
Optimal Multicast with Packetization and Network Interface Support
�

Ram Kesavan and Dhabaleswar K. Panda
Department of Computer and Information Science

The Ohio State University, Columbus, OH 43210-1277
Email:

�
kesavan,panda � @cis.ohio-state.edu

Abstract: Modern networks typically limit the size of the
largest packet for efficient communication. Thus, long mes-
sages are packetized and transmitted. Such networks also
provide network interface support for nodes, which typi-
cally includes a coprocessor and memory, to implement the
lower layers of the communication protocol. This paper
presents a concept of smart network interface support for
packetization and an optimal multicast algorithm for sys-
tems with such support. Two implementations of smart net-
work interface, First-Child-First-Served (FCFS) and First-
Packet-First-Served (FPFS), are studied and compared. It
is shown that the FPFS network interface support is more
practical and efficient. Next, the components of multicast
latency under FPFS implementation are analyzed by using
a pipelined model. A concept of � -binomial tree is intro-
duced, and proved to be optimal for multicasting under the
FPFS scheme. A method to construct contention-free � -
binomial trees on contention-free orderings of the nodes
is presented. For a 64-node system with irregular network,
simulation results indicate that the optimal � -binomial tree
is upto 2 times better than the conventional binomial tree
for a range of multicast set sizes and message lengths.
Thus, these results demonstrate significant potential to be
applied to current and future generation high performance
systems including MPPs and NOWs, where network inter-
face support for multicast is provided.

1 Introduction
Multicast/broadcast is a common collective communi-

cation operation as defined by the MPI standard. Paral-
lel systems supporting distributed memory or distributed-
shared memory programming paradigms require fast im-
plementation of multicast and broadcast operations in or-
der to support various application and system level data
distribution functions. There have been many multi-
cast/broadcast algorithms proposed in the literature in re-
cent years [5, 6, 9, 11]. All these algorithms are de-
signed assuming arbitrarily long single-packet messages.
Typically, modern networks limit the size of the largest
packet to minimize network contention and support ef-
ficient buffer utilization in the network and the network
interfaces. Therefore, large messages are broken up and
transmitted as multiple packets. Modern networks also
provide network interface support associated with each
node. Such support, which includes a coprocessor and a
small amount of memory, implements the lower layers of

�
This research is supported in part by NSF Grant MIP-9309627 and

NSF Career Award MIP-9502294.

the communication protocol. This is true of nodes on a
NOW, as well as on systems like the IBM SP2.

Recently, a solution for implementing multicast under
packetization has been proposed in [2]. However, this
work assumes host processor handling of packetization and
user/system control of determining optimal packet size for
a given multicast set and message length. Thus, this re-
sult is not practical for modern systems with fixed packet
lengths and network interface support for packetization.
This leads to the challenge of designing optimal multi-
cast algorithms under packetization using network inter-
face support.

In this paper we take on this challenge. First, the fea-
tures of conventional and smart network interfaces are an-
alyzed. Next, two implementations of smart network in-
terface, First-Child-First-Served (FCFS) and First-Packet-
First-Served (FPFS), are investigated for packetized multi-
cast. It is shown that the FPFS network interface support
is more practical and efficient in terms of buffer require-
ment. It is also shown that the binomial tree is not optimal
for an arbitrary multicast set size and an arbitrary number
of packets using the FPFS implementation. In order to cal-
culate multicast latency a pipelined model of multi-packet
multicast is built for the FPFS implementation. Then, a
new concept of � -binomial tree is defined and shown to
be optimal for multi-packet multicast. A method to con-
struct contention-free � -binomial trees is developed using
the concept of contention-free ordering of nodes [9]. The

� -binomial tree is evaluated and compared to the conven-
tional binomial tree on a 64-node irregular switch-based
network using simulation experiments. Results show an
improvement by a factor of 2 when using the � -binomial
tree. Also, the benefit of using the � -binomial tree is shown
to increase with increase in number of packets of a multi-
cast. These results are quite general and can be used in
any kind of network (regular or irregular) which provides
network interface support for multicast packetization.

The rest of the paper is organized as follows. Section 2
reviews packetization and network interface. Section 3 dis-
cusses FCFS and FPFS implementations of smart network
interface support, and compares them. Section 4 presents
the optimal multicast algorithm. Performance analysis re-
sults are presented in Section 5.Related work is described

in Section 6, and concluding remarks are made in Sec-
tion 7.

2 Packetization and Network Interface Sup-
port

In this section, we discuss multicast of packetized mes-
sages over conventional and smart network interfaces, and
show that existing multicast algorithms are not optimal on
systems with smart network interface support.

2.1 Packetization
Modern day networks typically limit the size of the

largest packet. This is done to minimize network con-
tention and support efficient buffer utilization in the net-
work and the network interfaces. If a node needs to send
a large message to another node, the message is broken up
into packets of fixed size. Typically, the maximum packet
size is dictated by the design of the network and the as-
sociated communication protocol. The sender fragments
the message and sends out the individual packets into the
network. The packets are routed as individual messages to
the destination depending on the routing information con-
tained in the headers. The destination collects the packets
and assembles them into the complete message.

Communication support can be provided at one of two
levels in a typical high performance node: system level
or network interface level. System level support involves
host processors at the sender and receiver sides executing
some software to accomplish the above tasks. Such sup-
port is inefficient due to the large overheads of software
execution, buffer copying, and loss of computing time at
the host processor. To improve performance, modern net-
work systems provide a network interface associated with
each node. The network interface, which includes a co-
processor and a small amount of memory, implements the
lower layers of the communication protocol.

2.2 Conventional Network Interface Support
Let us consider the conventional network interface sup-

port for message transfer in a typical high performance sys-
tem. Figure 1 shows a generic network interface at a host
node. The interface contains a coprocessor, send/receive
queues to store packets that are being sent to or received
from the network, DMA engines to transfer the packets be-
tween the host memory and the send/receive queues, and
other hardware to interface with the network.

An application is typically linked to a communication
library in the host, and a portion of the host memory is allo-
cated for DMA to and from the network interface. Recent
implementations of high performance messaging systems
show a trend of circumventing the operating system and
providing applications direct access to the network device
[3, 8, 10]. This reduces the send and receive overheads
for messaging, so that the low latency and high bandwidth

DMA Engine

Coprocessor

In
te

rf
ac

e

send queue

receive queue

Node I/O
 Bus Interface

ne
tw

or
k

Figure 1: Generic diagram of a typical network interface at a
host node.

requirements of cluster computing can be achieved. The
programmable coprocessor at the network interface con-
trols the actual sending and receiving of the messages.

A typical message transfer in these systems is done in
the following way. At the sender side, one of two schemes
is used. The host processor at the sender fragments the
message into fixed size packets and transfers them to the
send queue of the network interface [10]. Alternatively,
the host processor copies data into the host DMA memory,
writes the message pointers to the network interface, and
the coprocessor uses DMA to copy the packets to the send
queue [3]. Subsequently, the software executing at the co-
processor detects entries in the send queue, and sends the
packets out to the network channel. At the receiver side,
the incoming packets join the receive queue at the network
interface. The coprocessor detects the received packets and
uses DMA to copy them to the host memory. The discus-
sions in this paper are applicable with either scheme at the
sender side.

2.3 Multicasting over Conventional Network In-
terface

When a multicast tree is implemented on a high per-
formance system, some destinations serve as intermediate
sources. This means that when they receive a message,
they forward copies of it to other destinations. Let us con-
sider the multicast of a large message spanning multiple
packets. Figure 2 shows the forwarding of a 2-packet mul-
ticast message at an intermediate node of a multicast tree.
All the packets of the message are received at the network
interface and copied to host memory using DMA. The host
processor at the intermediate node receives the complete
message and then initiates send operations to each of its
children in the multicast tree. For each of the send oper-
ations, a copy of the message is sent to the network inter-
face, from where it is sent into the network. Therefore,
an intermediate node undergoes the message send over-
head for every copy of the message that it forwards to other
destinations. This overhead includes the software start-up
overhead and the overhead at the network interface for each
packet transmission. Smart network interface support can
reduce this overhead for multicast of large messages.

packet #1
packet #2

packet #1

packet #2

applicationsource

network
interface

intermediate
destination destination

DMA

host
memory

Figure 2: Forwarding of a 2-packet long multicast message by
intermediate node using conventional network interface support.

2.4 Smart Network Interface Support
Here, the forwarding process at the source and interme-

diate nodes is completely handled by the software running
at the network interface coprocessor. This software is given
the capability to identify a multicast packet. If the next
outgoing packet in the send queue of the source node is
a multicast packet, the network interface coprocessor for-
wards replicas of the packet to the nodes adjacent to the
root of the multicast tree. When a multicast packet is re-
ceived at the network interface of an intermediate node, the
network interface coprocessor, after it starts copying (using
DMA) of the packet to host memory, forwards replicas of
the packet to its children in the multicast tree. Figure 3
shows such forwarding.

packet #1
packet #2

packet #1
packet #2

applicationsource

network
interface

intermediate
destination destination

DMA

host
memory

Figure 3: Forwarding of a 2-packet long multicast message by
intermediate node using smart network interface support.

2.5 Multicasting over Smart Network Interface
Let us estimate the latency of a multicast operation us-

ing smart network interface support. The software start-
up overhead, ��� , is incurred once at the host processor of
source of the multicast to transfer the data to the network
interface memory. Consequently, the multicast tree is im-
plemented at the network interfaces of the participating
processors. The host processor at each destination under-
goes the software overhead, ��� , for receiving the message.
Although, these software overheads are large, they are in-
dependent of the choice of the multicast tree. However, the
overhead incurred at the network interfaces of the partici-
pating nodes depends on the choice of the multicast tree.
Therefore, the latency of a multicast tree is determined by
the time required for the actual transmission of all the pack-
ets of the multicast message to the network interfaces of
the destinations. Hereafter, we refer to the transmission of

a packet from the network interface of one processor to an-
other as a step. This time, denoted �����	��
 , includes the over-
head at the sender network interface for sending a packet,
propagation overhead, and the overhead at the receiver net-
work interface for receiving the packet.

Let us take a simple example of a single-packet multi-
cast using a binomial tree over three destinations to illus-
trate the advantage of using smart network interface sup-
port. Figures 4(a) and 4(b) show the multicast over con-
ventional and smart network interface, respectively. It can
be easily observed that the multicast latencies using con-
ventional and smart network interfaces are ��������������	��
��������
and ��������������	��
�������� , respectively. For an arbitrary multi-
cast set size of � nodes, these values will be �!�"�#%$��'&%����(�
�����	��
������)� and ������* �!�"�#+$,�'&)���-�	��
.�����)� , respectively. There-
fore, multicast latency can be lowered by using smart net-
work interface support.

t s

t s

trt step

t step

t step

t s

tr tr

host

network
interface

(a)

t s

trt step

t step
t steptr tr

host

network
interface

(b)

Figure 4: Performance benefits of the smart network interface:
(a) binomial single-packet multicast tree over the conventional
network interface and (b) binomial single-packet multicast tree
over the smart network interface.

This improvement in performance is due to two main
reasons. First, the host processor at the intermediate node
is not involved in the forwarding of multicast packets,
thereby reducing the forwarding overhead. Second, an in-
termediate node can forward a packet of the message as
soon as it arrives, independent of the arrival of the remain-
ing packets. As it can be observed, such network interface
support requires buffering of multicast packets at the net-
work interface. This is because each packet is forwarded to
multiple destinations, and the packet data requires buffer-
ing at the network interface until the network interface co-
processor has injected all required copies of it into the net-
work. An example of the use of such smart network inter-
face has been described in [12].

2.6 Optimal Multicast Trees over Smart Net-
work Interface

Prior work in the literature has shown the binomial tree
to be optimal (in terms of number of start-ups) for multi-
cast on systems with conventional network interface sup-
port [9]. However, it is not clear whether this is true for
systems with smart network interface. Let us consider an
example multicast of a 3-packet long message to three des-
tinations on a system with smart network interface support.
Figures 5(a) and 5(b) show the number of steps taken to

complete such a multicast using a binomial and a linear
tree, respectively. In the figures, the numbers in brack-
ets indicate the step numbers and the subscripts indicate
the packet numbers. For example � ��� $ indicates the second
packet being transmitted in the fourth time step. It can be
easily observed that the binomial tree takes 6 steps and the
linear tree takes 5 steps. The multicast latency for the bi-
nomial tree is 	��� �����'�����	��
 � ����� , and the multicast latency
for the linear tree is 	��� �	�
� �����	��
 � ����� . This simple ex-
ample shows that the binomial tree is not the optimal tree
for multicast of packetized messages with smart network
interface support.

[1]

(a)

[2] [3]
1 2 3

[2] [3] [4]
1 2 3

[4] [5] [6]
1 2 3

[1]

(b)

[2] [3]
1 2 3

[2] [3] [4]
1 2 3

[3] [4] [5]
1 2 3

Figure 5: The number of steps to complete multicast of a 3-
packet long message to 3 destinations using: (a) a binomial tree
and (b) a linear tree.

3 Implementations of Smart Network Inter-
face Support

In this section, we describe two implementations of
smart network interface support for multicast: First-Child-
First-Served (FCFS) and First-Packet-First-Served (FPFS).
We compare both implementations, and show why the
FPFS implementation is more efficient and practical.
3.1 First-Child-First-Served (FCFS) Implemen-

tation
In this implementation, the network interface at the

source node sends all packets of the multicast message to
its first child in the multicast tree, then to its second child,
and so on. When the network interface of an intermediate
node receives the first packet of a multicast message, it for-
wards the packet to its first child. When the second packet
of the multicast message arrives at the network interface,
it also forwards this packet to the first child. Similarly, the
complete multicast message is forwarded, one packet at a
time, to the first child. Subsequently, the network inter-
face forwards the message to the second child, followed by
the third child, and so on. Figure 6 formally expresses this
implementation in a pseudo-code format.
3.2 First-Packet-First-Served (FPFS) Implemen-

tation
In this implementation, the network interface forwards

the message on a per-packet basis. The network interface
at the source node sends the first packet to all the children
of the source, then sends the second packet to all the chil-
dren of the source, and so on. When the first packet of
the multicast message arrives at the network interface of

Sender
for i = 1 to num_children {

for j = 1 to num_packets {
send(child , packet);i j

Receiver with Forwarding
(Intermediate Node)

}
}

for i = 1 to num_children {
for j = 1 to num_packets {

send(child , packet);i j
}

}

if (i == 1)
receive(packet);j

Receiver
for j = 1 to num_packets {

receive(packet);j
}

Figure 6: Pseudo-code description of the FCFS implementation
of the smart network interface for multicast.

an intermediate node, it forwards the packet to each of the
children of the intermediate node. Subsequently, when the
second packet of the multicast message arrives at the net-
work interface, it forwards the packet to each of the chil-
dren, and so on till the last packet is forwarded. Figure 7
formally expresses this implementation in a pseudo-code
format.

Sender
for j= 1 to num_packets {

for i= 1 to num_children {
send(child , packet);i j

Receiver with Forwarding
(Intermediate Node)

}
}

for j= 1 to num_packets {

for i= 1 to num_children {
send(child , packet);i j

}
}

receive(packet);j

Receiver
for j = 1 to num_packets {

receive(packet);j
}

Figure 7: Pseudo-code description of the FPFS implementation
of the smart network interface for multicast.

3.3 Comparison of FCFS and FPFS Implemen-
tations

Let us evaluate and compare these two implementations
of smart network interface support with respect to ease of
implementation and buffer requirement.

3.3.1 Ease of Implementation

The FPFS is an easier implementation than the FCFS.
Let us consider packets of multiple messages coming into
the receive queue of the network interface at an intermedi-
ate node. To implement FCFS, the network interface pro-
cessor has to maintain a counter for each incoming mes-
sage. Each arriving packet increments the counter corre-
sponding to its message. When the counter value becomes
equal to the message length, all the packets are sent to the
remaining children. To implement FPFS, the network in-
terface processor handles the forwarding of the multicast
message on a per-packet basis. When the network interface
processor reads the header of a multicast packet from the
receive queue, it forwards the packet to all the children in
the multicast tree. The processor does not have to maintain
a counter for each incoming multicast message. Therefore,
the FPFS is an easier implementation than the FCFS.

3.3.2 Buffer Requirement at the Network Interface

It can be quantatively shown that the FPFS implemen-
tation is more efficient than the FCFS implementation in
terms of buffer requirement. Let us take an example of an
intermediate node with � children in the multicast tree of
a � -packet multicast. Let ��� � be the time for a copy of a
packet to be sent out from the queue to the network adap-
tor. Let us consider the time interval starting from when the
network interface coprocessor reading an incoming packet
until all copies of this packet have been sent to its children.
Let ��� and �
 denote this time interval for FCFS and FPFS
implementations, respectively.

Let us assume the best case of zero time delay be-
tween incoming packets. In the FCFS implementation a
packet needs to be buffered at the network interface of
an intermediate node until all packets of the correspond-
ing message have been forwarded to all the children of the
node. Thus, the � th packet needs to be buffered till the � th
packet and the remaining ��	�
�-� packets are forwarded
to the first child of the intermediate node, all � packets
are forwarded to the next ��� � � children, and the first
� packets are forwarded to the � th child. This leads to
���� ������'������� � � � ��� � ���.� � � ����� � � .

In the FPFS implementation, a packet only needs to be
buffered at the network interface of an intermediate node
until it has been forwarded to all the children of the node.
Thus, the � th packet needs to be buffered only until it is
forwarded to the � children of the intermediate node. This
leads to �
 � � ��� � .

Here we have assumed the best case conditions of zero
delay between incoming packets for both implementations.
If there is delay between incoming packets, each packet
requires longer buffering in the FCFS implementation. It
can be easily observed that even with the best case assump-
tions, �
������ . This translates to larger buffer requirement
for the FCFS implementation as compared to the FPFS im-
plementation.

The above discussion shows that the FPFS implemen-
tation is a more practical and efficient approach. In the
next section, we take on the challenge of developing op-
timal multicast trees for systems with such FPFS network
interface support.

4 Optimal Multicast with FPFS
In this section, we propose an optimal multicast tree on

a system with FPFS network interface support and discuss
the related implementation issues.

4.1 A Pipelined Model for Estimating Multicast
Latency

The discussion in Section 2.5 clearly shows that multi-
cast latency for a single packet on a system with smart net-
work interface support can be written as (��� � ����� �)����� � �

�����	��
�� ����� . The same formula can be extended to multi-
packet multicast latency where ��� (���) can denote the send
(receive) overhead at the host processor to transfer all pack-
ets of the message to (from) the network interface. In this
section, we analyze multicast latency in terms of �)���!�"� oc-
curing at the network interface layer, as discussed in Sec-
tion 2.5.

Let us model the multicast latency at the network inter-
face layer assuming the FPFS implementation. The multi-
cast of the complete message can be treated as a sequence
of single-packet multicasts following one another. Figure 8
shows the break up of the multicast of a 3-packet message
to 7 destinations over an example binomial multicast tree.
The numbers in brackets indicate the step numbers, and
the subscripts indicate the packet numbers. It can be easily
observed that the 3-packet multicast is equivalent to three
single-packet multicasts where each packet lags the previ-
ous one by three steps.

[1]

[2]

[3]

[2]

[3]
[3]

[3]
1

1
1

1
1

1

1 [4]2[7]3

[5]2[8]3

[6]2[9]3
[6]2[9]3

[6]2[9]3

[5]2[8]3

[6]2[9]3

Figure 8: The break up of a 3-packet multicast over 7 destina-
tions using a binomial multicast tree.

Let � be a multicast tree, and let #�� be the number of
children of the root of � . Let the multicast begin at time
zero. Let $&% denote the time at which the multicast of the
� th packet is completed, i.e. the time at which the � th packet
has been received by the network interface of each destina-
tion. Then, the following theorem can be derived.

Theorem 1 The time interval '$(%*),+-�.$&%�� , i.e. the time
between the completions of multicast of any two successive
packets, for a multicast tree is given by #�� .
Proof: Due to lack of space, we are not able to present this
proof here. Interested readers are requested to read [7] for
the detailed proof.

From Theorem 1 it can be observed that the time inter-
val '$&%/)0+&�	$%�� is independent of � . Also, each successive
packet completes its multicast #�� steps after the completion
of the previous one. Therefore, an � -packet multicast can
be modeled as � single-packet pipelined multicasts. This
leads to the following theorem.

Theorem 2 The time for completion of these � pipelined
single-packet multicasts is $ + � 1�2�3����# � steps.

It can also be observed from Fig. 8 that the multicast of
each packet lags the previous one by exactly 3 steps, which
is equal to the number of children of the root. Also, the
complete multicast takes 9 steps, which is 4 � '4-�3��� �(4 .

4.2 Deriving Optimal Multicast Tree
The optimal multicast tree is one that produces the min-

imum value for the expression $ + � 1� � ����# � . Let us
consider a multicast set of size � nodes. The value of # �
in a multicast tree determines the value of $ + . In the case
of a linear tree (Fig 5(b) for example), # � = 1 which leads
to $ + = 	��� ��� . If # � of a tree is increased, the value
of $ + decreases. In the case of the binomial tree [9] where
#)� � �!�"�#+$ �'& , $ + reaches a minimum of �!	"�#%$ �'& since this
tree recursively doubles the number of destinations covered
in each step. However, on further increase of #�� of a multi-
cast tree beyond 	!	"�# $,�'& , the value of $ + increases. There-
fore, for getting the minimum value for $ +%� '� � ����#)� , we
need to only consider the interval [� � �!�"�#%$��'&] to compute
the optimal value of #�� . If #)� of a tree is less than 	!	"�# $��'& ,
we get the special case of a restricted binomial tree. Let us
call this tree a � -binomial tree.

Definition 1 A � -binomial tree is defined as a recursively
doubling tree where each vertex has atmost � children, i.e.
#)� � � .

Figures 9(a) and 9(b) show examples of 3-binomial and
4-binomial trees with multicast set size of 16. To calculate
the optimal value of # � which produces the minimum value
for $ + ��1� ������# � , let us derive a relationship between $ +
and # � using the � -binomial tree.

(a)

[1][2]
[3]

[2]
[3][4][3][4]

[3][4][4]

[4]

[4]

[4]

[5]

(b)

[1][2][3]

[2]
[3][4][3][4]

[3][4][4]

[4]

[4]

[4]

[4]

Figure 9: Examples of � -binomial trees on a multicast set size
of 16: (a) the 3-binomial tree, and (b) the 4-binomial tree.

Lemma 1 Let � � � ��� denote the number of nodes cov-
ered in � steps by a � -binomial multicast tree. The value of� � � ��� is given by

� � � ��� �
�� � � � if � � �
� ��� � � � � �����	� � � � � �����
�
�
 ��� � � � � ��� if �� �

Proof: If � � � , the � -binomial tree is like a binomial tree,
so � � � ���(� � � . For the case of �� � , Fig. 10 illustrates
the structure of a � -binomial tree after � steps. The root
has � subtrees, and each of the subtrees is recursively a � -
binomial tree. It can be seen that after � steps the number
of nodes in the first subtree is given by � � ��� � ��� since
the depth of this subtree is � � ��� . Similarily, the number
of nodes in the second subtree is given by � � � � � ��� , and
so on. Therefore, � � � �.� is equal to the summation of the
nodes in each of the subtrees, and one (the source).

N(s-1,k)
N(s-2,k)

N(s-k,k)

[1]
[2]

[k]

N(s,k)

Figure 10: The number of nodes covered by a � -binomial tree
in � steps when ����� . The number of nodes in the � th subtree
from right is given by ��������������� .

Thus, for a given # � and � , the value of $ + is the min-
imum value of � such that � � � # � � � � . Using this rela-
tion, the optimal multicast tree for a given � and � can be
calculated as follows.

Theorem 3 Given � and � , the � -binomial tree which
produces the minimum value of $ + � 1� �.��� � is the op-
timal multicast tree, where � � � � �!�"�# $ �'& , and $ + is
equal to the minimum value of � for which � � � ���!� � .

4.3 Implementation Issues
There are two major issues for implementing � -

binomial trees for packetized multicast in a given system.
These issues are: a) computing the optimal value of �
for given � and � , and b) constructing contention-free � -
binomial multicast trees on the interconnection network of
the system.

4.3.1 Computing Optimal �
For given � and � , it can be shown using Theorem 3

and Lemma 1 that there is no closed form solution for the
optimal value of � which produces the minimum value for
$ � '� � ��� � . However, this value can be easily com-
puted by checking all possible values of � in the interval
[� � 	!	"�# $ �'&] Thus, the optimal value of � can be precom-
puted and stored in a table for all possible values of � and
� . As we will see in Section 5.1, the optimal value of �
is identical for a range of � values and the optimal value
of � converges to 1 with increase in � . Thus, this table
requires less than " 1� � � memory. Therefore the precom-
putation of the optimal value of � for � and � is a feasible
implementation.

4.3.2 Constructing Contention-free � -binomial Trees
For optimal multi-packet multicast performance, the

multicast tree should be depth contention-free [9]. This
means that the paths that the tree edges get mapped to in
the network should be edge-disjoint with respect to each
other. The concept of contention-free ordering of nodes in
a system has been used to construct contention-free bino-
mial trees [9]. A similar approach can be used to construct
contention-free � -binomial trees.

Let the � participating nodes of a multicast be ordered,
and let the symbol �$# denote the ordering. An ordering
is said to be contention-free if %'& �)(*�)+'�-, in the ordered
chain such that & � # (� # + � # , , messages between

processors & and (do not contend for any links with mes-
sages between processors + and , . Without loss of gen-
erality, let us assume that the source of the multicast is
the first node in the ordering. Figure 11 gives a pictorial
representation of the construction of a contention-free, � -
binomial tree on this ordering in a recursive manner. In
the first step, the source sends the message to the node,� , which is � � � � � ��� places from the right end of the
chain, where � is computed from Theorem 3. In the second
step, the source sends the message to the node,

�
, which is� � � � � ��� places away from the previous recipient. Sim-

ilarly, the source sends messages to � � � other nodes. The
intermediate nodes, like � and

�
cover the destinations to

their right by building � -binomial trees in a recursive fash-
ion.

N(s-1,k)N(s-2,k)N(s-k,k)

[1]

[2]

[k]

N(s,k)

[k-1]
b a

Figure 11: The construction of contention-free � -binomial tree
from a given contention-free ordering of participating nodes.

This construction can be applied to different types of
systems. For � -ary � -cubes, the dimension-ordered chain
[9] can be used to construct contention-free � -binomial
trees. For irregular networks, we have recently shown
that no contention-free ordering exists for up*/down*
routing[5]. A concept of Partial Ordered Chain (POC) has
been proposed to create an ordering with minimal con-
tention on these networks. Such ordering can be used to
construct � -binomial trees with minimal contention on ir-
regular switch-based networks.

5 Performance Analysis
In this section, we present the results which show the

behavior of the optimal value of � with varying � (multi-
cast set size) and � (number of packets in the multicast
message). We also present simulation results comparing
the performance of the � -binomial tree with the binomial
tree for multicast.

5.1 Optimal �
We analytically studied the variation of the optimal

value of � with change in multicast set size, � , and num-
ber of packets, � . We conducted two experiments. The
value of � was first fixed, and the multicast set size was
varied. Then, the value of � was fixed, and the number of
packets in the multicast message was varied. Figures 12(a)
and 12(b) show the results of these experiments, respec-
tively. It can be observed from Fig. 12(a) that for � � � ,
the optimal value of � � �!�"�# $ �'& . As the value of � is in-
creased, the value of � comes down. After a certain point,

��� � (i.e., the linear tree) becomes optimal. For ��� � ,

the multicast latency � $ + � �� �.��� � '� � ��� and for
� � � , the multicast latency � $ $ � " 	!�"�#%� � � �.1� �	��� .
A crossover occurs at the minimum value of � for which
� $ $ �� $ + . It can be easily seen that smaller the value
of � , the smaller the value of � at which � $ $ �� $ + .
This can be seen in Fig. 12(a) where the optimal � for mul-
ticast set size 16 (number of destinations = 15) becomes
1 before multicast set size 32. It can also be observed in
Fig. 12(b) that for multicast messages of length of 4 or 8
packets, the optimal value of � is 2 as the multicast set size
is increased. Even for messages with 4 or 8 packets, it can
be analytically determined the optimal value of � increases
with increase in � beyond 64.

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35
O

pt
im

al
 k

Number of packets (m)

Optimal k value for k-binomial tree

63 dest
47 dest
31 dest
15 dest

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70

O
pt

im
al

 k

Multicast set size (n)

Optimal k value for k-binomial tree

1 pkt
2 pkts
4 pkts
8 pkts

Figure 12: Variation of the optimal value of � : (a) with fixed �
and changing � , and (b) fixed � and changing � .
5.2 Multicast Latency

For comparing multicast latency of � -binomial trees
with binomial trees, we simulated these algorithms an
irregular switch-based network with 64 processors con-
nected by 16 eight-port switches. We assumed system and
technological parameters representing the current trend in
technology. The following default parameters were used:
��� (software start-up overhead at host processor of sender)
= 12.5 microseconds, ��� (software overhead at host proces-
sor of receiver) = 12.5 microseconds. We assumed 64 bytes
packet size, ��� � (overhead at network interface for sending
a packet) = 3.0 microseconds, and ��� � (overhead at network
interface for receiving a packet) = 2.0 microseconds. For
each data point, the multicast latency was averaged over 30
different random sets of destinations for each of 10 differ-
ent random network switch interconnection topologies. We
used the Chain Concatenated Ordering (CCO), described
in [5], as the base ordering for irregular switch-based net-
works.

First, we studied the multicast latency for the � -
binomial tree (using the optimal values of � from the pre-
vious study) for varying � and � . Figures 13(a) and 13(b)
show the results of these experiments, respectively. It
can be observed that increase in multicast latency is less
when the corresponding optimal value of � reduces. In
Fig. 13(a), the slope for the graph for 15 destinations re-
duces when � � � . Similarily, the slopes of the graphs in
Fig. 13(b) reduce when � converges to 2.

Next, we compared the performance of the � -binomial
trees with the standard binomial trees. Figures 14(a) and

0

100

200

300

400

500

600

0 5 10 15 20 25 30 35
Number of packets (m)

Multicast Latency using k-binomial tree

63 dest
47 dest
31 dest
15 dest

0
20
40
60
80

100
120
140
160
180
200

0 10 20 30 40 50 60 70
Multicast set size (n)

Multicast Latency using k-binomial tree

8 pkt
4 pkts
2 pkts
1 pkts

Figure 13: Multicast latency (in microseconds) using the opti-
mal � -binomial tree: (a) with fixed � and changing � , and (b)
fixed � and changing � .
14(b) show the results of the comparison. It can be clearly
observed in Fig. 14(a) that the performance of the � -
binomial tree is better by a factor of up to 2 when com-
pared to the binomial tree. From Fig. 14(b), it can also
be observed that with increase in number of packets in the
message, the performance improvement of � -binomial tree
over the binomial tree increases.

0

100

200

300

400

500

600

700

800

0 5 10 15 20 25 30 35
Number of packets (m)

Multicast Latency using different trees

47 dest bin
47 dest kbin
15 dest bin

15 dest kbin

0

50

100

150

200

250

0 10 20 30 40 50 60 70
Multicast set size (n)

Multicast Latency using different trees

8 pkts bin
8 pkts kbin
2 pkts bin

2 pkts kbin

Figure 14: Comparison of multicast latencies (in microseconds)
using k-binomial and binomial trees: (a) with fixed � and chang-
ing � , and (b) fixed � and changing � .

6 Related Work
A recent work [4] studies the efficient implementation

of collective communication operations on a NOW over
ATM using the network interface support. Since ATM
switches provide hardware multicast capability, the net-
work interface support in this work is primarily geared to-
wards achieving reliable multicast over the unreliable ATM
layer. Another recent work [12] describes an implementa-
tion of packetized multicast over the Myrinet network in-
terface [1]. This work is also geared towards development
of a reliable multicast communication layer and does not
provide any formal multicast algorithms.

7 Conclusions
In this paper we have analyzed the features of network

interface to support packetized multicast. Two implemen-
tations, FCFS and FPFS, using smart network interface
support have been presented. The FPFS scheme has been
shown to be more practical and efficient than the FCFS.
Next, we have shown that the binomial tree is not optimal
for an arbitrary multicast set size and an arbitrary number
of packets using the FPFS implementation. Components
of multicast latency using FPFS implementation have been
analyzed. A new concept of � -binomial tree has been in-
troduced and it has been proved that the � -binomial tree is

optimal for multi-packet multicast. A method to construct
contention-free � -binomial tree has been proposed. The � -
binomial algorithm has been evaluated through simulation
and its performance has been shown to be better than that
of the conventional binomial tree. These results demon-
strate significant potential to be applied to current and fu-
ture generation of high performance systems with network
interface support.

In this paper we have proposed an optimal algorithm for
multicast on networks with network interface and pack-
etization. It will interesting to see how this framework
can be mapped to different network topologies and rout-
ing schemes in a contention-free manner. It will also be
challenging to design optimal algorithms for other collec-
tive communication operations with such packetization and
network interface support.
Additional Information: A number of related papers and tech-
nical reports can be obtained from the home page of Parallel Ar-
chitecture and Communication (PAC) research group. The URL
is http://www.cis.ohio-state.edu/˜panda/pac.html.

References
[1] N. J. Boden, D. Cohen, and et al. Myrinet: A Gigabit-per-

Second Local Area Network. IEEE Micro, pages 29–35,
Feb 1995.

[2] L. De Coster, N. Dewulf, and C.-T. Ho. Efficient Multi-
packet Multicast Algorithms on Meshes with Wormhole and
Dimension-Ordered Routing. In ICPP, pp III:137–141, Aug
1995.

[3] T. V. Eicken, A. Basu, V. Buch, and W. Vogels. U-Net:
A User-level Network Interface for Parallel and Distributed
Computing. In ACM SOSP, 1995.

[4] Y. Huang and P. K. McKinley. Efficient Collective Oper-
ations with ATM Network Interface Support. In ICPP, pp
I:34–43, Aug 1996.

[5] R. Kesavan, K. Bondalapati, and D. K. Panda. Multicast on
Irregular Switch-based Networks with Wormhole Routing.
In HPCA-3, pp 48–57, Feb 1997.

[6] R. Kesavan and D. K. Panda. Minimizing Node Contention
in Multiple Multicast on Wormhole � -ary � -cube Networks.
In ICPP, pp I:188–195, Aug 1996.

[7] R. Kesavan and D. K. Panda. Optimal Multicast with Pack-
etization and Network Interface Support. Technical Report
OSU-CISRC-2/97-TR10, Jan 1997.

[8] R. P. Martin. HPAM: An Active Message Layer for a Net-
work of HP Workstations. In Proceedings of the Hot Inter-
connectes Symposium, 1994.

[9] P. K. McKinley, H. Xu, A.-H. Esfahanian, and L. M.
Ni. Unicast-based Multicast Communication in Wormhole-
routed Networks. IEEE TPDS, 5(12):1252–1265, Dec 1994.

[10] S. Pakin, M. Lauria, and A. Chien. High Performance Mes-
saging on Workstations: Illinois Fast Messages (FM). In
Proceedings of the Supercomputing, 1995.

[11] J. Y. L. Park, H. A. Choi, N. Nupairoj, and L. M. Ni. Con-
struction of Optimal Multicast Trees Based on the Parame-
terized Communication Model. In ICPP, Aug 1996.

[12] K. Verstoep, K. Langendoen, and H. Bal. Efficient Reliable
Multicast on Myrinet. In ICPP, pp III:156–165, Aug 1996.

