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ABSTRACT

Moores Law – frequency scaling and exploitation of Instruction Level Parallelism

due to increasing transistor density no longer leads performance gains in modern

systems due to limitations in power dissipation. This has led to an increased focus on

deriving performance gains by taking advantage of Data Level Parallelism through

parallel computing. Clusters – groups of commodity compute nodes connected via a

modern interconnect have emerged as the top supercomputers in the World and the

Message Passing Interface (MPI) has emerged as the de facto standard in parallel

processing models on large clusters. Scientific and financial applications have ever

increasing demands for compute cycles and the emergence of multi-core processors

has driven an enormous growth in the cluster sizes in recent years. InfiniBand has

emerged as a popular low-latency, high-bandwidth interconnect of choice in these

large clusters.

With cluster sizes continuing to scale, the scalability of MPI libraries and associ-

ated system support and resources such as the job launcher have been at the center

of attention in the High Performance Computing (HPC) community.

In this work we examine the current job launching mechanisms that have scalabil-

ity problems on large scale clusters due to resource constraints as well as performance

bottlenecks. We propose a Scalable and Extensible Launching Architecture for Clus-

ters (ScELA) that scales to modern clusters such as the 64K processor TACC Ranger.
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We also examine the scalability constraints with point-to-point InfiniBand channels

in MPI libraries. We use the eXtended Reliable Connection (XRC) transport avail-

able in recent InfiniBand adapters to design a scalable MPI communication channel

with a smaller memory footprint. The designs proposed in this work are available in

both MVAPICH and MVAPICH2 MPI libraries over InfiniBand, which are used by

more than nine hundred organizations around the World.
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CHAPTER 1

INTRODUCTION

Traditionally computer software has always been written for serial execution. Al-

gorithms were designed with the intention of being implemented as a serial set of

instructions on a single processor. During the 1980s, 1990s and the early part of this

decade, as application demand for compute cycles increased, the need for additional

performance was almost always met by Moore’s law [17] – the observation that tran-

sistor density in a modern microprocessor doubles every 18 to 24 months. Due to

the increasing transistor density, processor designers were able to incorporate more

stages and units into a chip and were able to exploit Instruction Level Parallelism

(ILP) to derive performance gains.

Increasing transistor density also allowed manufacturers increase clock frequencies

of processors which directly led to increased number of instructions being executed

per unit time. Thus for a long period of time, increasing clock frequency drove the

performance gains in computer software. However, these mechanisms are limited by

the power consumption of these CMOS chips which increases with the clock frequency

and the transistor density.

The focus has now shifted to exploiting Thread Level Parallelism (TLP) with

multi-processors and Data Level Parallelism (DLP) with parallel processing. With
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frequency scaling also no longer being able to provide increased compute performance,

there has been an increased focus on parallel computing where tasks are divided into

smaller tasks and computations are performed on multiple processing units. Com-

modity clusters, which are groups of individual computers connected to each other

through an interconnect have become the most popular, cost-effective form of parallel

computing. A significant majority of HPC (High Performance Computing) systems

are clusters. Several parallel programming models have emerged which utilize clus-

ters. These programming models broadly fit into two categories – shared memory

programming models (including distributed shared memory programming) or mes-

sage passing programming models.

The Message Passing Interface (MPI) [15] is the most widely used message passing

Application Programming Interface (API) in distributed memory systems. Message

passing programming models such as MPI demand an interconnect technology with

low latencies and high bandwidth. InfiniBand Architecture [8] is a high-speed, low

latency interconnect primarily used in High Performance Computing (HPC) environ-

ments. According to the Top500 [28] list, a biannual list of top supercomputers in

the World, the use of InfiniBand has been steadily increasing and as of November

2008, it is being used in 28.2% of the top 500 supercomputers. Table 1.1 shows the

adoption rate of InfiniBand [28].

Another consequence of the physical limitations in frequency scaling has been the

emergence of multi-core processors which combine two or more independent processor

cores into a single package. All the major processor manufacturers have switched to

multi-core processors since the early part of this decade. In the High Performance

Computing domain, this has lead to an increasing number of multicore processor based

2



Table 1.1: Adoption of InfiniBand in the Top 500 Supercomputers
Date IB systems Percentage Top Rank
Jun 2005 16 3.2 14
Nov 2005 27 5.4 5
Jun 2006 36 7.2 6
Nov 2006 78 15.6 6
Jun 2007 130 26 8
Nov 2007 121 24.2 3
Jun 2008 121 24.2 1
Nov 2008 141 28.2 1

clusters. In fact, increase in the number of cores per node has been an important factor

in the growth of recent clusters. The Sandia Thunderbird [23] cluster introduced in

2006 has 4K nodes – each with dual CPUs for a total of 8K processors. Meanwhile,

the TACC Ranger cluster introduced in 2008 has a similar number of nodes at 4K but

each with four quad-core CPUs for a total of 64K processors. This trend is poised to

continue with Intel recently demonstrating a 80-core processor codenamed polaris.

In the following sections, we provide background information and provide an

overview of the Message Passing Interface and the InfiniBand Architecture, arrive

at our Problem Statement and discuss our approaches.

1.1 Overview of MPI

The Message Passing Interface (MPI) [15] is a standard developed by the MPI

Forum. MPI defines a specific set of API routines that allow processes to commu-

nicate between each other. These routines are traditionally used within C, C++ or

Fortran programs. Additionally, the API may also be used with any langauage with

appropriate binding. Two versions of MPI are in current use. MPI-1 (version 1.2)
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and MPI-2 (version 2.1) which is a superset of MPI-1 which includes features such as

parallel I/O, one-sided operations and dynamic process management.

Conceptually, MPI defines a Communicator through which it facilitates both

Point-to-point and Collective communication between processes. MPI-2 also in-

troduces One-Sided operations for remote memory access and Dynamic Process

Management (DPM) to dynamically manage different MPI jobs.

1.1.1 Communicators

MPI Communicators are objects that identify a group of MPI processes. Each

process has a unique rank within each communicator and can address each other

(for point-to-point communication) with the ranks. Collective operations involve all

processes within a communicator. MPI jobs start off with a single communicator

MPI COMM WORLD which includes all processes and can create new communicators with

sub groups of processes during the execution of the job.

1.1.2 Point-to-point Communication

Point-to-point communication operations form the basic communication API in

MPI. These involve communication between any two processes. For example, at

its simplest form, a process may invoke MPI Send to send data to another process

which has to make a corresponding call to MPI Recv. MPI also defines non-blocking

point-to-point operations which allows MPI applications to overlap computation with

communication.
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1.1.3 Collective Communication

MPI Collective operations involve all processes within a communicator such as

one-to-many and many-to-one operations. All current collective operations are block-

ing operations. However, there have been recent proposals to introduce non-blocking

versions [6]. The MPI standard defines the following set of collective operations.

• MPI Bcast broadcasts data from one process to all other participating processes.

• MPI Gater gathers data from a group of processes

• MPI Allgather gathers data from a group of processes and distributes to all of

them

• MPI Reduce combines values from all processes to a single value through speci-

fied mathematical operations such as ADD

• MPI Allreduce combines values from all processes and distributes the result to

all processes

• MPI Scatter sends data from one process to all other processes

• MPI Alltoall sends data from all processes to to all other processes

• MPI Barrier synchronizes all processes

1.1.4 One-Sided Operations

MPI-2 defines one-sided communication operations that do not need both of the

communicating processes to be involved in the operation. These operations – MPI Get,

MPI Put and MPI Accumulate facilitate remote memory access. MPI Get reads data
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from remote memory, MPI Put writes to remote memory while MPI Accumulate per-

forms a reduction operation across other processes. MPI-2 also defines methods to

synchronize these one-sided operations. processes.

1.1.5 Dynamic Process Management

The MPI-2 standard introduced Dynamic Process Management (DPM) which

allows an MPI process to create new MPI processes or to communicate with other

MPI processes that have been started separately. A new set of MPI processes can be

created with MPI Comm Spawn. Connnections between two MPI jobs can be established

with MPI Comm accept and MPI Comm connect. The MPI Comm join interface can be

used to join two separate MPI jobs. Communication between such separate process

groups is facilitated via the intercommunicator that is created by the DPM interfaces.

1.2 Overview of InfiniBand Architecture

The InfiniBand Architecture (IBA)[8] is an industry standard that evolved out

of the Virtual Interface Architecture (VIA). It defines a switched fabric offering low

latency and high bandwidth - two of the most important properties demanded by

modern HPC systems and MPI libraries. Figure 1.1 shows a typical IBA cluster with

the switched InfiniBand fabric interconnecting I/O nodes and compute nodes. The

compute nodes are connected to the fabric by a Host Channel Adapter (HCA).

1.2.1 Communication Model

InfiniBand provides Operating System bypass to eliminate intermediate copies

within the communication stack. It defines a queue based model for interface with the

HCAs shown in figure 1.2. A Queue Pair (QP) consists of a send queue and a receive
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Figure 1.1: The InfiniBand Architecture (Courtesy: The InfiniBand Trade Association [8])
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queue. The send queue holds instructions to transmit data and the receive queue

holds instructions that describe where received data is to be placed. Communication

instructions are described in Work Queue Requests (WQR) and are submitted to the

work queue. These are now called Work Queue Elements (WQE) and are executed

by the Channel Adapters.

Figure 1.2: The IBA Communication Stack (Courtesy: The InfiniBand Trade Association [8])

The completion of Work Requests is reported through Completion Queues (CQ).

Once a WQE is executed, a Completion Queue Entry (CQE) is placed in the corre-

sponding CQ. Completions can be tracked through a callback handler or by polling.

Buffers must be posted to a QP to receive messages on that QP and these are con-

sumed in FIFO order.

There are two types of communication semantics in InfiniBand – channel and

memory semantics. Channel semantics are equivalent to traditional forms of commu-

nication such as sockets where both sides participate in the communication through

8



send and receive operations. Memory semantics are one sided operations in which a

process can access the memory of a remote process without the direct participation

of the remote process. This is called Remote Direct Memory Access (RDMA). Infini-

Band supports both RDMA read and write. Both types of communication semantics

require the all data buffers to be registered. This ensures consistency in the HCAs

internal address translation and protection tables and also enables the HCA to DMA

directly into the destination buffer.

1.2.2 InfiniBand Transports

The InfiniBand specification defines four transport modes – Reliable Connection

(RC), Reliable Datagram (RD), Unreliable Connection (UC) and Unreliable Data-

gram (UD). Only RC, UC and UD are required to be supported by InfiniBand HCAs.

Reliable Connection (RC) is the most popular transport service used by MPI

implementations over InfiniBand. Since it is a connection-oriented service, a unique

QP is required to communicate with each peer. To communicate with N peers, a

process needs N QPs. However, the RC transport provides reliable data transmission,

RDMA and atomic operations.

Unreliable Datagram (UD) has also been used in some MPI Implementations

[10]. It is a connectionless transport and hence a single QP can communicate with

any number of peers. However UD is unreliable and any implementation over UD

needs to provide software based reliability. Also, packets are limited to MTU of the

Interface and the upper layers must also provide fragmentation and reassembly of

larger messages. Also, RDMA operations are not possible over UD.
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Shared Receive Queues

RC needs a QP per communicating peer. Also, in InfiniBand, it is necessary to

pre-post buffers in each QP to handle unexpected receives. These buffers need to be

large enough to handle the largest messages that are sent without a prior handshake

– via the eager protocol in MPI libraries. In typical MPI libraries, this size could

be as large as 8KB - 32KB. These bufferes need to be posted on all receive queues.

However, they may never be used. This kind of memory usage is not scalable.

To overcome this problem, InfiniBand introduced Shared Receive Queues (SRQ)

in version 1.2 of the specification. Instead of having a dedicated RQ per QP, a single

SRQ may be used across all QPs in a process. Pre-posted receive buffers can now be

shared for messages arriving on any QP. Thus a smaller number of buffers is needed

and new buffers can be posted as needed.

Extended Reliable Connection (XRC)

The InfiniBand RC transport is designed to provide connection between two pro-

cesses. This increases the amount of memory consumed as the number of communi-

cating peers increase. Prior research has shown that a RC QP connection requires

several KB of memory and for a 16K job memory usage could reach as high as a

gigabyte per process [9].

To address this problem, the XRC transport was introduced. XRC is designed to

allow reuse of a connection to a node to reach other processes on a node. Consequently,

the number of QPs required grows with total number of nodes rather than total

number of process. With the number of cores per node increasing, use of XRC

improves the memory usage for QPs considerably.
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The services provided by the XRC transport is identical to RC but the connection

semantics and addressing is different. When a process is connected to another process

on a different node, it can reach all the processes on the peer node via the original

connection. However, messages need to be addressed to the SRQ number of the

destination process. All the processes on the target node must join a common XRC

domain. The HCA can now place data from any QP into any SRQ in the same XRC

domain.

1.3 Problem Statement

Clusters continue to increase rapidly in size fuelled by the ever-increasing comput-

ing demands of applications. The leading trend in this growth is the increase in the

number of cores per node. We examine current scalability challenges in large clusters

and evaluate mechanisms to achieve better scalability and performance on modern

large scale clusters with tens of thousands of processor cores.

1.3.1 Job Startup

As clusters continue to scale, programming models and their scalability have re-

ceived a lot of attention in the research community. In addition to these concerns,

more basic issues regarding the system software must also be addressed. In particu-

lar, the mechanism by which parallel jobs are launched on these large-scale multi-core

clusters must be examined. Most parallel programming models require an executable

to be launched on each node in the clusters. Many of them such as MPI may require

more than one process to be launched per node on multi-core systems. Job launchers

also need to facilitate initial communication between all the launched processes to

help them discover their peers and initialize their environment. Current job launch
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mechanisms do not scale to modern large scale clusters. In this light we aim to address

the following questions in this thesis:

• Can we understand the scalability issues and bottlenecks in current

job launch mechanisms on large scale multi-core clusters with thou-

sands of nodes?

• How can we design a scalable, high-performance job launch mecha-

nism that takes advantage of the emergence of multi-core compute

nodes in modern large scale clusters?

• Can we use effective caching mechanisms to speed up the job launch

process on multi-core processors?

1.3.2 Point-to-Point Communication

As clusters continue to grow in size, the connection model of modern MPI li-

braries over InfiniBand does not scale. Each connection takes several hundred KB of

memory and the memory usage becomes prohibitively large for clusters with tens of

thousands of cores. Most MPI libraries use the Reliable Connection (RC) transport

of InfiniBand to establish connections between processes. RC needs a dedicated QP

for every communicating peer. This problem was addressed by InfiniBand vendors by

introducing the eXtended Reliable Connection (XRC) transport which allows node

level connections. We examine if we can use this new transport to greatly reduce

number of connections needed during a MPI job.

In this work, we aim to provide answers to the following questions:
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• Can we understand the scalability issues of RC based point-to-point

communication in current MPI libraries over InfiniBand?

• Can we leverage the increasing use of multi-core processors in large

clusters to design a scalable and high-performance point-to-point

communication channel?

1.4 Organization of the Thesis

The rest of this thesis is organized as follows. In Chapter 2 we examine the

current job launch mechanisms on large clusters and propose a scalable, extensible

and high-performance job launch architecture we call ScELA. In Chapter 3, we study

the impact of different caching mechanisms in the launching of MPI jobs and propose

a memory efficient caching mechanism to speed up the job launch process. In Chapter

4 we examine scalability challenges in point-to-point communication in MPI libraries

over InfiniBand and propose a scalable alternative design over the XRC transport of

InfiniBand. We conclude in Chapter 5.
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CHAPTER 2

SCALABLE JOB STARTUP IN MULTI-CORE CLUSTERS

2.1 Introduction

Clusters continue to increase rapidly in size, fueled by the ever-increasing com-

puting demands of applications. As an example of this trend we examine the Top500

list [28], a biannual list of the top 500 supercomputers in the World. In 2000 the

largest cluster, ASCI White, had 8, 192 cores. By comparison, last year the top-

ranked BlueGene/L had over 200, 000 cores. Even as clusters increase in node counts,

an emerging trend is increase in number of processing cores per node. For instance,

the Sandia Thunderbird [23] cluster introduced in 2006 has 4K nodes – each with

dual CPUs for a total of 8K processors, while the TACC Ranger cluster introduced

in 2008 has 4K nodes – each with four quad-core CPUs for a total of 64K processors.

Programming models and their scalability have been a large focus as cluster size

continues to increase. In addition to these concerns, other more basic concerns with

regard to the system software must also be addressed. In particular, the mechanism

by which jobs are launched on these large-scale clusters must also be examined. All

programming models require some executable to be started on each node in the

cluster. Others, such as the Message Passing Interface (MPI) [15], may have multiple
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processes per node – one per core. Our work shows that current designs for launching

of MPI jobs can take more than 3 minutes for 10, 000 processes and have trouble

scaling beyond that level.

In this work we present a Scalable and Extensible Launching Architecture (ScELA)

for clusters to address this need. We note that the initialization phase of most par-

allel programming models involve some form of communication to discover other

processes in a parallel job and exchange initialization information. Our multi-core

aware architecture provides two main components: a scalable spawning agent and

a set of communication primitives. The spawning agent starts executables on tar-

get processors and the communication primitives are used within the executables to

communicate necessary initialization information. As redundant information is ex-

changed on multi-core systems, we design a hierarchical cache to reduce the amount

of communication.

To demonstrate the scalability and extensibility of the framework we redesign

the launch mechanisms for both MVAPICH [18], a popular MPI library, and the

Process Management Interface (PMI), a generic interface used by MPI libraries such

as MPICH2 [1] and MVAPICH2 [7]. We show that ScELA is able to improve launch

times at large cluster sizes by over 700%. Further, we demonstrate that our proposed

framework is also able to scale to at least 32, 000 cores, more than three times the

scalability of the previous design.

Although our case studies use MPI, ScELA is agnostic as to the programming

model or program being launched. We expect other models such as Unified Parallel

C (UPC) [4] to be able to use this architecture as well. In addition, ScELA can be used

to run commands remotely on other nodes in parallel, such as simple commands like
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‘hostname’ or maintenance tasks. It is a generic launching framework for large-scale

systems.

The remaining parts of this chapter is organized as follows: In Section 2.2 we

describe the goals and design issues of our launch framework. We use our framework

to redesign two job launch protocols and present these case studies in Section 2.3.

Section 2.4 contains a performance evaluation of the ScELA design. Related work is

discussed in Section 2.5. We summarize our work in in Section 2.6.

2.2 Proposed Design

In this section we describe the ScELA framework. The main goals of the design

are scalability towards a large number of processing cores, ease of extensibility and

elimination of bottlenecks such as network congestion and resource limits. For ease

of extensibility the various components of ScELA are divided into distinct layers.

Figure 2.1 shows an overview of the framework. The following sections describe each

of these layers in detail.

Launcher

Node Launch Agent (NLA) Interconnection Layer

Point-to-Point Collective Bulletin-Board

Cache

PMI PMGR
. . .

Communication Protocols

Communication Primitives

Figure 2.1: ScELA Framework
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2.2.1 Launcher

The launcher is the central manager of the framework. The job-launch process

starts with the launcher and it is the only layer that has user interaction. The main

task of the launcher is to identify target nodes, set up the runtime environment and

launch processes on the target nodes.

Process Launching

Modern clusters deploy multi-core compute nodes that enable multiple processes

to be launched on a node. On such systems, a launcher would have to duplicate effort

to launch multiple processes on a node. ScELA has a Node Launch Agent (NLA)

which is used to launch all processes on a particular node. The launcher establishes

a connection to target nodes and sets up a NLA on each of them. This mechanism

allows the Launcher to make progress on launching processes on other nodes while

local NLAs handle node level process launching. The NLAs are active for the duration

of the launched process after which they terminate, hence the framework is daemon-

less.

Consider a cluster with n compute nodes and c processor cores per node. Table

2.1 shows a comparison of times taken to spawn n × c processes on such a cluster.

Tconn is the time taken to establish a connection to a node, Tlaunch is the time taken

to spawn a single process and Tnla is the time taken to setup a NLA. We see that

as the number of cores per node increases, the time taken to start the job decreases

with the NLA approach. Since the dominant factor on most clusters is Tconn (around

5 ms on our testbed), the use of NLAs on multi-core systems keeps the spawn time
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practically constant for a fixed number of nodes irrespective of the number of cores

per node.

Table 2.1: Time Taken to Spawn Processes With and Without NLAs
With NLAs Without NLAs

n× (Tconn + Tnla) + c× Tlaunch (n× c)× (Tconn + Tlaunch)

Hierarchical Launching

We also design a hierarchical launching scheme for launching NLAs on the target

nodes. This is shown in Figure 2.2. The central launcher launches the first NLA.

The NLAs then launch the rest of the NLAs in parallel. Figure 2.2 shows the steps

involved in launching eight NLAs. We see that the number of steps is reduced to

log(n) where n is the number of compute nodes. This scheme helps parallelize the

launch phase on clusters with large number of nodes.

Process Health

An important task of job launchers is to handle process termination. When a

process fails, a job launcher must clean up other processes. Failure to do so would

impact performance of future processes. Having a node level agent allows ScELA to

handle monitoring of process health in parallel. The NLAs monitor the health of local

processes. When a failure is observed the NLA sends a PROCESS FAIL notification

message to the central launcher. The Launcher then sends a PROCESS TERMINATE

message to all other NLAs which terminate all processes. User signals such as SIGKILL

are handled similarly.
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Figure 2.2: Hierarchical Launching

2.2.2 NLA Interconnection Layer

Many programming models require some form of information exchange and syn-

chronization between processes before they complete initialization. For instance, MPI

processes may need to discover other processes on the same node to utilize efficient

shared memory communication channels or processes may need a barrier synchroniza-

tion before they can enter a subsequent phase of initialization. Having a connection

between every process does not scale for a large number of processes as the number

of connections required is O(n2). Other approaches have all processes connect to a

central controller which coordinates information exchange and synchronization. How-

ever, when a large number of processes initiate connections to a central controller, it

becomes a bottleneck. The resultant network congestion causes TCP SYN packets

being dropped. Since SYN retransmission timeouts increase with every attempt on

most TCP implementations [25], this introduces a large delay in the overall launch
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process. In addition, most operating systems limit the number of connections that

can be kept open which makes a central controller unfeasible.

We have designed a communication layer over the NLAs to facilitate communi-

cation and synchronization between processes. Each NLA aggregates initialization

information from all processes on the node. This aggregation limits the total num-

ber of network connections needed per entity (process, NLA or the Launcher) on the

system. NLAs from different nodes form a hierarchical k-ary tree [16] for communi-

cation of information between processes across nodes. The hierarchical tree improves

overall parallelism in communication. A k-ary tree allows ScELA to launch processes

over an arbitrary number of nodes while also keeping the number of steps required

for synchronization and other collective operations such as broadcast or gather at a

minimum at logk(n) where n is the number of nodes. An example of a 3-ary tree of

depth 3 is given in Figure 2.3.

Figure 2.3: Example 3-ary NLA Interconnection (with depth 3)

The degree k of the k-ary tree determines the scalability and the performance of

ScELA. An NLA in the hierarchical tree should be able to handle connection setup

and communication from all processes on a node as well as the parent and children in

the NLA tree. If the degree of the tree is too high, each NLA would have to process

20



too many connections which would create further bottlenecks. If the degree is too

low, the depth of the tree would result in too many communication hops.

We determine the degree k dynamically. If n is the number of nodes, we determine

an ideal degree k such that the number of levels in the tree, logk(n), is as follows:

logk(n) ≤ MAX DEPTH. If c is the number of cores per node and c + k + 1 ≤

MAX CONN , then we select k as the degree. If not, we select k = MAX CONN−

1− c. The parameter MAX CONN is the number of connections that an entity can

process in parallel without performance degradation. From our experiments (Section

2.4.2) we have determined that a process can handle up to 128 connections with

acceptable performance degradation on current generation systems.

2.2.3 Communication Primitives

The characteristics of the information exchange between processes depends on the

programming model as well as specific implementations. The communication pattern

could be point-to-point, collective communication such as broadcast, reduce, or a pro-

tocol such as a global bulletin board. We have designed the following communication

primitives over the NLA Interconnection Layer for use by the processes for efficient

communication.

Point-to-point Communication Primitives:

Some initialization protocols have processes communicating directly with each

other. For such protocols, we have designed two sided point-to-point communication

primitives – NLA Send and NLA Recv.

The data from a sender is forwarded to the receiver over the NLA tree. Each

process is assigned a unique identifier. During the setup of the NLA Interconnection
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Layer, every NLA discovers the location of each process. A process is either on the

same node as the NLA, or it can be found in specific lower branch of the NLA tree

or higher up the NLA tree.

Collective Communication Primitives:

In most programming models, all processes go through identical initialization

phases with identical communication patterns. These communication protocols re-

semble MPI-style collective communication. To support such protocols, we have

designed the following MPI-style collective communication primitives over ScELA.

• NLA Gather – Gather data from all processes to a root process on the root NLA.

At each level of the NLA tree, a NLA gathers data from all of its NLA children

as well as all processes on its node. Once it has all the data, it forwards the

gathered data to its parent NLA.

• NLA Broadcast – Send data from a specified process on the root NLA to all

processes. The root NLA sends data down the NLA tree and to all of the

processes on the node. On receipt of broadcast data from a parent, each NLA

forwards the data down the NLA tree and to all processes on the node.

• NLA AllGather – Gather data from all processes at every process. This primi-

tive is provided as a combination of NLA Gather and NLA Broadcast. The root

NLA gathers data from all processes and performs a broadcast operation.

• NLA Scatter – Send specific chunks of data from a process on the root NLA

to every process. The root NLA sends data to be scattered down the tree,

extracts data meant for processes on its node and sends them to the destination
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processes. On receipt of a scatter message each NLA forwards it down the

NLA tree, extracts data meant for processes on its node and sends them to the

destination processes.

• NLA AllToAll – Send specific chunks of data from every processes to every

process. The AllToAll primitive is provided as a combination of NLA Gather

and NLA Scatter. The root NLA gathers data from all processes, re-organizes

the data such that all data destined to a process is grouped together and does

a scatter operation.

Bulletin Board Primitives:

Some communication protocols have processes publish information about them-

selves on a global bulletin board and processes needing that information read it off

the bulletin board. To support such protocols over ScELA we have designed two

primitives – NLA Put and NLA Get.

NLA Put publishes data to all NLAs up the tree up to the root. When a process

needs to read data, it invokes the NLA Get primitive. When data is not available at

a NLA, it forwards the request to the parent NLA. When data is found at a higher

level NLA, it is sent down the tree to the requesting NLA.

Synchronization Primitive:

In some programming models, the information exchange phase consists of smaller

sub-phases with synchronization of the processes at the end of each sub-phase. For

instance, in MVAPICH, processes cannot initiate InfiniBand [8] channels until all

processes have pre-posted receive buffers on the NIC.
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We have designed a synchronization primitive – NLA Barrier which provides bar-

rier synchronization over the NLA tree. Processes are released from an invocation of

NLA Barrier primitive only when all other processes have invoked the primitive. The

NLA Barrier primitive can be used in conjunction with NLA Send and NLA Recv to

design other forms of communication required by a specific communication protocol.

2.2.4 Hierarchical Cache

On multi-core nodes, with communication patterns such as the use of a bulletin

board, many processes on a node may request the same information during initial-

ization. To take advantage of such patterns, we have designed a NLA level cache

for frequently accessed data. When a process posts information through NLA Put,

the data is sent up to the root of the NLA tree while also being cached at interme-

diate levels. When a process requests information through NLA Get, the request is

forwarded up the NLA tree until it is found at a NLA. The response gets cached at

all intermediate levels of the tree. Hence subsequent processes requesting the same

piece of information are served from a nearer cache. This reduces network traffic and

improves the overall responsiveness of the information exchange.

Such a cache is advantageous even on non multi-core nodes or communication

patterns without repeated access to common information because the caching mech-

anism propagates information down the NLA tree. Subsequent requests from other

sub-branches of the tree may be served from an intermediate NLA and would not

have to go up to the root. In Section 2.3.1 we describe an extension to the PMI Put

primitive that enables better utilization of the Hierarchical Cache.
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2.2.5 Communication Protocols

As described in Section 2.2.3, the processes being launched may have their own

protocol for communicating initialization information. We have designed the ScELA

framework to be extensible so that various communication protocols can be developed

over it by using the basic communication primitives provided. In Section 2.3 we

describe two implementations of such protocols over the ScELA architecture.

2.3 Case Studies

In this section we describe implementations of two startup protocols over ScELA.

We first describe an implementation of the Process Management Interface (PMI), an

information exchange protocol used by popular MPI libraries such as MPICH2 and

MVAPICH2 over the ScELA framework. In addition, we describe an implementation

of another startup protocol – PMGR used by MPI libraries such as MVICH [13] and

MVAPICH.

2.3.1 Designing the PMI Bulletin Board with ScELA

When MPI processes start up, they invoke MPI Init to set up the parallel en-

vironment. This phase involves discovery of other processes in the parallel job and

exchange of information. The PMI protocol defines a bulletin board mechanism for

information exchange. Processes do a PMI Put operation on a (key, value) pair

to publish information followed by a PMI Commit to make the published information

visible to all other processes. When other processes need to read information, they

perform a PMI Get operation by specifying a key. The PMI protocol also defines a

barrier synchronization primitive PMI Barrier.
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To implement the PMI bulletin board over the ScELA framework, we utilized

the NLA Put and NLA Get primitives. A PMI Put by a process invokes a correspond-

ing NLA Put to propagate information over the NLA tree. When a process does a

PMI Get, a corresponding NLA Get is invoked to search for information in the Hierar-

chical Cache. Since the PMI Puts are propagated immediately, we ignore PMI Commit

operations.

We have observed that with the PMI protocol, information reuse is high for some

information. In such cases it is beneficial to populate the node level caches even before

the first PMI Get request. We have designed an extension to the NLA Put primitive

that propagates information to all NLAs in the tree so that all NLA Gets can be served

from a local cache. To reduce the number of NLA Puts active in the tree, we aggregate

puts from all processes on a node before propagating this information over the tree.

When processes invoke PMI Barrier, we invoke the NLA Barrier primitive to syn-

chronize processes. We evaluate our design against the current startup mechanism in

MVAPICH2 in Section 2.4.1.

2.3.2 Designing PMGR (Collective Startup) with ScELA

The PMGR protocol defines MPI style collectives for communication of initial-

ization data during MPI Init. These operations also act as implicit synchroniza-

tion between processes. The PMGR interface defines a set of collective operations –

PMGR Gather, PMGR Broadcast, PMGR AlltoAll, PMGR AllGather and PMGR Scatter

and an explicit synchronization operation PMGR Barrier.

In our implementation when a process invokes a PMGR primitive, it is directly

translated to an invocation of the corresponding collective communication primitive

26



designed over the NLA tree. We evaluate our design against the current startup

mechanism in MVAPICH in Section 2.4.2.

2.4 Performance Evaluation

In this section we evaluate the two case studies described in Section 2.3. We

evaluate our designs against the previous launching mechanisms in MVAPICH2 and

MVAPICH respectively. Our testbed is a 64 node InfiniBand Linux cluster. Each

node has dual 2.33 GHz Intel Xeon “Clovertown” quad-core processor for a total of

8 cores per node. The nodes have a Gigabit Ethernet adapter for management traffic

such as job launching. We represent cluster size as n × c, where n is the number of

nodes and c is the number of cores per node used.

We have written an MPI microbenchmark to measure the time taken to launch

MPI processes and time spent in MPI Init, which represents the information exchange

phase. For the purpose of these microbenchmark level tests, we disable all optional

features that impact job initialization.

2.4.1 PMI over ScELA

In this section, we compare the performance of our implementation of PMI over

ScELA (ScELA-PMI) against the default launch framework in MVAPICH2 (MVAPICH2-

PMI). The default startup mechanism of MVAPICH2 utilizes a ring of daemons – MPD

[22] on the target nodes. The launcher – mpiexec identifies target nodes and instructs

the MPD ring to launch processes on them. PMI information exchange is done over

the MPD ring. Figure 2.4 shows the time taken to establish the initial ring. We

observe a linear increase which is not scalable over larger number of nodes. We have

also observed that the MPD ring cannot be setup on larger sizes such as thousands of
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nodes. While a MPD ring can be reused for launching subsequent MPI jobs, most job

schedulers elect to establish a separate ring as both target nodes and job sizes may

be different. Figure 2.5 shows a comparison of the launch times for various system
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Figure 2.4: Time to Setup MPD Ring with MVAPICH2

sizes. On ScELA-PMI, the spawn phase represents the time taken for the Launcher

to setup NLAs on the target nodes and for the NLAs to launch the MPI processes.

The MPI Init phase represents the time taken to establish the NLA Interconnection

Layer and for PMI information exchange. On MVAPICH2-PMI the mpdboot phase

represents the time taken to establish the ring of MPD daemons. The spawn phase

represents time taken to launch MPI processes over the MPD ring and the MPI Init

phase represents the time taken for information exchange.
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Figure 2.5: Comparison of Startup Time on MVAPICH2

We observe that as we increase the number of processes per node, ScELA-PMI

demonstrates better scalability. For a fixed node count, the duration of the spawn

phase in ScELA-PMI is constant due to parallelism achieved through NLAs. In Figure

2.5(d) we see the spawn time for MVAPICH2-PMI increase from around 1s to 6.7s

when the number of cores used per node is increased from 1 to 8 but ScELA-PMI is

able to keep spawn time constant at around 0.5s. At larger job sizes, for instance 512
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processes on 64 nodes (64×8 in Figure 2.5(d)), we see an improvement in the MPI Init

phase from around 2.5s to 0.7s due to the better response times of communication

over the NLA Interconnection Layer and due to reduced network communication due

to NLA cache hits.

2.4.2 PMGR over ScELA

In this section we compare our design of PMGR over ScELA (ScELA-PMGR)

against the default startup mechanism in MVAPICH (MVAPICH-PMGR). The de-

fault startup mechanism in MVAPICH has a central launcher that establishes a con-

nection to target nodes and launches each process individually. On multi-core sys-

tems, this launcher needs several connections to each node. Also, each MPI process

establishes a connection to the central controller which facilitates the PMGR informa-

tion exchange. As the number of processes increase, this causes a flood of incoming

connections at the central controller, which leads to delays due to serialization of

handling these requests and network congestion. The number of MPI processes that

can be handled simultaneously is also limited by resource constraints such as open

file descriptor limits, which is typically 1024.

Figure 2.6 shows a comparison of the launch times. With ScELA-PMGR, the

spawn phase represents the time taken to setup NLAs on the target nodes and for the

NLAs to launch MPI processes on the node. The MPI Init phase represents the time

taken to setup the NLA Interconnection Layer and the PMGR information exchange

between MPI processes. With MVAPICH-PMGR, the spawn phase represents the

time taken for the central controller to launch each MPI process on target nodes. In

the MPI Init phase, the MPI processes establish connections to the central controller
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and exchange information over the PMGR protocol. We see that for a fixed node
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Figure 2.6: Comparison of Startup Time on MVAPICH

count, ScELA-PMGR takes constant time for the spawn phase as it benefits from

having NLAs while the spawn phase with MVAPICH-PMGR grows with increase in

number of processes per node. For instance in 2.6(d), we see that ScELA-PMGR is

able to keep spawn time constant at 0.6s, but on MVAPICH-PMGR the spawn phase
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increases from 0.5s to 3.6 as we increase the number of cores used per node from

1 to 8. When the overall job size is small, the central controller in the MVAPICH

startup mechanism is not inundated by a large number of connections. We see that

the central controller is able to handle connections from up to 128 processes with

little performance degradation in the MPI Init phase. Hence the MVAPICH startup

performs better at a small scale, but as the job sizes increase we observe larger delays

in the MPI Init phase. From Figure 2.6(d) we see that for 512 processes (64 × 8),

the MPI Init phase takes 4.3s on MVAPICH-PMGR, but on ScELA-PMGR it takes

around 0.3s. For 512 processes we see an improvement of 800% in the overall launch

time.

Figure 2.7 shows a comparision of ScELA-PMGR and MVAPICH-PMGR on a

large scale cluster – the TACC Ranger [27]. The TACC Ranger is an InfiniBand

cluster with 3, 936 nodes with four 2.0 GHz Quad-Core AMD “Barcelona” Opteron

processors making a total of 16 processing cores per node. The Figure shows the

runtime of a simple hello world MPI program that initializes the MPI environment

and terminates immediately. In terms of number of processing cores, ScELA-PMGR

scales up to at least three times more than MVAPICH-PMGR (based on MVAPICH

version 0.9.9). On 10, 240 cores, we observe that MVAPICH-PMGR takes around

185s while ScELA-PMGR takes around 25s which represents a speedup of more than

700%. We also see that MVAPICH-PMGR is unable to scale beyond 10, 240 cores,

while ScELA-PMGR is able to scale to at least 3 times that number.
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Figure 2.7: Runtime of Hello World Program on a Large Scale Cluster (Courtesy TACC)

2.5 Related Work

The scalability and performance of job startup mechanisms in clusters have been

studied in depth before. Yu, et. al. [29] have previously explored reducing the volume

of data exchanged during initialization of MPI programs in InfiniBand clusters.

In our work, we have assumed availability of executable files on target nodes

through network based storage as this is a common model on modern clusters.

Brightwell, et. al. [3] have proposed a job-startup mechanism where network storage

is not available.

SLURM [14] is a resource manager for Linux clusters that implements various

interfaces such as PMI and PMGR for starting and monitoring parallel jobs. Unlike
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ScELA, SLURM has persistent daemons on all nodes through which it starts and

monitors processes.

2.6 Summary

In this work we study the scalability challenges in job launching in large clusters.

We identify the problems in current mechanism and propose a Scalable and Extensible

Launching Architecture (ScELA) that scales to modern large scale clusters such as

the 64K processor TACC ranger.

With an implementation of our architecture, we have achieved a speedup of 700%

in MPI job launch time on a very large scale cluster at 10, 240 processing cores by

taking advantage of multi-core nodes. We have demonstrated scalability up to at

least 32, 768 cores.
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CHAPTER 3

IMPACT OF NODE LEVEL CACHING IN MPI JOB
LAUNCH MECHANISMS

3.1 Introduction

In this work, we continue the study on the job launch phase with partticular focus

on MPI job launching to analyze the communication between processes during job ini-

tialization with the goal to improve the startup performance. We work on the ScELA

framework introduced in Chapter 2. In particular we aim to study the performance

benefits of caching information at the node level on multi-core processors. We pro-

pose four design alternatives for caching mechanisms that improve the performance of

the startup phase in MPI applications. The first three designs include: Hierarchical

Cache Simple (HCS), Hierarchical Cache with Message Aggregation (HCMA) and

Hierarchical Cache with Message Aggregation and Broadcast (HCMAB). We study

the communication pattern during a typical MPI job startup phase and enhance our

designs to introduce the Hierarchical Cache with Message Aggregation, Broadcast

and LRU (HCMAB-LRU) which is memory efficient while retaining the performance

benefits of earlier methods. We evaluate our designs on a 512 core InfiniBand cluster

to demonstrate the performance benefits of pre-populating node level caches. This
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reduces the time taken for a typical information stage during startup to less than one

tenth while adhering to an upper bound on the memory used for the cache.

The rest of this work is organized as follows. We study the impact of node level

caching and design alternatives in Section 3.2. We evaluate our designs in Section

3.3. We conclude and give future directions in Section 3.4

3.2 Proposed Designs

In this Section we describe alternative design mechanisms for caches over the

hierarchical NLA network.

3.2.1 Hierarchical Cache Simple (HCS)

Figure 3.1 shows the basic caching mechanism in ScELA – the Hierarchical Cache

Simple (HCS). When an MPI application publishes information with the PMI Put

operation, the data is sent to the local NLA. The NLA adds it to its local cache and

forwards the data to the upper level NLA. The upper level NLAs add the information

to their respective caches and forward it up the NLA tree.

Figure 3.1: Hierarchical Cache Simple
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When an MPI application requests for information via the PMI Get operation, the

local NLA checks if the data is available in its cache. If so, it responds with the data.

If not, the request is forwarded up the NLA tree until an NLA finds the information

in its cache. The response is cached in all intermediate NLAs as it travels down the

tree. Since all (key, value) pairs get cached in the root of the NLA tree, worst case

memory usage is O(p×n) where p is the number of processes and n is the number of

(key, value) pairs published by each process.

3.2.2 Hierarchical Cache with Message Aggregation (HCMA)

In HCS, the number of messages sent over the NLA tree is large. The root of the

NLA tree receives O(p×n) individual messages each containing a (key, value) pair.

Sending a large number of small messages over the NLA tree is a costly operation.

We observe that all MPI libraries ensure that MPI processes are synchronous when

publish and retrive information. The typical information exchange phase can be

summarized by the following pseudocode:

PMI_Put (mykey, myvalue);

PMI_Barrier ();

...

val1 = PMI_Get (key1);

val2 = PMI_Get (key2);

...

Since we know that all MPI processes on a node publish information around the

same time, we can aggregate this information at the local NLA before forwarding it

up the tree. The higher level NLAs wait for all local processes to publish information
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as well as aggregate information from all lower level NLAs and send a single aggregate

message up the NLA tree after populating the local cache. Figure 3.2 shows such a

mechanism. We call this mechanism as Hierarchical Cache with Message Aggregation

(HCMA). With the message aggregation, we reduce the number of messages sent over

the NLA tree. The root of the NLA tree receives O(logk(p) × n) messages (where k

is the degree of the NLA tree) since it only receives one message from each NLA and

smaller messages from the local MPI processes. The worst case memory usage is the

same as HCS at O(p× n) which is related to the amount of data cached at the root

NLA.

Figure 3.2: Hierarchical Cache with Message Aggregation

The handling of information retrieval in HCMA is identical to HCS.

3.2.3 Hierarchical Cache with Message Aggregation and Broad-
cast (HCMAB)

In both HCS and HCMA, when a MPI process requests for information that is

not available in the local NLA cache, the request is forwarded up the NLA tree. The

root NLA has data from all MPI processes. Thus the number of PMI Get messages
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reaching the root is high and the responses need to travel multiple hops before the

MPI application receives the data.

On multi-core clusters, we observe that due to the presence of multiple MPI

processes on each compute node, most of the data would eventually be requested

by some MPI process on the node. Thus, pre-populating all NLA caches would be

benefitial in terms of reducing the number of messages sent over the network. This

method – Hierarchical Cache with Message Aggregation and Broadcast (HCMAB)

is similar to HCMA with one additional step. After the root NLA has accumulated

data from all processes, it broadcasts an aggregate message to all NLAs. This ensures

that all PMI Get requests are served from local NLA caches.

In this method, each NLA in the tree has memory requirement of the order of

O(p× n) since all information is cached in all NLAs.

3.2.4 Hierarchical Cache with Message Aggregation, Broad-
cast with LRU (HCMAB-LRU)

Since HCMAB has the least number of messages travelling over the broadcast

network and had all data requests served from a local cache, it offers the best per-

formance of the three prior schemes. However populating every NLA cache involves

memory usage of O(p×n) on every NLA where p is the number of MPI processes and

n is the number of (key, value) pairs published by every MPI process. Job launch-

ers however need to keep their memory usage low. We observe that the information

exchange during MPI Init happens in stages where ranks publish information and

retrieve information published by other ranks. The exchange is repeated in subse-

quent stages with new information. Thus we can limit memory used for the cache

to O(p) such that the cache can hold information required for one particular stage
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of information exchange. We use the Least Recently Used (LRU) cache replacement

algorithm when storing data in the cache so that information from prior stages are

discarded. We call this mechanism the Hierarchical Cache with Message Aggregation,

Broadcast and LRU (HCMAB-LRU).

3.2.5 Comparison of Memory Usage

Table 3.1 shows a comparison of the memory usage between the four caching

mechanisms for n rounds of information exchange. We observe that HCMAB-LRU is

able to maintain a strict upper bound on its memory usage while the other schemes

use increasing amount of memory as the amount of information exchanged increases.

Table 3.1: Node Level Memory Usage of Proposed Caching Mechanisms on Various
Cluster Sizes for n published (key, value) pairs

MPI Job Size (p)
Caching Mechanism

HCS HCMA HCMAB HCMAB-LRU
64 O(64× n) O(64× n) O(64× n) O(64)
256 O(256× n) O(256× n) O(256× n) O(256)
1024 O(1024× n) O(1024× n) O(1024× n) O(1024)
4096 O(4096× n) O(4096× n) O(4096× n) O(4096)
16384 O(16384× n) O(16384× n) O(16384× n) O(16384)
65536 O(65536× n) O(65536× n) O(65536× n) O(65536)

3.3 Performance Evaluation

In this Section we evaluate the four design alternatives presented in Section 3.2.

Our testbed is a 64 node InfiniBand Linux cluster. Each node has dual 2.33 GHz
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Intel Xeon “Clovertown” quad-core processor for a total of 8 cores per node for a

total of 512 processor cores. The nodes have one Gigabit Ethernet adapter each for

management traffic such as job launching. We represent cluster size as n× c, where

n is the number of nodes and c is the number of cores per node used.

We implement our design alternatives over the ScELA-PMI startup mechanism

available in MVAPICH2 a popular MPI library for InfiniBand and iWarp that uses

PMI during the job launch phase.

3.3.1 Simple PMI (1:2) Exchange

We profile a part of the code where MVAPICH2 processes exchange information

with two peers to form a ring connection over InfiniBand. In this phase each MPI

process publishes one (key, value) pair using PMI Put and retrieves values pub-

lished by two other MPI processes. For instance, this kind of information exchange

is used in MVAPICH2 to establish a ring network over InfiniBand. Figure 3.3 shows

the performance of the caching mechanims.

We see that HCS performs the worst since the number of messages travelling

the NLA tree during both the publishing phase and the retrieval phase is highest.

HCMA performs better since it reduces the number of messages travelling over the

network during the publishing phase through message aggregation. HCMAB and

HCMAB-LRU perform virtually identically since the communication pattern is iden-

tical and the reduce the time taken for the phase to less than one third of HCS. Note

that HCMAB-LRU uses much less memory since it does not retain information from

previous stages of communication in the NLA caches.
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3.3.2 Heavy PMI (1:p) Exchange

In another common form of information exchange, each MPI process publishes

one piece of information. All p MPI processes then read information published by

every other MPI process. For instance, this method is used to learn the InfiniBand

LIDs of all MPI processes in MVAPICH2. Figure 3.4 shows the results from profiling

such an exchange. We observe the performance benefits of caching mechanisms such

as HCMAB and HCMAB-LRU that populate all the caches prior to any PMI Get

requests from MPI processes. We observe that these mechanisms reduce the time

taken for such exchanges to one tenth that of HCS. In these methods all data is

served from the local NLA cache and the number of messages travelling through the

NLA tree is minimal. These two factors improve the performance of the information
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exchange greatly. As the number of messages exchanged is low, these mechanisms

can scale to clusters of larger node counts.
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3.4 Summary

In this work we have proposed four alternatives for node level caches in MPI job

launchers. The simplest method – HCS improves the scalability and performance of

the startup while keeping the average memory usage per node low in the job launcher.

We improve the performance using message aggregation in HCMA. We propose an

enhancement over this method that takes advantage of communication patterns used

by typical MPI libraries that use PMI with HCMAB. We propose an enhancement

over HCMAB to cap memory used to a fixed value. We reduce the performance of

communication phases to around a tenth with our optimizations. Though we discuss
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our designs in terms of the k-nomial tree based ScELA framework, similar reasoning

applies to caching information other startup mechanisms such as the ring based MPD

in MPICH2 [1].

In the future, we propose to study node level caches and other optimizations over

much larger clusters. We plan to evaluate distributed caching to reduce memory

usage further in the presence of hundreds of thousands of MPI processes.
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CHAPTER 4

SCALABLE POINT-TO-POINT COMMUNICATION IN
MULTI-CORE INFINIBAND CLUSTERS

4.1 Introduction

As clusters continue to grow in size, the scalability of point-to-point communi-

cation channels in MPI libraries are starting to become a bottleneck. In this work,

we study the scalability challenges in point-to-point communication channels in MPI

libraries over InfiniBand and propose a highly scalable alternative channel over the

eXtended Reliable Connection (XRC) transport of InfiniBand.

4.2 Overview of Point-to-Point Communication in MPI Li-
braries

Point-to-point communication is the most important aspect of MPI libraries. All

higher level operations such as collectives are built upon point-to-point connections.

Any MPI implementation must provide scalable and high-performance mechanisms

for point-to-point communication between any two MPI processes.

In this chapter we study the scalability challenges in designing efficient, scalable

and high-performance communication in MPI libraries over InfiniBand libraries.
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4.2.1 Scalability Challenges

Current MPI implementations over InfiniBand use the RC as their primary trans-

port. Prior work has shown that the RC transport requires several kilo bytes of

memory per connection [9]. This could lead to up to a gigabyte of memory being

used up by just InfiniBand connections for large scale jobs such as those running at

16K processes.

Some MPI libraries such as MVAPICH [19] use and adaptive connection manage-

ment scheme to reduce the number of connections created [30]. Unlike the static con-

nection management scheme where connections to all peers are created at MPI Init,

in adaptive connection management, connections are established on-demand, i.e., an

IB connection is established only when a process needs to communicate with another

process. This reduces the number of connections created by a process if it does not

talk to every other process during the duration of the job. This mechanism is useful

when MPI processes form cliques and communicate within these. For example in

cases when MPI processes only communicate with their nearest neighbours. How-

ever, in this adaptive method, if a job is eventually fully connected, the number of

connections created and the memory used is the same as the static scheme.

MPI libraries also use shared memory based communication [5] for intra-node

peers to reduce the number of network connections. The large number of connections

also leads to cache pollution in the InfiniBand HCA cache. Many other research

work has focused on the scalability of MPI libraries over InfiniBand. Some of these

reduce the consumption of buffers required by InfiniBand connections by using the

SRQ mechanism in recent InfiniBand versions [24], [26]. Message coalescing has been

used to reduce the memory usage [9]. An adaptive approach where the UD transport
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of InfiniBand is used for the first sixteen messages and then switches to RC has also

been proposed [30]. Connection-less UD based designs [11] and zero-copy over UD

[12] have been recently evaluated. A hybrid approach that switches between UD and

RC based on the application communication pattern and frequency was presented in

[10].

In our work, we design a MPI communication channel over the eXtended Reliable

Connection (XRC) transport of InfiniBand available with recent InfiniBand adapters.

As described in Section 1.3.2, XRC enables connections to be established to nodes

rather than processes. This is particularly relevant with the advent of multi-core pro-

cessors. This means that a process on node A communicating with another process on

node B over XRC can reach all processes on node B through the original connection.

The rest of this chapter is organized as follows. In the Section 4.3 we present our

design for MPI over XRC, we evaluate our design in Section 4.4 and we summarize

in Section 4.5.

4.3 Proposed Design

The XRC transport of InfiniBand allows a sender to reuse an existing connection

to a process on a node to reach any other process on the same destination node. For

this mechanism to be allowed by the HCA, all processes on a node need to join an

XRC domain. Once all processes have joined a common domain, the HCA can place

data arriving on any QP tied to the domain into a SRQ belonging to any process in

the same domain. Thus XRC connections connect a process to a node. A process

can address any process on a target node by specifing the SRQ number in the WRE

(Work Request Entry). A comparison of RC and XRC is shown in Figure 4.1. In the
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example shown, all nodes are dual core. Process A1 on node A needs two distinct RC

connections to process B1 and B2 on node B. However when XRC transport is used

a single connection can be used to reach both B1 and B2.

(a) RC Connections (b) XRC Connections

Figure 4.1: Comparison of RC and XRC InfiniBand Transports

4.3.1 MPI over eXtended Reliable Connection (XRC)

We use the XRC transport to design an on-demand connection management in

MVAPICH and MVAPICH2 [19]. InfiniBand connections are created to a peer only

when there is a need to transfer some data, i.e., connections are established when

the first data packet is sent to a peer. We use a hash table to keep track of existing

connections to all nodes. When a message is to be sent to a new peer process to

which we do not have a connection, we check the hash table to see if we already have

another XRC connection that can be reused. If so, we reuse the existing connection to

communicate with this new peer and mark the connection as an indirect connection.

This design can be described by the pseudo-code in Figure 4.2.
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Figure 4.2: XRC Connection Management

All processes create UD QPs to enable connection setup handshake messages. If

we do not find a connection to a node, we send a UD message to the peer requesting

a new connection and mark the connection as a direct connection. In either case, the

remote SRQ number is obtained through UD messages. This SRQ number is used

in all WREs when sending data to this peer. When sending data to a peer, we need

to find the original XRC Queue Pair if it is a indirect connection. Once we find the

original Queue Pair, we populate the destination SRQ in the WRE and post a send

to the HCA. The HCA on the destination node places the data in the defined SRQ

at the receiver if the domain is the same. The sending mechanism can be described

by the pseudo-code in Figure 4.3.

Through the use of XRC, in the ideal case, we can reduce the number of connec-

tions needed per process to the number of nodes being used rather than the number

of processes (cores). Table 4.1 shows a comparison of the number of connections cre-

ated by each process in a fully connected MPI job. We observe that as the number of
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Figure 4.3: Sending over XRC

cores per node increases, the number of connections created in case of XRC reduces

drastically compared to RC.

Table 4.1: Comparison of the Number of Connections in RC vs XRC
Transport Nodes Cores Job Size Connections per Process
RC n c n× c n× c− 1
XRC n c n× c n

4.3.2 Dynamic Process Management

MVAPICH2 which is a MPI-2 implementation over InfiniBand supports the Dy-

namic Process Management feature of MPI-2. With DPM, a group of MPI processes

can spawn another group of MPI processes. DPM also allows a group of MPI pro-

cesses to establish connections to another group of MPI processes. When a MPI job

spawns another MPI job, the processes in the second job may be spawned on the

same nodes as the original job. In such scenarios, if a process from a process group
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X needs to talk to a process from process group Y and already has a connection to

the destination node, we take advantage of XRC to reuse the same connection. Such

a scenario is shown in Figure 4.4. In this example, we use process A4’s connection to

process B4 to talk to a process B5 in another process group.

Figure 4.4: MPI Dynamic Process Management with XRC

In a MPI job without DPM, all processes start and terminate around the same

time. However, when DPM is being used, a communicating peer may terminate at any

time. If we have a direct connection to a peer that terminates, we lose connectivity to

all peers who were reachable through this connection. To overcome this problem, we

use a special XRC receive only QP on the receive side of a XRC connection. When

a direct connection is established, the receiver side creates a special receive only QP.

Other peers who’re reachable through this QP also register to this QP as needed.

When a receiver process no longer needs this connection, it unregisters itself from

this QP. The kernel only deletes the receive only QP when no process is registered to
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it. Hence even if the original receiver process terminates, the other processes on the

node can still receive data on this XRC QP.

Through the use of XRC, we reduce the number of connections created per process.

In large MPI jobs on multi-core processors, this not only reduces memory used, but

also reduces cache pollution in the HCA. In the next section we present a performance

evaluation of our designs.

4.4 Performance Evaluation

In this section, we present an evaluation of our deisgn. We have implemented

our design on both MVAPICH and MVAPICH2 and we compare our design to the

standard RC based designs. We start our evaluation with MPI level microbenchmarks

[20]. We then use more comprehensive benchmarks, the NAS Parallel Benchmarks

[2] to show the impact of the XRC based MPI design.

4.4.1 MPI Microbenchmarks

We evaluate our design on two Linux nodes equipped with Mellanox ConnectX

InfiniBand HCAs connected through a switch. Each of these nodes have the Intel Xeon

“Harpertown” processor and have a dual quad-core processor. InfiniBand software

support is provided through the OpenFabrics/Gen2 stack [21] version 1.4.

Figure 4.5 shows the results of the MPI level micro-benchmark evaluation. Due

to the extra processing involved with each send operation, there is a small penalty

in small message latency as can be seen in Figure 4.5(a). However, the bandwidth

achieved is practically identical to the RC based designs as seen in Figure 4.5(b).
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Figure 4.5: MPI Microbenchmark Evaluation of MVAPICH with RC and XRC

4.4.2 Application Benchmarks

We use the NAS Parallel Benchmarks (NPB) [2] to compare the RC and the XRC

based MPI designs. NPB is developed at NASA and is a set of benchmarks which

are derived from the computation kernels of common Computational Fluid Dynamics

(CFD) applications. We run our experiments on a 8 node InfiniBand Linux cluster.

Each node has a dual 2.33 GHz Intel Zeon “Clovertown” quad-core processor for a

total of 8 cores per node. We use the NPB class B benchmark size for our evaluation.

The results of the comparison is shown in Table 4.2. For each benchmark we show

the average, minimum and maximum number of InfiniBand QPs created per process

in addition to the running time. An examination of the running time shows that

there is practically little difference between the RC and the XRC designs. However,

the number of connections created per process is markedly fewer with XRC. FT and

IS which create all-to-all connectoins highlight this trend in particular.
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Table 4.2: Comparison of the Number of Connections in RC vs XRC with NPB (Class
B)

App Transport
Number of QPs per Process

Running Time
Average Minimum Maximum

BT
RC 6.06 6 7 26.63
XRC 4.06 4 5 26.60

CG
RC 3.84 3 4 18.14
XRC 3.5 3 4 18.04

EP
RC 3 3 3 3.28
XRC 3 3 3 3.24

FT
RC 55.91 54 56 8.57
XRC 6.95 5 7 8.53

IS
RC 53.16 50 56 0.44
XRC 6.98 6 7 0.42

LU
RC 3.81 3 5 17.81
XRC 3.81 3 5 17.75

MG
RC 4.98 4 6 1.75
XRC 4 4 4 1.75

SP
RC 6.06 6 7 46.57
XRC 3.73 3 5 46.54

4.5 Summary

With this work, we examin the scalability constraints in RC based communication

channels in MPI libraries over InfiniBand. We propose a design based on eXtended

Reliable Connection (XRC) that performs identical to the RC based design with

reduced memory usage that allows it to scale to larger clusters.

Our design also takes advantage of the XRC paradigm to reuse connections even

when two different MPI jobs talk to each other through Dynamic Process Management

(DPM).
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Implementations of our designs are available in MVAPICH version 1.1 and the

upcoming version 1.4 of MVAPICH2, two popular MPI libraries over InfiniBand.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Summary

Clusters continue to scale in core counts. Node counts are increasing signifi-

cantly, but much of the growth in core counts is coming from multi-core clusters. In

our work we have demonstrated a scalable launching architecture that improves the

launch performance on multi-core clusters by more than an order of magnitude than

previous solutions. Although our case studies have been with two MPI libraries, we

have presented an architecture extensible to any cluster launching requirements. For

launching parallel jobs, we provide scalable and efficient communication primitives

for job initialization. With an implementation of our architecture, we have achieved

a speedup of 700% in MPI job launch time on a very large scale cluster at 10, 240

processing cores by taking advantage of multi-core nodes. We have demonstrated

scalability up to at least 32, 768 cores. These solutions are being used by several large

scale clusters running MVAPICH such as the TACC Ranger – currently the largest

InfiniBand based computing system for open research.

We have examined the communication pattern in the job launche phase and var-

ious opportunities to use node level caching to speed up the job launch phase. We
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have proposed four alternative mechanisms for node level caches and have studied the

scalability aspects and memory usage of each of them. The simplest method – HCS

improves the scalability and performance of the startup while keeping the average

memory usage per node low in the job launcher. We improve the performance using

message aggregation in HCMA. We propose an enhancement over this method that

takes advantage of communication patterns used by typical MPI libraries that use

PMI with HCMAB. We propose an enhancement over HCMAB to cap memory used

to a fixed value. We reduce the performance of communication phases to around a

tenth with our optimizations. Though we discuss our designs in terms of the k-nomial

tree based ScELA framework, similar reasoning applies to caching information other

startup mechanisms such as the ring based MPD in MPICH2 [1].

We have also examined the scalability constraints with current RC based point-

to-point communication channels in InfiniBand MPI libraries and proposed a scal-

able comunication channel over the eXtended Reliable Connection (XRC) InfiniBand

transport available in recent IB adapters with reduced memory usage. Our design

shows a marked decrease in the number of connections created in multi-core clusters.

5.2 Future Work

With the recent demonstration of a 80 core processor by Intel, the number of cores

per node on large scale clusters is projected to increase further. In our job launch

design, we can use more efficient communication channels such as UDP or shared

memory for communication between processes and the NLA on a node so that the

degree of the NLA tree can be decoupled from the number of cores on a node.
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We also plan to evaluate the use of eXtended Reliable Connection (XRC) transport

of InfiniBand in collective intensive communication and understand the behaviour,

identify potential bottlenecks and optimization.

5.3 Software Distribution

The ScELA design is availabe in MVAPICH version 1.0 and MVAPICH2 version

1.2 onwards. Implementations of HCS and HCMAB caching mechanisms are inte-

grated into the 1.2 release of MVAPICH2. We plan to integrate HCMAB-LRU into

an upcoming release of MVAPICH2. Our scalable MPI channel over XRC Infini-

Band transport is available in MVAPICH version 1.1 and the upcoming version 1.4

of MVAPICH2.

MVAPICH and MVAPICH2 are popular MPI libraries over InfiniBand used by

over 900 organizations around the World.
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