issued in each
epoch to amortize the synchronization overhead. Our band-
width test can be used to characterize performance in this
scenario. This test consists of multiple epochs. In each
epoch, W MPI Put or MPI Get operations are issued where
W is a pre-defined burst size.

Figures 7 and 8 show the bandwidth results of MPI Put
and MPI Get with a burst size of 16. We can see that
the RDMA based approach always performs better for
MPI Put. The improvement can be up to 77%. For 256KB
messages, it delivers a bandwidth of 865MB/s. (Note that
unless stated otherwise, the unit MB in this paper is an ab-
breviation for ����� bytes.)

However, we also observe that the RDMA based ap-
proach does not perform as well as the original approach

6

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

4 16 64 256 1K 4K 16K 64K 256K

B
an

dw
id

th
 (

M
B

/s
)

Message Size (Bytes)

Original-Put
RDMA-put

Figure 7. MPI Put Bandwidth

 0

 100

 200

 300

 400

 500

 600

 700

 800

4 16 64 256 1K 4K 16K 64K 256K

B
an

dw
id

th
 (

M
B

/s
)

Message Size (Bytes)

Original-Get
RDMA-Get

Figure 8. MPI Get Bandwidth

 10

 15

 20

 25

 30

 35

 40

 1 2 3 4 5 6 7

T
im

e
(u

s)

Number of Origins

Original
RDMA

Figure 9. Synchronization Overhead

for MPI Get with small messages. This is because RDMA
read is used in our new design for MPI Get while the origi-
nal approach uses RDMA write. The bandwidth drop is due
to the performance difference between InfiniBand RDMA
read and RDMA write.

5.4 Synchronization Overhead

In MPI-2 one-sided communication, synchronization
must be done explicitly to make sure data transfer has been
finished. Therefore, the overhead of synchronization has
great impact on communication performance. To char-
acterize this overhead, we use a simple test which calls
only MPI-2 synchronization functions (MPI Win start,
MPI Win complete, MPI Win post and MPI Win wait) for
multiple iterations. The test is done using one target process
with multiple origin processes.

Figure 9 shows the time take for each iteration for the
original design and our RDMA based design. We can
see that our new design slightly reduces synchronization
time. When there is one origin, synchronization time is
reduced from 16.52 microseconds to 14.78 microseconds
(13% improvement). This is because we use InfiniBand
level RDMA operations instead of calling MPI send and re-
ceive functions for synchronization. We have also done the
test for one origin process with multiple target processes
and the results are similar to Figure 9.

5.5 Communication/Computation Overlap

As we have mentioned, by using RDMA, we can possi-
bly achieve better overlapping of communication and com-
putation, which may lead to improved application perfor-
mance. In this subsection, we have designed an overlap test
to measure the ability to overlap communication and com-
putation for different one-sided communication implemen-
tations.

The overlap test is very similar to the bandwidth test.
The difference is that we have inserted a number of com-
putation loops after each communication operation. Each
computation loop increases a counter for 1,000 times. Fig-
ure 10 shows how the average time for one iteration of the
test changes when we increase the number of computation
loops for 64KB messages. We can see that the RDMA
based design allows overlap of communication and com-
putation and therefore its performance is not affected by in-
creasing computation time. However, the original design
shows lower performance when the computation increases.

5.6 Impact of Process Skew

As we have discussed, one of the advantages of using
InfiniBand RDMA to implement MPI-2 one-sided commu-

7

 1200

 1400

 1600

 1800

 2000

 1 2 3 4 5 6 7 8 9 10

T
im

e
pe

r
Ite

ra
tio

n

Number of Computation Loops

Original
RDMA

Figure 10. Overlap Test Results

nication is that the communication can make progress with-
out depending on the target process. Therefore, skew be-
tween the origin and the target process will have less im-
pact on the communication performance. Our process skew
test is based on the bandwidth test. Process skew is em-
ulated by adding different number of computation loops
(with each loop increasing a counter for 10,000 times) be-
tween MPI Win post and MPI Win wait in the target pro-
cess.

Figure 11 shows the performance results for 64KB mes-
sages. We can see that process skew does not affect the
RDMA based approach at all. However, the performance of
the original design drops significantly with the increase of
process skew.

 800

 1000

 1200

 1400

 1600

 1800

 2000

 1 2 3 4 5 6 7 8 9 10

T
im

e
pe

r
Ite

ra
tio

n

Number of Computation Loops

Original
RDMA

Figure 11. Process Skew Test Results

5.7 Performance with Multiple Origin Processes

Scalability is very important for MPI-2 designs. In MPI-
2 one-sided communication, it is possible for multiple ori-
gin processes to communicate with a single target process.
Figure 12 shows the aggregated bandwidth of all origin pro-
cesses in this scenario. Here we use 64KB as message size
and 16 as burst size. We should note that the aggregated
bandwidth is limited by the PCI-X bus at the target node.

We can observe that since the RDMA based design incurs
very little overhead at the target process, it reaches a peak
bandwidth of over 920MB/s even with a small number of
origin processes. The original design can only deliver a
maximum bandwidth of 895MB/s.

 500
 550
 600
 650
 700
 750
 800
 850
 900
 950

 1000

 1 2 3 4 5 6 7

A
gg

re
ga

te
d

B
an

dw
id

th

Number of Orgin Processes

Original
RDMA

Figure 12. Aggregated Bandwidth with Multi-
ple Origin Processes

6 Related Work

Besides MPI, there are other programming models that
uses one-sided communication. Some of the examples are
ARMCI [16], BSP [7] and GASNET [4]. These program-
ming models use one-sided communication as the primary
communication approach while in MPI, both one-sided and
two-sided communication are supported.

There have been studies regarding implementing one-
sided communication in MPI-2. Similar to the current
MPICH2, work in [5] describes an implementation based
on MPI two-sided communication. MPI-2 one-sided com-
munication has also been implemented by taking advantage
of globally shared memory in some architectures [12, 15].
For distributed memory systems, some of the existing stud-
ies have exploited the ability of remotely accessing another
process’s address space provided by the interconnect to im-
plement MPI-2 one-sided operations [2, 17, 3]. In this pa-
per, our target architecture is InfiniBand, which provides
very flexible RDMA as well as atomic operations. We focus
on the performance improvement of using these operations
compared with the send/receive based approach.

Work in [6] provides a performance comparison of sev-
eral existing MPI-2 implementations. They have used a
ping-pong benchmark to evaluate one-sided communica-
tion. However, their results do not include the MPICH2
implementation. In this paper, we focus on MPICH2 and in-
troduce a suite of micro-benchmarks which provide a more
comprehensive analysis of MPI-2 one-sided operations, in-
cluding communication and synchronization performance,
communication/computation overlap, dependency on re-
mote process and scalability.

8

7 Conclusions and Future Work

In this paper, we have proposed a design of MPI-2 one-
sided communication over InfiniBand. This design elimi-
nates the involvement of targets in one-sided communica-
tion completely by utilizing InfiniBand RDMA operations.

Through performance evaluation, we have shown that
our design can achieve lower overhead and higher commu-
nication performance. Moreover, experimental results have
shown that the RDMA based approach allows for better
overlap between computation and communication. It also
achieves better scalability with multiple number of origin
processes.

As future work, we are working on applying the RDMA
approach also to the passive synchronization. We expect
that the RDMA approach can give similar benefits in imple-
menting the passive synchronization. Another direction we
are currently pursuing is better support for non-contiguous
data type in one-sided communication.

References

[1] Argonne National Laboratory. MPICH2. http://www-
unix.mcs.anl.gov/mpi/mpich2/.

[2] N. Asai, T. Kentemich, and P. Lagier. MPI-2 Implementation
on Fujitsu Generic Message Passing Kernel. In Supercom-
puting, 1999.

[3] M. Bertozzi, M. Panella, and M. Reggiani. Design of a VIA
Based Communication Protocol for LAM/MPI Suite. In 9th
Euromicro Workshop on Parallel and Distributed Process-
ing, September 2001.

[4] D. Bonachea. GASNet Specification, v1.1. Technical Report
UCB/CSD-02-1207, Computer Science Division, University
of California at Berkeley, October 2002.

[5] S. Booth and F. E. Mourao. Single Sided MPI Implementa-
tions for SUN MPI. In Supercomputing, 2000.

[6] E. Gabriel, G. E. Fagg, and J. J. Dongarra. Evaluating the
Performance of MPI-2 Dynamic Communicators and One-
Sided Communication. In EuroPVM/MPI, September 2003.

[7] M. Goudreau, K. Lang, S. B. Rao, T. Suel, and T. Tsanti-
las. Portable and Effcient Parallel Computing Using the BSP
Model. IEEE Transactions on Computers, pages 670–689,
1999.

[8] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-
Performance, Portable Implementation of the MPI Message
Passing Interface Standard. Parallel Computing, 22(6):789–
828, 1996.

[9] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable
Parallel Programming with the Message Passing Interface,
2nd edition. MIT Press, Cambridge, MA, 1999.

[10] H. Tezuka and F. O’Carroll and A. Hori and Y. Ishikawa.
Pin-down Cache: A Virtual Memory Management Tech-
nique for Zero-copy Communication. In Proceedings of 12th
IPPS.

[11] InfiniBand Trade Association. InfiniBand Architecture
Specification, Release 1.0, October 24 2000.

[12] J. Traff and H. Ritzdorf and R. Hempel. The Implementation
of MPI-2 One-Sided Communication for the NEC SX. In
Proceedings of Supercomputing, 2000.

[13] J. Liu, W. Jiang, P. Wyckoff, D. K. Panda, D. Ashton,
D. Buntinas, W. Gropp, and B. Toonen. Design and Im-
plementation of MPICH2 over InfiniBand with RDMA Sup-
port. Technical Report OSU-CISRC-10/03-TR56, CIS Dept.
the Ohio State University, October 2003.

[14] Message Passing Interface Forum. MPI-2: A Message Pass-
ing Interface Standard. High Performance Computing Ap-
plications, 12(1–2):1–299, 1998.

[15] F. E. Mourao and J. G. Silva. Implementing MPI’s One-
Sided Communications for WMPI. In EuroPVM/MPI,
September 1999.

[16] J. Nieplocha and B. Carpenter. ARMCI: A Portable Remote
Memory Copy Library for Distributed Array Libraries and
Compiler Run-Time Systems. Lecture Notes in Computer
Science, 1586, 1999.

[17] J. Worringen, A. Gaer, and F. Reker. Exploiting Transpar-
ent Remote Memory Access for Non-Contiguous and One-
Sided-Communication. In Proceedings of the 2002 Work-
shop on Communication Architecture for Clusters (CAC),
April 2002.

9

