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ABSTRACT

Programmability has proved to be the biggest obstacle to ubiquitous use of scalable high per-
formance computing systems. The emerging distributed shared memory (DSM) systems, broadly
classified into hardware DSM systems and software DSM systems, provide good programmability
and scalability. The key to materializing the potential of DSM systems is to ensure low latency
for various remote memory and synchronization operations. In this thesis we make four important
contributions towards building efficient communication subsystems for DSM systems. First, we
categorize various types of network contention and evaluate their impact on the performance of
DSM systems. We show that network contention can affect DSM system performance significantly.
Next, we develop a parameterized analytical model for estimating the performance of a DSM sys-
tem by characterizing its key components and their interactions. This model provides system
architects with a fast and economical method for identifying the bottlenecks in existing or future
DSM systems. Based on this model and detailed simulations, a set of network design guidelines are
established. Third, we propose two new designs to improve the efficiency of node-network interfaces
(NNI): (i) a pipelined NNI supporting cut-through delivery and partial cache-filling and (ii) a novel
block correlated FIFO strategy and its implementation exploiting multiple paths in interconnects.
These designs can significantly reduce remote memory access latencies and the complexity of NNI.
Finally, we propose two kinds of architectural enhancements to the networks in DSM systems:
(i) multidestination messaging mechanisms for reducing invalidation overhead for full-map cache
coherence schemes and limited directory schemes, and (ii) unbalanced network designs exploiting
the different characteristics of request and reply traffic. The effectiveness of these new designs
and enhancements has been evaluated extensively using a simulation-based testbed and benchmark
applications. The experimental results demonstrate that the overall performance of current and
future DSM systems can be improved significantly by using these novel designs and enhancements
in the communication subsystems.
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CHAPTER 1

INTRODUCTION

1.1 Scalable Parallel Computing Systems

The endless quest for more computing power from a variety of application domains, such as
advanced scientific computing, engineering computing, commercial computing, etc., has driven the
computer industry to build ever-increasingly powerful computing systems. Scientific computing
applications typically involve modeling and simulating physical phenomena, in sufficient detail,
that are either too complex to use analytical methods or impossible/too costly to use measure-
mental methods. Examples of scientific computing applications include modeling global weather,
molecular dynamics, fluid dynamics, etc. Engineering computing applications typically involve
computer-aided-design (CAD) and computer-aided-manufacturing (CAM). Examples of engineer-
ing computing applications include design automation, industrial process control, damage analysis
on automobile crashes, etc. Commercial computing applications typically involve on-line transac-
tion processing to enormous databases. Examples of commercial computing applications include
enterprise decision supporting, data mining, servicing web accesses, maintaining on-line reservation
systems, etc.

These applications demand computing power which is orders of magnitude higher than the
capability of any single modern processor system. Therefore, parallel computing systems with
multiple processors (or processing nodes) become the natural choice to meet such a demand. Ex-
amples of such systems include the Thinking Machines CM-5 [89, 137], Meiko CS-2 [18, 98], Intel
Paragon [68], nCube/3 [46], NEC Cenju [79], Cray T3D/T3E [124], IBM SP [4], SGI Origin [88],
HP SPP [22], Sequent NUMA-Q [94], and HAL Mercury [144].

The fundamental issue in designing scalable parallel computing systems, also being known
as massively parallel processing (MPP) systems, is to achieve efficient communication among the
cooperative processing nodes which collectively solve one application problem. This requires that
the processors in such a system be efficiently interconnected with each other and with the other
components of the system such as memory, disks, and I/O devices. For this purpose, various
system architectures have been developed in the past. These architectures basically support two
different kinds of programming paradigms, namely, message passing paradigm and shared memory
paradigm. In the message passing paradigm, any communication between processors must be coded
explicitly in the application programs. In the shared memory paradigm, communication between
processors is achieved by accesses to shared variables in the programs.

Scalable parallel computing systems broadly fall into two categories: distributed memory sys-
tems and distributed shared memory systems. Distributed memory (DM) systems consist of a
set of processors, each connected to its local memory and attached disks or I/O peripherals, and
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connected to each other through an interconnection network. Figure 1.1 shows a schematic DM
architecture. DM systems support the message passing programming paradigm. Application pro-
grammers are required to partition and distribute the target tasks and data among the processing
nodes of a system. The advantages of such systems are the simplicity of design/implementation
and the inherent scalability. The severe disadvantage is the burden imposed on the programmers to
partition the problem onto multiple processors. The Thinking Machines CM-5, Meiko CS-2, Intel
Paragon, nCube/3, NEC Cenju, and IBM SP are examples of DM systems.
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Figure 1.1: Schematic representation of a distributed memory (DM) system.

Recently, to alleviate the programmer’s burden, distributed-shared memory (DSM) systems
are emerging as the trend in building modern scalable parallel computing systems [73]. DSM
systems support the shared memory programming paradigm while maintaining good scalability.
In particular, memory is physically distributed among processing nodes, and a collection of the
memory on each node forms a global address space accessible by all processors, as shown in Fig. 1.2.
Memory accesses from a processor to a remote location is fulfilled by the communication assistant
at each node and the underlying network. For a large variety of applications, the conversion from
sequential programs to their parallel equivalents is much easier on DSM systems than on DM
systems. Such improved programmability is the obvious advantage of DSM systems. On the other
hand, the disadvantage is the complexity of the communication assistant required for providing the
global shared memory on top of the physically distributed memories. Examples of such systems are
the Stanford DASH/FLASH [91, 92, 59], MIT Alewife [1], Cray T3D/T3E, SGI Origin, HP SPP,
Sequent NUMA-Q, and HAL Mercury, etc.

Most existing DSM systems employ the cache coherent Non-Uniform Memory Access (CC-
NUMA) architecture. The naming is due to two facts: 1) the disparity in access times between
local and remote memory and 2) system-wise coherence enforced among the processor’s caches.
CC-NUMA systems automatically replicate remote data at the caches when needed, and use a
directory-based, write-invalidate cache coherence protocol. The protocol ensures that accesses to
shared data by any processor always get the latest copy which the processor is aware of. Except
the Cray T3D/T3E, all example DSM systems listed above use the CC-NUMA architecture.

More recently, as workstations and personal computers (PCs) are becoming more powerful,
software DSM systems (also called virtual shared memory (VSM) systems) running on a cluster
of workstations [6] are emerging as inexpensive high performance computing systems. Unlike the
hardware CC-NUMA systems where the coherence is maintained at the cache line level, software
DSM systems normally maintain coherence at the page level by exploiting the standard virtual
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Figure 1.2: Schematic representation of a distributed shared memory (DSM) system.

memory management mechanism of the workstations. Due to the volume production, modern
commercial workstations and high performance switches like the Autonet [122], Myrinet [19], and
ServerNet [50, 63], offer a much better price-to-performance ratio than the hardware DSM systems.
However, current generation software DSM systems like the TreadMarks [5], SHRIMP [93, 48] (with
limited special hardware support), Shasta [121], etc., only show competitive performance on small
scale systems with four to eight nodes. For a larger scale system, the overall performance is limited
by severe load imbalance induced by false sharing and the high overhead of communication and
synchronization operations [67].

In summary, regardless of the distinctions between message passing and shared memory pro-
gramming paradigms, the underlying parallel architecture is converging towards a collection of
processing nodes interconnected by a scalable network. As processor speed and system size keep
on increasing, communication between the nodes is becoming a critical factor for obtaining the
maximum performance from a scalable parallel system. In this thesis, we focus on communication
problems in hardware DSM systems. However, most of the methods proposed can also be applied
to DM systems and software DSM systems.

1.2 Communication Subsystems in Emerging DSM Systems

As discussed above, communication in DSM systems are triggered implicitly by shared memory
accesses. To fulfill the desired transformation, in addition to the interconnection network, dedicated
hardware logic (i.e., the communication assistant) is needed, for transferring the resultant message.
Figure 1.3 shows the main factors relevant to communication in a DSM system. These factors
can be broken into three layers: the application layer, the protocol layer, and the interconnection
layer. The protocol layer and the interconnection layer comprise the communication subsystem in
a DSM system. Even though the application layer is not a part of the communication subsystem,
it determines the frequency and volume of communication [27]. Therefore, it affects the impact of
communication subsystem on the overall performance of a DSM system.

Before we examine the factors of the communication subsystem in detail, it will be helpful to
know the importance of communication subsystem on the overall performance of a DSM system.
An often used indicator is the impact of the ratio of the remote memory latency (with inter-
node communication) to the local memory latency (without inter-node communication) on the
performance [88, 144, 94, 27]. Figure 1.4 shows this impact in two representative applications
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(FFT and Barnes)!. It can be observed that as the ratio changes from 1.5:1 to 4:1, the (normalized)
execution times of applications increase more than 20%. The execution time increases significantly
beyond the 4:1 ratio point. Therefore, efficient communication subsystems are very important
for DSM systems. In particular, reducing remote memory access latency is crucial for the overall
performance of such systems. Treating the remote memory access latency as a second order effect is
a severe mistake sometimes made by the system designers, who concentrate on minimizing the local
memory access latency alone. Generally, the remote memory access latency contains a minimum
delay/overhead as well as contention at each of the factors of the communication subsystem shown
in Fig. 1.3. In the rest of this section, we examine these factors and the associated issues in detail.
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Figure 1.4: Performance impact of the ratio of the remote memory latency to the local memory
latency.

1.2.1 Interconnection Layer

The interconnection layer is the bottom half of the communication subsystem in a DSM system,
as shown in Fig. 1.3. This layer consists of many components such as the router/switch architec-
ture, switching technique, routing scheme, network topology, and network interface. The following
discussion describes these components and their functionalities in greater detail.

A. Router/Switch Architecture

The architecture of a generic router/switch can be described as follows. It consists of a set of
input channels/ports, a set of output channels/ports, internal buffers associated with these ports,
a switching fabric which can connect a subset of input ports to a subset of output ports at a given
time, and a routing and arbitration unit which decides and sets the state of the switching fabric.
If multiple input ports compete for the same output port, the arbitration unit assigns the output
port to only one input port at a given time according to a predefined scheduling policy. In modern
networks, long messages are normally partitioned into packets, which in turn may be broken into
flow control units (f7its[42]). Due to the limitations in channel width, a single flit transfer may
require multiple physical channel cycles [44].

'These results are collected from realistic simulations (to be described later) using representative system and
application parameters.



There are three basic organizations of buffers in switches: input buffering, output buffering, and
central shared-buffering. The classification comes from whether the switch has the buffers associated
with every input port, every output port, or one buffer shared by the input and output ports. The
most popular buffering scheme is input (FIFO) buffering for implementation simplicity. Dynamic
queuing (called DAMQ [136]) is a hybrid scheme of input buffering and central shared-buffering,
where buffers associated with each input port are dynamically divided into logically separated
sub-queues for each output port.

Two parameters associated with a router/switch are important to a designer. The routing delay
is the time for the router to examine an incoming message and determine which output port to
send the message. Once the path within the router has been established, the switching delay is the
time required for the data to be transferred from the input port to the output port.

B. Switching Technique and Routing Scheme

The switching technique is the method used in selecting the path along which a message is
transferred [113]. Switching techniques broadly fall into two categories: circuit switching and
packet switching. In circuit switching, when a message needs to be sent, the path from a source to
its destination must exist first; otherwise, such a circuit needs to be set up. Once a circuit is set up,
the message is transferred as a continuous stream along the circuit. No links on the circuit can be
used by another circuit before the former is torn down. In packet switching, a message is typically
divided into smaller packets, whose maximum size is fixed to a given number of bytes. Each packet
is transferred independently on a per link basis. A link is reserved and released for transferring a
packet. Packet switching variants are used in most modern commercial parallel systems.

The routing scheme determines the output port of a switch that an incoming message/packet
should be forwarded to reach its destination [44, 20, 41, 8]. Routing schemes can be broadly
classified into two types: deterministic and adaptive. In deterministic routing, only one output
port can be used to forward the incoming packet. The routing scheme determines this output port
based on the destination of the packet. On the other hand, in adaptive routing, any one of the
candidate output ports may be chosen. The decision is typically made based on the availability of
the output ports and on other parameters like utilization of the output ports.

Adaptive routing schemes can be further divided into two classes: static and dynamic. In static
schemes, a complete path from the source to the destination is decided at the time when a message
is injected into the network. Different paths can be selected at different times between a pair
of source and destination nodes. In dynamic schemes, the path is decided as the packet moves
through the network. Static schemes require simpler switches and incur less switch delay. On the
other hand, dynamic schemes are able to adjust to the temporal traffic load in the network. When
virtual channels are supported, a path can be uniquely defined by a sequence of virtual channels
from the source to the destination. Multiple virtual lanes [41] help to implement a simple dynamic
adaptive scheme which allows a message to select one of the equivalent virtual channels over the
same physical link. Adaptive routing schemes potentially allow messages along different paths to
reach the destination in arbitrary order depending on many factors such as the lengths of the paths,
congestion conditions along the paths, the lengths of messages, routing and arbitration algorithms
used in the switches, etc. Thus, a good communication subsystem must consider all these aspects
to deliver better performance to the application layer.



C. Network Topology

Network topology defines how the elements of a network like routers/switches, links, and (pro-
cessing) nodes are connected to each other. The topology determines the average and maximum
distance a message needs to travel to reach the destination. The distance is measured in number of
hops (links) on the path from the source to destination. This distance has strong impact on com-
munication latency because the latency and possible resource contention are typically proportional
to the number of links a message has to traverse on the average, The topology also determines
the number of communications that can concurrently take place in the network, as measured by
the bisection bandwidth. This bandwidth is defined to be the number of links that need to be
broken to divide the system into two almost equal halves (in terms of the number of nodes) [44].
Therefore, network topology can significantly affect the inter-node communication latency and the
overall communication performance of a scalable parallel system.

Networks can be classified into direct network and indirect networks depending on whether
every switch in the system has at least one (processing) node attached to it or not. Examples of
direct networks include k-ary n-cube networks such as meshes, tori, and hypercube [40]. In the
mesh topology, routers and links are arranged to form a grid, with each router being connected to
one node. In a torus, wraparound connections exist between the edges of the grid. In a hypercube
with 2" pairs of router and node, each such pair is connected to n other distinct pairs. Examples
of indirect networks include a variety of multistage interconnection network based architectures
such as the fat tree networks, omega, butterfly, cube, and other delta networks; bidirectional
MINs, and some arbitrary irregular topologies that are currently becoming popular for networks of
workstations environments [44].

D. Network Interface

Each processing node in a parallel system has dedicated communication logic which interfaces
the router/switch with the node. The network interface (NI) connects either the processor/memory
interconnect or a specialized I/O bus on the processing node to one of the output ports and
one of the input ports in the switch. The typical NI has some memory to buffer incoming and
outgoing messages, a few DMA engines which allow transfer of data between the NI memory and
node’s memory, and link interfaces which control the actual sending and receiving of data on the
bidirectional links. The delay associated with the injection of a packet into the router at the
sender side is called injection delay. Similarly, consumption delay is the delay associated with the
consumption of a packet from the router into the processing node at the receiver side. The injection
delay involves the time to DMA the message from node’s memory to NI memory, the time for the
NI to prepare the packet to be sent out, and the time to DMA the packet into the network through
the link interface. On the receiver side, the transfer of data from the network to the NI memory
and then to the node’s memory is representative of the consumption delay. This involves the time
to DMA the received packet from the link interface to NI memory, time for the NI to examine the
correctness of the packet and to strip the routing header, and time to DMA the packet from NI
memory to node’s memory.

1.2.2 Protocol Layer

The other important component in the communication subsystem is the protocol layer which
consists of the directory-based cache coherence protocol, organization of the directory, and synchro-
nization mechanisms. The node controller is the main hardware logic of this layer which enforces



the cache coherence protocol, consults the contents of directories, and implements the synchroniza-
tion mechanisms, as illustrated in Fig. 1.3. The following discussion describes the functionalities of
the node controller in these aspects.

A. Cache Coherence Protocol and Network Transaction

As mentioned before, a CC-NUMA system provides a coherent, global address space to all
processing nodes. The home node of a memory block is a node in whose main memory the block is
allocated. When a memory operation is issued to a location and the issuing node (which is not the
home node) does not have a valid copy in its private cache, a request message is sent via the network
to the home node. Eventually, a response message comes back to the issuing node with a copy of
the memory block containing the content of the desired location. The entire communication process
of constructing, sending, receiving, and dispatching a message is commonly abstracted as a single
network transaction [27]. Thus, a simple request-response cycle contains two network transactions.
At any time, information is maintained among a set of nodes about the operating states of copies
of each memory block. A node in this set either has cached the block or is the home node of the
block. A cache coherence protocol is a protocol guaranteeing that a read to any memory location
always gets a copy of the content from the latest write which the reading processor is aware of. In
a CC-NUMA system, such a consistent view of memory is ensured on the basis of each memory
block. Various cache coherence protocols differ mainly on the types of block states being used, the
types of network transactions being used, and the rules for state transitions.

B. Cache-based and Memory-based System

The cache coherence protocol of a CC-NUMA system is strongly influenced by the directory
organization of the system. Depending on where the directory information is stored, CC-NUMA
systems can be divided into two categories: (a) cache-based systems and (b) memory-based sys-
tems [27]. In cache-based systems, the information about current cached copies of a block is scat-
tered along the caches with the copies forming a distributed linked list. The home node of the block
contains a pointer to the head of the list. IEEE SCI standard [133] and most earlier commercial
systems (e.g., the HP SPP [22] and Sequent NUMA-Q [94]) fall into this category. Alternatively, in
memory-based systems, the information about current cached copies of a block is completely main-
tained at the home node. Typically, a variation of the presence bit-vector directory organization
is used. Most research prototypes (the Stanford DASH/FLASH [91, 85] and MIT Alewife [1]) and
many current-day commercial systems (the SGI Origin [88] and HAL Mercury [144]) fall into this
category. The storage overhead of the directory used to be a major concern in designing memory-
based systems. Now-a-days, practical techniques like limited pointers and directory caches have
been developed to reduce this overhead considerably. Due to the inherent efficiency allowed by
the associated cache coherence protocol [27], memory-based systems are emerging as the trend in
building CC-NUMA systems. This thesis therefore focuses on the design of this second category of
CC-NUMA systems.

C. Synchronization Mechanisms

In DSM systems, synchronization mechanisms like locks and barriers enforce specific conditions
among a set of conflicting accesses to global data or memory. In many earlier shared memory
systems like symmetric multiprocessor (SMP) systems, synchronization variables are treated in the
same way as other shared data as far as the caching and cache-coherence is concerned [51, 70],



except that simple atomic instructions like Test-and-Set are used to access the synchronization
variables. Agarwal and Cherian observed that synchronization traffic accounted for as much as
49% of total network traffic [2]. Since accesses to synchronization variables display fundamentally
different patterns from regular accesses to other shared data, it is desirable to have hardware provide
more support specifically for synchronization operations. As a result, recent DSM systems support
synchronization mechanisms using dedicated logic and specialized protocols like Queue-On-Lock-
Bit (QOLB) [72]. Fortunately, these enhancements require only minor additions to the coherence
mechanisms being used.

The implementation of synchronization mechanisms in a DSM system is determined by the
memory consistency model [52] supported by the system. The two most popularly used memory
consistency models are the sequential consistency model [87] and the release consistency model [53].
More advanced memory consistency models such as the release consistency model tend to allow
more overlaps among shared memory operations. However, they also tend to require the application
programmers to master more software skills and more knowledge about the application problems.
Thus, it is a very important tradeoff for system designers to decide what type of memory consistency
model a system supports. Fortunately, most methods we propose in this thesis will work well
regardless of the consistency model being used, though the performance improvement may change
from one model to another.

D. Request-Response Deadlock

In the design of the protocol layer, an important issue is the method adopted to deal with the
potential request-response deadlock [91, 27]. Such a deadlock occurs when the input buffer of a
node is filled up by messages/transactions that can not be progressively processed by the cache
coherence protocol. Thus, no new messages/transactions can be received and processed. Two
main solutions are commonly used to solve this problem: to provide enough buffering or to provide
(logically) separate networks [27].

The first solution is viable because there is an upper bound on the number of outstanding
memory operations per node. Depending on the cache coherence protocol being used, the total
number of network transactions may vary but is still bounded. Therefore, the amount of input
buffer space per node for the maximum number of possible incoming messages/transactions is
bounded. The buffer space can be located either at the network interface or in (local) main memory.
The shortcoming of this solution is that it is too expensive in practice. DSM systems using this
solution normally also employ time-out and retransmission mechanisms to reduce the amount of
buffer space. The MIT Alewife [1] and the HAL Mercury [144] systems use this solution.

The second solution uses separate request-response networks. This creates no deadlock if the
protocol is strictly of request-response type [27]. In such a protocol, a request transaction generates
a response or no transaction, and a response generates no transaction. A node can start one or more
request-response cycles only when it serves its own outstanding memory operations. However, such
a protocol normally produces a long chain of network transactions to complete a memory operation.
For better performance, practical coherence protocols use various forwarding techniques. These
protocols detect potential deadlock situations and avoid the deadlocks by resorting to NACKs or
reverting to a strict request-response protocol [27] temporarily. Such a solution is used in the
Stanford DASH [91], FLASH [85], and SGI Origin [88].



1.3 Problem Description

The main objective of this thesis is to design efficient communication subsystems in DSM sys-
tems by focusing on reducing remote memory access latency. Overall, this thesis can be divided into
two related parts: 1) understanding the bottlenecks and drawbacks with current implementations
of the communication subsystem using simulation and analytical methods and 2) proposing novel
designs to help eliminating these bottlenecks and drawbacks. Before we provide an overview of our
results and solutions, we examine our target problems and the associated design issues in detail.

1.3.1 Understanding the Impact of Network Contention and Developing a Com-
prehensive Analytical Model for DSM Performance

A. Impact of Network Contention and Their Sensitivity to System Parameters

As indicated before, remote memory access latency is crucial to the performance of scalable DSM
systems. This latency is affected by two factors: 1) overhead at the protocol layer and 2) the delay
at the interconnection layer. Previous research in DSMs has mostly concentrated on techniques
useful for designing better node architectures, node controllers, and efficient protocols. Almost all
of these evaluations are based on the assumption of an interconnection layer with a fixed delay.
Representative examples include various memory consistency models [91], data pre-fetching [101],
data forwarding/updating [80], remote get/put operations [105], integrated or decoupled protocol
controllers [1, 90, 85, 119], and explicit communication primitives [116]. Research towards reducing
network latency has been largely left untouched. However, more recently, several papers [62, 61, 119]
have reported that the delay at the interconnection layer is becoming a key architectural bottleneck
in designing large scale DSM systems.

The delay at the interconnection layer contains two components: minimal transferring latency
and various contention delays. The former is mainly determined by the state of the interconnec-
tion technology. The latter is caused by limited resources in the interconnection network and at
the network interfaces. Current and future generation networks promise to exploit performance
aggressively by using different kinds of adaptive routing [43, 78, 54, 114, 141] schemes, in addition
to higher speed. Adaptive routing schemes are beneficial mainly because they can avoid network
contention and congestion by selecting the path used in transferring a message on-the-fly based on
the temporal traffic condition of the network. Therefore, obtaining insights to the network behavior
and quantifying the impact of network contention are very important for exploiting the potential
performance provided by such new generation networks. Equally important is the understanding
of how the impact of network contention changes when other important system design parameters
are varied.

B. Analytical Model for DSM Performance and Guidelines for Designing Networks

As pointed out above, most DSM research [138, 27] in recent years has focused on the design of
the protocol layer. These studies fail to provide any meaningful guidelines, other than minimizing
network latency, for designing efficient networks for DSM systems. On the other hand, many
studies in interconnection networks [44, 104] have focused on the impact of network components
and established design guidelines based on synthetic traffic generated according to some statistical
distributions. These studies have not considered the communication characteristics and the cause-
effect relationship between messages specific to DSM systems. For example, a recent study [139] has
found that the well-known Omega network did not perform as expected in the Cedar multiprocessor,
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an earlier generation shared memory system. Thus, the effects of network components need to be
studied carefully in the context of DSM systems to establish a set of concrete guidelines for designing
suitable networks for such systems.

Recently, several studies [142, 84] have reported interesting findings about the effect of certain
network components in DSM systems using specific configurations. Empirical studies like these
can only identify the impact of isolated design parameters for certain system configurations. How-
ever, the fundamental relationships and interactions between key components (such as processor,
cache, memory, protocols, and network) of a DSM system are complex and hard to grasp. As the
technology for designing processors, memory, and networks advances largely independently of one
another, it is very desirable to understand various options and tradeoffs, using both empirical and
analytical methods, for designing DSM systems.

1.3.2 Support for Efficient Node-Network Interface
A. Pipelining Node-Network Interface

In DSM systems, memory blocks are the basic units for enforcing coherence and transferring
data. The size of the memory blocks has a profound impact on the latency of remote memory
operation. Small blocks were a popular choice in early systems to achieve low latency memory
operations. Current generation DSM systems tend to use much larger blocks because they can 1)
amortize the overhead at the protocol layer and interconnection layer, and 2) reduce the storage
requirement of directories. Unfortunately, larger blocks also incur higher network latency. In the
last few years, new network technologies have substantially reduced this latency to a few hundred
nanoseconds in a medium-sized system. However, a high-speed network alone can not alleviate the
bottleneck of high latency associated with remote memory operations.

Under a careful examination, it can be observed that a remote memory operation demands only
a timely return of the critical word. Accesses to the rest of the block often occur much later. Thus,
forwarding the critical word to the suspended thread promises performance gain. Cut-through de-
livery and partial cache-filling mechanisms, proposed by Mike Galles [49] and other researchers, are
two attractive techniques for constructing a dynamic pipeline on-the-fly for efficient data transfer.
However, to the best of our knowledge, a detailed design of node controller and network interface,
collectively called the node-network interface (NNI), supporting these techniques has not been pre-
sented in the literature. Quantitatively, it is also not clear how much system performance can be
improved by these two techniques independently and together. Thus, a breakdown on performance
benefits and new insights into the design tradeoffs for the pipelining design are very interesting for
system designers to know.

B. Incorporating Multi-path Network

Multiple paths consisting of physical channels [10] or virtual channels [41] exist between a pair
of processing nodes in almost all modern DSM systems. They are useful for alleviating congestion,
increasing throughput, and reducing average message latency. Using such multiple paths may allow
messages to arrive at the destination in an order different from the one they are sent, i.e, called out-
of-order (OoO) message arrivals. However, with a few exceptions [90, 88], efficient cache coherence
protocols [134, 138, 24] mostly assume pairwise in-order arrival.

Currently, system architects have used two strategies in incorporating such multiple-path net-
works in DSM systems. The first strategy is to enhance the cache coherence protocol with sufficient
intelligence and enable it to resolve all critical out-of-order (O0O) message arrivals. Unfortunately,
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the complexity of the resultant cache coherence protocol [144] and node controller grow signifi-
cantly. The alternative strategy is to enhance the network interface (NI) with reordering capability
to fix every out-of-order (OoO) message arrival. But, this leads to a noticeable increase in both
complexity and overhead at the network interface. It is a real challenge to design a DSM system
which can obtain most advantages of the multiple-path networks without considerably increasing
the complexity of the node-network interface (NNI). Furthermore, it is very interesting to know
whether an implementation of such a novel design using current technology is practical.

1.3.3 Network Support for the Protocol Layer

Most research on communication subsystem in DSM systems have focused on designing effi-
cient components at either the protocol layer or the interconnection layer. Very few research has
investigated the potential benefits of modest enhancements at the interconnection layer towards
improving system performance significantly. Let us examine the following two interesting problems
in this context.

A. Cache Invalidation Overhead

Write-invalidation directory-based cache coherency protocols are the popular choice in the ex-
istent DSM systems [90, 85, 81, 88, 144]. In such systems, when a request to obtain exclusive-write
access comes from a writer node to the home node of a block, the home node sends write-invalidation
messages to all other nodes having a copy of the block. Eventually, the home node receives all the
acknowledgments and then provides exclusive-write access to the writer node. This last step is
necessary to maintain sequential consistency [91]. Variations of this sequence are used to support
other consistency models like release consistency.

Two fundamental message-passing operations are used in cache invalidation, namely, sending
one-to-many messages from the home node to a set of sharing nodes and collecting many-to-one
messages from the sharing nodes to the home node. The former communication pattern is known
as multicast, and the latter as gather, in the interconnection networks literature. Both patterns
belong to the class of collective communication [96], as defined by the MPI standard [99]. Recently,
many new multicasting schemes and mechanisms have also been proposed [21, 97, 112]. These
developments lead to a natural challenge whether we can take advantage of these schemes and
mechanisms to reduce cache coherency overhead in DSM systems.

(i) Full-map Directory

In existing DSM systems with full-map cache coherence schemes, the home node can identify
each sharing node at any given time. The home sends multiple unicast messages to all the sharing
nodes and receives acknowledgments from them. Such unicast message passing increases network
traffic and message contention in the network. It also makes the home node a hot-spot in the system.
This has considerable impact on increasing the occupancy of messages at directories [61, 85]. Such
overhead indirectly get translated into high-latency for write operations and the overall system
performance gets degraded. This leads to a challenge whether collective message passing schemes
can be applied to wormhole DSM systems.

12



(ii) Limited Directory

Due to the large amount of storage required by a fully-mapped directory scheme [91, 134], many
cost-effective limited directory schemes using less amount of storage have been proposed in the
literature. Examples of some limited-directory schemes include coarse-vector [56], Limitless [81],
Superset [3], and Eviction [24]. These schemes use either hardware or software mechanisms to
detect and manage directory overflow. Using less number of messages in case of directory overflow
is critical to the performance of DSM systems using limited directory. Otherwise, both network
traffic and node occupancy [61] increases dramatically, resulting in higher write-latency and overall
performance degradation. This leads to an interesting question: can efficient and cost-effective
directory schemes be designed for DSM systems by taking advantage of the support available on
new generation networks to implement fast broadcast/multicast and reduction?

B. Bi-Modal Request-Reply Network Traffic

Some crucial characteristics of DSM systems including the cause-effect relationship between
messages (remote read/write request message followed by a reply message), bi-modal traffic (short
messages reflecting control messages in a cache-coherency protocol and long messages reflecting
transfer of cache-lines), and the periodic generation of messages by processors (based on the com-
putational granularity) have not been carefully considered in most DSM system designs. Naturally,
an intuitive question is whether these crucial characteristics can be exploited in certain ways to
improve DSM system performance.

In recent years, several commercial network switching products [49, 124, 144] have promoted
virtual channel mechanism as a major feature for improving network performance. Out of these
products, the SGI Spider interconnect [49] is directly geared towards CC-NUMA systems. However,
this study [49] does not clearly outline the performance benefit of virtual channels in CC-NUMA
systems.

Recently, several application-driven studies [142] have shown that only a negligible performance
benefit exists in using virtual channels and adaptive routing in a DSM system. According to these
studies, the enhancements due to virtual channels and adaptive routing might not be justified
considering the associated increase in router complexity. However, these studies have overlooked
several important factors such as bi-modal traffic, multiple virtual injection/consumption channels,
etc. Thus, how to use virtual channels appropriately to adapt to bi-modal traffic and obtain
maximum performance benefit remains an interesting question.

1.4 Thesis Overview

Having examined the research issues in the design of efficient communication subsystems for
DSM systems, we now present an overview of our solutions and an outline of the remaining part of
the thesis. However, before we present the overview, let us look at the assumptions we make about
the system architecture.

1.4.1 Assumptions

Throughout this thesis, we make assumptions that reflect the trend in current day parallel
systems. In particular, we assume a CC-NUMA architecture as shown in Fig. 1.5. The entire
system consists of a number of processing nodes connected together using a scalable network. Each
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node has a processor, its private cache, a portion of global shared memory, and a sophisticated node-
network interface (NNI). The NNI is the heart of a CC-NUMA system. Its main components include
a node controller and separate interfaces for the processor module, memory/directory module, and
network. It also contains logic for deadlock prevention and arbitration between the interfaces. The
node controller observes all cache misses, synchronization events and uncached operations. It keeps
track of the stable or transient information of ongoing memory operations, invalidates or retrieves
cache blocks, completes incoming network transactions, and initiates outgoing network transactions.
The network interface is mainly responsible for constructing, sending, receiving, and dispatching the
actual messages. It also does all necessary work to provide the desired communication abstraction
from the underlying network to the remaining part of a node.
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Figure 1.5: A generic CC-NUMA architecture.

We assume a wormhole routed k-ary n-cube network with fixed buffer space per channel. We as-
sume input-buffering (using FIFO or DAMQ queuing), single (physical) injection and consumption
channel pair per node for all systems (unless specifically mentioned otherwise), and the dimensional
order (e-cube) or turn-model routing scheme.

For all our simulation experiments, we assume system and architectural parameters to be con-
sistent with the best that current and future technologies have to offer. The actual values used for
the system and application parameters in our studies are indicated in the respective chapters.

1.4.2 Experimental Methodology

We performed detailed simulation to evaluate the performance gains associated with our pro-
posed designs and enhancements. A wide range of benchmark applications were used in our
execution-driven simulation environment [110]. Figure 1.6 shows our experimental methodology.
The FLATDSM simulates all the coherent actions of the memory system of a CC-NUMA machine
on access by access basis. A flit-level wormhole-routed simulator WORMULSim was used to model
a k-ary n-cube interconnection network. All simulation models were designed using CSIM [123].
The modeling of the fundamental system components such as the processor, cache, memory, node-
network interface, and interconnection network is described in subsequent chapters in detail.

Throughout this thesis, we have used seven applications in our simulation evaluations. All
of them are real applications or challenging computational kernels. The applications are briefly
described below.
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Figure 1.6: Execution-driven DSM simulation framework used in this thesis.

FFT is the complex 1-D Fast Fourier Transformation computational kernel. It represents a
wide variety of applications in the field of digital signal processing. The n complex input points are
organized as a y/n X y/n matrix which is partitioned into sub-matrices and stored contiguously for
each processor to improve data locality. The communication, occurring in matrix transpose steps,
has an all-to-all regular pattern.

MP3D is a rarefied fluid flow dynamics simulation using the Monte Carlo method. It represents
a range of applications involving the force and movement of high speed objects in an extremely
low density environment. Two large arrays of structures are used to store the information of
molecules (the objects) and cells. The algorithm partitions the computation load on the basis of
each molecule and assigns it statically to each processor. The amount of computation in MP3D
may change slightly depending on the underlying machines because there are a number of harmless
data race conditions in the code. The communication in MP3D is largely unstructured.

Radiz is the integer radix sort kernel, a major task in database applications. It iteratively
creates local histograms by permuting keys and by merging them into a global histogram. The
permutation phase requires, depending on the key values, an all-to-all irregular communication (in
the worst case).

Barnes is an application representative of the class of hierarchical N-body methods, used in
astrophysics, electrostatics, and plasma physics, among others. In this application, a globally shared
space-motion-mass tree (its primary data structure) is continually reconstructed and repartitioned
at every time-step. Particles are assigned to each processor and accessed through pointer arrays.
The communication pattern in Barnes is hierarchical and irregular.

LU is the computational kernel of lower and upper matrix decomposition. It represents a wide
range of dense linear algebra applications. The 2D n X n input matrix of double precision numbers
is converted into a 4D N x N x B x B matrix for purposes of reducing communication and load
balancing. The elements assigned to the same processor are allocated contiguously to improve
spatial locality. The communication pattern is one-to-many and largely regular.

Water is an N-body molecular dynamics application. It evaluates forces and potentials in a
system of water molecules over a period of time. The main data structure is an array of the
molecules in the system. It adopts a predictor-corrector method (O(n?) algorithm) to compute
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the forces and potentials in each time-step. Irregular communication occurs when the cell list is
updated which in turn is caused by the movement of molecules into and out of cells.

APS is the All-Pairs-Shortest-Path computational kernel which uses the Floyd-Warshall algo-
rithm to compute all pairs shortest paths problem on an input matrix. All updates to the paths
are done using the conventional in-place approach as in a sequential version.

Table 1.1 summarizes the basic communication characteristics for the applications. Except the
APS application which is developed by our research group, the other applications — FFT, MP3D,
Radix, Barnes, LU, and Water — are ported from the popular Stanford SPLASH/SPLASH2 [126,
146] benchmark suite. For execution-driven simulations, these applications were compiled by
dlzce [60] using the optimization level equivalent to O2 of gec before running them on the sim-
ulator testbed.

Application | Description Communication Characteristics |

FFT Fast Fourier Transform all-to-all, regular
MP3D Low density fluid flow simulation | unstructed, irregular
Radix Integer radix sort all-to-all, irregular
Barnes Hierarchical N-body simulation hierarchical, irregular
LU Blocked LU decomposition one-to-many, regular
Water Molecular dynamics simulation near neighbor, irregular
APS All pairs shortest path solver unstructed, irregular

Table 1.1: Communication characteristics of benchmark applications.

1.4.3 Overview of the Proposed Solutions

Having described the assumptions for this thesis, we now present an overview of our results
and solutions. In Chapter 2, we focus on understanding various types of network contention and
evaluating their impact on DSM performance [34, 35]. In particular, we have two main goals: 1)
to estimate the impact of network link contention and network interface contention on the overall
performance of DSM applications, and 2) to study the impact of critical architectural parameters on
network contention. We propose a methodology of using three increasingly sophisticated network
models to capture and isolate various types of contention inside network and at network interface.
Based on simulation experiments using the benchmark applications and representative system pa-
rameters of current technology, for an 8 x8 wormhole-routed system, our results demonstrate that
network contention can degrade performance up to 59.8%. Out of this, up to 7.2% is caused by
network interface contention alone. The study also indicates that network contention becomes
dominant for DSM systems using smaller caches, wider cache line sizes, low degrees of associativity,
high processing node speeds, high memory speeds, low network speeds, or small network widths.

Chapter 3 focuses on developing an analytical model for DSM performance and establishing
concrete guidelines for designing networks [32, 36]. We systematically address this important issue
in three steps. We first present a new parameterized performance model for a DSM system. This
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model takes into account key aspects such as the structure of an application program, advanced fea-
tures of compute processor, cache/memory hierarchy and coherence protocol, and interconnection
network. Then, using this model we study the effect of different network components (link speed,
link width, switch routing delay, and topology) in two types of DSM systems (hardwired and cus-
tomized co-processor coherence controller) and establish guidelines for designing suitable networks.
Finally, we use detailed simulations driven by benchmarks to validate our model and guidelines.
The results conclusively demonstrate that our parameterized model can reveal the fundamental
interactions between different components in the system and correctly predict performance trends
when network design parameters are varied. Regardless of the types of DSM systems, better per-
formance is achieved by i) increasing link speed instead of link width and ii) increasing link width
instead of dimensionality under constant link bandwidth. However, under constant bisection band-
width, increasing the dimensionality of a network is not beneficial. Another important insight
from detailed simulation is that network contention experienced by short messages is crucial to the
system performance. Overall, this study lays a solid foundation for designing better networks for
current and future generation DSM systems.

Chapter 4 focuses on designing pipelined node-network interfaces (NNI). We propose three new
pipelined node-network interface designs [37]. These designs use memory sub-blocks extensively
in memory hierarchy and messaging layers while still maintaining coherence at the granularity of
memory blocks. They allow overlapping between message sending, receiving, and transmission by
exploiting the use of micro-packets in existing high-speed interconnection networks and/or early
processor restart by exploiting pipelined partial cache filling. We study important implementation
issues such as interlocking between block address and sub-block data and the interleaving of sub-
blocks of different memory blocks. The effectiveness of the new interface designs compared to
a conventional one is evaluated based on detailed simulations. Our results show that the most
sophisticated interface design can improve the performance by 5-40% across different applications
compared to the baseline configuration. We have also examined the sensitivity of this design to
a number of important system parameters. Overall, this study demonstrates that pipelined node-
network interface designs require modest modifications to existing hardware and can improve the
performance of a DSM system significantly.

In Chapter 5, we look at the problem of incorporating multiple-path network into a DSM system.
We start by examining the drawbacks of the two existing strategies which involve complicated
hardware logic, either at the cache coherence controller level or at the NI level. Then, we propose
a new strategy that uses block correlated FIFO channels, which exploits the natural interplay
between network interface and cache coherence protocol in scalable DSM systems with multiple-path
networks [38, 39]. This strategy detects all potential coherence-sensitive (pairwise) race conditions
and prevents them from occurring in the networks. It allows the use of both a simple cache coherence
protocol and an inexpensive network interface. The simulation results indicate that DSM systems
using our new strategy always provide either the best or very close to the best overall performance.
This study provides valuable insights into the design tradeoffs in incorporating modern networks
into DSM systems.

In Chapters 6 and 7, we look at the problem of cache invalidation overhead in DSM sys-
tems using full-map directory cache coherence schemes and limited directory schemes, respectively.
We propose a new multidestination message-passing approach to implement such directory-based
cache coherency with less number of messages, less network traffic, and reduced occupancy at
home nodes [29, 30, 28]. A set of multidestination reservation and gather worms are used to dis-
tribute invalidation messages and collect acknowledgments. Various destination grouping schemes
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are proposed to generate such multidestination worms in order to implement full-map or limited
directory-based cache coherence schemes on wormhole networks supporting deterministic dimen-
sional routing and adaptive turn-model routing schemes. These mechanisms and grouping schemes
are evaluated for benchmark applications. The interplay between the reduction in the number of
invalidation messages, network messages, routing adaptivity, and overall reduction in execution
time are also studied. The results indicate that significant reduction in overall execution time can
be achieved by using multidestination messages. They also demonstrate that current and future
DSM systems can take advantage of these mechanisms and schemes to deliver better performance.

Chapter 8 focuses on designing suitable networks to accommodate request and reply traffic
efficiently. We present two simple techniques for exploiting the promising performance benefit of
virtual channels in DSM systems [31]. First, we propose to use unequal number of virtual channels
in the request and reply networks to harness performance benefit from the inherent unbalanced
traffic in DSM systems. Next, we apply the virtual channel mechanism to injection and consump-
tion channels to alleviate the performance bottleneck at the network interface. These new design
strategies are evaluated through simulation using representative benchmark applications. The ef-
fect of critical system parameters (such as cache line size, routing delay, and network topology)
on the new designs is also studied. Overall, our results show that the virtual channel mechanism
can considerably reduce the time for shared memory accesses and the overall execution time of
DSM applications. This study demonstrates that a carefully coordinated design strategy using the
virtual channel mechanism can significantly improve the performance of distributed shared memory
systems. Chapter 9 concludes this thesis and suggests future research directions.
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CHAPTER 2

IMPACT OF NETWORK CONTENTION ON DSM PERFORMANCE

As mentioned in Chapter 1, high remote memory access latency has been a lead impediment
to achieving the full performance potential of DSM systems. One of the main factors affecting the
remote memory latency is the delay at the interconnection layer. This delay itself contains two
components: minimal transferring latency and various contention delays. In this chapter, we study
the problem of quantifying remote read /write waiting time and the contention at the interconnection
layer in DSM systems. Specifically, we aim to answer the following questions: 1) how much does
remote read/write waiting time affect the performance of DSM systems when network details are
considered? 2) how much does network contention affect the performance of DSM systems? 3)
how and to what extent do the waiting time and network contention change under different cache
organizations, memory systems, processor speeds, network speeds, and link widths?

To address these questions, we examine the process of transferring a message in detail, classify
the types of potential network contention, and point out the shortcomings of existing network mod-
els. To fix these shortcomings, we propose a methodology consisting of three network simulation
models to evaluate the impact of network and to isolate the effect of contention occurring at the
network interface and within the network, respectively. Based on this methodology, we present a
comprehensive and in-depth quantitative analysis on network contention using benchmark appli-
cations. The results show that a substantial portion of overall execution time of each application
is the read/write waiting time and that network contention can degrade the overall performance
significantly (by up to 59.8% on an 8x8 system). Out of the overall network contention, only a
small portion is caused by network interface contention (less than 7.2% out of the 59.8%), implying
that the contention delay inside the network is the main one among the contention delays at the
interconnection layer. We also evaluate the effect of network contention when major architectural
parameters are varied. It is shown that smaller caches, larger cache lines, lower set associativity,
higher processing node speeds, higher memory speeds, lower network speeds and narrower networks
can significantly increase the effect of network contention on application performance.

This chapter is organized as follows. Section 2.1 characterizes components of network contention
in DSM systems. Section 2.2 provides a methodology for evaluating network contention. Details
of simulation environment are discussed in Section 2.3. Simulation results and discussions are
presented in Section 2.4. Related work is reviewed briefly in Section 2.5. Concluding remarks are
made in Section 2.6.

2.1 Message Transfer and Network Contention in DSMs

Let us consider the transmission of a message (request or reply) from one node to another in
a CC-NUMA DSM system, as illustrated in Fig. 2.1. Various resources are required for this to
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succeed. First, space must be available for the message to be constructed in the sending buffer at
the sender’s network interface. Such space may not be available because of a number of reasons
such as: 1) disparity between the processing rates of the node controller and the network interface,
2) link contention between messages in some part of the network. Such contention, when a message
is blocked due to lack of a buffer, can be defined as sending buffer contention.
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Figure 2.1: Various types of network contention in a CC-NUMA system.

Let us consider a wormhole-routed network [104], as used in current generation CC-NUMA
DSM systems like the SGI Origin. Once a message has been generated, an injection channel must
be obtained to copy the message flit by flit into the associated router. The message may have to
wait when the injection channels are being used by other messages. Such a blocking is defined as
injection channel contention.

The entire message moves flit by flit in a pipelined fashion and holds links and the associated
buffers in the network. Handshaking flow control signals are used along each link to advance the
flits. As the header flit of the message passes through each router along its path, the router must
make a routing decision and reserve the corresponding outgoing link for the remaining flits. If the
outgoing link is not available, the message will be blocked in the network. Such a blocking is known
as link contention (or virtual channel contention if multiple virtual channels share a single physical
link).

In the case that multiple virtual channels share a physical link, if more than one virtual chan-
nels have flits ready for transfer, the physical link is multiplexed among the channels (demand-
multiplexing). This effectively reduces the rate at which each message moves. This scenario is
defined as physical link contention.

After the header flit of the message arrives at the destination, a consumption channel in the
network interface of the destination node must be obtained to copy the message from the router
into the network interface. Again, the message may be blocked when the consumption channels are
being used by other messages. This is known as consumption channel contention.

Finally, a receiving buffer in the destination’s network interface must be obtained to assemble
the entire message before it can be delivered to the node controller. If there is no receiving buffer
available, the message will again be blocked. This is known as receiving buffer contention.
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Clearly, the communication time of a message can be significantly affected by any of the above
types of contention. Due to the temporal nature, it is usually very difficult to measure the effect
of the network contention on a real DSM machine. Some analytical contention models have been
used before [71]. However, the accuracy lost in the analytical models, caused by ignoring the
crucial dependency between computation and communication in an application, remains unclear.
This leaves simulation as the most plausible approach for quantifying the effect of various types of
network contention.

Due to the complexity of modeling a network, most research in DSMs has ignored network
contention partially or entirely. In the WWT [117] and the Typhoon [118] simulators, a constant
network latency of 100 processor cycles is assigned for every message independent of the length
of the message, the distance traveled, and other traffic in the network. A DSM simulator used in
the Stanford FLASH [59] research group models network interfaces. The network latency of every
message is calculated based on the length of the message and half of the diameter of the network.
None of these DSM simulators model the channel contention or physical link contention. Our study
shows that these types of contention inside the network dominate the overall network contention for
current generation network technology. In the next section, we propose some modifications to these
network models which can provide us useful information about the types of network contention in
DSM systems.

2.2 Methodology for Modeling Network Contention

The basic idea of our methodology is to construct a series of network models. Each of these
models simulates the network at an increasing level of detail and is driven by the same DSM node
and memory simulator using exactly the same input. Differences in the execution times of these
models provide us information about kinds of contention occurring at the network. Specifically, we
construct a series of three network models as described below. Figure 2.2 illustrates the differences
and the relationships among these models.

NC NCM NC
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contention contention
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channel chann
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Figure 2.2: Differences and relations among the network models.
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No-Contention Network Model (NCM): This model is an enhancement of the network model
used in the original WWT simulator [117]. It assumes: 1) infinite number of sending buffers, 2)
infinite number of injection channels, 3) infinite number of consumption channels, 4) infinite number
of receiving buffers, and 5) no traffic interference inside the network. These assumptions guarantee
that no network contention can ever occur during any communication. In our NCM model, each
message is delayed by the total time for construction, network propagation, and consumption.
The construction time and consumption time vary depending on the length of the message. The
network propagation time is a function of both the length and the distance traveled by the message.
It is noted that this model captures the minimum transferring latency from sending a message to
receiving it.

Interface Only Network Model (NIM): The NIM model is an enhancement of the network
model used in the FLASH project [59]. The NIM model simulates detailed management of a limited
number of sending buffers, receiving buffers, injection channels, and consumption channels. The
NIM model still assumes no traffic interference inside the network. Such a model captures the types
of contention occurring within the network interface. For every message, if there is no contention
within the network interface, the message is delayed in this model by exactly the same amount of
time as in the NCM model. It is clear that any difference in the predicted performance between
this model and the NCM model is caused by contention occurring inside the network interfaces
during application execution.

Detailed Network Model (DNM): This model simulates the detailed management of trans-
mission links and intermediate switches, in addition to the network interface. The flow control
mechanism used by the network is modeled as closely as possible. For every message that is not in-
volved in contention inside the network, the message is delayed by exactly the same amount of time
as in the NIM model. Such a model captures all types of contention within the network interfaces
and every part of the network. It is clear that any difference in the predicted performance between
this model and the NCM model is caused by contention occurring in the entire network (including
the network interfaces). Any difference in the predicted performance between this model and the
NIM model is caused by contention occurring inside the network alone (excluding the network
interfaces).

2.3 Simulation Environment

To apply the above methodology for quantifying the network contention, we simulated a DSM
machine similar to the FLASH [85]. In this section, we describe the specific DSM implementation
used for collecting the results under different network models.

2.3.1 The Simulated Architecture

The architecture of the CC-NUMA system we simulated is illustrated in Fig. 2.3. It has 64 pro-
cessing nodes. The processor in each node is assumed to be a 200 MHz single-issue microprocessor
with a perfect instruction cache and a 128 KB 2-way set associative data cache with a line size
of 16 bytes. The cache operates in dual-port mode using write-allocate write-back policies. The
instruction latencies, issue rules, and memory interface are modeled based on the DLX design [60].
The memory bus is 8 bytes wide. On a memory block access, the first word of the block is returned
in 30 processor cycles (150 ns). The successive words in the block follow in a pipelined fashion. The
machine uses a full-mapped, invalidation-based, three-state directory coherence protocol [85, 90].
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Figure 2.3: The CC-NUMA architecture simulated.

The node simulator models the internal structures, the queuing and contention at the node con-
troller, main memory, and cache. The sizes of the queues between the internal structures and the
appropriate actions taken if a queue is full are shown in Table 2.1.

| Queue | Size | Action if full |

Incoming network queue | 8 messages | Messages blocked

Outgoing network queue | 8 messages | Node controller stalls

Memory request queue 1 request Node controller stalls
Incoming processor queue | 8 messages | Processor stalls
Outgoing processor queue | 1 messages | Node controller stalls

Table 2.1: Default sizes of various queues in a simulated node controller.

Following the assumptions used in [62], the node controller incurs a small fixed occupancy
for purely generating/receiving a message. The node controller at the home node of a remote
request /response incurs a higher fixed occupancy, because data (in most cases) and directory in-
formation must be retrieved and manipulated. In such a case, the memory access is assumed to
proceed in parallel with the node controller. The node controller also incurs extra occupancy per
invalidation sent. In a scenario where the processor of a node has a load/store miss to a clean block
whose home node is the node itself, we assume the memory access can be pipelined with the cache
access. Thus, the block retrieval, directory manipulation, and cache filling are overlapped. The
above architectural features correspond to representative current generation CC-NUMA systems.
Table 2.2 summarizes the system parameters used in our baseline configuration?.

2All the experiments performed in this chapter assume that the target DSM system supports the sequential
memory consistency [27].
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Memory Hierarchy Parameters

Processor frequency
Cache access

Cache line size (L)

Cache set associativity
Cache size per node
Memory word width (W)
Memory response delay
Cache block fill time
Memory block access time

200MHz

1 cycle

16 bytes

2

128 Kbytes

8 bytes/cycle
30 cycles
30+L/W cycles
30+L/W cycles

Node Controller Occupancy

Directory check

Directory check and update
Each invalidation request
Message forward

7 cycles
14 cycles
12 cycles
3 cycles

Network Interface Parameters

Link Propagation (Tynx)

Router switch delay (T%y)

Routing time (Tyout)

Physical network

Virtual networks

Virtual channels per virtual network

Outgoing message startup (Toutgoing) 15 cycles
Incoming message dispatch (Tincoming) | 8 cycles
Control message size 6 bytes
Data message size 22 bytes
Injection channels per node 1
Consumption channels per node 1
Network Parameters

Network frequency 200MHz
Channel width / Flit size 2 bytes

1 network cycle
1 network cycle
4 network cycles
1
2
1

Table 2.2: Default system parameters used in the simulation.
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2.3.2 Implementing Network Models

We assumed the nodes in the machine being connected with a pair of virtual networks sharing
a physical 2D 8 x 8 wormhole network [104]. The physical network was assumed to operate at a
frequency of 200 MHz. The rest of this section describes the implementation of each network model
in detail.
No-Contention Network Model (NCM): The NCM model takes a message from the source
node controller and informs the node controller at the destination node that a message has arrived
after a time delay equal to the calculated network latency of the message. The network latency of
a message is calculated as:

latency = Toutgoing + (Trout + Tiink) * distance +
(Tsw + Tlmk) * length + T%ncoming

where distance is the number of hops from the source to the destination, and length is the length
of the message in flits. Tj,yt90ing is the time delay for a message to be constructed by the network
interface. Tyoyt is the time needed for a router to make a routing decision based on its knowledge
about the network and the requirement of a message contained in the header flit. T};, is the time
for any flit of a message to propagate over a single physical link. T, is the time for a non-header
flit of a message to pass through a router. The parameters used in our simulation for these network
delays are listed in Table 2.2. In order to guarantee FIFO delivery between a source-destination
pair, end-to-end flow control is enforced in the model. It is noted that the incoming/outgoing
network queues at the network interface are ignored in this model.

Interface Only Network Model (NIM): This model takes into account detailed timing and
contention delays associated with structures such as the sending buffers, receiving buffers, injection
channels, and consumption channels within the network interface. As discussed in Section 2.2, for
a node to send a message, a space in the sending buffer must be reserved for Toyigoing time to
construct the message. Once the message is constructed, if there is an injection channel available,
it is reserved for (Ty;nk + Tsyw) *length amount of time to inject the entire message into the network.
At exactly (Tpink + Trout) * distance time after the header flit of the message is injected into the
network at the network interface of the source node, a consumption channel and a space in the
receiving buffer at the network interface of the destination node is reserved for (Tj;ni + Tsw) *length
time. Once the message has been consumed entirely into the receiving buffer, the node controller
at the receiving node is informed about its arrival after Tj,coming amount of time. In case any of
the above reservations can not succeed (because of other messages in the network), the message
can not move forward and continues to hold the resource(s) it has acquired. Such a network model
guarantees the FIFO property of message delivery between each pair of nodes if there is only one
injection and one consumption channel at each network interface.

Detailed Network Model (DNM): This model takes into account the internal structures such
as data links, channel buffers, signal lines, etc., within and between the routers, in addition to
the network interface. It accurately models the mechanisms for wormhole switching [104] such
as: distributed routing, book-keeping on channel status, and flit-level asynchronous ready/empty
handshaking. In this model, when a message is first injected into the network, the header flit of the
message reserves the channels in the routers for the remaining flits of the message, while moving
forward along its path from the source to the destination. When the header moves into a router, a
delay of T;.gy: is incurred for the routing decision. If the (desired) outgoing channel (decided by the
routing scheme) is available, the header flit reserves that channel and reaches the next router after a
time elapse of Tj;,,. Each non-header flit of the message can move forward only when its immediate
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predecessor has already moved. Such movement is modeled by using asynchronous handshaking
signals between adjacent routers. Every non-header flit incurs a latency of T, at every router and
Tiink at every link on the path to the message destination. The tail flit of the message releases the
previous channel when it leaves each router. When two virtual channels over the same physical link
are attempt to transmit messages, the physical link is demand-multiplexed, resulting in slowdown
of both messages. This model guarantees the FIFO property of message delivery between each pair
of nodes under the dimension order routing scheme.

Table 2.3 shows the contention-free latencies (in processor cycles) of memory accesses under a
variety of conditions. These times are deduced from our simulation models and the parameters
shown in Table 2.2. To help the reader understand these values and the associated process being
modeled, as an example, Table 2.3 shows the operation breakdown of the remote clean read-miss
(the second row in Table 2.2). These memory latencies are comparable to the latencies presented
in [92, 59], reflecting the accuracy of our simulations.

Memory Home Directory # Inv or
Access Location State CpyBack | Latency
local not cached 0 33
remote not cached 0 151
Load | remote (2-party) | home dirty 1 166
remote (3-party) | remote dirty 1 335
local not cached 0 33
local remote shared 1 140
Store remote remote shared 0 161
remote (2-party) | home shared 1 176
remote (3-party) | remote shared 1 304
remote (3-party) | remote dirty 1 335

Table 2.3: Contention-free latencies of typical memory accesses. The remote nodes are assumed to
be neighboring nodes. All latency values are given in processor cycles (5ns per cycle). The fourth
column (with title “# Inv or CpyBack”) shows the number of invalidation or copy-back messages
needed to be sent, as dictated by the cache coherence protocol being used [90, 24].

We used four applications—Barnes (2K bodies, 8 = 1.0, 4 steps), LU (256 x256, 8x8 blocks),
Radix (256K keys, 512 radix, 512K max key value), and Water (512 molecules, 4 steps) in our
simulation evaluation.

2.4 Simulation Results and Discussion

We now present and discuss the results of our simulation study. All results are reported using
the total execution time, normalized to the time predicted by the NCM simulator using the baseline
configuration (with parameters shown in Table 2.2) for the same application. Each such time is
further broken down into four categories: processor computation time (Comput), read stall time
(Read), write stall time (Write), and synchronization stall time (Synch). We first evaluate the

26



| Sub-operation | Latency ||

Cache-miss to request in the network 19
Request transmit time (6 bytes) 14
Request at the home node to output header transmit 45
Data return in network (22 bytes) 30
Response arrival to beginning of cache fill 11
Cache fill 32
Total 151

Table 2.4: Latency break down of a clean read-miss to a neighboring node in processor cycles (5ns
per cycle).

contention for the baseline system. Next we study the impact of cache organization, memory
system, node speed, and network parameters on network contention. In order to isolate their
impact, we vary these parameters one at a time with respect to the baseline configuration.

2.4.1 TImpact of Network and Network Contention in Baseline System

Figure 2.4 shows the execution time of each application on the baseline configuration using the
NCM, NIM, and DNM model, respectively. First, the results show clearly that the shared memory
read/write waiting time is a significant component of the overall execution time, ranging from 16.4%
to 58.8%, for various applications in our experiments. Since the number of remote memory accesses
dominates that of local shared memory accesses, the results confirm that low remote memory access
latency is critical to the overall performance of a DSM system. This conclusion remains valid for
all experiments throughout this section regardless of the specific parameter being varied. Second,
as expected, network contention slows down every application. However, the actual effect depends
on the application, ranging from 5.3% in Water to 16.8% in Radix. Radix incurs high network
contention because of the all-to-all irregular communication occurring during its histogram merge
phase. It is clear that network contention increases the time of each category (Read, Write, and
Synch) in every application. The results show that contention within the network interface alone
only accounts for a small portion of the total contention, less than 0.84% in our experiments. In
other words, contention inside the network is the dominant cause of higher network latency. This
observation remains true for all our experiments.

2.4.2 Impact of Cache Organization

Let us now examine the impact of alternate cache designs on the network contention. Specifi-
cally, we perform experiments by changing the cache size, line size, and set associativity.
Effect of Cache Size per Processing Node: Figure 2.5 shows the normalized execution times
and their breakdowns for the systems with 32KB, 64KB, 128KB, and 256KB cache per node,
respectively. Two observations are noteworthy. First, as the cache size increases, the network
contention in each application reduces to a constant amount (approximately). This is because
when the cache is large enough, the largest working set for an application can fit into the cache
completely. Our results show that even in such a case the slowdown caused by network contention
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Figure 2.4: Overall execution time and its breakdown on the baseline system for three different
network models.

ranges from 4.8% (in Water) to 16.8% (in Radix). This also shows that our baseline configuration
gives us a rather conservative estimate of the network contention®. Second, when the cache size
decreases, the network contention becomes more significant. The primary reason for this is the
extra traffic in the network caused by cache capacity misses. This is true even when the smallest
working set of an application still fits in the cache.

Effect of Cache Line Size: Figure 2.6 shows the execution times for the systems with 128 KB
cache per node and cache line size of 16, 32, 64, and 128 bytes, respectively. As the cache line grows
larger, the network contention in all applications shows the bath-tub behavior, i.e., first decreasing
to a pollution point and then increasing significantly. The surprising discovery from these results is
that the pollution point is relatively small, around 32 or 64 bytes per line, for three out of the four
applications. The reason for this is as follows. When the cache line increases, the reply messages
which contain data grow longer. This causes increase in the time required for transmitting them,
thus longer time is spent on the links and routers, causing more network contention. Such an effect
not only slows down a message of this (reply) type, but also has the potential to increase the latency
of messages of other types.

Similar to a uniprocessor system, longer cache line exploits spatial locality existing in an ap-
plication at the cost of reducing the benefits of temporal locality. The effect of data pre-fetching
because of longer cache line can reduce the number of cache misses. However, the increase in cache
line size does not reduce the number of messages by proportion beyond a certain size. In a DSM
system, this leads to an increase in the overall volume of network traffic because of unnecessary
data pre-fetching. This also results in more network contention and the network latency increases
exponentially. Such an effect can be observed by examining the difference between the results of the
NCM and DNM models for Radix: the proportion of the network latency in the overall execution
time grows from 19.6% for a 32 byte cache line, to 34.7% for a 64 byte cache line, and to 59.8% for
a 128 byte cache line. The reason that Radix shows this effect with smaller cache lines compared to
other applications is because the communication to computation ratio is higher in this application.

3This is because the baseline configuration assumes a cache size large enough to hold the largest working set of
any of the applications we used. This represents a system that generates very little cache-capacity miss traffic and
therefore underestimates network contention.
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Figure 2.5: Effect of cache size per node (32/64/128/256 KB) on network contention. Every system
configuration has three normalized execution times (from left to right) corresponding to the NCM,

NIM, and DNM model, respectively. The breakdown of the execution time is similar to the ones
used in Fig. 2.4.
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Figure 2.6: Effect of cache line size (16/32/64/128 bytes) on network contention.
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Effect of Cache Associativity: The execution times of the applications when the cache is
organized as direct-mapped, 2-way, and 4-way associative are shown in Fig. 2.7. When the set
associativity is equal to or greater than 2, the proportion of network contention remains almost
constant in each application. When the cache is organized as direct-mapped, the proportion of
network contention increases in all applications because the conflict misses increase the network
traffic. Our experiments show that a varying degree of performance degradation (9.1% (Barnes),
12.4% (LU), 21.1% (Radix), and 6.6% (Water)) occurs for a direct-mapped cache of size 128KB.
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Figure 2.7: Effect of cache associativity (1/2/4-way) on network contention.

In summary, network contention is sensitive to the design choices of the cache in a node. This
is especially true for selecting the cache line size. Overall, alternative cache designs other than our
baseline configuration tend to increase the impact of network contention in a DSM system.

2.4.3 Impact of Memory System

We focused on two primary components in designing memory systems for DSM: memory re-
sponse time and memory bus width.
Effect of Memory Response Time: Memory response time is the time interval from the issue of
a memory access command to the time when the first word in a memory block is available for use.
The experimental results shown in Fig. 2.8 correspond to three different response times: 20, 30,
and 40 processor cycles. As much as 7.4% performance degradation occurs in Barnes, 7.9% in LU,
22.2% in Radix, and 3.1% in Water for a memory response time of 20 processor clock cycles. As
the memory responds faster, the network contention increases slightly in all applications because
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the request and reply messages are generated in shorter time intervals, resulting in greater traffic
congestion in the network.
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Figure 2.8: Effect of memory response time (20/30/40 processor clock cycles) on network contention.

Effect of Memory Bus Width: Memory bus width dictates the amount of time needed for
finishing an access to a memory block after the first word is available. The experimental results
shown in Fig. 2.9 are for memory bus widths of 4, 8, and 16 bytes, respectively. In these experiments,
we used a block (line) size of 32 bytes. As the memory bus becomes wider, the network contention
barely changes because of the availability of efficient memory pipelining.

Overall, our study indicates that when the memory module becomes faster in a node, the
network contention increases. Between memory response time and memory bus width, the former
has a stronger impact on network contention.

2.4.4 Effect of Node Speed

In this section, we examine the impact of node speed on the network contention. Our CC-
NUMA system is assumed to use an integrated node controller. Therefore, when the node speed
increases, all parts in a node (processor, cache, memory, node controller, and network interface)
are assumed to become faster proportionately. The results in Fig. 2.10 show that the network
contention increases considerably in most application as the node speed increases. Specifically, the
performance degradation because of network contention worsens from 5.3% to 11.3% in Barnes,
5.3% to 7.9% in LU, 16.9% to 22.2% in Radix, and 3.1% to 3.2% in Water, as the node speed
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Figure 2.9: Effect of memory bus width (4/8/16 bytes) on network contention.

increases from 100MHz to 400MHz. The reason for this is, again, that the network is stressed in
trying to cope with more traffic generated by the faster processor in a given amount of time.

2.4.5 Impact of Network Parameters

In this section, we examine the impact of network design (network speed and network link width)
on the network contention. Intuitively, a higher link speed and/or wider link width increases the
bandwidth of the network, leading to less network contention.

Effect of Network Speed: Not surprisingly, as can be observed from the results shown in
Fig. 2.11, the network contention is significantly worse in a slower network than that in a faster
network. Our results show that the performance degradation changes from 4.8% to 11.4% in Barnes,
2.1% to 19.9% in LU, 23.7% to 32.2% in Radix, and 2.7% to 5.6% in Water, as the network speed
changes from 400MHz to 100MHz.

Effect of Network Link Width: As expected, from the results shown in Fig. 2.12, the network
contention is significantly worse in a network with narrower links than in a network with wider
links. For example, the performance degradation increases from 7.2% to 9.5% in Barnes, 2.8% to
20.1% in LU, 12.9% to 29.0% in Radix, and 4.4% to 6.9% in Water, as the network width reduces
from 32 to 8 bits.

In general, a higher bandwidth network does reduce the network contention. However, consid-
ering the commonly used narrower links and slower networks in DSM systems, network contention
remains an important factor for designing high-performance systems.
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Figure 2.10: Effect of node speed (100/200/400 MHz) on network contention.
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Figure 2.11: Effect of network speed (100/200/400 MHz) on network contention.
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Figure 2.12: Effect of flit width (8/16/32 bits) on network contention.

2.5 Related Work

Two most popular network models in DSM research are the constant latency model and the
average latency model, as used in the WWT [117] and the FLASH [85, 59] projects. As mentioned
before, these models do not provide useful insights into the effect of network contention on DSM
system performance. A set of network simulation models for DSM systems have been proposed
in [23] to show the tradeoff between accuracy and efficiency of network simulation. However, in
this chapter, our focus has been to isolate and quantify various types of network contention and
study their impact on the overall DSM system performance under a set of design choices. Since
network contention remains an important factor in designing DSM systems, in the next chapter,
we develop a comprehensive analytical model for estimating the performance of DSM systems and
derive a set of useful guidelines for designing better networks for DSM systems.

2.6 Summary

In this chapter, we have studied the impact of network and network contention on the perfor-
mance of representative applications on a CC-NUMA system. Three network models have been
proposed to isolate and evaluate the impact of network, contention at the network interface, con-
tention inside the network alone, and the overall network contention. We have also studied such
impact when varying a variety of architectural parameters: cache size, cache line size, cache set as-
sociativity, processing node speed, memory speed, memory bus width, network speed, and network
link width.

34



Besides confirming that the shared memory read/write waiting time is a significant component
of the overall execution time, our results show that the impact of network contention on the overall
application performance is significant. Furthermore, the major component of this network con-
tention is shown to occur inside the network alone. These results also demonstrate the importance
of modeling main types of network contention in general, and contention within the network in
particular, while evaluating designs for DSM systems. If network contention is taken into account,
application performance can differ by as much as 60% when compared to the corresponding perfor-
mance estimated by models that do not take any sort of network contention into account. When
compared with models that take only network interface contention into account (and assume con-
tention free transmission within the network), application performance can differ by as much as
50%.

Finally, our study shows that various architectural parameters can have considerable impact
on the effect of network contention on the overall application performance. Smaller caches, larger
cache lines, lower set associativity, higher processing node speeds, higher memory speeds, lower
network speeds and narrower networks can significantly increase this effect of network contention
on the application performance. These results show that changes to any of these parameters of
a DSM system can have a much greater impact on the overall DSM performance if studied in
conjunction with the methods for reducing the amount of network contention.
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CHAPTER 3

COMPREHENSIVE ANALYTICAL MODEL FOR DSM PERFORMANCE

In Chapter 2, as we studied the impact of network and network contention, we have described
a sophisticated simulation testbed for DSM systems. However, one main shortcoming of empirical
methods based on either detailed simulations or measurements is that the method can only identify
the impact of isolated design parameters for certain system configurations. For computer system
designers, more important questions are to find the bottlenecks in existing systems and to decide
which design parameters need to be improved for higher performance in future systems. To answer
these questions, empirical methods typically require experiments to be done in an exhaustive man-
ner. In practice, some kind of analytical models are used to provide a set of candidate parameters.
Based on these candidate parameters, different improvements and modifications are proposed. The
results are evaluated using simulations and measurements. This is also the approach we take in
this thesis. In this chapter, we develop a comprehensive analytical model to estimate the perfor-
mance of DSM systems. This model attempts to reveal the fundamental relationships between key
components of such systems.

We achieve our goal in three steps. First, we derive a parameterized analytical performance
model for a CC-NUMA architecture with a general network. This model integrates application
characteristics (number of threads, number of synchronization points, granularity of computation,
and ratio of read /write operation), processor characteristics (CPI), cache/memory hierarchy (cache
miss rate, access time for cache and memory, protocol overhead, and average number of outstand-
ing memory requests), and network characteristics (message send/receive overhead and bi-modal
traffic). To the best of our knowledge, no such comprehensive model exists in the literature before.
Next, as an example of using this model, we consider wormhole routed networks and analyze the
impact of different network design choices such as link speed, link width, routing delay, and topol-
ogy on the overall performance of DSM systems. Finally, we use an application-driven simulation
approach to validate our model and obtain additional insights such as the impact of network con-
tention. The evaluations are based on running benchmark applications on a simulated 64 processor
system.

3.1 Analytical Model for a Typical DSM System

In this section, we derive a parameterized analytical performance model for a typical DSM sys-
tem. This model captures three important factors: application behavior on a processor, cache/memory
hierarchy, and network.
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3.1.1 Characterizing Application Behavior on a Processor

Conceptually, any shared-memory application can be decomposed into a set of concurrent and
coordinated threads as shown in Fig. 3.1. The set size can grow or shrink dynamically during the
execution of the application as threads are created or terminated.
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Figure 3.1: A programmer’s point of view to the execution behavior of a typical DSM application.

Each of these threads carries out a certain amount of computation and communicates with
one another by reading from or writing to common memory locations. In order to guarantee the
correctness of the application, a subset of these reads/writes must be carried out in a specific order
via inserting explicit synchronization primitives, such as barriers and locks. As a general practice,
to save the high overhead of thread creation and termination, the number of threads are typically
kept constant and the same threads are used before and after the synchronization points. For the
purpose of performance modeling, such a thread exhibits a repeated pattern as follows: executing
several register-only instructions successively for computation and then followed by a memory access
(load/store) instruction. The short run of the successive register-only instructions is commonly
referred to as a computation grain of the application. We can call the above description as the
programmer’s point of view of the application. It helps us to understand the essential behavior
of an application on a given DSM system. As far as the analysis is concerned, a grain can be
extended to contain a sequence of instructions which do not involve any shared memory reference
or synchronization operation. Let us denote the average execution duration of a grain as T,,,. This
can be characterized as follows:

Tgf,-n =gx* CPI * Tpclk (31)

where ¢ is the number of instructions in a grain, known as grain size; CPI is the average number
of cycles per instruction of the processor, and T is the processor’s clock cycle time. In essence,
the value of g represents the inherent computation to communication ratio of an application.

As an alternative to the programmer’s point of view, a processor’s point of view can be es-
tablished to provide us additional insights into the execution time of an entire application. This
alternate view describes the behavior of an individual processor when running its portion of the
application. Let us assume that the processor in our modeled system supports multithreading and
multiple outstanding requests. Such a processor model is powerful enough to capture almost all
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the characteristics introduced by existing latency reduction or latency tolerance techniques, such as
lockup-free caches [82], relaxed memory consistency [53], hardware and software data prefetching,
speculative load and execution [120], and multithreading.

As an example, let us consider the behavior of a typical application on a processor for a short
duration, as depicted in Fig. 3.2. Assume two threads, thrl and thr2 are mapped onto this
processor. At the beginning of the observed duration, which is also assumed as the beginning of
one iteration, thread thrl executes a grain grnll and issues a nonblocking read from location z1.
The thread continues to execute its next grain grnl2, then issues another nonblocking read from
z2 at the end of grnl2 and is suspended because of data dependency. Instead of waiting for either
z’s data to be available, a thread context switch takes place. The processor starts running a grain
grn21 from the second thread thr2. At the end of grn2l1, a blocking read from y1 is issued. At
the moment, the processor becomes idle until one of the data items is available. As soon as the
earliest item, say x1, is available, thread thrl resumes to execute the next grain grnl3. Assume
the data items y1 and z2 become available during the execution of grnl3. This allows thread
thrl to continue to execute another grain grnl4, which waits for z2. Finally, thread thrl issues
a synchronization acquire signal and is blocked. Immediately, thread thr2 starts running its next
grain grn22 and is suspended after finishing grn22 and issuing its synchronization acquire signal.
Again, the processor is left idle until a synchronization release signal comes back. Once the expected
synchronization release signal arrives, the next iteration starts.
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Figure 3.2: A processor’s point of view to the execution behavior of a typical DSM application.

Based on the above observation, in general, the overall execution time of an application can
be expressed as below assuming a perfect load balancing algorithm. For simplicity and clarity, we
ignore the overheads for context switching and scheduling.

Tezec = (((Tgrn + Tshmem) * Nref/Npend) * Nthr + Tsync) * Niter (32)

where Ty, is the average execution time per grain, Tpmem is the average latency per shared memory
reference, Tyyp. is the average synchronization waiting time per iteration per processor, N,y is the
average number of shared memory references per iteration per thread, Np.nq is the average number
of simultaneous outstanding memory requests per processor, Ny, is the average number of threads
per processor, and Nji., is the number of iterations of the program. Except Tyn. and Tspimem, all
other parameters in Eqn. 3.2 largely depend on the program and the compiler, assuming N,,q is
less than the maximum number of outstanding requests allowed by the hardware.
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Conceptually, the synchronization waiting time contains the time processors wait for one another
to reach the same synchronization point and the pure time of a synchronization operation which
the last participating processor executes. A synchronization operation is usually a special variant
of shared memory reference, such as Fetch&Inc instruction, memory fence instruction, or QOLB
scheme [91] supported in typical DSM systems. Thus, we can rewrite Ty, as follows:

Tsync = Nbal * Tgrn + Tshmem (3'3)

where Ny, is a load balance parameter. The value of Ny, depends on both the application and
load balancing algorithm. Since the number of processors in a DSM system is often not a divisor
of the total number of grains in an iteration, the difference of workload per processor is typically
one grain unit (Np,; =1) in the optimal scenario. In next section, we estimate the value of Tspmem.-

3.1.2 Characterizing Cache and Memory Hierarchy

It is not very difficult to characterize the effect of caching on Tsppem- For simplicity, we focus
on a single level cache. However, it can be very easily extended to multi-level cache hierarchy. The
parameter Tspmem can be expressed as follows:

Tshmem = Rread * Tread + Rwrite * Twrite (34)
Tread = Rrhit * Thit + eriss * Tr,mem (3'5)
Twrite - Rwhit * Th,it + meiss * Tw,mem (36)

where R,cqq (0r Ryrite) is the rate of reads (or writes) out of total shared memory references, T;.cqq
(or Tyrite) is the average latency per shared read (or write), R.pit (or Rypit) and Rypmiss (0T Rymiss)
are the hit and miss ratios for shared reads (or writes), Ty mem (0r Ty, mem) is the latency of a shared
read (or write) miss reference, and T is the latency for a cache hit reference.

The values of T} ypem and Ty mem depend on the design of memory subsystem in the DSM
system. More specifically, they depend on two factors: a) cache coherence protocol being used and
b) memory access latency. The overhead of a cache coherence protocol can be further broken down
into two components: delays incurred at the node controller and the average number of messages
generated for each read or write operation.

In this chapter, we assume directory-based protocols. Let us assume that the node controller
incurs a fixed delay T}, for handling each message and manipulating the directory. In a situation
where data must be retrieved from the main memory, the access is assumed to proceed in parallel
with the node controller operation. In a scenario where the processor of a node has a load/store miss
to a clean block whose home node is the node itself, we assume the access to the memory module
can be pipelined with the cache. In other words, the retrieval of the block, the filling of the cache
line, and the manipulation of the directory information are all overlapped. Such overlapping is
common in modern DSM systems. Under these assumptions, T} mem and Ty mem can be estimated
as follows:

Tr,mem = Tprot + Tmmod + Nr,s * Tsmsg + Nr,l * Tlmsg (37)
Tw,mem = Tprot + Tmmod + Nw,s * Tsmsg + Nw,l * Tlmsg (3'8)

where 1,04 denotes the memory module access time, N, ; and N,; denote the average number
of short and long messages generated by the coherence protocol which fall on the critical path
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of the program’s execution per read operation. Similarly, N, , and N,,; are those numbers per
write. It is worth noting that such a bimodal distribution of the message length has very important
implications on the overall performance of a DSM system and especially on the design of better
networks for a DSM system. We study these implications in Section 3.2 in detail.

3.1.3 Characterizing Interconnection Network

In this section, we examine the components of communication latencies for short (Tspmse) and
long (T}msg) messages in a general network. Both latencies contain certain amount of header
processing overhead at sender (T,4) and receiver sides (Tj.y). Each of them also contains the
network delay, Tspet Or Tiner, respectively. Thus, we have:

Tsmsg = Tsna+ Tsnet + Trew (3'9)
Tlmsg = Tsnd + Tinet + Trew (310)

3.1.4 Putting All Components Together

Now, let us put all components together by substituting and merging Equations 3.2-3.10 and
renaming some of the coefficients as given below:

Rpit = Ryread * Rrnit + Ruwrite * Ruhit (3.11)
Rmiss = Rread * Rrmiss + Rurite ¥ Rumiss (3.12)
Nshort = Rread * Rrmiss * Nr,s + Rurite ¥ Ruwmiss * Nuw,s (3.13)
Niong = Rread * Rrmiss ¥ Nrg + Rurite ¥ Rumiss ¥ Nuw,i (3.14)

where Ry;; and Ry,;ss reflect the overall cache hit/miss ratio of all shared memory references, Ngpopt
and N,y mean the average number of short and long messages generated by the cache coherence
protocol for each shared memory reference and which fall on the critical path of the program’s
execution. For convenience in the following discussion, let us denote Tjier = Tegec/Niter as the
average execution time of an application per iteration per grain. Table. 3.1 provides a summary of
the important parameters and notations used in this model. Using these notations, the execution
time of an application per iteration per grain can be re-expressed as follows:

Titer = (Nref/Npend * Nthr + Nbal) * Tgrn +
(Nref/Npend * Nipr + 1) * Ryt * Thit +
(Nref/Npend * Nthr + 1) * Rmiss *

nni overhead

[(Nshort + Nlong) * (Tprot + Tmmod + Tsnd + T'rc'u) +

network delays

~

Nshort * Tsnet + Nlong * Tlnet] (3'15)

The above equation is quite general. It incorporates the key factors related to the performance
of a DSM system with no restrictions to the memory consistency model, cache coherence protocol,
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Titer Application’s execution time per iteration

Ny Number of threads per processor

Tyrn Average execution time of a computation granule

Nrey Number of shared memory operations per iteration per thread
Npena | Average number of outstanding memory operations

Npa Difference of processor’s load in granules per iteration

Ryt Cache hit ratio per shared memory access

Rp.iss | Cache miss ratio per shared memory access

Thit Processor waiting time on a cache hit

Torot Node controller occupancy for processing a network message
at one end

Timmod | Memory module access time

Nshort | Average number of short messages on the critical path of
servicing a cache miss caused by a shared memory operation
Niong | Average number of long messages on the critical path of
servicing a cache miss caused by a shared memory operation
Tsnd Network interface overhead for sending a message

Trew Network interface overhead for receiving a message

Tonet Average latency per short message

Tinet Average latency per long message

Table 3.1: Summary of the main parameters and notations used in the analytical performance
model for DSM systems.
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or type of network being used. Once a set of values are given to the above parameters/terms, this
equation can predict the execution time of any given application. It can also identify the bottlenecks
associated with different components of the system. Another important observation can be drawn
from Eqn 3.15 is that the third term (i.e., the last term) shows that the remote memory access
latency is an important component in the overall execution time of an application. Furthermore,
the remote memory access latency is shown to contain two basic components: the NNI overhead
and network delays. This is in consistency with the discussions in Chapter 2.

From the recent literature [25, 146], the current generation DSM systems and applications
exhibit the following range of values for the parameters used in our model: T, from 2 to 500
processor cycles, Rp;; from 0.90 to 0.99, R,,;ss from 0.01 to 0.10, T};; from 0 to 2 processor cycles,
Trmmod from 10 to 50 processor cycles, Tprot + Tinmod from 20 to 55 processor cycles (with partial
overlapping), Nypor¢ from 0.10 to 0.30, Njgpg from 0.02 to 0.10, Typg + Trey from 10 to 30 processor
cycles, Nycr from 2 to 100, Npenq from 1 to 8, Ny, from 1 to 4, and Npg being either 0 or 1.

In the following section, in order to focus on the impact of different components of a network,
we use the following representative set of values: Rp; =0.97, Thit =0, Riiss = 0.03, Thumod = 24,
Tyrot =2, Tana =15, Tyey =5, Nahort =0.10, Nigng=0.02, Nyer =20, Npena=1, Nypr =1, and Npy=1.
The timing values are expressed in terms of numbers of processor clock cycles.

We consider three different computational granularities to represent three different application
types: Typel (Tyrn = 80), Type2 (Tyrn = 40), and Type3 (Tyrn = 5). These represent medium
coarse-grain to fine-grain applications. After substituting the parameters in Eqn. 3.15 with all
these values, the value of Tj, for each type of applications can be written as follows:

Titer,type1 = 1756.86 + 2.10 * Toper + 0.42 % Tiper (3.16)
T%ter,type? = 916.86 + 2.10 % Tsnet + 0.42 * T1l'n.et (317)
Eter,type?) = 181.86 + 2.10 * Tsper + 0.42 Tlnet (318)

3.2 Impact of Network Components

In this section we study the impact of different network components on the overall performance
of DSM systems based on the general model developed in the last section. We consider the k-ary
n-cube wormbhole interconnection, a popular choice among the current generation DSM systems,
and focus on four major components of a network design: link speed, link width, routing delay,
and topology.

It is well known that the average message latency in such a network contains two components:
no-contention latency and contention delays. Since it is difficult to model network contention
analytically [44], we consider no-contention latencies only in this section. In the simulation section,
we measure message latencies with and without contention and compare them with one another.

Now let us consider the average message latencies for short and long messages, as indicated in
Eqns. 3.9 and 3.10, respectively. Based on the wormhole-routing principles [40], the no-contention
network latencies (i.e., Tspet and Tjner) can be further estimated as follows:

Tsnet = Dx (T'rout + Tphy) + ([Lshort/W-| - 1) * (Tsw + Tphy) (3'19)
Tlnet = Dx (T'rout + Tphy) + ([Llong/W-| - 1) * (Tsw + Tphy) (3'20)

where D is the average distance (number of hops) traveled by a message, Lsport is the length of a
short message, Liong is the length of a long message, W is the width of a link (flit) in the network,
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Trout and Ty, are the routing and switching delays at each router/switch for a message, Tpp, is the
propagation delay of a flit along a single link.

Network T T, Type 1 Type 2 Type 3
Design Choices (pc) | (pc) Estim. [ Rel(%) Estim. | Rel(%) || Estim. | Rel(%)
100 40 168 1911.42 100.0 1071.42 100.0 336.42 100.0
Trout: | 200 20 84 1834.14 96.0 994.14 92.8 259.14 77.0
Link 1 ne 400 10 42 || 1795.50 93.9 955.50 89.2 220.50 65.5
Speed 100 88 | 216 || 2032.38 100.0 || 1192.38 100.0 || 457.38 100.0
(MHz) Trout: | 200 44 108 1894.62 93.2 1054.62 88.4 319.62 69.9
4 nc 400 22 54 || 1825.74 89.9 985.74 82.7 || 250.74 54.8

26 | 154 | 1876.14 100.0 || 1036.14 100.0 || 301.14 100.0

—_

Trout: | 2 20 84 || 1834.14 97.8 994.14 95.9 || 259.14 86.1
Link 1 nc 4 18 50 || 1815.66 96.8 975.66 94.2 || 240.66 79.9
Width 1 50 | 178 || 1936.62 100.0 || 1096.62 100.0 || 361.62 100.0
(bytes) | Trous: | 2 44 | 108 || 1894.62 97.8 || 1054.62 96.2 || 319.62 88.4
4 nc 4 42 74 || 1876.14 96.9 || 1036.14 94.5 || 301.14 83.3
const. | 2, 2 20 84 || 1834.14 100.0 994.14 100.0 || 259.14 100.0
Topol. | link 3,2 16 80 || 1824.06 99.5 984.06 99.0 || 249.06 96.1
(dim, width | 6, 2 16 80 || 1824.06 99.5 984.06 99.0 || 249.06 96.1
width) | const. | 2,4 18 50 || 1815.66 100.0 975.66 100.0 || 240.66 100.0
bisec. | 3, 2 16 80 || 1824.06 100.5 984.06 100.9 || 249.06 103.6
width | 6, 1 22 | 150 | 1866.06 102.8 || 1026.06 105.2 || 291.06 120.9

Table 3.2: Predicted performance of three different application types under different network design
choices using Eqns. 3.16-3.20. Note Ts = Tspet, 11 = Tinet, Pc = processor cycles, nc = network
cycles.

The short messages in a DSM system are due to control messages resulted from cache coherency.
The lengths of such messages are determined by the number of message types used in a cache
coherency protocol, the total number of cache blocks in the system, and data protection information
in the system. The length of a long message depends on the above factors as well as the cache
line size. In this chapter, we assume a directory-based cache coherency protocol with 32 different
message types, 64 processing nodes, 512 MBytes of globally shared memory, and cache line size
of 64 bytes. These lead to the following message lengths: L, =6 bytes and L.,y = 70 bytes.
These values are also used in the simulation experiments for easy comparison. The sizes of memory,
message header and cache are small by the current standard in real DSM systems. However, these
carefully selected values are large enough to run the benchmark applications using the recommended
input sizes from [146] and to keep the simulation time reasonable.

3.2.1 Impact of Link Speed

Let us study the impact of link/router speed on the overall performance of DSM systems.
Consider an 8x8 mesh with 16-bit wide links as our network. This leads to D=8 and W =2. Let
us examine three values of link speed: 100 MHz, 200 MHz, and 400 MHz, corresponding to link
bandwidths of 200, 400, and 800 MBytes, respectively. In this chapter, we have assumed default
processor speed to be 200 MHz. For a 100 MHz link, we have T}, =Ts,, =1 ncycle (network cycle),
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which is equal to 2 peycles (processor cycles). Depending on the current trends in router design,
let us consider two different representative values for routing delays (T;out): 1 and 4 ncycles.

By using the above values in Eqns. 3.16-3.20, the overall execution times for different application
classes can be computed. These execution times are shown in the top section of Table 3.2. It can be
observed that as the granularity of an application decreases, increasing link speed has a substantial
benefit on the overall execution time. These benefits can vary from 6.1% for a medium coarse-grain
application to 35.5% for a fine-grain application. These benefits are more for networks with higher
routing delays, ranging from 10.2% to 45.2%.

3.2.2 Impact of Link Width

Next, let us consider the impact of increasing network link width. Assume the same network
with 200 MHz link speed and consider link widths to be 1 byte, 2 bytes, and 4 bytes, respectively.
The estimated execution times are shown in the middle section of Table 3.2. Clearly, the message
latencies do not reduce linearly as observed with link speed. This is because only a portion of the
message latency is affected by the link width, as shown in Eqns. 3.19-3.20. Increasing link width
can benefit in reduction of execution time by 3.2% to 21.1% for lower routing delay and 3.1% to
16.7% for higher routing delay. Comparing these benefits with those of increasing link speed, it
can be observed that increasing link speed is more beneficial than increasing link width.

3.2.3 Impact of Topology

Finally, we consider the impact of changes in topology. For a fair comparison, we consider two
different strategies for varying topologies: under constant link width constraint and under constant
bisection bandwidth constraint [40]. Under the former constraint, link width is kept constant as the
dimension of the network changes. Under the second constraint, link width is changed so as to
maintain constant bisection bandwidth.

Let us consider three different topologies: 2D (82), 3D (42), and 6D (2%) mesh. Under constant
link width constraint, let us assume the link width to be kept constant at 2 bytes. The link
speed is kept constant at 200 MHz (400 MBytes/sec bandwidth). Changes in topology lead to a
change in the average distance traveled by the messages (D =38, 6, and 6 for the above topologies,
respectively). The corresponding execution times are shown in the bottom section of Table 3.2.
The latencies for 4D and 6D systems are identical because the average distances traveled in both
(given) topologies happen to be identical. With respect to the overall execution time, increasing
the degree of network dimension provides very little benefit (0.5% to 3.9% only).

Under constant bisection bandwidth constraint, the link width for hypercube topology is as-
sumed as 1 byte. This indicates that the link width of 4D and 2D systems needs to be 2 and 4
bytes, respectively. The latencies for short and long messages under this constraint show interesting
trends. As the degree of dimension changes from 2 to 4 to 6, the average latency for small messages
first reduces and then increases. The reduction is due to lowering the average distance traveled.
However, it is quickly overpowered by reduction in link width. The average latency for long mes-
sages continue to rise with increase in dimension because of reduction in link width. These changes
show increasing effect on the overall execution time for the three representative applications. The
increase is quite substantial for fine-grain applications, indicating that higher dimensional networks
under constant bisection bandwidth constraint are not suitable for designing DSM systems.
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The guidelines derived in this section are based on only no-contention message latency. In the
following section, we present detailed execution-driven simulation results to validate these guidelines
and study the possible changes caused by network contention.

3.3 Simulation Results

In order to validate the analytical model and the guidelines derived in the last section, we
simulated a DSM system similar to the FLASH machine [85]. Before presenting and discussing the
simulation results, we first describe the basic architectural features assumed, the applications and
their input sizes, and the performance metrics used in our experiments.

3.3.1 Simulation Environment

We simulated a 64-node DSM system with a default interconnection as an 8 x 8 mesh. The
processor in each processing node was assumed to be a 200 MHz single-issue microprocessor with
a perfect instruction cache and a 128 KBytes 2-way set associative data cache with a line size
of 64 bytes. The cache was assumed to operate in dual-port mode using write-back and write-
allocate policies. The instruction latencies, issue rules, and memory interface were modeled based
on the DLX design [60]. The memory bus was assumed to be 8 bytes wide. On a memory block
access, the first word of the block was returned in 30 pcycles (150 ns). The successive words in
the block followed in a pipelined fashion. The machine was assumed to be using a full-mapped,
invalidation-based, six-state directory coherence protocol [29, 35, 90, 85]. The node controller took
3 pcycles to forward a message and 14 pcycles to manipulate the directory. The network interface
took 15 pcycles to construct a message and 8 pcycles to dispatch it. The synchronization protocol
assumed in the system was the QOLB protocol similar to the one used in DASH [91], supporting the
conventional sequential memory consistency semantics. The node simulator modeled the internal
structures, as well as the queuing and contention at the node controller, main memory, and cache.
Table 3.3 summarizes the memory hierarchy parameters and node controller occupancy delays used
in our simulated architecture.

We used four applications—Barnes, LU, Radix, and Water in our simulation experiments. Prob-
lem sizes for these applications were as follows: Barnes (8K bodies, § = 1.0, 4 time steps), LU
(512 x 512 doubles, 8 x 8 blocks), Radix (1M keys, 1K radix, max 1M), and Water (512 molecules,
4 time steps). These sizes are recommended in [146] to keep the important behaviors of the appli-
cations to be the same as in a full fledged system.

3.3.2 Performance Metrics

We present all our simulation results in two sets: execution time and network latency. This
helps us to correlate the behavior of underlying network with the overall DSM system performance
and provide important insights into the network design issues. The overall execution time is broken
down into four components: computation (C), memory read waiting (R), memory write waiting
(W), and synchronization waiting (S) from bottom to top shown in Fig. 3.3-3.5. All times are
normalized to that of the left most system configuration in the figures for each application.

The network latencies of two types (short and long) of messages are presented separately in
absolute time (microseconds). Furthermore, we present the average latencies of short and long
messages in three different ways: estimated, ideal, and real. The estimated latency was calculated
according to Eqn. 3.19-3.20, where D is taken as half of the network diameter, i.e., the average
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I Memory Hierarchy Parameters I Network Parameters |

Processor frequency 200MHz Network frequency 200MHz
Cache access 1 cycle Channel width / Flit size 2 bytes
Cache line size (L) 64 bytes Link Propagation (Tj;nk) 1 net cycle
Cache set associativity | 2 Router switch delay (Tsy) 1 net cycle
Cache size per node 128 Kbytes Routing time (T}out) 1 net cycle
Memory bus width (W) | 8 bytes/cycle Physical network 1
Memory response delay | 30 cycles Virtual networks 2
Cache block fill time 30+L/W cycles || Channels per virtual network | 1
Memory access time 30+L/W cycles
I Node Controller Occupancy I Network Interface Parameters |
Directory check 7 cycles Message startup (Toutgoing) 15 cycles
Directory update 14 cycles Message dispatch (Tincoming) | 8 cycles
Each invalidation 12 cycles Control message size 6 bytes
Message forward 3 cycles Data message size 70 bytes
Inject. chan. per node 1
Cons. chan. per node 1

Table 3.3: Default system parameters used in the simulation.

distance traveled per message under uniform traffic. The ideal latency presented in this section
(shown with a legend ‘w/o contention’) is the average per message among all the messages of the
same type. The ideal latency for short and long messages were computed dynamically during the
simulation execution by accumulating the essential delays (such as T,out, Tphy, and Ty,) along
the actual traversal path of the messages. In other words, this should be the measured value of
average latency per message if there exists no contention in the network. Lastly, the real latency
(shown with a legend ‘/w contention’) is the average of network latencies across all messages of the
same type. The network latency for a message was measured from the start of its injection at the
sender until the completion of its consumption at the receiver. This latency includes contention
at injection channel, consumption channel, and communication links. It is to be noted that the
difference between the values of ideal latency and estimated latency of a message type tells us how
close is the traffic of that message type to the ‘uniform’ traffic. Similarly, the difference between
the values of ideal latency and real latency of a type tells us the effect of network contention.

3.3.3 Impact of Network Speed

Figures 3.3(a) and 3.3(b) show the impact of network speed on the overall execution time.
The network speed was changed from 100 MHz to 400 MHz (200 MBytes/sec to 800 MBytes/sec
bandwidth). These results refer to two different routing delays (T}t =1 and 4 ncycles), as discussed
in Section 3.2. As predicted in section 3.2.1, the overall execution time reduces as the speed of
the network increases. The reduction in execution time varies across applications, ranging from
7.3% in Water to 54.6% in Radix. From the timing breakdowns, Water appears to be the most
compute intensive whereas Radix is communication intensive. In other words, the average grain
size in Water is quite large compare to that in Radix. The reduction in execution time is higher
for networks with higher routing delay, as predicted in section 3.2.1.
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Figure 3.3: Impact of network speed on the overall execution times of benchmark applications and
on the message latencies.
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Figures 3.3(c) and 3.3(d) show the average message latencies for the same set of simulation
experiments. Several important observations can be drawn from these data. First of all, the curves
of the estimated latency are slightly above to the curves of ideal latency (no-contention) for both
short and long messages. The two set of curves follow exactly the same trend and their difference
margin is very small. This reveals the fact that the traffic of both message types (short and long)
in a typical DSM system is close to ‘uniform’ traffic with a somewhat smaller average distance per
message because of locality. Similar trends can also be observed from the remaining subsections.

Second, the real (with contention) latency might be much higher than the ideal latency under
certain network designs. In such scenarios, contention inside the network becomes the dominant
factor for network latency. Since both types of messages share the same network, the link contention
between short and long messages causes the delay for short messages to be disproportionately
greater. Increasing network speed causes contention to be reduced substantially for short messages,
leading to overall reduction in execution time (up to 40%). Similar trends can also be observed
from the remaining subsections.

3.3.4 Impact of Link Width

Figures 3.4(a) and 3.4(c) show the execution time and average latencies for the applications
running under the default system configuration with varying link widths, (8, 16, or 32 bits each).
These results are for routing delay of 1 ncycle. Figures 3.4(b) and 3.4(d) show the trend for routing
delay of 4 ncycles. As expected from the analysis in section 3.2.2, it can be observed that wider
links help reducing the overall execution time. The reduction varies from 5.3% in Water to 51.7%
in Radix. The reduction is smaller for higher routing delay. The performance improvements are
also smaller compared to the respective improvements obtained by increasing link speed.

3.3.5 Impact of Topology

We examine the impact of different topologies by comparing the results for 2D (8 x 8), 3D (43),
and 6D (2) meshes under two different constraints: constant link width and constant bisection
bandwidth. The data presented here are for routing delay of 1 ncycle. Other results of different
topologies can be found in [33].

Under Constant Link Width Constraint:

Figures 3.5(a) and 3.5(c) show the execution time and average message latencies of each appli-
cation running under various topologies. The link width was kept at 16 bits for all experiments. As
predicted in Section 3.2, increasing the dimension of the network helps in reducing the execution
time. However, the relative improvement is very small.

Under Constant Bisection Bandwidth Constraint:

Figures 3.5(b) and 3.5(d) show the execution time and average message latencies of each appli-
cation running under various topologies. The link width was varied to maintain constant bisection
bandwidth. As predicted in Section 3.2, increasing the dimension of the network has negative
impact on the overall execution time. With increase in network dimension, both short and long
messages undergo increasing contention, leading to increase in overall execution time. Thus, 2D
systems are shown to be the best for a 64 processor system under this constraint. More generally,

48



o 1201 o 1207

c Barnes LU Radix Water c Barnes LU Radix Water
£ 1004— I I £ 10094— :
= 801 == == = 80-—=== II
601 ! 60— !
40— U s04— U
20— 204—
0 0
8 1632 8 1632 8 1632 8 1632 8 1632 8 1632 8 1632 8 1632
(@ (b)
- 3or o~
£ g 3.0
> >
2 2
o 20 o
] = 20
- -
1.0 1.0
00 D ah B e D B e 0.0 02 0 DRI CREREES
8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32
Barnes LU Radix Water Barnes LU Radix Water
(c) (d)

Figure 3.4: Impact of link width on the overall execution times of benchmark applications and on
the message latencies.
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a low dimensional k-ary m-cube is a more preferable topology to a high dimensional k-ary n-cube
for medium or large scale DSM systems under this constraint.

3.4 Discrepancy Between Analytical and Simulation Models

As mentioned before, the results estimated from our analytical model (in Section 3.2) and those
obtained from our simulation testbed (in Section 3.3) show the same increasing or decreasing trend
when each of the parameters is varied. However, the actual impacts of the parameters are different.
There are two main reasons for such a discrepancy. First, the analytical model abstracts away
many more system details than the simulation testbed to keep the model simple. In particular,
all types of contention at a variety of system resources such as the cache, the write buffers, the
memory, the model controller, the network interface, and various network components are ignored
in the analytical model. Second, most parameters in the analytical model are average values, which
are normally difficult to be accurate. However, such a discrepancy does not hinder us from finding
out the bottlenecks in existing systems. In fact, the analytical model helps to select the right
system parameters to improve system designs. In particular, this chapter, especially Eqn. 3.15,
has identified the overhead at the NNI and the network delays as the two main components of
the remote memory access latency. This finding corresponds closely to the simulation results in
Chapter 2. In the rest of this thesis, we focus on various methods to improve these components.
It is noted that simulations are used as the main tool in the in-depth studies on the effectiveness
of the proposed methods because more system details can be considered in the simulation testbed
than the analytical model.

3.5 Summary

Advances in processor technology is making network latency an increasingly important archi-
tectural bottleneck in DSM systems. In addition to the continued research efforts in developing
latency reduction and latency tolerance techniques, a better understanding of the basic communi-
cation characteristics of DSM systems/applications and a set of concrete guidelines for designing
more efficient networks targeted specifically for DSM systems are very desirable. In this chapter, we
have developed a comprehensive parameterized model to estimate the performance of a CC-NUMA
multiprocessor system using k-ary n-cube wormhole interconnection. This model integrates all the
key aspects of a DSM system: application characteristics (number of threads, number of synchro-
nization points, and granularity of computation), components of the node architecture (access time
for cache and memory, protocol overhead, and number of outstanding memory requests allowed),
and network components (link speed, link width, router delay, and topology). Based on this model
we have studied the impact of different network components on the overall performance of DSM
systems/applications. Finally, we have validated the impact of network components and obtained
additional insights such as the impact of network contention through execution-driven simulation
of benchmark applications.

Our study establishes several guidelines for designing better networks for DSM systems. Some
of the important guidelines obtained from this study are: a) better performance is achieved by
increasing link speed instead of link width, b) increasing dimension of a network under constant
link width constraint is somewhat beneficial, ¢) increasing dimension of a network under constant
bisection bandwidth constraint is not at all beneficial, and d) routing delay plays an important
factor in the design choices of other network components.
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CHAPTER 4

PIPELINED NODE-NETWORK INTERFACE DESIGNS

From the discussions in Chapters 2 and 3, especially Eqn. 3.15, it is clear that, in order to
reduce the average latency of remote memory operations, we should focus on improving the min-
imum overhead and reducing various contention delays at the NNI and the network. In the rest
of this thesis, we address the remote memory latency bottleneck problem by examining the im-
plementations of current generation DSM systems and proposing novel solutions to improve the
implementations from different aspects. In this chapter and the next one, we study two orthogonal
methods to reduce the NNI overhead.

In DSM systems, memory blocks are the essential units for enforcing coherence and transferring
data. The size of the memory blocks has a profound impact on the latency of remote memory op-
erations. Early DSM systems such as Stanford DASH [91] and MIT Alewife [1] research prototypes
used small blocks (16 bytes per block) for obtaining low latency. Current generation DSM systems,
however, use much larger memory blocks. For example, a block size of 64 bytes is used in Sequent
NUMA-Q [94]; and 128 bytes in SGI Origin [88], HAL Mercury [144], and Stanford FLASH [85].
This trend is mainly due to two reasons. First, the time overhead per remote memory opera-
tion is quite high. Thus, larger blocks are needed to amortize this overhead. Second, the storage
overhead of memory directories increases linearly with the number of blocks in the system. Using
larger blocks can reduce the total number of memory blocks, leading to smaller directory storage
overhead. Unfortunately, larger blocks also lead to higher latency in remote memory operations.

From the discussions in Chapter 3, it is clear that the latency of remote memory operations
contains five important components: cache hierarchy propagation delay, coherence management
overhead, the time for sending/receiving messages, the time for message transmission, and physical
memory access time. In the past few years, new network technologies have substantially reduced
the time for message transmission. Examples of new high-speed networks include the SGI Origin
network (a fat hypercube based on the SGI Spider switches [49]), the HAL Mercury interconnects (a
flexible, irregular topology based on the PRC routers [102]), and the Cray T3E network [124] (a 3D
torus). Using these technologies, a message can be transmitted across a medium-sized network in
a few hundred nanoseconds. However, a high-speed network alone can not alleviate the bottleneck
of high latency associated with the remaining components of the remote memory operations.

The idea of supporting cut-through delivery and partial cache-filling at the node-network in-
terface was initially proposed in [49] to address this problem. In fact, at least two independent
design teams [49, 144] have cited the potential use of these mechanisms as a main reason for doing
error checking at the micro-packet level inside the network. However, to the best of our knowl-
edge, a detailed design following this idea has not been presented in studies [49, 144] or in any
other publications. In essence, cut-through delivery and partial cache-filling mechanisms, coupled
with proper network technologies, can automatically construct a dynamic pipeline for efficient data
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transfer between any pair of nodes in the system. Such a pipeline can exploit the fact that in a
DSM system, for the completion of any remote memory operation currently being resolved, only the
critical word of the incoming memory block is needed. Accesses to the rest of the block often occur
later, caused by instructions following the memory operation. Therefore, forwarding the critical
word and resuming the execution of a suspended thread sooner promises some performance gain.
However, quantitatively, it is not clear how much system performance can be improved by these
two mechanisms independently and together. Thus, a breakdown of performance tradeoffs for the
pipelining design is very useful. For example, consider a designer using a network which does error
checking based on an entire cache block. Such a constraint would preclude partial cache-filling
but not cut-through delivery. Under these circumstances, a question worth of asking is whether a
pipelining design is still beneficial or not.

In this chapter, we study how to apply the pipelining idea to a DSM system similar to the
Stanford FLASH. We propose a new class of pipelined node-network interface designs. Under this
class, we investigate existing designs and propose three new designs. These designs use memory
sub-blocks in data transferring while maintaining coherence at a block level. The first design allows
early processor restart by exploiting pipelined sub-block cache filling. The second one supports over-
lapped message sending, receiving, and transmission by exploiting the existence of micro-packets in
the high-speed interconnection network. The third design combines the advantages of the previous
two. Important design issues such as interlock signaling for each design are studied. The implemen-
tation of the most efficient (the third) design is presented in detail as a working example, focusing
on the organization and operation of block transfer unit—the crucial circuitry in a node-network
interface. In-depth simulations have been performed to evaluate the effectiveness of the three node-
network interface designs compared to a conventional design using six benchmark applications. The
results show that our most efficient interface design can improve the performance up to 40% for
applications. We have also examined the sensitivity of this design to a number of important system
parameters such as the size of sub-block, the size of block, occupancy of coherence controller, and
the size of cluster. This study demonstrates that supporting cut-through delivery and sub-block
cache-filling requires only modest hardware modifications to the node-network interfaces currently
being used in DSM systems and can improve the overall system performance significantly.

This chapter is organized as follows. Section 4.1 describes the system model we assumed in
this study. Section 4.2 examines the basic process of remote memory operations in a typical DSM
system. Section 4.3 briefly reviews the conventional block-based node-network interface design
and then discusses its main performance drawbacks. Section 4.4 studies three enhanced node-
network interface designs and the key design issues. Section 4.5 proposes an implementation of
efficient interfaces. The results of our detailed simulation experiments are presented and discussed
in Section 4.6. Section 4.7 briefly reviews some related work and in Section 4.8 we draw the
conclusions.

4.1 System Model

Figure 4.1 shows the basic structure of a node controller. Overall, this structure is similar to
the one used in the Stanford FLASH [85]. Separate data and control paths are provided in the node
controller because data connections between the network, the memory module, and the compute
processor are largely protocol independent. When a message arrives from the network or compute
processor, it is divided by the preprocessor into two parts: the control part and the data part. The
control part, which contains the message type (e.g., read-request) and the global address, is sent
to the coherence controller (CC) while the data part is sent to the block transfer unit (BTU), if
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present. The coherence controller first initiates data transfer into or out of the BTU (speculatively
sometimes) and then carries out the coherence book-keeping operations dictated by the protocol.
The operations of the coherence controller depend on the combination of the message type and
the content of the directory entry associated with the target address. Subsequently, a new control
part, if a new message is dictated by the protocol, is sent to the postprocessor. In parallel to these
operations in the coherence controller, the BTU can transfer the data part of the original message
or that of a new message from its source to the destination. The source or destination of this local
data transfer can be the compute processor module, main memory module, or network interface.
Finally, the postprocessor takes the control part from the coherence controller, merges it with the
corresponding data part from the BTU, and sends the resulting message out to the appropriate
queue.

Network From From
Control Path Interface Processor  Network
~agj—P» Data Path A L i
S R .
\
! \
R ]
\
' Block |
|
P’\rA oduler ~g-Pp-| Transfer Coherence i Memory
\ Unit Controller(CC) r ™ Directory
\ (BTU) !
| |
\
Node | !
Controlleri______ Aﬁ,,”””””" —
1
Memor To To
M odulg Processor  Network

Figure 4.1: The basic structure of a node controller.

It is noted that in our model we assume independent connections from the node-network inter-
face (NNI) to the compute processor, the main memory module, and the network. However, the
same design ideas can be extended to other type of intra-nodal interconnect, such as a bus, with
comparable performance benefits.

4.2 Role of NNIs in Remote Memory Operations

A DSM system provides a globally shared memory abstraction over all physical memory modules
in the system. When a memory operation is issued to a location and the issuing node (which is
not the home node*) does not have a valid copy in its private cache, a request message is sent to
the home node. Eventually, a response message comes back to the issuing node with a copy of the
memory block containing the content of the desired location. In such a system, a consistent view of
memory is ensured at the granularity of each memory block. At any time, (directory) information
is maintained at the home about the operating states of cached copies of each memory block. A
cache coherence protocol is used to guarantee that a read to any memory location always gets a
copy of the content from the latest write which the reading processor is aware of.

Many basic operations must be carried out for achieving various types of remote memory oper-
ations. These operations accomplish the functions of caching, directory manipulation, and message

4The home node of a memory location is a node in whose main memory module the location is allocated.
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exchange. The exact sequence of these basic operations varies from one remote memory operation
to another depending on the temporal content of a directory entry. Consequently, understanding
the sequence of typical remote memory operations is often challenging.

As a working example of remote memory operations, let us consider the process of resolving
a read cache miss to a remote memory location whose directory entry indicates the “uncached”
state. When a compute processor issues the read, a cache miss is first detected and propagated to
the NNI on the requesting node. This NNI locates the home node, constructs a network message
containing the read request, and sends the message to the home node via the network. Once the
message reaches the destination, the NNI on the home node retrieves the target block from the
memory module, modifies the state and sharer list in the associated directory entry, constructs a
reply message containing the retrieved target block, and sends the message back to the requesting
node. When the reply message arrives, the NNI on the requesting node fills the cache and restarts
the compute processor. The entire process can be divided into two phases: the request phase and
the response phase. The request phase starts from the time when the read is issued by the compute
processor until the time when the request message reaches the NNI at the home node. The response
phase starts from the time when the target data is being retrieved until the time when the retrieved
data reaches the processor.

The latency of the above remote memory read operation can be divided into five basic compo-
nents, as described below:

1. Reg-Cache: Time required by the requesting compute processor module to a) detect a cache
miss, replace a dirty cache line if needed, and change the line to a wait state in the request
phase; and b) fill a cache line, merge dirty data in relevant write buffer, provide the data to
the processor, and change state to the “shared” state in the response phase.

2. Req-NNI: Time required by the NNI at the requesting node to a) locate the home node,
construct the request message, and inject the message into the network; and b) consume the
reply message from the network, extract the address and data from the message, and forward
the data to the requesting cache.

3. Network: Time required by the network switches and links to transfer the request and reply
messages from the source to the destination nodes.

4. Home-NNI: Time required by the NNI at the home node to a) consume the request message
from the network, check the state of the associated directory entry, and issue the main memory
read operation; and b) construct the reply message with data and modify the state and sharer
list in the directory entry.

5. Home-Memory: Time required by the physical memory module at the home node for reading
an entire memory block.

Clearly, the NNIs are traversed many times in the above process. For more complicated remote
memory operations such as write misses to remote locations shared by multiple nodes, similar steps
may be needed on the NNIs and caches at one or more third-party nodes depending on the state
and sharer list in the directory entry. Therefore, the NNI’s performance is crucial to reducing the
overall latency of various types of remote memory operations.
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4.3 Conventional Block-Based NNI Design

In most existing DSM systems, memory blocks are the basic operational unit for the NNI. In
such a conventional block-based NNI, denoted as CBB-NNI design, any operation on the data must
be atomic and sequential at the granularity of a block. For example, when a block of data is read
from the main memory module into the NNI over the memory connection, the NNI does not start
to forward the data to the processor module or to the network until the entire block has reached
the NNI. Many systems such as the Stanford DASH [91], MIT Alewife [1], HP/Convex SPP [22],
Sequent NUMA-Q [94], Wisconsin Typhoon [119], and MIT StarT-Voyager [7] use different variants
of the CBB-NNI design. The wide use of the CBB-NNI design can be attributed to the fact that
the design is a natural extension of the block-based memory access scheme used in bus-based
symmetric multiprocessor (SMP) systems. The CBB-NNI design conforms to many aspects of
current industrial standards and keeps the interactions among the NNI, the main memory module,
the processor module, and the network to the minimum, therefore resulting in low complexity/cost
in design and implementation.

In the CBB-NNI design, however, the latency of copying a full block is incurred each time a
memory module is accessed, a cache is filled or retrieved, or a message containing data is moved in
or out of a processing node. As an example, let us examine the components of the remote memory
read operation outlined in Section 4.2. Figure 4.2 illustrates a time-line of the five components.
The shading pattern of each horizontal bar indicates the type of work causing the particular time
component. For example, the four bars with line pattern at the left side of this figure show the time
in the request phase for handling the cache miss at both the requesting node and the home node
and for transmitting the request message. The remaining bars (the blank boxes) show the time in
the response phase for resolving the miss at both nodes and for transmitting the reply message.
The time period of the entire process is commonly denoted as the back-to-back memory latency.
It is noted that the rightmost bar in the figure shows the cache hierarchy busy time. The compute
processor can resume its execution shortly after the beginning of this bar using the critical word
forwarding path. The time period of the entire process excluding the last cache-filling time (last
bar) is commonly denoted as the restart memory latency.

Reg-Caches

Req-NNI

Network

Home-NNI

Home-Memory

Request [ ] Response

Figure 4.2: The timeline of a read miss to a clean remote memory block using the CBB-NNI design
of node-network interface.
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It can be observed from Fig. 4.2 that block copying is incurred five times in the response phase
for transferring data: a) the target data is copied from the main memory module into the block
transfer unit (BTU) at the home node; b) the data, as part of the outgoing message, is copied from
the BTU into the network interface; c) the data, as part of the incoming message, is “store-and-
forwarded” (a network copying variation) at the network interface on the requesting node; d) the
data, as part of the incoming message, is copied from the network interface to the BTU on the
requesting node; and e) the data is copied from the BTU into the cache hierarchy at the requesting
node. With a block size as large as 128 or 256 bytes, the cost of block copy operations dominates

the latency of remote memory operations®.

4.4 Pipelined NNI Designs

In this section, we propose three pipelined NNI designs based on the cut-through delivery
and partial cache-filling techniques. For all of them, memory block remains the granularity for
maintaining memory coherence, while sub-block is the granularity for transferring data. This
means that the state in the directory entry or cache line must be changed after the last sub-block
data of a block is written and before the first one is read.

4.4.1 NNI Supporting Partial Cache-Filling

The concept of partial cache-filling and cache sub-blocks has been used in uniprocessor and
SMP systems for quite some time. A variant was proposed in the original FLASH design [59, 85]
for DSM systems. This enhancement works for retrieving/filling a cache line; for reading/writing
data from/into the memory module or the network. It eliminates multiple copies by placing data
in the block transfer unit (BTU) as they are received from the network or processor module. It
makes the latency of a data transfer dependent of sub-block size, instead of block size. We denote
the NNI enhanced with partial cache-filling support as the PCF-NNI design.

In the PCF-NNI design, the temporary storage in the BTU can be arranged as a number of
buffer entries. Each entry can store data up to a memory block. Each data item (e.g., a sub-
block) in every buffer entry is associated with a valid bit. The valid bit is set each time the data
item is written and cleared when it is read. The BTU keeps all data items from a single block in
the same buffer entry until the entire block is delivered to the destination. Via the entry index,
control information can be found for delivering the data properly. The BTU typically operates in
dual-ported mode with one port for read and the other for write. A destination unit monitors the
valid bits for reading data from the BTU. Therefore, it does not have to wait for the entire buffer
entry to be filled before starting data transfer. Figure 4.3(a) illustrates the timeline of the remote
memory read operation using the PCF-NNI design. Compared to the CBB-NNI design, this design
substantially reduces the store-and-forward delay incurred at the BTUs for the reply message.

4.4.2 NNI Supporting Cut-Through Delivery

Cut-through and packetization have been used extensively in modern high-speed networks [40,
124]. These techniques avoid the store-and-forward latency at each hop, leading to lower network
latency. As a natural extension, an NNI can use its network interface as a cut-through device
by transferring a message as successive micro-packets. Using such NNIs, a pipeline exists from a

5Tt is noted that if the critical word forwarding is used in the processor module, the cost of the last block copy is
not a part of the restart memory latency. But the cost is still a part of the back-to-back memory latency.
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Figure 4.3: The timeline of a read miss to a clean remote memory block using pipelined node-
network interfaces (NNIs): (a) PCF-NNI, (b) CTD-NNI, and (c) ICP-NNI.
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sender’s network interface (NI) to the receiver’s NI across the network. On the sending side, the
node controller moves outgoing micro-packets from the postprocessor or BTU to the NI as soon
as a set of micro-packets are ready®. The NI then immediately puts these micro-packets onto the
network link (if it is available) one after another. On the receiving side, the node controller moves
the incoming micro-packets into the preprocessor or BTU as soon as a certain number of micro-
packets have been deposited in the NI from the network link. We can denote the NNI enhanced
with cut-through delivery as the CTD-NNI design. Most existing networks calculate the CRC based
on a full message (entire cache line) instead of each micro-packet. Cache line based error checking
would preclude pipelining into the cache before the CRC is complete.

The key issue in the CTD-NNI design is the handshake signaling between the node controller
and the NI. A simple solution is to manipulate the transmitting and receiving FIFO queues at the
NT in the unit of micro-packets, rather than full messages. The head micro-packet and the last tail
micro-packet of a message can be handled differently to do the setup and tear-down work at the
sending and receiving sides. Micro-packets belonging to a single message are pipelined through a
queue in transferring order. A pair of head and tail queue pointers can be used to keep the operation
synchronized promptly’. Figure 4.3(b) illustrates the timeline of the remote memory read operation
using the CTD-NNI design. Compared to the CBB-NNI design, this design substantially reduces
the store-and-forward delay incurred at the NIs.

4.4.3 Integrating CTD and PCF

From the previous two sections, it is clear that the cut-through delivery and partial cache-filling
mechanisms largely avoid block copying latency at different stages of remote memory operations in
the CBB-NNI design. Therefore, there is a potential to combine the benefits of both by integrating
them. Let’s denote it as the ICP-NNI design. Compared to the PCF-NNI and CTD-NNI designs,
this design establishes a complete pipeline from the sender’s main memory module or cache to the
receiver’s processor module across the sender’s NNI, the network, and the receiver’s NNI. It allows
the application to restart (if stalled) much earlier before the entire block transfer completes, despite
the fact that the same number of bytes are transferred. Figure 4.3(c) illustrates the timeline of
the remote memory read operation using the ICP-NNI design. As mentioned earlier, even though
the ICP-NNI design has been used in the SGI Origin [88], no design details are available in the
literature. Therefore, we discuss several key issues for its design below.

Tag and data. For transferring a sub-block between the BTU and the main memory/processor
module, the associated address tag must be explicitly provided. However, for transferring a sub-
block between the BTU and the network interface, no memory address is needed because the address
is implicitly contained in the message header. One solution is to maintain the block address and
to store all the sub-blocks of a block contiguously in the BTU. This solution is similar to the one
used in the FLASH [85, 59] design. This solution requires explicit synchronization at the sub-block
level. The complexity for synchronization may become too high when sub-blocks which belong
to different memory blocks are allowed to be stored and forwarded in an interleaved manner. A
simple alternative is to store the address of each sub-block together with the data in the BTU.
It eliminates the requirement of contiguousness. However, a large portion of the address storage

5The number can be a design parameter.

"For clarity, we assume that each virtual channel, if supported, has its own transmitting and receiving FIFO
queues.
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is wasted because the block address is embedded in the address of sub-block and stored multiple
times. A solution better than both of these schemes will be presented in the next section.
Induced cache miss. Consider two successive remote operations targeted at the same memory
block. Let’s assume that the first operation results in a cache miss and starts the resolving process.
After the critical word is forwarded, the processor issues the second operation shortly. At the time
of cache checking for the second memory operation, the cache line corresponding to the block is
still in a transit state because the first memory operation has not been completely resolved yet.
A simple solution to this problem is to stall the second operation until the state of the cache line
becomes a stable one, which will happen after the first memory operation is completely resolved.
Unrelated cache misses. Consider two successive remote memory operations targeted at different
blocks. Sub-blocks belonging to different blocks may compete for the BTU. This situation occurs
more often in the ICP-NNI design. The simple solution of stalling the second operation until
the first one is completely resolved will work. But it prevents two independent home nodes from
resolving these operations in an overlapped fashion. A slightly better solution is to buffer the reply
message of the second operation at the NI until all sub-blocks of the first memory operation enter
the BTU. This solution allows more overlapping than the last one, but it still prolongs the second
memory operation. In the next section, we will present a solution which allows sub-blocks belonging
to different blocks to use the BT'U in an interleaved manner to obtain the full performance benefit
of pipelining.

4.5 Implementation of BTU

This section proposes a detailed implementation of the BTU®. It demonstrates how the ICP-
NNT design can be realized and provides a common basis for evaluating the performance of various
pipelined NNI designs.

Fig. 4.4 shows our proposed organization for the block transfer unit (BTU). Internally, it con-
tains two sub-structures: a descriptor table and a data FIFO. The descriptor table contains a
number of entries held by blocks currently being processed. Each descriptor entry contains the
following fields: wvalid bit, block tag, offset, in-count, out-count, source, and destination. Most
of the fields need no explanation. The “in-count” (or “out-count”) field indicates the number of
sub-blocks of a block having being copied into (or out of) the BTU. The “offset” indicates the offset
within the block of the next sub-block being transferred. Together with the “block tag” field, this
field is used each time a sub-block is transferred to the memory module/processor. The data FIFO
also contains a number of entries. Each entry contains a “data” and “descriptor index” fields. The
“data” field stores the copy of a sub-block. The “descriptor index” field points to the descriptor
entry containing other information related to this sub-block.

With the above organization, the basic operation of the BTU can be described as follows.
When a message arrives from the network interface/processor, the preprocessor extracts the control
information such as the source ID, message type, and target address from the header of the message.
The information is predecoded and an entry in the descriptor table in the BTU must be reserved
successfully. Once the reservation succeeds, the predecoded information is passed onto the CC
for coherence protocol processing. The CC initiates any data retrieval dictated by the protocol
resulting in a series of sub-blocks being copied into the BTU. At the same time, the other fields of
the descriptor entry are initialized appropriately. The “block tag” and “offset” fields are filled by

8This is a typical implementation we consider in this chapter. Other implementations are possible based on the
technological trend.
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Figure 4.4: The organization of the block transfer unit (BTU).

the decomposition of the target address which is the address of the first (critical) sub-block. The
“source” field is set to the source for data transfer: individual network channel (e.g., request or reply
channel), processor module, or memory module. The “destination” field, decided by the coherence
protocol, is set similarly when it is known and ready for forwarding. Either the preprocessor, the
CC, or the postprocessor can set the destination. Occasionally, more than one destinations are
desirable, e.g., the main memory module and the processor module.

When a sub-block reaches the BTU, it is stored into the data FIFO. The descriptor index is found
from the descriptor table by an associative search on the source of data transfer. The “in-count”
is incremented. As soon as the FIFO contains data, the first item in the FIFO can be forwarded
to its destination using the information from the descriptor entry found via the “descriptor index”.
As each sub-block is forwarded to its destination, the associated “out-count” is incremented. So is
the “offset” field (in modulo arithmetic). The entry in the data FIFO is released immediately after
being forwarded. When both “in-count” and “out-count” reach the maximum (i.e., the number
of sub-blocks in a block), the descriptor entry can be released. All the sub-blocks belonging to
the same block pass through the data FIFO in increasing order starting from the critical one with
wraparound. But sub-blocks belong to different blocks are allowed to be interleaved, as shown in
Fig. 4.5.
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v
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Figure 4.5: The association between the data FIFO and the descriptor table in the BTU.
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When a new message (the header) reaches the postprocessor from the CC and if the data part
(the tail) is needed, the destination in the descriptor entry can be set. The header is forwarded to
the network interface or processor module immediately. The tail of the message is forwarded to
the destination when each sub-block is available in the BTU.

It is important to note that operations involving the processor cache interface are usually
dictated by the processor implementation. For example, most processors today would not allow
the system to interrupt a read response transaction in order to issue a new read request. However,
many modern processors will issue multiple speculative reads in order to hide memory latency. Our
BTU implementation is applicable for both types of processors.

4.6 Performance Evaluation

In this section, we use a detailed simulation to evaluate the performance of our proposed node-
network interface design. First, we describe the simulation parameters and methodology, then
present and discuss the results for the latency of a simple remote clean read miss. Finally, we
present simulation results using a suite of representative application benchmarks.

4.6.1 Simulation Environment

The system we simulated had the generic DSM architecture discussed in Section 4.1. The
entire system consisted of 32 processing nodes with 2 processor modules in each node (like the SGI
Origin [88]). A full-mapped, invalidation-based, three stable state directory coherence protocol [90,
85] was used. The compute processor was supported by a 16 KBytes direct-mapped write-through
L1 data cache with a line size of 32 bytes and a perfect instruction cache. The instruction latencies
and issue rules were modeled based on the generic superscalar RISC processor design [60]. The
processor clock frequency was assumed to be 500 MHz (i.e., 500 MIPS). A coalescing write buffer
with 8 entries, each of the size of the L1 cache lines, was provided between L1 and L2 caches to
reduce processor stalls caused by writes. A read miss in both the L1 cache and the L1 write buffer
stall the processor until the desired data was returned from the lower levels of the memory hierarchy.
The processor and L1 cache were connected to a 256 KBytes 2-way set associative write-back and
write-allocate L2 cache with a line size of 256 bytes via a 8-byte width data-path. The interleaved
memory and directory module was assumed to support multiple read/write ports. On a memory
access, the critical word of the block was modeled to be available in 50 ns. The successive words in
the block followed in a pipelined fashion at the rate of 8 bytes per memory bus cycle. A directory
cache was assumed to eliminate the stalls in the node controller caused by directory accesses.

In the node-network interface (NNI), the connections to the processor module and mem-
ory/directory module were assumed to be 8 bytes wide and were assumed to operate at 100 MHz.
A coalescing transaction buffer of 8 entries was provided for resolving outstanding shared memory
operations. Each entry was able to hold one L2 cache line and merge multiple L1 cache writes
targeting the same L2 line. The machine supported the release consistency memory model [85, 88].
The synchronization protocol assumed in the system was the queue-based spin-on-local-copy pro-
tocol, similar to the one used in DASH [91]. The BTU was assumed to be organized as discussed
in Section 4.5.

The four types of NNI designs were modeled as follows. The CBB-NNI design always transfers
data at the memory block level. The PCF-NNI design transfers data at the sub-block level between
the BTU and the processor module, main memory module, and the network interface. Any message
must be completely constructed (at sender) or accumulated (at receiver) at the network interface
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before entering the network or the node controller. The CTD-NNI design transfers data at the block
level between the BTU and the processor module, main memory module. The network interface
initiates message injection as soon as the first sub-block is ready and can copy a sub-block data into
the BTU as soon as it is received. The ICP-NNI design transfers data at sub-block level between
all connections in the BTU and at the network interface. The default size for sub-block was 32
bytes. The network interface was assumed to take 4 memory bus cycles (40 ns) for preparing an
outgoing message (header) and 8 cycles (80 ns) for error-checking and dispatching on an incoming
message. The occupancies for different operations were assumed as follows. One bus cycle was
spent in preprocessor and postprocessor stages each. In a system using a coherence controller, 6
bus cycles (60 ns) were taken to process a request/response, manipulate directory, and generate a
new request/response; each invalidation (being sent after the first one) incurred 4 additional bus
cycles (40 ns); and the bypassing took 2 bus cycles (20 ns).

The network switches were interconnected in a hypercube like the SGI Origin [88] (default was
a 5D). The network switches used the dimensional order wormhole routing design and supported
multiple virtual channels with a flit size of 64 bits (8 bytes). Each virtual channel had an input
buffer of 32 flits (256 bytes) and an output buffer of 4 flits (32 bytes). Internally, each switch used
the DAMQ input buffering scheme to eliminate the head-of-line (HOL) blocking problem [136, 49].
The switching pipeline was modeled based on SGI SPIDER switch [49], i.e., 2 switch cycles for link
synchronization, 1 cycle for routing, and 1 cycle for moving a flit across the crossbar. The switch
was assumed to operate at 100 MHz. Thus the link propagation time was assumed to be 1 switch
cycle (10 ns).

4.6.2 Latency of Remote Memory Operations

To gain insight into the performance impact of alternative NNI designs on the latency of remote
memory operations, let us examine the example remote read clean miss operation (as shown in
Figs. 4.2 and 4.3) and the break down of its overall latency. For simplicity, for the time being,
let us ignore all types of contention at the cache, memory, NNI, and network in this subsection.
Table 4.1 shows the breakdown of the latency. It can be observed that the restart latencies of
the CBB-NNI, PCF-NNI, CTD-NNI, and ICP-NNI designs are 916 processor cycles (1.83 us),
611 processor cycles (1.22 us), 591 processor cycles (1.18 us), and 286 processor cycles (0.57 us),
respectively. Considering the block size difference, as we expected, the latency in the CBB-NNI
design is compatible to that reported in the Wisconsin Typhoon [119] (1.5 us); the PCF-NNI design
latency is compatible to that reported in FLASH [85, 59] (1.11 us); and the ICP-NNI design latency
is compatible to that reported in the SGI Origin [88, 64] (0.57 us). The table also shows that the
back-to-back latency of the four designs are 1081 processor cycles (2.16 us), 776 processor cycles
(1.55 ps), 756 processor cycles (1.51 us), and 451 processor cycles (0.90 us), respectively. In other
words, compared to the CBB-NNI design, the PCF-NNI, CTD-NNI, and ICP-NNI designs reduce
the restart latency of the example remote memory operation by 33%, 35%, and 68%, respectively.
The PCF-NNI, CTD-NNI, and ICP-NNI designs reduce the back-to-back latency of the example
remote memory operation by 28%, 30%, and 58%, respectively. When contention is considered, it
is reasonable to believe that the performance improvement will decrease. (In fact, we show and
discuss some more complete results with contention in the next subsection.) Nevertheless, Table 4.1
shows that various NNI designs using sub-block pipelining techniques are quite effective in reducing
the latency of remote memory operations.

9Not included in the best total which assumes data forwarding and early restart.
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CBB PCF CTD ICP
Steps Latency | Latency | Latency | Latency
Requesting Processor Module
Detect L1 & L2 cache miss 6 6 6 6
L2 bus transit 5 5 5 5
Requesting NNI
Preprocessor 5 5 5 5
Coherence Controller 10 10 10 10
Postprocessor 5 5 5 5
Send request msg 20 20 20 20
Network
Request msg transmission (16 bytes) | 30 | 30 | 30 | 30
Home NNI
Extract msg header 40 40 40 40
Preprocessor 5 5 5 5
Fetech data, modify directory 180 30 180 30
Postprocessor 5 5 5 5
Send reply msg 180 180 20 20
Network
Reply msg transmission (272 bytes) | 195 | 195 | 30 | 30
Requesting NNI
Extract msg header 40 40 40 40
Preprocessor 5 5 5 5
Read msg data 180 25 180 25
Postprocessor? 5 5 5 5
Requesting Processor Module
L2 bus transit 5 5 5 5
L1 & L2 Cache filling® 160 160 160 160
Total
Restart 916 611 591 286
Back-to-back 1081 776 756 451

Table 4.1: Breakdown of the contentionless latency of a clean read-miss to a neighboring home
node. Values are counts in 500 MHz processor cycles. CBB = CBB-NNI, PCF = PCF-NNI, CTD
= CDT-NNI, and ICP = ICP-NNI.
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4.6.3 Application Performance

In this section we describe the application benchmarks used in our evaluation and discuss the
simulation results. We used six applications — FFT (256K points), MP3D (50K particles), Radix
(IM keys, 1K radix, 1M max), Barnes (8K particles, 4 steps), LU (512x256 doubles, 8 x8 blocks),
and Water (512 molecules, 4 steps).

Performance Comparison of Pipelined NNI Designs

Figure 4.6 shows the overall execution times of the six benchmark applications in DSM sys-
tems using the four alternative NNI designs. The number on top of each bar indicates its height.
These results were measured in simulations using the default system configuration as described in
Section 4.6.1. For each application, the result of the CBB-NNI is used as the normalization basis.
Results of the PCF-NNI, CTD-NNI, and ICP-NNI designs are normalized and shown in that order.
The block size used in all experiments was 256 bytes. The size of sub-block used in all the three
pipelined NNT designs was 32 bytes.
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Figure 4.6: The performance of the four alternative node-network interface (NNI) designs for
benchmark applications. CBB = CBB-NNI, PCF = PCF-NNI, CTD = CDT-NNI, and ICP =
ICP-NNIL.

The overall execution times are also broken down into four components. From bottom to top,
these components are compute processor busy (Busy) time, memory read waiting (Read) time,
memory write waiting (Write) time, and synchronization waiting (Sync) time. It is clear from the
timing breakdowns shown in Fig. 4.6 that for the application and baseline system parameters we
selected, Barnes, LU, and Water appear to be computation intensive. MP3D and Radix are com-
munication intensive. FFT is evenly divided between computation and communication time. The
communication time in MP3D is dominated by read waiting caused by true data flow dependence.
The communication time in Radix is dominated by write waiting caused by false data sharing.
LU has a significant amount of time spent in synchronization because of load imbalance at later
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execution phases. Except radix, the write waiting in each application is negligible because release
consistency is used.

From Fig. 4.6, the following two important observations can be made. First, all the three
alternative enhanced NNI designs improve the performance uniformly for all applications. In our
experiments, the cut-though delivery (CTD) enhancement outperforms the partial cache-filling
(PCF) enhancement. Integrating the two enhancements (ICP) outperforms either one alone. These
trends remain consistent across all the applications even though the amount of reduction in the
overall execution time varies. Overall, the PCF-NNI design improves the application performance
ranging from 1.7% to 15.7%, with a typical value of about 3%. The CTD-NNI design improves the
performance ranging from 3.1% to 33.3%, with a typical value of about 8%. The ICP-NNI design
improves performance ranging from 5.1% in LU to 41.2% in MP3D in our experiments. It can
also be observed from the breakdown that even with various resource contention, the reductions in
memory waiting time by the three sub-block NNI designs are still quite significant.

Second, not surprisingly, the breakdown also shows that the enhancements studied are most
effective for reducing read waiting time and less effective for reducing write waiting time. This can
be explained as follows. In a DSM system supporting the release consistency model, coalescing
write buffers are extensively used. This allows a processor to proceed regardless of write hit or miss
under most circumstances. A write is stalled (i.e., write waiting) when all write buffers are busy.
As in most systems with a write-back write-allocate cache, a write buffer is freed only after the
entire requested block is written into the cache. Therefore, the important property of the sub-block
technique which allows critical data forwarding and early restart becomes less effective.

In the next few subsections, we study the sensitivity of the performance benefit of the integrated
NNI with respect to several important system parameters by varying these parameters one at a
time.

Sensitivity to the Size of Sub-block

From earlier discussions, it is clear that the size of the sub-block is critical in the cost vs.
performance tradeoff. Since sub-blocks are used in both the CTD and PCF schemes throughout
the pipeline, the size of the sub-block should be a multiple of the size of micro-packet and of the
size of L1 cache line'?. Figure 4.7 shows the normalized execution time for the applications running
on systems using the ICP-NNI design under the default system configuration with different sized
sub-blocks. The sub-block size changes from 32 to 64 and to 128 bytes. The results are normalized
to the execution times of the individual applications on the baseline configuration using the CBB-
NNT design. It can be observed that as the size of the sub-block decreases, the performance benefit
of the ICP-NNI design increases with a diminishing return. The reason for such a trend is the
following. As the size of sub-block decreases, the granularity of the pipeline for resolving remote
operations becomes finer. At the same time, the control overhead of each pipeline stage remains
largely unchanged. Thus, more operation overlaps are exploited by smaller sub-blocks, leading to
higher performance.

Sensitivity to the Size of Block

Figure 4.8 shows the normalized execution time for the applications running on systems using
the ICP-NNI design under the default system configuration with different sized blocks. The sub-
block size is fixed to 32 bytes. The block size changes from 64 to 128 and to 256 bytes. It is noted

"We assume that L2 cache uses sub-block technology.
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Figure 4.7: Sensitivity to the size of sub-block. The block size is fixed to 256 bytes. The sub-block
size changes from 32 to 64 and to 128 bytes.

that each bar is normalized to the execution time of the same application on the corresponding
CBB-NNTI design using the same sized blocks. It can be observed that as the size of block increases,
the performance benefit of the ICP-NNI design increases. For applications except Radix, the
improvement margin also increases. This trend can be explained as follows. As the size of block
increases, the amount of data transferred (and sub-operations) in a memory operation increases.
The operational pipeline is kept full for a longer time period, leading to more operation overlaps
and thus, higher performance. The exception in Radix is due to the significance of write waiting
time induced by false sharing.

Sensitivity to the Occupancy of Coherence Controller

Figure 4.9 shows the normalized (against corresponding CBB-NNI design) execution time for the
applications running on systems using the ICP-NNI design under the default system configuration
with differing occupancies of coherence controller. The occupancy changes from 3 to 6 and to 12
bus cycles. It can be observed that for all applications except MP3D, the performance benefit of
the ICP-NNI design is not very sensitive to the occupancy of coherence controller. This is largely
caused by the separation of the data and control paths in the node controller. Using current
technology, the occupancy of the CC is dominated by the data transfer latency of the BTU. The
exception in MP3D at occupancy of 12 bus cycles may be caused by a program behavior change
due to the nondeterministic algorithm used by this application.

Sensitivity to Cluster Size

Figure 4.10 shows the normalized (against corresponding CBB-NNI design) execution time for
the applications running on systems using the ICP-NNI design under the default system configu-
ration with differing small cluster sizes. By cluster size, we mean the number of processor modules
connected to a single NNI. The cluster size is varied between 1, 2, and 4 in the experiments. At the
same time, the network topology changes from 4D to 5D to 6D hypercube because the total number

67



£ B 97.9
1S 100 925 94.0 o3 935 %7959 ISgs I
= 88.7 89.7 89.5 81 ago 618
S e} 99 g, 1288
= 70.0
3 256B
o
g so - 58.8
L
ks
N 40
©
g o) o
(o]
Z
0

FFT MP3D Radix Barnes LU Water

Figure 4.8: Sensitivity to the size of block. The sub-block size is fixed to 32 bytes. The block size
changes from 64 to 128 and to 256 bytes.
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Figure 4.9: Sensitivity to the occupancy on the coherence controller. The occupancy changes from
3 to 6 and to 12 bus cycles.
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of processors in the system is fixed at 64. It can be observed that for applications except Radix,
the performance benefit of the ICP-NNT design is not sensitive to the size of the small cluster. This
can be explained as follows. When the cluster size increases, the total number of clusters decreases.
From the application viewpoint, the amount of intra-cluster communication increases while the
amount of inter-cluster communication decreases. From the system viewpoint, the intra-cluster
communication bandwidth increases while the inter-cluster communication bandwidth decreases.
Such changes in program behavior and the system often match each other for most applications,
especially with small cluster sizes. The exception in Radix occurs because false sharing introduces
an unbalanced amount of inter-cluster communication and intra-cluster communication when the
cluster size changes.
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Figure 4.10: Sensitivity to cluster size. The number of compute processors connected to a single
switch changes from 1 to 2 and to 4.

4.7 Related Work

Recently, in the context of network of workstations (NOW), two software/firmware techniques,
similar to the PCF and CTD, have been shown to be quite successful in reducing communication
latency. The first technique [69] uses two reply messages to resolve one page fault in network-
based disk-caching. The first message contains a small sub-page with critical data in order to allow
early processor restart. The second message contains the rest of the target page for keeping the
semantics of page fault unchanged to the rest of the system. The other technique [149] applies
cut-through delivery to eliminate the store-and-forward latency by pipelining packets through the
adapter. Both software techniques focus on transferring large, page-sized data (8K bytes) between
main memories of workstations. A somewhat similar mechanism called bulk transfer [57, 147] has
also been proposed for DSM systems to pipeline and overlap the transfer of multiple cache blocks.
However, its performance advantages seem to be limited to applications with many data/task
migrations [58, 57]. The extra complexity of introducing bulk transfer mechanism into existing
systems is also considerably high. Our work is different from the above two studies because: a) our
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targeting systems are hardware DSMs which possess totally different characteristics from NOWs
and b) our proposed designs are completely hardware based.

4.8 Summary

The remote memory access latency, a bottleneck in DSM systems, can be divided into a number
of components such as the time being spent for cache hierarchy propagation, memory directory
manipulation, message sending and receiving, and message transmission inside the network, in
addition to the response time of memory modules. These components are strongly affected by
the node-network interface (NNI) design because different NNI designs may allow various sub-
operations in cache propagation, memory directory manipulation, message sending and receiving,
and message transmission to be pipelined and overlapped with one another.

In this chapter, we have proposed three new pipelined NNI designs, namely, the partial cache-
filling NNI (PCF-NNI) design, the cut-through delivery NNI (CTD-NNI) design, and the integrated
cut-through delivery and partial cache-filling NNI (ICP-NNI) design. These designs apply the
pipelining idea to caching and messaging layers while maintaining coherence at the block level. We
have studied the important design issues such as interlock signaling at various pipelining stages at
the sub-block level. We have also presented in detail an implementation of the core circuitry, i.e.,
the block transfer unit (BTU), for our most sophisticated, efficient design.

Simulations have been performed to evaluate the effectiveness of the interface designs compared
to a conventional one using six benchmark applications. Our results show that in our baseline con-
figuration, compared to the CBB-NNI design, the PCF-NNI, CTD-NNI, and ICP-NNI designs can
improve application performance by up to 15%, 33%, and 41%, respectively. For most applications,
the typical performance improvement is about 3%, 8%, and 11%, respectively. The sensitivity of
such improvements to several important system parameters such as the size of sub-block, the size
of block, the occupancy of coherence controller, and the size of cluster are also examined through
simulation experiments. The results show that the performance benefit increases as the size of sub-
block decreases or as the size of block increases. The performance benefit is also shown to be not
so sensitive to the occupancy of the coherence controller or the size of cluster for most applications.

Overall, this study demonstrates that appropriate pipelined designs require modest hardware
modifications to existing node-network interfaces currently being used in DSM systems and can
improve the overall system performance significantly.
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CHAPTER 5

INCORPORATING MULTIPLE-PATH NETWORKS BY USING
EFFICIENT NODE-NETWORK INTERFACE

A pronounced component of the remote memory access latency is the network delay, as high-
lighted by the results in Chapters 2 and 3. One effective means to alleviate network congestion and
increase throughput, thus leading to lower network delay, is to use multiple paths in transferring
messages between a pair of nodes in such systems. Modern switches/routers like SGI SPIDER [49]
and HAL PRC [144] use performance-enhancing mechanisms such as cut-through switching, mul-
tiple virtual channels, and efficient buffering extensively. As a result, multiple paths exist between
any given pair of nodes, either implemented physically [10] or supported logically via virtual chan-
nels [144, 49], in most existing CC-NUMA systems. One side effect of using multiple paths in
transferring messages is that messages from a source may arrive at a destination in different orders.
This is known as the pairwise out-of-order (Oo0) message arrival problem. Although exceptions
exist [88], many directory-based cache coherence protocols [138] designed for DSM systems require
pairwise in-order arrival.

To exploit the advantages of a multiple-path network in a DSM system, architects currently
use two alternative strategies. The first one, used in the SGI Origin, is to enhance the cache
coherence protocol with more intelligence so that it can detect and resolve all critical out-of-order
(O00) message arrivals. The main drawback of this strategy is the high complexity in the design,
verification, and implementation of the resulting coherence protocol [144]. The second strategy,
used in the HAL Mercury, is to enhance the network interface with reordering capability to ensure
that all pairwise messages seen by the coherence protocol are in-order (total FIFO channel). The
drawback of this strategy is a noticeable increase in both complexity and overhead (delay) at the
network interface.

In this chapter, we propose a new strategy for exploiting the benefits of multiple-path networks
in a DSM system using block correlated FIFO channels. This new strategy detects all potential
coherence sensitive (pairwise) race conditions and prevents them from occurring. It allows the use of
both an in-order (FIFO) cache coherence protocol and a simple network interface. We also present
an efficient implementation of this strategy based on current technology. To quantitatively evaluate
the performance of our proposed strategy, we have performed simulation experiments using practical
system configurations and benchmark applications. For most applications, the results show that
the new strategy is less than 1% slower than the SGI Origin approach and up to 40% faster than
the HAL Mercury approach. This demonstrates that DSM systems using our proposed strategy
can provide very competitive performance at a much lower cost.

This chapter is organized as follows. Section 5.1 reviews issues relevant to communication in
DSM systems. Sections 5.2 and 5.3 describe the intelligent cache coherence protocol strategy and
the total FIFO channel strategy, respectively. In Section 5.4, we propose the block correlated FIFO
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channel strategy and present an efficient implementation. Section 5.5 describes our methodology for
performance evaluation and discusses the results, and finally in Section 5.6 we draw the conclusions.

5.1 Relevant Design Issues

In this section, we discuss several key issues relevant to incorporating multiple-path networks
in CC-NUMA systems.
Complexity of Cache Coherence Protocol: The cache coherence protocol of a CC-NUMA
system ensures that a read to any memory location always gets the content from the latest write
which the reading processor is aware of. Various cache coherence protocols differ on the types of
states and messages being used. The complexity of a protocol increases with the number of state
types and message types. Although fast high coverage techniques exist [47], complete coverage
verification methods rely on exhausting the reachability of finite state machines or their equivalents.
Until now, verification of a highly complex coherence protocol remains a monumental task for
computer architects [115]. Complex protocols also introduce larger overhead on the critical path,
leading to longer occupancy for each state transition in the protocols.
000 Arrival and Oo0O Event: As mentioned earlier, modern high-performance networks support
multiple virtual channels [144, 49] or multiple physical routes [10] between a pair of nodes to increase
bandwidth and/or reduce congestion. When virtual channels are supported, a path can be viewed as
a chain of virtual channels from the source node to the destination node. The latency of a message
varies depending on the length of the message, the length of the used path, and congestion along
the path being used. Therefore, it is possible that between a source-destination pair, a message
using one path reaches its destination sooner than a previously sent message using another path,
as shown in Fig. 5.1. Such a bypassing scenario is commonly known as an out-of-order (Oo0O)
arrival of messages [27]. A message may bypass more than one messages. For each of the bypassed
messages, exactly one out-of-order (0O00) event occurs.

Source Destination
Node Node
I Network I
"
', M2

(a) at the sending time

Source Destination
Node Node
i Network I
1 A
)
[R LS i
g

(b) at the receiving time

Figure 5.1: An example of out-of-order (OoQ) arrivals of messages between a source and destination
pair.
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Example Race Condition: In a CC-NUMA system, many types of race conditions may be caused
by 00O events. Figure 5.2 shows one example. Node N; sends a write-miss request (Rzg(1)) to
block By whose home is node Ny and whose current owner is node N3. Once the request Rzq
arrives at No, a flush request (F'sh(2)) is sent by Ny to N3. Assume right before the arrival of Fsh
at N3, the (dirty) copy of B; is displaced and sent back (Wbk(3a)) to No. Once F'sh reaches N3,
a reply (Frp(3b)) is sent by N3 back to Ny as the acknowledgment. Either message Wbk or Frp
may reach Ny first (i.e., a race condition) in a network allowing OoO arrivals. This uncertainty
becomes a problem for many cache coherence protocols because after the Frp arrives, reply Rzp(4)
normally takes a copy from the main memory at N, which may or may not have been updated by
the Wbk. Such a (coherence-sensitive) race condition must be detected and resolved properly.

N3

Frp(3b)

Figure 5.2: An example race condition caused by an OoO event.

For resolving race conditions, in the following three sections, we examine two existing strategies
and their drawbacks, and propose a new efficient strategy.

5.2 Intelligent Cache Coherence Protocol Strategy

The basic idea behind the intelligent cache coherence protocol (I-CC) strategy is to build enough
intelligence into the cache coherence controller so that it can detect and revolve all race conditions.
Typically, the network in the target system is logically separated into request and response networks.
Within each logical network, complete freedom is granted in routing a message from its source to
destination. Figure 5.3(a) illustrates the network connecting two arbitrary nodes in such a system.
Four parallel paths are shown, with two paths in each of the two logical networks. This strategy
can use simple and efficient network interfaces with a selection function which decides whether the
request or the response network should be used for transferring a particular message.

In this strategy, the coherence protocol must detect a race condition on-the-fly. The popular
approach is to denote the relevant history of operations on each memory block using different
directory/cache states. By checking the current state and the type of message, all race conditions
can be detected successfully. Once a ‘spoiling’ message arrives before the expected ‘authoritative’
message (e.g., message 3b bypasses 3a in Fig. 5.2), the spoiler (message 3b) can be buffered or
NAKed. Other actions like reverting to a simpler protocol, or combining transactions can also be
taken to resolve it depending on different performance optimization goals [27]. For a more detailed
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Figure 5.3: The networks between two nodes in a system using: (a) the I-CC, (b) the T-FIFO, and
(c) the C-FIFO strategies.

description on such cache coherence protocols, readers can refer to [85, 88, 27]. It is to be noted
that OoO events across memory blocks do not cause any race condition by virtue of synchronization
mechanisms (e.g., release consistency [85, 27]) used in the CC-NUMA systems.

In order to get a rough idea on the complexity of an intelligent cache coherence protocol, let
us examine the protocol used in the SGI Origin [88] as an example. As reported in [27], there are
15 requests (including invalidations and interventions) and 39 responses, 7 directory states'!, and
more than 7 cache states used in this protocol'?>. Compared to cache coherence protocols that are
used in the next two strategies, this complexity is significantly higher. This is the main drawback
of the I-CC strategy.

Overall, CC-NUMA systems using the I-CC strategy are expected to deliver high performance
because the benefits of the multiple-path network are aggressively exploited. Unless race conditions
have actually occurred, forward progress in applications can always be made.

5.3 Total FIFO Channel Strategy

The philosophy of the total FIFO channel (T-FIFO) strategy [144] is to build a powerful network
interface (NI) to shield the effect of OoO arrivals from the rest of the node. The network can
use any path for transferring a message from its source to destination. The in-order message
arrival property, ensured by the NI, effectively eliminates all race conditions for cache coherence
protocols, allowing many simple and efficient (in-order based) cache coherence protocols (such as
those discussed in [138, 27, 115]) to be used. Figure 5.3(b) illustrates an example network with
four parallel paths connecting two arbitrary nodes in a system using the T-FIFO strategy. For a
race condition as shown in Fig. 5.2, this strategy ensures that the cache coherence protocol always
sees message 3a before message 3b regardless of which one has arrived at the NI of node N first.

The T-FIFO strategy demands two key functions from the NI: a) to detect all occurrences of
000 arrivals and b) to remedy every such occurrence into a set of in-order arrivals. A representative
design is to use a sliding window protocol enhanced with reordering capability. Figure 5.4 shows
the pseudo-code description of such an NI. The code is self-explaining. Detailed description on

"Including one state for efficient page migration.

12Many optimizations targeted towards better performance have been incorporated into the SGI Origin coherence
protocol. Otherwise, these numbers may be slightly smaller.
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the NI design can be found in [38]. The main enhancement contains (pairwise) sequence number
manipulation for OoO arrival detection and buffer management for restoring message order.

Sending: Receiving:
gen-seqno(msg) /* r */ receive(msg)
construct(msg) if (out-of-seq(msg)) /* r */
send(msg) reorder-defer(msg) /* 2r */

else { dispatch(msg)
reorder-dispatch()} /* f(r) */

Figure 5.4: Pseudo-code description of the NI used in the total FIFO channel strategy. ‘Dispatch’
means delivering ‘msg’ to the cache coherence controller. The comments show the time delays for
reordering operations.

Typically, OoO arrivals occur rarely in a system. Not every OoO arrival causes a race condition.
However, the overhead for detecting OoO arrivals slows down every network transaction. This is
the main drawback of the T-FIFO strategy.

5.4 Block Correlated FIFO Channel Strategy

In this section, we propose a new strategy which uses simpler cache coherence controllers and
inexpensive NIs. We first develop several key concepts used in this strategy and then present an
efficient implementation.

5.4.1 Eliminating Race Conditions

A careful examination can reveal the fact that in a DSM system, the services of memory
operations targeting to the same memory block must be serialized. For convenience of discussion,
let us define two memory operations to be block correlated memory operations if their target memory
blocks are the same. We can similarly define block correlated messages and block correlated network
transactions. A race condition is a scenario in which the serialization order of two block correlated
memory operations may be observed differently by the involved nodes because of OoO events. Such
an 000 event can be defined as a block correlated Qo0 event. All race conditions are caused by
block correlated OoO events. Because each memory operation is serviced by a chain of network
transactions, to eliminate all race conditions, a necessary and sufficient condition is that all block
correlated network transactions must maintain the in-order property while non-correlated network
transactions can proceed arbitrarily’®. The important performance implications of this condition
will become clear in Section 5.5.

13When the order between non-correlated network transactions is critical, it will be ensured by the synchronization
mechanism of the DSM system.
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5.4.2 Block Correlated FIFO Channel

A block correlated FIFO channel (BCFC) can be defined as the abstraction of a FIFO channel
used for transferring messages relating to a particular memory block. Every memory block has
a distinct block correlated FIFO channel (BCFC) associated with it between each pair of nodes.
The number of BCFCs between two given nodes is equal to the total number of blocks in the
shared address space. Such BCFCs put no restriction on the arrival order of non-block correlated
messages because they travel in separate BCFCs. Therefore, BCFCs provide a perfect mechanism
for enforcing the necessary and sufficient condition for eliminating race conditions discussed in the
previous subsection.

5.4.3 The Strategy and Implementation

We propose to build DSM systems using simple (in-order based) cache coherence protocols and
block correlated FIFO channels (BCFCs). We call such a strategy the block correlated FIFO channel
(C-FIFO) strategy. This strategy prevents race conditions, such as the one shown in Fig. 5.2, from
ever occurring because messages 3a and 3b are block correlated and thus message 3b will never
bypass message 3a.

At a first glance, it seems impractical to implement BCFCs in a system because of the large
number of BCFCs required. Most current generation networks, such as those used in IBM SP [10],
HAL Mercury [144], and SGI Origin [88], support only a small number of (physical or logical)
parallel paths (FIFO channels). However, if we map (or collapse) multiple BCFCs onto a single
path, the path can be viewed as block correlated to a particular set of memory blocks. Using this
mapping idea, a simple implementation of the C-FIFO strategy becomes realizable. For efficiency
purposes, the mapping from BCFCs to parallel paths should incur a minimum overhead. An ideal
mapping function is the ‘modulo’ operation on the block address associated with each BCFC. Since
the number of parallel paths is typically small in a system, selecting a path for transferring a
message based on the few least significant bits of the block address associated with the message
can be done easily. Figure 5.3(c) illustrates four block correlated paths (i.e., four logical networks)
connecting two nodes in a system using the C-FIFO strategy.

It is clear that the C-FIFO strategy can use cache coherence protocols as simple as those used
in the T-FIFO strategy and NIs as efficient as those used in the I-CC strategy. Figure 5.5 shows
a qualitative comparison of these strategies. In the next section, we compare and discuss the
performance of these three strategies, quantitatively.

5.5 Performance Evaluation

This section presents our simulation-based performance evaluation methodology, simulation
results, and discussions.

5.5.1 Methodology

The hardware cache coherent multiprocessor we simulated had a generic DSM architecture
similar to the FLASH system [85], supporting release consistency. Each processor was modeled
as a 300 MHz single-issue superscaler, supported by a 8 KB direct-mapped write-through L1 D-
cache (32 bytes per line), a perfect I-cache, and a 128 KB 2-way associative write-back L2 cache
(256 bytes per line). Coalescing write buffers were provided for both L1 and L2 caches (8 entries
each). A read miss in L1 cache and L1 write buffer stalled the processor. The memory module
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Figure 5.5: A qualitative comparison of alternative strategies for incorporating multiple-path net-
works in DSM systems along three fundamental design axes. The ‘Use of Multiple Paths’ axis
indicates the flexibility for transferring a given message.

was assumed to support multiple read/write ports, with a 66 ns response time per memory access.
A directory cache was assumed to eliminate any directory access stall. The bandwidth between
the node controller and each module (e.g., processor and memory modules) was assumed to be 1.6
GB/sec.

The system had 64 processing nodes connected via a 5D hypercube with 2 nodes per switch
(like the SGI Origin [88]). The network used the dimensional order (from low to high) wormhole
routing scheme [35, 32, 27| and supported 2 virtual channels. Each virtual channel was assumed
to be 64 bits wide and have an input buffer of 256 bytes and an output buffer of 32 bytes. The
network switch was assumed to operate at 100 MHz. The link synchronization time, routing time,
and time to cross the crossbar was assumed to be 20 ns, 10 ns, and 10 ns, respectively. The link
propagation time was assumed to be 10 ns.

Two compatible cache coherence protocols originally presented and verified in [115] were used,
with extensions for release consistency. The non-FIFO coherence protocol was used for the I-CC
strategy, while the FIFO coherence protocol was used for the T-FIFO and the C-FIFO strategies.
The occupancy on cache coherence controller for each network transaction was assumed to be mostly
46.2 ns (14 processor cycles), with additional 16.5 ns (5 processor cycles) for each invalidation
message. The equal occupancy assumption might favor the I-CC strategy because of the higher
complexity of its coherence protocol. However, based on our simulation results, this bias does not
affect the overall conclusions of this study.

The basic network interface (NI), as used in the I-CC strategy, was assumed to take 40 ns for
sending or receiving a message. For the C-FIFO strategy, extra 10 ns was assumed for selecting a
path. For the T-FIFO strategy, the reordering capability was modeled as shown in Fig. 5.4. For
simplicity, a delay of r was assumed for performing a load-modify-store operation on a sequence
number and 2r for depositing or removing an OoO message at the NI. Table 5.1 summarizes the
default memory system parameters used in our simulations.

In the simulation experiments, we considered five configurations: one using the I-CC strategy,
one using the C-FIFO strategy, and three using the T-FIFO strategy (denoted as T-FIFO-1, T-
FIFO-2, and T-FIFO-3). The T-FIFO-1, T-FIFO-2, and T-FIFO-3 configurations differed only in
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Memory Hierarchy Parameters

Processor frequency

L1 cache access

L1 cache line size

L1 cache set associativity

L1 cache size per node

L1 coalescing write buffers
Data-path width between L1 and L2
L1 cache line fill time

300MHz

1 proc cycle
32 bytes

1

8 Kbytes

8

8 bytes

6 proc cycles

L2 cache access

2 proc cycle

L2 cache line size (L) 256 bytes
L2 cache set associativity 2

L2 cache size per node 128 Kbytes
L2 coalescing write buffers 8

Memory bus frequency 100MHz

Memory response delay
Memory bus width (W)
L2 cache line fill time
Memory block access time

20 proc cycle

16 bytes per mem cycle

20 proc cycles + L/W mem cycles
20 proc cycles + L/W mem cycles

Coherence Controller Occupancy

Directory check

Directory check and update
Invalidation request

Cache intervention

7 proc cycles

14 proc cycles

5 proc cycles each
3 proc cycles

Network Interface Parameters

Outgoing constructing
Incoming dispatching
Reordering overhead parameter
Control message size

Data message size

4 mem cycles
4 mem cycles
r mem cycles
16 bytes
16+L bytes

Network Parameters

Network frequency
Channel width / Flit size
Link Propagation

Router switch delay
Routing time

Link synchronization time
Physical network

Virtual channels

100MHz

8 bytes

1 net cycle
1 net cycle
1 net cycles
2 net cycles
1

2

Table 5.1: Default system parameters used in the simulation.
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the value of r, which was assumed to be 100 ns, 200 ns, and 300 ns, respectively, corresponding
to aggressive, intermediate, and conservative implementations. In the I-CC configuration, one
virtual channel was used for transferring requests and the other for responses. In the C-FIFO
configuration, one virtual channel was used for transferring messages related to even addressed
blocks and the other for odd ones. In the T-FIFO-1, T-FIFO-2, and T-FIFO-3 configurations, both
virtual channels were used with no distinction.

We used six applications — FFT (64K points), MP3D (50K particles), Radix (1M keys, 1K
radix), Barnes (8K particles, 4 steps), LU (512 by 512 matrix), and Water (512 molecules, 4 steps)
— in our simulation evaluations.

5.5.2 Results and Discussions

In this section, we evaluate the performance of DSM systems using the I-CC, T-FIFO, and
C-FIFO strategies. We study the overall execution times of applications, the characteristics of
network transactions, the characteristics of block correlated OoO arrivals and OoO events, and the
impact of several key system parameters.

Overall Results

The overall execution times of benchmark applications on different system configurations are
shown in Fig. 5.6. All times are normalized to that of the I-CC configuration. The times are
further broken down into four components: the CPU computation busy time (Busy), the memory
read waiting time (Read), the memory write waiting time (Write), and the synchronization waiting
time (Sync). It can be observed that the C-FIFO configuration always delivers either the best or
very close to the best performance among the five evaluated configurations. The actual performance
difference between the C-FIFO configuration and the best one varies across applications from 0%
(in MP3D) to 2.7% (in Radix). For most applications, this difference is less than 1%. With the
simplicity at the NI level and at the cache coherence controller level, such a performance makes
the C-FIFO strategy very attractive.

For all applications except Radix, the performance trend of the five configurations is the same.
Namely, the configurations using either the I-CC strategy or the C-FIFO strategy outperform those
using the T-FIFO strategy. The performance of the I-CC configuration (strategy) and that of the
C-FIFO configuration (strategy) are very comparable. Among the configurations using total FIFO
channels, the performance decreases for all applications as the reordering overhead (r) increases,
as expected.

From the timing breakdowns, it can be observed that the CPU computation busy time remains
almost constant across all configurations in every application. This is expected because the config-
urations (thus the strategies) target to reduce various waiting times due to communication, not the
computation busy time. Two facts can be easily observed from the breakdowns. First, the compu-
tation to communication ratios are within typical ranges for each individual application, consistent
with results reported by other research [85, 1]. Second, for all applications except Radix, the write
waiting time is negligible. This correlates to earlier research on release consistency [27].

Characteristics of Network Transactions

Figure 5.7 shows the average latency of network transaction on the five evaluated configurations
during the execution of applications. For most applications, the latency is significantly higher in
the T-FIFO strategy than those in the I-CC or C-FIFO strategy. This shows that a noticeable
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Figure 5.6: The overall execution times of benchmark applications on different configurations.

portion of the overhead incurred by the message reordering at the network interface (NI) lies on
the critical path of every network transaction, especially the uncontended network transactions.
It can be observed that a strong correlation exists between Figs. 5.6 and 5.7. This is caused
by two reasons: a) the computation remains almost same across configurations; and b) the total
number of network transactions changes marginally across configurations, as shown in Table 5.2.
This shows that the average latency of a network transaction has a strong impact on the overall
performance of a CC-NUMA system. Any new technique for reducing this metric can potentially
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I-CC 294 | 5,344 | 5862 | 1,585 |52l ] 612
C-FIFO | 290 | 5,091 | 5,857 | 1,572 | 511 | 612
T-FIFO-1 | 292 | 5,169 | 5,882 | 1,604 | 496 | 610
T-FIFO-2 | 292 | 4,823 | 5,890 | 1,560 | 484 | 610
T-FIFO-3 | 292 | 4,741 | 5,870 | 1,566 | 477 | 610

T-FIFO-2

Table 5.2: Total number of network transactions (in thousands).
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Figure 5.7: The average latency of a network transaction on different configurations.

Now, let us examine the performance results of Radix in Fig. 5.6. As shown in the figure, the
C-FIFO configuration still provides the second best performance. However, the I-CC configuration
is surprisingly outperformed by all other configurations. This phenomenon can be explained by
the usage of the parallel virtual channels in different configurations. In Radix, especially at the
permutation phase when the local histograms are merged into the global histogram in the earlier
iterations, multiple writers and false sharing generates bursty heavy network traffic. This causes
temporarily congestion in the network. In the T-FIFO-1, T-FIFO-2, and T-FIFO-3 configurations,
the two virtual channels were used equivalently for transferring any messages. To its contrary, in the
I-CC configuration, one virtual channel was dedicated to transferring request messages, the other to
transferring response messages. Due to the imbalance between the request and response traffic, the
virtual channels and thus network bandwidth in the latter configuration are not used as effectively
as those in the former when the network is congested. However, in the C-FIFO configuration, the
usage of the virtual channels and thus network bandwidth is improved to a certain extent depending
on the temporal distribution of the block addresses. This result indicates that the T-FIFO and
C-FIFO strategies can adjust better than the I-CC strategy when severe network congestion occurs.

Characteristics of O00O Arrivals and OoO Events

To gain more insights into the severeness of penalty on the average latency of network trans-
action exerted by total FIFO channels, we examined the characteristics of pairwise out-of-order
(000) arrivals and OoO events in the most aggressive T-FIFO-1 configuration. The T-FIFO-2 and
T-FIFO-3 configurations cause worse penalties. Table 5.3 shows the rate of OoQO arrivals between
two nodes, the average number of Q0O events generated per OoO arrival, the average rate of block
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correlated Qo0 events per Qo0 event, and the average number of block correlated OoO events per
message arrival. It can be observed that the average number of block correlated OoO events per
message arrival (i.e., the erroneous outcome of a race condition) is a very small number, in the order
of 1072 or less. Our experimental data for the T-FIFO-2 and T-FIFO-3 configurations also showed
that this number was even smaller. Such a small value indicates that the overhead incurred on
every message transmission at the network interface (NI) in the T-FIFO strategy over-kills system
performance.

H ‘ FFT ‘ MP3D ‘ Radix ‘ Barnes ‘ LU ‘ Water H

000 Arrival Rate 1.91% | 1.95% | 2.65% | 0.76% | 3.49% | 1.03%
000 Ev/O00O Arr | 1.0002 | 1.0006 | 1.0129 | 1.0000 | 1.0000 | 1.0002
000 Haz/000 Ev | 66.65% | 0.10% | 5.65% | 6.55% | 12.55% | 0.01%
000 Hazard/Msg | 1.27e-2 | 1.95e-5 | 1.50e-3 | 4.98e-4 | 4.38e-3 | 1.03e-6

Table 5.3: Summary of out-of-order (OoQ) messages per pair of processing nodes in a total FIFO
channel system (T-FIFO-1 configuration).

The above evaluations were based on a specific set of implementations. To ensure that the
conclusions are not limited to certain implementations, we also studied the impact of several key
design parameters relevant to communication. In the following subsection, we present results on
the impact of the L2 cache designs and the network topology.

5.5.3 Impact of Cache Design Parameters

In this subsection, we study the impact of the L2 cache line size and the L2 cache size on the
performance trend of the three strategies.

Impact of Smaller L2 Cache Line Size

It is well known that varying the cache line size of a given cache has the bath-tub effect on the
overall execution time. A smaller L2 cache line reduces the average latency of network transaction
and alleviates false sharing between nodes. On the other hand, the amortized cost per network
transaction is higher. The increased misses at the L2 cache generate more network transactions.
Figure 5.8 shows the execution time breakdowns of the I-CC, the C-FIFO, and the T-FIFO-2
configurations with a L2 cache line of 128 bytes. Compared to the corresponding results with a line
size of 256 bytes, the overall performance improves in all three configurations for each application.
Indirectly, this trend can be observed from Figs. 5.6 and 5.8 based on two facts: a) the absolute
CPU computation busy times barely changed for each application in all our experiments; and b) the
relative percentages of the CPU computation busy times increase from Fig. 5.6 to Fig. 5.8. It is to be
noted that both the SGI Origin [88] and the HAL Mercury [144] systems use a L2 cache line of 128
bytes. Interestingly, with this cache line size, the performance gap among different configurations,
especially the improvement of the C-FIFO configuration over the T-FIFO configuration, increases.
This is because the reordering overhead becomes more prominent under reduced overall execution
time.
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Figure 5.8: Impact of smaller cache line (128 bytes) on the overall execution times of benchmark
applications on three configurations.

Impact of Larger L2 Cache Size

Let us now examine the case where each processing node has a larger L2 cache. A larger L2 cache
helps to reduce capacity misses and thus potentially decreases the communication to computation
ratio. Figure 5.9 shows the results of the three configurations with 256 Kbytes L2 caches (twice of
the size used in experiments shown in Fig. 5.6). As expected, the overall performance improves in
all three configurations for each application as the cache size increases. However, the performance
trend remains unchanged (compared to Fig. 5.6) among all three strategies while the performance
gap grows. This again attributes to the more prominent role of the communication subsystem on
the overall performance.

5.5.4 Impact of Network Topology

We have also studied the impact of network topology on the performance improvement. We
first examined the case where more processing nodes are connected to the same switch. Then, we
examined the case where network bisection bandwidth decreases.

Impact of Larger Cluster Size

In general, a larger cluster increases the amount of intra-switch communication and reduces
inter-switch communication. Figure 5.10 shows the results from systems consisting of 16 switches
connected in a 4D hypercube topology with each switch connecting to 4 processing nodes (thus a
total of 64 processing nodes). It is noted that each switch in the system is an 8-port bidirectional
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Figure 5.9: Impact of larger cache size per node (256K) on the overall execution times of benchmark
applications on three configurations.

crossbar. In the experiment, the link bandwidth was maintained as the same as the default system.
Due to the larger cluster size, the total number of switches decreased. As a result, the actual
bisection bandwidth of the network also decreased. It can be observed that the overall performance
of each application decreases (compared to Fig. 5.6) in all three configurations as cluster size
increases. Interestingly, the performance gap among the configurations changes depending on the
application. This gap increased in MP3D; barely changed in Radix, Barnes, LU, and Water; and
decreased in FFT. However, the basic trend of performance among the three strategies remained
unchanged from Fig. 5.6.

Impact of Smaller Network Bisection Bandwidth

Under the constraint of fixed number of nodes, as the dimensionality of a k-ary n-cube network
decreases, the bisection bandwidth decreases, the diameter increases, and therefore the impact of
network congestion increases. The main difference between the experiments in this section and
the previous section is that the amount of intra-switch and inter-switch communication remains
unchanged. Figures 5.11 and 5.12 show the results from systems containing 32 switches connected
by a 3D and 2D mesh, respectively. In all experiments, each switch connects to 2 processing nodes,
the same as in our base configuration. It is noted that the number of bidirectional ports supported
by a switch changes as the connectivity decreases. It can be observed that the overall performance
of each application decreases significantly in all three configurations as topology changes from 5D
(Fig. 5.6) to 3D (Fig. 5.11) to 2D (Fig. 5.12). At the same time, the performance gap among the
configurations increases for Radix and decreases for all other applications. Both the increase and
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Figure 5.10: Impact of larger cluster size (4 processing nodes per switch) on the overall execution
times of benchmark applications on three configurations.

decrease of the gap can be attributed to the growing prominence of congestion in the network, as
explained in subsection 5.5.2. Nevertheless, our conclusion about the overall performance of the
three strategies still remains unchanged.

5.6 Summary

In this chapter, we have proposed a new, block correlated FIFO channel (C-FIFO) strategy for
incorporating multiple-path networks in scalable DSM systems. This new strategy combines the
advantages and avoids the drawbacks of two existing strategies, i.e., the intelligent cache coherence
protocol (I-CC) strategy and the total FIFO channel (T-FIFO) strategy. An efficient implementa-
tion of this new strategy using current technology has also been presented. Detailed performance
evaluations demonstrate that for most applications, our proposed C-FIFO strategy outperforms
the T-FIFO strategy by a factor of up to 40% and performs almost equal to the I-CC strategy at
a much lower cost.

This study shows that not all network transactions in DSM systems are equally important
at a given time. The effective latency of network transactions which can contribute to forward
progress in applications is crucial for the overall system performance. With the simplicity at the
cache coherence controller level and at the network interface level, the C-FIFO strategy offers a
significant cost-performance advantage over the existing strategies. Current and future generation
DSM systems can therefore benefit significantly by using this strategy.
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CHAPTER 6

REDUCING INVALIDATION OVERHEAD IN FULL-MAP COHERENCE
SCHEMES

In the previous two chapters, we have focused on the NNI and proposed novel NNI designs.
In the next three chapters, we change our focus to the network and propose enhancements at the
network for making the protocol layer more efficient. These enhancements help to reduce the remote
memory access latency by addressing both the overhead at the NNI and the network delay — the
two main components of the remote memory access latency according to Eqn. 3.15 in Chapter 3.
Specifically, we look at the cache invalidation overhead problem in this chapter.

In current generation directory-based DSM systems, when a write operation is initiated, the
home node sends multiple (unicast) invalidation requests to all sharing nodes and receives acknowl-
edgments from them. These request/ack messages result in high traffic (thus, contention) in the
network and incur considerable overhead at the NNI [61]. They also make the home nodes hot-spots
in the network. Therefore, cache invalidation causes high-latency for write operations, leading to
degradation on the overall system performance.

Under closer examination, it can be observed that cache coherence protocols use two fundamen-
tal message-passing operations in cache invalidation: sending one-to-many messages from one node
to a set of other nodes and collecting many-to-one messages from a set of nodes to one node. Both
patterns belong to the class of collective communication [96]. A few earlier studies have considered
using collective communication in cache invalidation. In the WW'T project, the invalidation re-
quests are broadcasted using a dedicated broadcast network [117]. The drawback of such a design
is that the broadcast network is very costly. Bhuyan et al. have proposed an embedded hierarchi-
cal ring broadcast mechanism for implementing fast invalidations [95]. The drawback is the high
latency incurred.

Recently multidestination message-passing mechanisms have been introduced for wormhole net-
works to achieve low-latency multicast [112, 111] and gather [108] operations on distributed memory
systems. In this chapter, we propose a set of multidestination-based reservation and gather worms
to implement cache-coherence with reduced overheads. A small set of invalidation acknowledgment
(i-ack) buffers are proposed to be used at the router interfaces to facilitate fast collection of ac-
knowledgments. Different grouping schemes are proposed to send cache-invalidation requests and
collect acknowledgments for deterministic (dimensional order) and adaptive (turn-model) routing
schemes. The effect of these grouping schemes to reduce the number of invalidation request/ack
messages, total network messages and overall execution time is studied through simulation ex-
periments. Depending on the invalidation characteristics in these applications, a wide range of
improvement (2-15% reduction in overall execution time) is observed. It is shown that turn-model
routing with a density-dependent column grouping leads to the best reduction on overall execu-
tion time for these applications. In this chapter, we consider a full-map directory system with
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sequential consistency. However, our methodology is quite general and can be applied to other
directory schemes and consistency models. In the next chapter, we show how this methodology can
be applied to limited directory schemes.

6.1 Cache Invalidation Overhead in DSM systems

In this section, we analyze communication characteristics of cache invalidation transactions and
the associated overhead.

6.1.1 Characteristics of Invalidations

In a system using a directory-based write-invalidation protocol, when a request to obtain
exclusive-write access comes from a writer node to the home node of a cache block, the home
node sends invalidation request messages to all sharers. These sharers, after receiving the invali-
dation requests, invalidate their respective cache blocks and send an acknowledgment each to the
home node. The home node receives all these acknowledgments and then provides exclusive-write
access to the writer node requesting the cache block. The entire sequence can be defined as an
invalidation transaction, which consists of mainly two phases: request and acknowledgment.

Figure 6.1 illustrates the two phases for a sample sharing distribution in a dimensional order
routed 8 x8 mesh DSM supporting point-to-point (unicast) message passing. In this example, the
degree of sharing for the memory block being invalidated is assumed to be 24. Thus, the home node
sends 24 invalidation requests and receives 24 acknowledgments. Let us denote such a framework as
Unicast-based Invalidation and Unicast-based Acknowledgment (UI-UA ). Under this framework, the
invalidation takes considerable time due to sending and receiving a large number of messages. The
hot-spot effect occurs at the home node in both the request phase as well as the acknowledgment
phase.

e home
node

O sharer

—» Unicast
worm

Figure 6.1: Example of an invalidation in an dimensional order routed mesh DSM supporting
unicast communication: (a) the request phase and (b) the acknowledgment phase.

It is noted that a strong dependency exists among the request and reply messages for achieving
cache coherence, leading to deadlocks in such systems. As a common practice, a pair of separate
networks (at least logically separated) are used. Any request and reply messages that are related
to each other are forced to travel in different networks to break the hold-and-wait condition that
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is necessary for a deadlock to occur. This means that the above two phases of an invalidation
transaction usually take place in separate networks. Thus, for a major fraction of the time of an
invalidation transaction, these two phases progress in an overlapped manner.

6.1.2 Latency and Traffic Estimates

In order to analyze the latency of an invalidation transaction quantitatively, let us use the
following four simple measures. Home node occupancy [61] reflects the amount of processing time
required at a home node in order to send the requests and receive the acknowledgments. It is
proportional to the number of messages sent from and received by the home node. Average distance
of a sharer from the home node reflects the network latency component of invalidation latency.
Based on the underlying routing scheme, this component is related to the average number of
hops traveled by a message. The number of messages and total number of hops traversed by the
messages offer us valuable insight to the volume of network traffic generated by an invalidation
transaction. For the example shown in Fig.6.1, the values of these four measures are 48, 4, 48, and
190, respectively.

Let us now derive an estimate for latency of an invalidation on a k x k mesh using wormhole
routing [104]. Assume the average number of nodes sharing a block is d. Thus, the invalidation
will require 2d messages. Let us assume the following timing parameters: message startup time
equal to a, router delay equal to 3, and one hop delay per flit equal to . Assume the message
length is [ flits. For a kxk system, the average distance traveled by a single message is k. During
the invalidation transaction, the home node sends requests to the sharers one after another. If
we ignore network contention, the overall time for all the requests to be received by the sharers
Tireq = da+kfB+(I—1)7. Let us assume that cache invalidation at a sharer takes ¢ time on average.
An acknowledgment takes Tjocx = @+ k8 + (I — 1)y time to reach the home node. By assuming
the best overlapping, i.e., (d — 1) acknowledgments have been received and processed by the home
node prior to the arrival of the last acknowledgment from a sharer, the overall invalidation latency
Tinw = Tireq + 6 + Tiaer = (d+ 1)+ 2kB + 2(1 — 1)y + 6.

Typically, network contention and hot-spot effect surrounding the home node increase this
latency considerably. For the above analysis, the total number of hops traveled by 2d messages are
2dk. This relates closely to the volume of communication traffic required for an invalidation. As d
and k increase, it can be observed that the volume of communication traffic increases, leading to
a potential increase in network contention. It also increases the no-contention invalidation latency,
Tiny- This leads to a question whether less than d invalidation requests and d acknowledgments can
be used to accomplish an invalidation with d sharers. We use a multidestination message passing
approach to accomplish this.

6.2 Multidestination Message Passing

The multidestination message passing mechanism allows data to be delivered to or picked up
from multiple nodes with a single message. A new Base-Routing-Confirmed-Path (BRCP) model
has been recently proposed in [112] to implement multidestination mechanism on wormhole net-
works with different routing schemes.
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6.2.1 The BRCP Model

Figure 6.2 shows feasible paths under the BRCP model for a 2D mesh supporting two kinds of
routing. In a dimensional order routed (also known as e-cube routed) system — assuming messages
are routed first along the row and then along the column, a multidestination worm can cover a set
of destinations in row/column/row-column order as shown in Fig. 6.2. On a turn-model system, a
multidestination worm can cover destinations along any west-first non-minimal path, in addition to
e-cube paths, as shown in Fig. 6.2. The significant benefit of this BRCP model comes from the fact
that a message can be delivered to multiple destinations with the same overhead as that of sending
it to a single destination. Similarly, information can be gathered from multiple destinations with a
single message.

. ,,,,, ﬁi
i & ° ® source
BN 9 YT ; O destination
: ![ : : : H H H e
E-cube Turn-model

(west-first non-minimal)

Figure 6.2: Feasible paths for multidestination worms in a 2D mesh [112].

6.2.2 Multicast and Gather Worms

A multidestination multicast worm consists of a set of destinations along a feasible path in its
header. The worm uses forward-and-absorb capability at the router interface of each intermediate
destination. Using such worms, sophisticated multicasting schemes are feasible to implement a
multicast with reduced latency [112].

A multidestination gather worm collects information from multiple nodes at their respective
router interfaces [108]. Each router interface can have a set of buffer entries containing special flags.
An ‘on’ state of such a flag indicates that the associated processing node has arrived at the gather
execution point. A typical gather worm, while passing through the router interface of intended
destinations, checks for this flag. If the flag is ‘on’, the worm collects the information and proceeds
ahead. If the flag is not ‘on’, the worm waits for this flag to be ‘on’. Such a mechanism allows a
gather worm to collect data/signal in a cumulative manner from all its intermediate destinations
and deliver it to the final destination. In the following section, we propose augmentation to these
multidestination worms for effective cache invalidations.

6.3 Frameworks for Reducing Overhead

In this section, we introduce new frameworks and mechanisms to implement efficient invalida-
tions with multidestination messages.
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6.3.1 MI-UA Framework

By using a multidestination multicast worm, a home node can send an invalidation request to a
set of sharers along a single path. Let us name such a worm as multidestination-based invalidation
request (m-ireq) worm. After receiving the request, a sharer invalidates its local cache and sends
a unicast-based acknowledgment message back to the home node. The home node collects all the
individual invalidation acknowledgments. We identify such a framework as Multidestination-based
Invalidation request and Unicast-based Acknowledgment (MI-UA).

Let us compare the MI-UA and the UI-UA frameworks through an example. Figure 6.3 high-
lights the distinction between these two frameworks. We only illustrate a portion, relating to the
sharing nodes along column 6, of the example invalidation transaction previously shown in Fig. 6.1.
The rest of the invalidation transaction can be implemented similarly and is not illustrated here for
clarity. During the request phase of the invalidation transaction in the UI-UA framework, as shown
in Fig. 6.3(a), the home node sends five unicast-based worms to the sharers. While in the MI-UA
framework, as shown in Fig. 6.3(b), the home node sends only two (up-turn and down-turn) m-ireq
worms. During the acknowledgment phase, each of these sharers sends a unicast-based invalidation
acknowledgment back to the home node in both frameworks. It can be observed that for the ex-
ample invalidation transaction in Fig. 6.1, the home node needs to send only 11 invalidation worms
in the MI-UA framework as compared to 24 worms in the UI-UA framework. This demonstrates
considerable potential to reduce occupancy at the home node as well as the invalidation latency.

— Unicast-based
ireq

-2 unicast-based
lack

— multidestination-
ased mireq
e home node

O sharer

(@) UI-UA framework (b) MI-UA framework

Figure 6.3: Comparing the communication traffic for an invalidation transaction in two frameworks:
(a) UL-UA and (b) MI-UA.

Besides supporting forward-and-absorb mechanism at each router interface [112], the MI-UA
framework does not require any additional modifications to the current generation DSM systems.
The main thrust of this framework is to reduce occupancy of the home node and the volume of
network traffic incurred in the request phase of an invalidation transaction. In the acknowledg-
ment phase, however, this framework reduces neither the occupancy at the home node nor the
occupancy at the sharers. It also does not reduce the volume of network traffic. The question
is whether a better framework is feasible which can achieve the above three kinds of reduction
in the acknowledgment phase. In order to have such a framework, we first introduce three novel
mechanisms.
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6.3.2 Three Novel Mechanisms
I-gather Worm

Let us consider using gather worms to collect the acknowledgments. Assume that after re-
ceiving the request and invalidating the local cache block, a sharer can set a buffered signal at
its associated router interface instead of being forced to send a unicast-based acknowledgment. A
multidestination-based gather worm can pass through each router interface associated with the
sharers, collect the signal, and deliver the information to the home node. We name such a gather
worm as a multidestination-based invalidation gather (i-gather) worm. Such i-gather worms signif-
icantly reduce: 1) the occupancy of cache invalidation for most sharers, 2) the volume of network
traffic, and 3) the occupancy at the home node.

I-ack Buffer

A special buffer at the router interface is used to store the signal associated with an invalida-
tion acknowledgment of a memory block for a short period of time. We denote such buffer as i-ack
buffer, an entry in the i-ack buffer as i-ack entry, and the signal as i-ack signal. Ideally, every
router interface could have a dedicated i-ack entry for each block of the global memory. However,
it is not feasible to do so because of cost consideration. Fortunately, the average number of invali-
dation transactions, which a node participates during a given time interval, is quite small. Let us
consider allowing sharing of the i-ack entries at a router interface among the ongoing invalidation
transactions. In order to distinguish which i-ack entry is used by which invalidation transaction of
a memory block, the block address of the invalidation transaction is stored in the i-ack entry and
used as an identifier. When an i-gather worm arrives, it can do a fully-associative search based
on the block address to find its corresponding i-ack entry and collect the i-ack signal. Hence, we
propose that the structure of an i-ack entry consists of a free/used flag, an invalidation acknowl-
edgment signal (i.e.,i-ack signal), a block address field, and a field to hold a copy of the invalidation
acknowledgment message. We discuss the usage of the message field in next section. Figure 6.4
shows the enhanced node organization and the associated router interface.

Processing
Node
F: free or used
v A S:i-ack signal
i-ack buffer badr: block address
F| S| badr [ msg msg: copy of message
F| S| badr| msg
Pl bech_meg |
linksto ; links from
other routers g Switch g other routers
Router

Figure 6.4: Enhanced node organization and the associated router interface with the i-ack buffer.
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I-reserve Worm

With the above enhanced node organization and router interface, we introduce the concept of a
multidestination-based invalidation reservation (i-reserve) worm. The i-reserve worm is a variation
of the general multidestination-based multicast worm. Basically, an i-reserve worm is an augmented
m-ireq worm. In addition to delivering the invalidation request message, it also reserves an i-ack
entry at the router interface of each destination. When a sharer receives an invalidation request,
it invalidates its cache block and sets the i-ack signal in the reserved i-ack entry. Later, when the
associated i-gather worm arrives, it collects the i-ack signal and releases the i-ack entry.

6.3.3 MR-MA Framework

We glue the above three mechanisms together to make a Multidestination-based invalidation
Reservation and Multidestination-based gather Acknowledgment (MR-MA) framework. For this
framework to function smoothly, we need to investigate several important issues closely.

I-ack Hits and I-ack Misses

In our proposed design, there are only a few i-ack entries at the router interface. When an
i-reserve worm reaches the router interface, it is possible that there is no available i-ack entry.
What should the MR-MA framework do on such scenarios? When such a scenario occurs (denoted
as i-ack miss), we allow the i-reserve worm to deliver the invalidation request and keep moving.
Under such circumstances, after receiving and processing the invalidation request, the sharer sends a
unicast-based invalidation acknowledgment message. Later when the corresponding i-gather worm
reaches this sharer, it can find out that there is no i-ack entry reserved for the block and proceeds
to the next sharer/home node. We define an i-ack hit as a success in reserving an i-ack entry by an
i-reserve worm. In Section 6.5, we will show simulation results corresponding to i-ack hits/misses
with varying number of i-ack entries. It is to be observed that 2-4 entries are sufficient to have a
hit ratio higher than 98.7%.

I-ack Signal Counts

Once i-ack misses occur, it becomes impossible for the home node to decide when an invalidation
transaction completes, based on the number of acknowledgment messages it has received. Hence,
we incorporate an i-ack counter field in the i-gather worm. This field can be used to remember how
many i-ack signals that an i-gather worm actually collects. For a unicast-based acknowledgment,
this count is assumed to be 1. At the beginning of an invalidation, from the directory entry for
a memory block, the home node knows the total number of sharers (denoted as x). On receiving
the invalidation acknowledgments for the memory block, the home node decrements z by the i-ack
count in the acknowledgments. When x becomes 0, the invalidation transaction is completed.

Let us apply this MR-MA framework to the example invalidation transaction shown in Fig. 6.1.
Again, only the portion relating to sharers along column 6 is illustrated in Fig. 6.5 for clarity. The
home node (3,3) sends two i-reserve worms. As the i-reserve worms propagate, let us assume that
only one i-ack miss occurs at sharer (6,1). The i-gather worms later collects two i-ack signals each.
(Special unicast-based acknowledgment messages are needed in a dimensional order routed system
because the i-gather worms can not reach the home node under X-Y routing.) Independently,
sharer (6,1) sends a unicast-based acknowledgment back to the home node. Overall, assuming
the best-case where only i-ack hits occur, it can be observed that for the example invalidation
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transaction in Fig. 6.1, the home node needs to send and receive only 22 invalidation worms in the
MR-MA framework as compared to 48 worms in the UI-UA framework or 35 worms in the MI-UA
framework. This demonstrates further reduction in the volume of network traffic, occupancy at the
home node, and most importantly the invalidation latency.

— multidestination-
ased I-reserve

—» multidestination-
ased I1-gather
--» unicast-based
iack

e home node

O sharer

@ i-ack hit

O i-ack miss

Figure 6.5: An example of a portion of invalidation using the MR-MA framework.

Figure 6.6 presents the routing algorithm for a reservation worm. Figure 6.7 presents the
routing algorithm for a gather worm. Figure 6.8 presents the algorithm at the NNI to process the
various invalidation requests. Figure 6.9 presents the algorithm at the NNI to process the various
invalidation acknowledgments.

6.4 Grouping Schemes

It can be seen that i-reserve and i-gather worms must be generated on-the-fly by the directory
controller because of the dynamic property of sharing. Let us define grouping as the procedure
of selecting a set of i-reserve and i-gather worms to cover all sharers of a memory block. In this
section, we propose and analyze some heuristic grouping schemes for dimensional order routing and
turn-model routing. All grouping schemes are illustrated with the example invalidation pattern
introduced in Fig. 6.1.

6.4.1 Associated Issues

Directory Organization and Grouping for I-reserve Worms: It can be very helpful if the
pointer array is so organized that when an invalidation transaction occurs, the home node can send
the i-reserve worms with little overhead. Assume that the full-map protocol is used to enforce
coherence. Let us consider organizing the presence bits in the column major order and use the bit
string address encoding for multidestination worms [108]. Hence, different portions of the presence
bits can be directly taken as the routing headers of the i-reserve worms.

Grouping for I-gather Worms: In all the schemes we discuss, the final destination node of an
i-reserve worm initiates an i-gather worm to collect the i-ack signals. This node needs the identifiers
of the sharers that are covered by the associated i-reserve worm. To satisfy such a requirement,
a copy of the routing header of the i-reserve worm can be duplicated and carried as an additional
data item in the worm. This may increase the length of an i-reserve worm slightly. However, the
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Algorithm Reservation Worm
Input: a reservation worm, a router
Output: a possible invalidation request to the router’s node,
its subtype is BUFF, NONBUF, or MULTT.
Reservation Worm(rworm, router)
{
d = next destination of rworm;
if (router # d)
Forward rworm;
else if (d # final destination of rworm) {
if (check(router.consump-channel)==FREE) {
Forward rworm;
i = reserve(router.i-ack);
if (1 >0)
Send a BUFF inval request to the node with value i;
else
Send a NONBUF inval request to the node;
¥
else {
i = reserve(router.i-ack);
if (1 >0) {
Buffer a copy of rworm in i-ack;
Forward rworm;
wait(router.consump-channel);
Send a BUFF inval request to the node with value ¢;
}
else
wait(router.consump-channel);
}
}
else {
reserve(router.consump-channel);
Send a MULTT inval request to the node;

}
}

Figure 6.6: The routing algorithm for a reservation worm.

95



Algorithm Gather Worm
Input: a gather worm, a router
Output: a MULTT inval ack to final destination
Gather Worm(gworm, router)
{
d = next destination of gworm;
if (router # d)
Forward gworm;
else if (d # final destination of gworm) {
i = search(router.i-ack, gworm.badr);
if (i <0)
Forward gworm;
else if (status(router.i-ack[i].signal)==0OCCUR) {
free(router.i-ack);
Increment gworm.count;
Forward gworm;
}
else {
Store gworm in router.i-ack[i].msg;
wait(router.i-ack[i].signal);
free(router.i-ack[i]);
Increment gworm.count;
Forward gworm;
}
}
else {
reserve(router.consump-channel);
Send a MULTT inval ack to the node;

Figure 6.7: The routing algorithm for a gather worm.
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Algorithm Invalidation Handler in a Node’s NNI
Input: a inval request
Output: i-ack node done signal, or a unicast inval ack, or a gather worm
InvHandler(ireq, router)
{
typ = subtype of the ireg;
if (typ == BUFF) {
Invalidate cache;
i = i-ackbuf(ireq);
Set router.i-ack[i].signal;

}

else if (typ == NONBUF) {
Invalidate cache;
Send unicast UNI inval ack;

else { /* MULTI inval req */
Invalidate cache;
header = grouping(ireq.destlist);
Put 1 in new gather worm’s count;
Send the gather worm using header as its path;

}
}

Figure 6.8: Invalidation handler algorithm at the NNI.

Algorithm Invalidation acknowledgment Handler in a Node’s NNI
Input: an inval acknowledgment, a memory block directory
Output: complete an invalidation transaction

TAckHandler(iack, directory)

{
typ = subtype of the iack;
if (typ == UNI)

Decrement directory.iack;
else /* MULTI inval ack */

directory.iack = directory.iack — iack.count;
if (directory.iack == 0)

Complete the invalidation transaction;
else

Wait for more inval ack;

Figure 6.9: Invalidation acknowledgment handler algorithm at the NNI.
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delay induced by such an increase in worm length is very small under wormhole routing. After the
final destination of an i-reserve worm receives the message, its directory controller does a grouping
with itself as the source node and the home node as the final destination in order to generate
appropriate routing header for the corresponding i-gather worm. Readers are encouraged to refer
to [30] for further details.

6.4.2 Dimensional Order Routing in 2D Mesh
Up-and-Down Column Grouping Scheme

In an up-and-down column grouping (UD) scheme, a home node needs maximum two i-reserve
worms in each column for an invalidation transaction. One such worm, the up i-reserve worm,
moves along the +Y direction after a possible turn from +X. The complementary down i-reserve
worm moves along the —Y direction. A sharer in a column locating on the row containing the
home node can be covered by either worm. An associated i-gather worm visits the sharers in the
reverse order of the i-reserve worm along the £Y direction to collect the i-ack signals. The i-ack
signal count is finally carried back by a unicast-based worm to the home node. Figures 6.10(a) and
6.10(b) illustrate the request and acknowledgment phases using the UD scheme. As discussed in
Section 6.1.1, we consider two dimensional order routed virtual networks, i-reserve worms moving
in one and i-gather worms in the other.

— multidestination worm e home node
— Uunicast worm o sharer

,‘,,", D -

(a) ud_ireq

(bj ud i éck (d) _i ac

Figure 6.10: Dimensional order routing based grouping schemes.

To do a performance analysis similar to that for the UI-UA framework, we use similar assump-
tions as described in Section 6.1.2. In addition, let us assume the startup time for multidestination-
based messages as o, Assume d, 4 i-reserve worms are initiated at the home node on average. Thus,
the best-case invalidation latency, Tipny.ua, can be derived as a+(dyg+1)om +2hyg8+2(lya—1)y+26
and the total number of hops traversed by the messages, H;,y ud, s 3dyqhuad-

Selective Column Leader Grouping Scheme

In a selective column leader grouping (SC) scheme, a home node initiates an up or down i-
reserve worm as in the UD scheme if it can cover all the sharers in a column. Otherwise, the
home node initiates a unicast-based worm to a selected column leader. The leader is the highest
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or lowest sharer in a column whichever is closer to the home node. Figures 6.10(c) and 6.10(d)
illustrate the request phase and the acknowledgment phase using the SC scheme. In the SC scheme,
for each column, the home node sends maximum one worm. Compared to the UD scheme, this
scheme achieves a better balance between the occupancy of the home node and the propagation
delay of the invalidation request than the UD scheme. Assume d,., unicast-based worms and
dsc,m multidestination-based worms are initiated at a home node on average for an invalidation.
This leads to: Tinysc = (dscu + 1) + (dsem + 1)aum + 2hgeB 4+ 2(lse — 1)y + 26 and Hipy s =
3(dsc,u + dsc,m)hsc-

6.4.3 Turn Model Adaptive Routing in 2D Mesh

It is to be noted that any dimensional order routing based grouping scheme can be used in
networks supporting turn-model routing [104]. However, we discuss two new grouping schemes to
exploit the adaptivity better. Similar to e-cube routing, we consider two virtual networks, one
supporting west-first routing and the other east-first.

Dual-Path Grouping Scheme

In this scheme a home node needs maximum two i-reserve worms for an entire invalidation
transaction. One such worm, the left i-reserve worm, covers all the sharers on the left side of the
home node and travels in the network using east-first routing. The complementary right i-reserve
worm covers all the sharers on the right side and travels in the network using west-first routing. The
sharers along the column containing the home node can be divided into two half columns: upper and
lower with respect to the home node. Each of the half column, but not both, can be covered by either
of the i-reserve worms. This scheme achieves the greatest reduction in volume of network traffic
among all the proposed grouping schemes. Assume dg, i-reserve worms are initiated at a home node
on average for an invalidation. This leads to: T,y 4p = o+ (dgp+1) o +2hgpB+2(lgp —1)y+26 and
Hiny ap = 2dgphap. Figures 6.11(a) and 6.11(b) illustrate the request phase and the acknowledgment
phase using the DP scheme.

— multidestinationworm e home node
—p Unicast worm o sharer

(d) dcg_iack

B &

(c) dcg_ireq

(@ dp_ireq  (b) dp_iack

Figure 6.11: Turn model routing grouping schemes.
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Density-dependent Column Grouping Scheme

Two major drawbacks of the DP scheme are: 1) high latency and 2) complicated routing
headers for the multidestination worms. A density-dependent column grouping (DCG) scheme tries
to balance the number of destinations covered by each worm. In addition to statically partitioning
the network into ¢ adjacent columns each, this scheme restricts the maximum number of destinations
a multidestination-based worm can cover in the ¢ columns to a certain threshold value (d). When
the threshold is reached, more than one i-reserve worms are used to cover destinations in the c
columns. Figures 6.11(c) and 6.11(d) illustrate the request phase and the acknowledgment phase
of the invalidation transaction in the DCG scheme with ¢ = 2 and d = 6. Assume dg.4 i-reserve
worms are initiated at a home node on average for an invalidation. This leads to: Tipydcq =
a+ (ddcg + 1)am + zhdcglg + 2(ldcg - 1)7 + 20 and Hinv,dcg = 3ddcghdcg-

grouping | home | avg | # of | total
scheme occup. | dist. | mesg | hops
unicast 46 4.0 46 186
d_ud 22 4.5 31 99
d_sc 16 6.6 32 106
t_dp 4 22.0 4 88
t_dcg 12 8.5 18 102

Table 6.1: Comparison of different grouping schemes.

6.4.4 Comparison of Grouping Schemes

We compared these schemes by using the four measurements proposed earlier in Section 6.1. For
a fair comparison across different schemes, if worms traveled in a chained fashion, they are counted
as one message with a distance equivalent to the sum of distance traveled by component worms;
while in the calculation of the number of total messages they are counted individually. Table 6.1
summarizes the results for the sample invalidation transaction, introduced in Fig. 6.1. A simple
observation from this table is that all the proposed schemes cut down the volume of network traffic
for the invalidation effectively with respect to unicast scheme. Furthermore, it can be observed
from Table 6.1 and derived from earlier latency expressions that the sC scheme is more efficient
than the UD scheme while the DCG scheme is more efficient than the DP scheme.

6.4.5 Systems with Other Topologies

All the schemes developed so far have focused on a 2D mesh system. When we apply our
framework to other k-ary n-cube systems, more design flexibility is available for the grouping. In
this subsection, we look at grouping schemes for a 3D mesh.
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Axis-Based One-step Reservation Scheme

Let us first consider a full-map directory in a 3D DSM system. Consider the network using
the popular dimensional order (X-Y-Z) routing algorithm. Let us organize the presence bit array
in the directory using Z-Y-X indexing order with Z index growing the fastest and X index the
slowest. As a concrete example system, consider a 3 X 3 x 3 mesh. The sharing nodes, 11 in this
example, are distributed as shown in Fig. 6.12. Assume that the cache coherence protocol sets the
presence bits of sharing nodes in the directory during a sequence of remote read operations. When
an invalidation occurs due to a subsequent write operation, the presence bits are checked along the
7 dimension, specifically, along the column as shown in Fig. 6.12. If no bits in a single column
is set, no invalidation activity is required for that column. Otherwise, an up-turn or down-turn
multidestination reservation worm is sent by the home node to cover the sharing nodes above or
below the home node in that column, as shown in Fig. 6.12(a).

+z
g
+X

e home node

e sharing node

- multidestination 1
=» multidestination 2
-z~ UNiCast

Figure 6.12: Axis-based one-step reservation (AB1R) scheme in a 3D mesh supporting dimensional
order routing using full-map directory. The two phases of an invalidation transaction: (a) request
and (b) acknowledgment.

An i-ack gather worm is initiated by the last destination of each reservation worm to collect the
associated acknowledgments. A subsequent unicast message sends the i-ack count back to the home
node, as shown in Fig. 6.12(b). Let us denote such a scheme as an azis-based one-step reservation
(AB1R) scheme.

In the example, the above scheme uses 5 invalidation reservation and 9 gather/unicast (14 in
total) messages to complete the invalidation. While a unicast-based scheme needs 11 invalidation
request and 11 acknowledgment (22 in total) messages to implement the same invalidation. Hence,
the network traffic is reduced by one third. The grouping algorithm for the multidestination worms
is no more complicated than a unicast worm. The smaller number of messages in the request
phase of the invalidation helps to cut down the home node occupancy and the latency of the entire
invalidation. In general, the reduction in network traffic and latency for any invalidation can be
achieved in a similar fashion.

Axis-Based Two-step Reservation Scheme

Now let us consider the network using an all-but-X-negative-first routing algorithm. Let us
organize the presence bit array in the directory using Z-X-Y indexing order. When an invalidation
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occurs, the presence bits are first checked along the Z dimension. A sharing node having the
smallest or largest Z index (top or bottom) is identified as a potential column leader. Depending
on the position of the home node, either the top or the bottom sharing node is chosen to be
the actual column leader. Instead of initiating a separate multidestination reservation worm for
each column which contains a sharing node, like the previous scheme, we divide the leaders into
groups according to their Z index values. In other words, the column leaders are divided into
separate X-Y planes. Using the presence bit information, each group can be covered by one or
multiple multidestination reservation messages (multidestination messages of type 1). In addition
to the coherence information, such a multidestination message contains a copy of those presence
bits of the columns whose leaders are covered by the multidestination worm. Once receiving the
reservation message of type 1, a column leader extracts the presence bits of its own column and
sends a multidestination reservation message of type 2 along the Z axis to cover the sharing nodes
in the column.

An i-ack gather worm is initiated for each reservation worm of type 2 to collect the associated
acknowledgments within a column. Similar to the column-based one-step reservation scheme, a
subsequent unicast message sends the i-ack count back to the home node. Figures 6.13(a) and
6.14(b) illustrate the request phase and acknowledgment phase of this scheme on the same example
transaction of Fig. 6.12. Let us denote such a scheme as an azis-based two-step reservation (AB2R)
scheme.

+Z
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e sharing node
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Figure 6.13: Axis-based two-step reservation (AB2R) scheme in a 3D mesh supporting all-but-
X-negative-first turn model routing using full-map directory. The two phases of an invalidation
transaction: (a) request and (b) acknowledgment.

For the current example, this scheme uses 7 invalidation reservation and 9 gather/unicast (16 in
total) messages to complete the invalidation. It is to be noted that the home node starts 3 messages,
2 of type 1 multidestination and 1 of type 2 multidestination. Generally, comparing to the unicast-
based scheme, the network traffic is reduced. However, the grouping algorithm for multidestination
worm is relatively complex. The home node occupancy can be reduced dramatically since such a
grouping is expected to be fast. This leads to a potentially significant reduction in invalidation
latency.
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6.4.6 Plane-Based Two-step Reservation Scheme

As yet another alternate scheme, let us consider the network using an all-but- X-negative-first
routing algorithm. Let us organize the presence bit array in the directory using X-Y-Z indexing
order. When an invalidation occurs, the presence bits are checked along the X-Y planes. If there
exist some sharing nodes in a plane, a sharing node is selected to be the leader for this plane.
One simple selection policy is to pick the sharing node with the shortest distance from the home
node using the presence bit information. The leaders of all the planes which contain sharing nodes
are grouped into a few paths. The home node first sends multiple multidestination reservation
messages (multidestination messages of type 1) to these leaders. Again, in addition to the coherence
information, such a multidestination message contains a copy of those presence bits of the planes
whose leaders are covered by the multidestination worm.

After receiving the reservation message of type 1, a column leader extracts presence bits of its
own plane and sends one or multiple multidestination reservation messages of type 2 to cover the
sharing nodes in the X-Y plane. An i-ack gather worm is initiated for each reservation worm of
type 2 to collect the associated acknowledgments within a column. A subsequent unicast message
sends the i-ack count back to the home node. Figures 6.14(a) and 6.14(b) illustrate the request
phase and acknowledgment phase of this scheme on the same example transaction. Let us denote
such a scheme as a plane-based two-step reservation (PB2R) scheme.
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Figure 6.14: Plane-based two-step reservation (PB2R) scheme in a 3D mesh supporting all-but-
X-negative-first turn model routing using full-map directory. The two phases of an invalidation
transaction: (a) request and (b) acknowledgment.

For the current example, this scheme uses 4 invalidation reservation and 6 gather/unicast (10
in total) messages to complete the invalidation. It is to be noted that the home node starts 2 mes-
sages, 1 of type 1 multidestination and 1 of type 2 multidestination. Unfortunately, sophisticated
combinatorial groupings have to be done for both types of multidestination messages, with type 1
at the home node and type 2 at the leaders. Generally, comparing to the unicast-based scheme, the
network traffic is reduced. But node occupancy of the involved node, especially the leaders, may
increase rapidly and diminish any reduction in invalidation latency. To remedy such drawbacks,
we propose the following two enhancements.

1. Allow non-sharing nodes to be a plane leader. We can make the type 1 multidestination
reservation messages to only travel along the Z-axis. Hence, the grouping of step 1 can be
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done very fast by virtually a simple check on each plane for sharing nodes. The time spent
at the leader for type 2 multidestination reservation messages remains almost unchanged.

It is to be noted that the non-sharing nodes only participate in the request phase but not
in the acknowledgment phase. Thus, no extra invalidation messages are introduced by any

non-sharing node.

2. Allow multiple gather worms triggered by a single reservation worm. This sometimes simplifies
the groupings for type 2 reservation worm and the subsequent i-ack gather worms. Therefore,
the occupancy at the intermediate nodes and the invalidation latency could be reduced.

6.5 Simulation Experiments and Results

6.5.1 Simulation Setup

We have evaluated our proposed schemes using the simulation testbed. Table 6.2 lists the
relevant system parameters used. It is noted that, for unicast messages, we assumed 5 processor
clock cycles as the startup time. For multidestination messages this time was assumed to be 10
clock cycles. We considered an 8 x8 system.

H Parameter ‘ Values ‘ Time H
Processor 1 cycle 5 ns
Cache access 1 cycle 5 ns
Cache block size 16 bytes
Cache block fill time 8 cycles 40 ns
Cache set associativity 1
Cache size per node 64 Kbytes
Memory word width 4 bytes
Memory block access time 8 cycles 40 ns
Directory check 2 cycles 10 ns
Directory check and update 4 cycles 20 ns
mesg startup (unicast) 5 cycles 25 ns
mesg startup (multidest) 10 cycles | 50 ns
mesg dispatch 2 cycles 10 ns
Control mesg size (unicast) 4 bytes
Control mesg size (multidest) 6 bytes
Data message size 20 bytes
Injection channels per node 2
Consumption channels per node | 4
I-ack entries per router 4
Channel width (Flit size) 2 bytes
Link propagation delay 1 cycle 5 ns
Router switch delay 1 cycle 5 ns
Router delay (header) 4 cycles 20 ns

Table 6.2: Default System parameters used in the simulation.
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We used three applications: Barnes (128 bodies, 4 steps), LU (128x128 matrix, 8x8 blocks),
and All-Pairs-Shortest-Path (128128 matrix, 50% connection).

6.5.2 Results and Discussions

We monitored three important parameters: the number of messages used for invalidation, the
total number of network messages, and the overall execution time. In order to perform comparative
evaluation, we used dimension order system with unicast-based message passing (d-uni) as the base
case (100%). All other results are compared and reported against this base case.

Figure 6.15 shows the number of invalidation messages used. It can be seen that all mul-
tidestination schemes reduce the number of messages required for invalidation compared to the
unicast-based (uni) message-passing. Turn-model with dual-path grouping (DP) always leads to
maximum reduction (up to 95%).

[ ] E-cube [ Turn-model

(a) Barnes-Hut (b) LU (c) APS
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Per centage
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uni ud sc uni sc dp dcg uni ud sc un

Figure 6.15: Comparing the number of invalidation messages required under the unicast-based and
multidestination-based schemes.

Figure 6.16 shows the total number of network messages used. It can be observed that reduction
in the number of total network messages varies significantly depending on the ratio of invalidation
messages and other messages. For application like LU-decomposition which exhibits very low
number of invalidations, the gain is very minimal (0.6% at the best). For other two applications,
different grouping schemes lead to 20-40% reduction.

Figure 6.17 shows the overall execution time. It can be observed that substantial reduction in
network messages do not necessarily lead to reduction in the overall execution time. This depends
on the critical path of execution. However, some grouping schemes like sSC and DCG are able to
reduce the overall execution time up to 15%.

To understand the impact of i-ack buffer size on the system performance, we ran the Barnes
application with different number of i-ack entries at each router interface. Figure 6.18(a) shows the
normalized i-ack misses over the total number of reservation attempts. Figure 6.18(b) shows the
normalized overall execution time. It can be observed that with only a few i-ack entries (2-4), the
i-ack misses can be dramatically reduced without apparent execution-time loss.
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Figure 6.16: Comparing the total number of messages.
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Figure 6.17: Comparing the overall execution time.
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Figure 6.18: The impact of i-ack buffer size
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6.6 Summary

In this chapter we have introduced a new multidestination message-passing approach to imple-
ment directory-based cache coherency in wormhole distributed shared memory (DSM) systems. By
applying the BRCP model, reservation and gather worms were used to distribute invalidation mes-
sages and to collect acknowledgments. Compared to the conventional approach, this new method
produces less number of messages, less network traffic, and reduced occupancy at home nodes.
New grouping schemes were proposed to generate these multidestination worms to implement the
full-map protocol. Simulation results demonstrate considerable potential for these schemes to be
applied to current generation DSM systems. In the next chapter, we investigate limited directory
coherence schemes with this new approach.
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CHAPTER 7

REDUCING INVALIDATION OVERHEAD IN LIMITED DIRECTORY
SCHEMES

In this chapter, we look into how to extend the multidestination-based invalidation mechanisms
proposed in the last chapter for full-map schemes to limited directory coherence schemes. Due to
the large amount of storage required by a full-map directory scheme [91, 134], such a scheme is
not practical for large scale systems. Therefore, many cost-effective limited directory schemes using
smaller amount of storage have been proposed in the literature.

The basic idea behind limited directory schemes is to handle invalidations in an intelligent man-
ner when the directory overflow occurs. Using a smaller number of messages in case of directory
overflow is critical to the system performance. Otherwise, both network traffic and node occu-
pancy [61] increase, leading to increase in write-latency and degradation in the overall performance.
Examples of some limited-directory schemes are: coarse-vector [56], Limitless [81], Superset [3], and
Eviction [24]. These schemes use either hardware or software mechanisms to detect and manage
directory overflow.

The existing limited directory schemes can be broadly classified into two categories: broadcast-
based and non-broadcast-based. In broadcast-based schemes (dir; B), when the number of sharers
goes beyond i, directory overflow occurs and invalidation messages are sent to all nodes in the
system. However, on systems supporting only unicast message passing, a broadcast requires a large
number of message transfers in the system and it quickly leads to performance degradation. Thus,
researchers have proposed non-broadcast-based schemes like coarse-vector (dir;CV;) [56]. In this
scheme, when directory overflow occurs, the storage space for ¢ entries are reorganized and used
as region bits. During invalidation, such region bits help in significantly reducing the number of
messages needed to be sent to nodes with possible sharers.

In either of the above schemes, it is shown in the literature that 3-5 pointers are necessary to
obtain performance comparable to a full-map directory. However, such guidelines are based on
networks supporting only unicast message-passing. Since multidestination message-passing allows
fast broadcast, we first analyze whether dir; B schemes with less than three pointers (i = 3) can
deliver performance comparable to the full-map scheme. We propose an efficient two-level broadcast
scheme with multidestination messages and evaluate different dir; B schemes, 1 < ¢ < 3. Simulation-
based evaluations are done for two different system sizes (4 x 8 and 8 x 8) and four different
applications from the SPLASH2 benchmark [146]. The simulations consider detailed instruction
count for computational steps, detailed network behavior including flit-level link contention and
network interface contention for message passing steps, and synchronization overhead. The results
demonstrate that the m_diri B scheme (1 pointer with multidestination message passing-based
broadcast support) is powerful enough to deliver performance closer to that of the full-map scheme
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with unicast message-passing. The performance of m_dir; B is also shown to be closer to that of
u_dirgCV, scheme (coarse vector with three pointers and implemented using unicast messages).

Next, we study the impact of coarse-vector organization under multidestination message pass-
ing. Two new schemes (m_dir;C By and m_dir;CBs) are developed to define suitable regions based
on the inherent capability of multidestination worms to implement broadcast/multicast. These
regions are defined along single/multiple columns such that one or two multidestination worms
can cover all the nodes in a region. Such region-based schemes reduce the number of messages re-
quired for invalidation. Simulation experiments for the above systems and applications demonstrate
m_dir1C B; scheme to be better than m_dir1 B and u_dir{CV,. With a larger number of pointers
(i = 3), all coarse vector schemes (using unicast or multidestination messages) are demonstrated
to deliver better performance.

This study proves the fact that efficient limited directory schemes can in fact be designed by
taking advantage of multidestination message passing on wormhole networks. It indicates that
limited directory schemes with only one pointer are sufficient to deliver performance close to that
of the full-map scheme. Such efficient limited directory schemes provide new guidelines for designing
scalable DSM systems with reduced cost.

This chapter is organized as follows. Section 7.1 provides an overview of directory schemes.
Section 7.2 proposes new limited directory schemes under multidestination message passing. Simu-
lation experiments and results are presented in Section 7.3. Related work is reviewed in Section 7.4.
Finally, concluding remarks are presented in Section 7.5.

7.1 Limited Directory Schemes

In this section, we first provide the motivation behind having limited directory schemes for
DSM systems. Next, we briefly provide an overview of the existing limited directory schemes, and
discuss their advantages and disadvantages.

7.1.1 Motivation Behind Limited Directories

Two important issues are typically considered in the design of a directory scheme for any
DSM system. The first is the invalidation/update traffic generated by the scheme. Less accurate
sharing information kept in a directory usually requires additional network bandwidth to send extra
invalidations/updates. The second issue is the overhead, especially the memory storage overhead,
required by the scheme. More accurate information means more memory used by a directory,
thus higher overhead. These two issues must be addressed in a balanced fashion to get a suitable
directory scheme for a system with reasonably good performance. The design decision also has a
strong impact on the scalability of the system.

Numerous directory schemes have been proposed or implemented in the past. They generally
fall into two broad classes: full-map and limited. In a full-map scheme, every processing node in the
system is represented by one bit (present bit) in a fixed position in a directory. This scheme keeps
the precise sharing information for each memory block at any given time. When a write occurs,
invalidations/updates are sent to only those processing nodes that actually hold valid copies. Such
a scheme uses a minimum amount of messages (network traffic) to carry out invalidation/update.
However, the amount of memory overhead for maintaining the full-map directory is quite high.
Thus, this scheme is only suitable for small or medium-sized systemms.

In order to have reduced overhead for maintaining the directory, many limited pointer schemes
have been proposed in the literature [56, 81, 3, 24]. These schemes typically contain a small number
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(1) of pointers for any given memory block. When a memory block is cached by no more than i
processing nodes at a given time, the scheme behaves exactly the same as that of the full-map
scheme. However, when a block is cached by more than ¢ processing nodes, some mechanism is
used to handle the pointer overflow [134]. For a system with P processing nodes, each pointer
needs logP bits for identification of the sharing node of a block. Assuming B memory blocks per
processing node, the total storage requirement for directories is i PB logP bits. This is considerably
less than the P?B bits, required for a full-map directory.

The limited directory schemes usually perform reasonably well in practice because of the fact
that most tuned parallel applications show a low degree of sharing for a dominant majority of data
objects most of the time. Limited pointer schemes differ in the way they handle pointer overflow.
Depending on the design choice, each scheme produces significantly different amount of invalidation
and data traffic. There are two major classes of limited directory schemes. These are presented
next.

7.1.2 Broadcast Scheme (dir;B)

In this scheme, when the pointer overflow occurs, a broadcast bit is set in the directory en-
try [134]. Subsequent reads to this block get the expected copy of the block leaving the associated
directory entry state unchanged. The first write to the block after the pointer overflow triggers
invalidations to be sent to all processing nodes in the system. Most of these invalidation messages
go to processing nodes which have no copy of the block. These useless messages waste a great
amount of network bandwidth and also put heavy load on the home node directory controller, thus
delaying the completion of the invalidation and the write. Indirectly, they may also significantly
slowdown subsequent (but otherwise unrelated) reads/writes to memory blocks due to hardware
resource contentions. This dir; B scheme performs poorly if the typical degree of sharing in an
application is just larger than i. However, this scheme is advantageous due to its simplicity and
low cost of implementation.

7.1.3 Coarse Vector Scheme (dir;CV})

In the coarse vector scheme [56], when pointer overflow occurs, the memory used for storing the
pointers is reorganized to store a coarse bit vector. Each bit in this vector represents a predefined
fixed region consisting of r processing nodes. When there is at least one node in a region which has
a valid cached copy, the corresponding region bit is set. Once a write occurs later, invalidations
are sent to all the nodes in a region if the region bit is set. The value of r is typically determined
by the number of bits available in a directory entry. The coarse vector scheme results in some
extra invalidation traffic. However, such extra invalidations can be kept to a minimum by using
regions with fewer nodes. Earlier research [56] has shown that for a medium sized DSM system
using 3-4 pointers per directory entry, the dir; CV, scheme can perform reasonably well compared
to the full-map scheme.

Several other limited directory schemes have been proposed in the literature. These include
Limitless [81], Superset [3], Eviction [24], and Dynamic-vector [100]. Our main objective in this
chapter is to demonstrate how efficient limited directory schemes can be designed by taking advan-
tage of multidestination message passing support from the underlying network. Thus, without loss
of generality, we only consider two representative limited directory schemes (broadcast schemes
and coarse-vector scheme) in this chapter. In Sections 7.2 and 7.3, we show how dir; B scheme
can perform better with multidestination message passing-based broadcast support. Similarly, we
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show how variations to dir;C'V,. scheme can be designed to take advantage of multidestination mes-
sage passing-based broadcast/multicast to deliver better performance. Before showing these new
schemes, we provide a brief overview of multidestination message passing in the following section.

7.2 Limited Directory Schemes with Multidestination Messages

In this section, we present three variations of limited pointer schemes which work effectively
with multidestination message passing. All these schemes use the multidestination mechanisms
discussed in Section 6.3 of Chapter 6, especially the MR-MA framework. The main idea is to use
multidestination messages to send the invalidations and collect the acknowledgments as required
by the coherence protocols. First we show a variation of the dir; B scheme. Next, we show how the
coarse vector scheme (dir;CV,) [56] can be enhanced. For the rest of the chapter, we focus on 2D
mesh DSM systems with dimensioned order based routing. However, the proposed variations are
general and can be equally applied to other k-ary n-cube topologies (3D and higher dimensional
meshes/tori) and other routing schemes (planar [26], and fully-adaptive [43], and turn-model [55]).
As an example, extending the mechanisms to 3D topology is presented in Section 7.2.4.

7.2.1 Enhanced Broadcast Scheme

This scheme is similar to the dir; B scheme previously discussed in Section 7.1 except that the
invalidation broadcasts and acknowledgment collections are handled using multidestination DSM
mechanisms. In order to take greater advantage of such mechanisms, the scheme uses hierarchical
multidestination messages to broadcast invalidations. Let us define the row in which the home
node exists as home row. Let a row leader be a node which can cover the remaining nodes of a row
with a single multidestination multicast worm. In systems supporting dimensional order routing,
it can be easily observed that the nodes at either end of a row are the row leaders.

Under the enhanced scheme, to broadcast invalidation messages after the pointer overflow oc-
curs, the home node generates a maximum of two multidestination worms called upturn and down-
turn worms respectively. The upturn worm covers the row leaders of all rows north of the home row.
Similarly, the downturn worm covers the row leaders of all rows south of the home row. The row
leader of the home row is typically covered by the upturn worm. If no upturn worm is generated
(for nodes on the top row) then the row leader of the home row is covered by the downturn worm.
These two worms are called level-1 inval messages, as shown in Fig. 7.1. When each row leader
receives a level-1 inval message, it generates a reservation worm'4 and a gather worm to cover the
nodes along its row. The reservation worms are called level-2 inval messages, and the gather worms
are called level-2 ack messages. It is noted that each of these multidestination worms conforms to
the base dimensional order routing.

A reservation worm always moves ahead of its corresponding gather worm. There are two
advantages with this design. First, it leads to a simpler hardware for handling reservation and
gather worms at the routers. Second, it results in a pipelining effect between the worms. Such
pipelining reduces the effective turnaround latency starting from the time the invalidations are
spawned to the time the acknowledgments are collected along a row. This pipelining effect also
shortens the period during which an i-ack buffer entry at a router interface is held for an invalidation.
This reduces the average number of i-ack buffer entries required per router and the percentage of i-
ack misses. Once a gather worm reaches the end node on its path, it gets absorbed by the node and

14 A reservation worm is a multicast worm which also tries to reserve an i-ack buffer at the router interfaces of its
destinations, as discussed in Section 6.3.
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a unicast message is sent back to the home node. Such messages are identified as miack messages
in Fig. 7.1. Each miack message carries a count reflecting the number of acknowledgments its
corresponding gather worm collects on its way.

For a detailed understanding of how the m_dir; B scheme works and its inherent benefits, let us
consider a typical invalidation broadcast on an 8 x 8 DSM system, as shown in Fig. 7.1. For easier
illustration, all gather worms are assumed to have 100% i-ack hits, as discussed in Section 6.3. In
our simulation experiments, we consider both i-ack hits and i-ack misses with a fixed number of
i-ack entries. The number in each square bracket next to a message identifies the communication
step in which the message propagation takes place. It can be easily observed that an invalidation
message reaches each node of the system in no more than three communication steps and the
acknowledgments are collected in two additional communication steps. Thus, the entire event
of invalidation and acknowledgment collection completes in five communication steps. In this
example, only 26 messages are used in the network for invalidation and acknowledgment collection.
In general, for a k x k mesh, 3k + 2 messages are required. In the u_dir; B scheme (dir; B scheme
with unicast message passing), the corresponding invalidation and acknowledgment collection in
this 8 x 8 mesh completes in 64 communication steps with 126 messages. The 64 steps are based
on a best case assumption where maximum overlapping occurs between the home node sending
invalidation messages and receiving acknowledgment messages. In general, 2(k? — 1) messages with
k? communication steps (best case) are required for a k x k mesh using the u_dir; B scheme.
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Figure 7.1: An example of invalidation broadcast using the m_dir; B scheme.

Let us compare the home node occupancy [61] between these two schemes. It can be observed
that a home node in the u_dir; B scheme requires handling of 2(k% — 1) unicast messages. In the
m_dir; B scheme, it needs to handle only (k +2) messages. Such a reduction in both network traffic
and home node occupancy makes the m_dir; B scheme quite attractive for reducing invalidation
latency as well as write latency. The simulation results in Section 7.3 confirm these observations.

In the scheme mentioned and illustrated above, row leaders are assumed to be the left-end
nodes in every row. However, this may put extra load on these nodes as well as extra load on
+x links. To alleviate such bottlenecks, we propose a little variation to this scheme. In the new
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version, depending on whether the home node is on the left or right half of the mesh, we select
the left or the right node in a row as the row leader. This variation also reduces the distances
traveled by the two level-1 invalidation worms. Since the propagation time of these two worms is
on the critical path of the entire invalidation broadcast, the new scheme helps in improving the
invalidation latency. We use this variation for the m_dir; B scheme in our simulation experiments
described in Section 7.3.

7.2.2 Enhanced Coarse Vector Schemes

The principle behind the coarse vector scheme, as discussed in Section 6.3, is to rearrange the
pointer bits into region bits when the pointer overflow occurs. In systems using unicast message
passing, such regions are determined in a naive manner with an attempt to minimize the size of
each region. In this section, we first show how regions can be defined in an intelligent manner under
multidestination message passing. Next, we propose two variations to the dir;CV scheme.

Region Partitioning under Multidestination Message Passing

Under multidestination message passing, partitioning a system into regions depends on three
objectives: 1) regions should be efficiently covered using a few multidestination worms, 2) the
traversal paths for these worms should be minimal, and 3) the paths should conform to base
routing. For dimensional order routed meshes, simple multidestination paths are along row or
column. Thus, region partitioning can also be done in a similar manner.

Figure 7.2 shows different partitioning schemes for an 8 x 8 mesh with different numbers of
available pointers. If the directory has 2 pointers (6-bit wide each) then the system can be parti-
tioned into a maximum of 12 regions after pointer overflow occurs. Figures 7.2(a) and (b) show how
a system can be partitioned into 8 regions. In these figures, regions are defined along columns and
rows, respectively. Figures 7.2(c) show a partitioning scheme where two-neighboring sub-columns
are combined together to define a region. Finally, Fig. 7.2(d) shows a partitioning scheme with
only four regions. Such a partitioning can be used when the directory has only one pointer with
6-bits. Next, we describe two variations to the coarse vector scheme using different schemes for
region partitioning.

Equal-sized Region Scheme

This scheme (defined as multidestination column broadcast scheme 1) uses equal sized regions
where each region is a fixed number of adjacent columns. For example, on an 8 X 8 system with two
pointers, this scheme uses a single column as a region as shown in Fig. 7.2(a). With one pointer,
two adjacent columns are defined as a region. For sending invalidation messages to those regions
having at least one sharer, the home node sends out at most two level-1 inval multidestination
multicast worms along its row in opposite directions. This is illustrated in Fig. 7.3(a). Nodes
along the home row are defined as column leaders for their respective columns. The eastbound
worm covers the column leaders to the east of the home node whose region bits are set. Similarly,
the westbound worm covers column leaders to the west of the home node whose region bits are
set. Each column leader, on receiving a level-1 inval message, generates two (northbound and
southbound) level-2 inval messages and two (northbound and southbound) level-2 ack (gather)
messages covering the nodes along its column. If the column containing the home node needs to
be invalidated, the home node serves as its column leader. It should be noted that each of these
messages is a multidestination worm conforming to the base dimensional order routing.
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Figure 7.2: Examples of different region partitioning schemes under multidestination message pass-

ing for an 8 x 8 mesh.
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Let us consider the time required to implement the complete invalidation event as shown in
Fig. 7.3. In this example, only 4 communication steps are required to send invalidation messages
to all regions having at least one sharer. It takes an additional 3 communication steps to collect
the acknowledgments. Thus, the entire event gets completed in 7 steps. A total number of 26
messages are required to complete this event. Let us compare this performance with a u_diroCV
scheme on this example sharing pattern. Assuming a similar region partitioning being used by
the u_diroCV scheme, it takes 32 communication steps (with maximum overlap between sending
invalidation messages and receiving acknowledgment messages) and 62 messages to implement the
invalidation event. Thus, compared to the u_diroCV scheme, the proposed m_dir;C By scheme
clearly demonstrates potential to reduce home node occupancy, number of invalidation messages,
network traffic, and invalidation latency. Simulation results in Section 7.3 confirm such benefits
and show overall performance improvement in program execution time.

@ home node —p level-1linval ~=% level-2 ack
O sharing node —p level-2inval — miack
JCHGICHG
[41’4[5}% 4151415
,,,,,,, =,,,: ,,(E‘),,,E:,,,,L,,,
——————— Ol gDt
’ ‘
/

O~
<é < :

A
O

demmam.

N
&)
SN
S

/i

6117 (7 [7]

(a) Sending invalidations (b) Collecting acknowledgments

Figure 7.3: Nlustration of an example invalidation event using the m_dir;C B; scheme on an 8 x 8
mesh. The home node and the sharers are assumed to be the same as shown in Fig. 7.1.

Variable-sized Region Scheme

In the above scheme, a column leader is required to generate up to four multidestination worms
and inject them sequentially into the network. We propose a new scheme, defined as m_dir;C Bs
(multidestination column broadcast scheme 2), to solve this problem. In this scheme, the home
node divides each column into two sub-columns according to the home node’s position. The upper
sub-column contains the nodes to the north of the home node as well as the node on the home
row. The lower sub-column contains the nodes to the south of the home node. A region contains a
fixed number of sub-columns, which are either upper sub-columns or lower sub-columns. Figure 7.4
illustrates such a region partitioning for an 8 x 8 mesh with 2 pointers. This partitioning consists
of 8 regions.

For invalidation, the home node generates at most two multidestination level-1 inval messages,
one westbound and one eastbound. This is similar to the m_dir;CB; scheme described earlier.
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However, in this scheme, a level-1 inval message contains information about whether a sharer
exists in the upper or lower sub-column corresponding to the column leaders being traversed by
this message. Each column leader, after receiving the level-1 inval message, generates one or two
level-2 inval and level-2 ack message pairs. Each pair covers the nodes along its sub-column. The
sub-columns containing the home node are serviced by the home node, if required. It is noted that
due to the additional information being carried in level-1 inval messages, less number of level-2
messages are generated by the column leaders.

Similar to the earlier schemes, let us consider the time required to implement the complete
invalidation event as shown in Fig. 7.4. In this example, only 4 communication steps are used to send
invalidation messages and an additional 3 communication steps are used to collect acknowledgments.
However, compared to the m_dir;CB; scheme, it uses less number of messages (20 instead of 26)
to achieve the invalidation event. Thus, this scheme promises better performance compared to the
m_dir;C By scheme.
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Figure 7.4: Illustration of an example invalidation event using the m_dir;C Bs scheme on an 8 x 8
mesh. The home node and the sharers are assumed to be the same as shown in Fig. 7.1.

7.2.3 Overall Comparison

Let us compare the performance of the proposed schemes. It can be easily observed that
m_dir;CBy > m_dir;CB; > m_dir;B. (where > indicates better performance). As the perfor-
mance for these schemes increases, the hardware complexity required at the directory controller
also keeps increasing. For the m_dir; B scheme, the directory controller requires nothing more than
the hardware for a full-map directory controller with additional hardware for pointer overflow de-
tection. Thus, the hardware complexity of the directory controller for the m_dir; B scheme is the
same as that of the u_dir; B scheme. For this scheme, the routing headers for level-1 inval, level-2
inwal, and level-2 ack messages are fixed and simple. For the m_dir;C B scheme, simple hardware
to extract complete or partial column address (the region ID) from a node address must be added
to the directory controller required by the m _dir; B scheme. For the m_dir;C By scheme, additional
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information also needs to be carried by level-1 inval messages to the column leaders. In our sim-
ulation experiments, we have considered such an increase in message lengths as well as increased
time for initiating multidestination messages.

7.2.4 Systems with Other Topologies

In this subsection, we look at grouping schemes for a system with 3D mesh as an example for
systems with other topologies.

Axis-Region One-step Reservation Scheme

Now, let us first consider the network using a popular e-cube (X-Y-Z) routing algorithm. Let us
define a region as the set of nodes having the same values in X-Y index pair. In other words, a region
consists of all the nodes along the same 7 axis. Let the directory stores region presence bits using
Y-X indexing order. Assume that the region presence bits are set suitably after a sequence of remote
read operations. When an invalidation occurs, the region presence bits are checked. Depending on
the position of the home node, a multidestination reservation worm is sent by the home node to
cover each region which contains at least one copy of the block, as shown in Fig. 7.5(a). Note that
a pseudo-sharing node is a node within a sharing region but does not actively share the memory
block. The acknowledgment phase, as shown in Fig. 7.5(b), proceeds identically to the (AB1R)
scheme. Let us denote such a scheme as an azis-region one-step reservation (ARI1R) scheme.
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Figure 7.5: Axis-region one-step reservation (AR1R) scheme in a 3D mesh supporting e-cube
routing using limited directory. The two phases of an invalidation transaction: (a) request and (b)
acknowledgment.

In the above example, the AR1R scheme uses 5 invalidation reservation and 9 gather/unicast (14
in total) messages to complete the invalidation. While a unicast-based scheme needs 14 invalidation
request and 14 acknowledgment (28 in total) messages to implement the same invalidation. Hence,
the network traffic is reduced by one half. The grouping algorithm for the multidestination worms
is simpler than a unicast worm. In general, significant reduction in network traffic and latency for
invalidation transaction can be expected.
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Axis-Region Two-step Reservation Scheme

In the second scheme, let us consider the network using an all-but-X-negative-first routing
algorithm. Let us again define a region as the set of nodes along the same Z axis. Let the directory
stores region presence bits using X-Y indexing order. When an invalidation occurs, depending
on the distance from the home node, either top or bottom X-Y plane is chosen to the plane of
potential leaders. A node lying on the intersection of this plane and a region whose presence
bit is set becomes the actual leader for that region. Using the presence bit information, region
leaders can be covered by one or multiple multidestination reservation messages (multidestination
messages of type 1). Once receiving the reservation message of type 1, a region leader sends a
multidestination reservation message of type 2 along the Z axis to cover the nodes in the region, as
shown in Fig. 7.6(a). The acknowledgment phase, as shown in Fig. 7.6(b), proceeds as before. Let
us denote such a scheme as an azis-region two-step reservation (AR2ZR) scheme.
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Figure 7.6: Axis-region two-step reservation (AR2R) scheme in a 3D mesh supporting all-but-
X-negative-first turn model routing using limited directory. The two phases of an invalidation
transaction: (a) request and (b) acknowledgment.

In the above example, the AR2R scheme uses 6 invalidation reservation and 9 gather/unicast
(15 in total) messages to complete. It is noted that the home node starts 2 messages, 1 of type
1 multidestination and 1 of type 2 multidestination, for the invalidation. The grouping algorithm
for the multidestination worms of type 1 is to be done on a 2D mesh topology, which can be done
efficiently as evaluated in the last chapter. In general, compared to the unicast-based scheme,
significant reduction in network traffic and latency for invalidation transaction can be expected
using this scheme.

Plane-Region Two-step Reservation Scheme

Lastly, let us again consider the network using an all-but- X-negative-first routing algorithm. Let
us define a region as the set of nodes in the same X-Y plane. Let the directory stores region presence
bits using Z indexing order. When an invalidation occurs, the presence bits are used directly by
the home node to send one or multiple multidestination reservation messages (multidestination
messages of type 1) to the leaders of sharing planes. Once receiving the reservation message of type
1, a plane leader sends a multidestination reservation message of type 2 to cover all the nodes in
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the plane, as shown in Fig. 7.7(a). The acknowledgment phase, as shown in Fig. 7.7(b), proceeds
as before. Let us denote such a scheme as a plane-region two-step reservation (PR2R) scheme.
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Figure 7.7: Plane-region two-step reservation (PR2R) scheme in a 3D mesh supporting all-but-
X-negative-first turn model routing using limited directory. The two phases of an invalidation
transaction: (a) request and (b) acknowledgment.

In the above example, this scheme uses 7 invalidation reservation and 11 gather/unicast (18 in
total) messages to complete the invalidation. While a unicast-based scheme needs 26 invalidation
request and 26 acknowledgment (52 in total) messages to implement the same invalidation. It is
noted that the home node starts 3 messages, 1 of type 1 multidestination and 2 of type 2 multi-
destination. Clearly, the grouping for the type 1 multidestination is very simple. The grouping for
the type 2 multidestination can be done statically. Thus, no noticeable delay should incur at the
region leaders. Also, very little storage space is needed for the region presence bits. However, due
to the large granularity of the region, the average occupancy of a node for an invalidation might
increase. Whether this scheme delivers better performance compared to the Alewife’s LimitLESS
scheme or not depends on a lot of system parameters and characteristics of the applications. De-
tailed simulation (not carried out in this thesis for this scheme) may be required for a more precise
evaluation.

It is noted that any of these region schemes can be incorporated statically (using hardware
mode-switch) or dynamically (using software interrupt-driven mode-switch) with a few hardware
sharing node pointers in each directory entry. Such a combination fits the invalidation patterns of
most DSM applications and offers the most cost-effective system.

The goal of this subsection is to demonstrate potential extensions of our framework to a 3D
mesh and other topologies. We do not emphasize the above schemes being optimal.

7.3 Performance Evaluation

7.3.1 Objectives and Simulation Experiments

To verify the effectiveness of some of our proposed schemes, we considered two system sizes:
8 x 8 and 8 x 4. Limited directory organizations with 1-3 pointers were considered. Depending on
the pointer memory available in a directory entry, we did an optimal partitioning for each scheme.
If the home node is the sole sharer in a region, a naive coarse vector scheme tries to cover all the
nodes in the home node’s region. Since invalidation to the home node does not require a network
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message, such a naive approach may generate unnecessary network traffic. To overcome this, we
assumed one bit to be used as a home bit for all coarse vector schemes (u_dir; B, m_dir;C By, and
m_dir;CBs). Table 7.1 shows the directory memory usage for all 32 schemes considered in this
evaluation.

For all simulation experiments, we assumed system parameters representing the current trend in
processor, memory, and interconnection network technologies. The following parameters were used:
processor clocked at 200 MHz, communication link bandwidth of 200 Mbytes/sec, and router delay
of 20.0 nanosec. For unicast-based message-passing, we assumed 10 processor clock cycles as the
communication overhead (the startup time). For multidestination-based messages, this overhead
was assumed to be 15 clock cycles. Table 7.2 lists all system parameters used in our simulation.

We considered four applications: Barnes (2K bodies, 4 steps), LU (128 x 128 matrix, 8 x8 blocks),
Radix (256K keys, 512 radix, 512K max), and Water (512 molecules, 4 steps).

7.3.2 Simulation Results

For each experiment, we observed five important parameters: total number of invalidation
messages (including messages for acknowledgment collection), total number of network messages,
average latency per invalidation, average latency per write operation, and overall execution time.
For the overall execution time, we also observed the amount of time spent for computation, read,
write, and synchronization. For a given application and system size, we normalized the above
five parameters with respect to those obtained for the full-map unicast implementation for a fair
comparison.

Barnes

Figure 7.8 shows the five parameters for the Barnes application on an 8 x 8 system. For each
parameter, results of 16 different schemes are presented. This includes five schemes for each pointer
(i=1, 2, and 3) and the full-map scheme. Results for all schemes are normalized to the full-map
scheme (100%).

From Fig. 7.8(a) it can be observed that multidestination based schemes are able to significantly
reduce invalidation traffic compared to the unicast based scheme. The m _dir; B scheme performs
the best for 1 pointer where as the m_diriC By scheme performs the best for 3 pointers. Most
noticeably, the m_dir, B scheme produces only about 20% of the invalidation traffic produced by
the u_diry B scheme. Similarly, the m_dir;CB; scheme produces around 40% of the invalidation
traffic produced by the u_dir;CVg scheme. Fig. 7.8(b) shows the impact on the overall network
traffic. Similar observations can also be made here. The m_dir; B scheme is able to bring down the
overall network traffic closer to the full-map scheme.

Figures 7.8(c) and (d) show the impact of these schemes on average invalidation latency and
average write latency, respectively. It can be observed that the m_dir; B schemes are able to reduce
both latencies considerably compared to the u_dir; B and u_dir;CV schemes. Fig. 7.8(e) shows
the overall execution time. It can be observed that the multidestination-based schemes are able
to perform closer to the full-map scheme. The m_dir1 B scheme shows closer performance to the
full-map scheme. The m_diroC B1 and m_diroC B, schemes are able to perform even better than
the full-map scheme. The m_dir; B scheme is able to perform within 5% of the u_dir3sCV} scheme.
Looking at the breakups in execution time, it can be observed that the reduction in overall execution
time is sensitive to the reduction in write latency time. The multidestination schemes are able to
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Pointer | Vector | Home | Unutilized
Scheme Topology Bits Bits Bit Bits
u_fullmap 8x8 64| N/A| N/A 0
u_Dir B 8 x 8 6 N/A | N/A 6
u_Dz'rlCVw 8 x 8 6 4 1 1
m_Dir B 8x8 6 N/A | N/A 6
m_Dirchl 8§ x8 6 4 1 1
m_Dir1032 8 x8 6 4 1 1
u_Dir,B 8 x 8 12| N/A| N/A 12
m_DiryB 8 x 8 12| N/A| N/A 12
u_DireCVy 8 x8 12 8 1 3
m_DiroC By 8 x8 12 8 1 3
m_DiTQCBQ 8 x 8 12 8 1 3
u-DirsB 8x8 18| N/A| N/A 18
m_Dir3B 8x8 18| N/A| N/A 18
u_DirsCV, 8 x8 18 16 1 1
m_DirsC B, 8 x 8 18 8 1 9
m_DirsCBo 8 x8 18 16 1 1
u_fullmap 8 x4 32| N/A| N/A 0
u_Dir B 8 x 4 5 N/A | N/A 5
m_Dir1 B 8 x4 5| N/A| N/A 5
u_Dir1CVg 8 x4 5 4 1 0
m_DiTchl 8 x4 5 4 1 0
m_Dir1032 8 x4 5 4 1 0
u_DiryB 8 x4 10 N/A | N/A 10
m_DiryB 8 x4 10| N/A| N/A 10
u_DiroCVy 8 x4 10 8 1 1
m_DiTQCBl 8 x4 10 8 1 1
m_DiTQCBQ 8 x4 10 8 1 1
u_DirsB 8 x4 15 N/A | N/A 15
m_DirsB 8 x4 15 N/A | N/A 15
u_DirsCVs 8 x4 15 16 1 1
m_DirsC B, 8 x 4 15 8 1 6
m_DirsCBy 8 x4 15 16 1 1

Table 7.1: Directory memory usage for different schemes.
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‘ Parameter ‘ Values ‘ Time H
Processor 1 cycle 5 ns
Cache access 1 cycle 5 ns
Cache block size 16 bytes
Cache block fill time 32 cycles 160 ns
Cache set associativity 1
Cache size per node 128 Kbytes
Memory word width 4 bytes
Memory block access time 32 cycles 160 ns
Directory check 5 cycles 25 ns
Invalidation message generation time 10 cycles 50 ns
Directory check and update 10 cycles 50 ns
Outgoing message startup (unicast) 10 cycles 50 ns
Outgoing message startup (multidestination) | 15 cycles 75 ns
Incoming message dispatch 5 cycles 50 ns
Control message size (unicast) 6 bytes
Control message size (multidestination) 8 bytes
Data message size 22 bytes
Injection channels per node 2
Consumption channels per node 4
I-ack buffer entries per router 2
Channel width / Flit size 2 bytes
Link Propagation 1 cycle 5 ns
Router switch delay 1 cycle 5 ns
Routing time 4 cycles 20 ns
Virtual networks 2
Remote Unlock Latency: 8 x 4 40 cycles 200 ns
Remote Unlock Latency: 8 x 8 50 cycles 250 ns
Barrier Latency: 8 x 4 80 cycles 400 ns
Barrier Latency: 8 x 8 100 cycles | 500 ns

Table 7.2: Default system parameters used in the simulation.
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reduce write latency and hence, the overall execution time. These results clearly show the benefits
of the multidestination based limited directory schemes.

Fig. 7.9 shows the corresponding results for Barnes on a 32-processor system. Similar trends can
also be observed here. As shown in Fig. 7.9(a), for all pointers, the m_dir; B scheme is able to reduce
maximum amount of invalidation traffic. However, with respect to the invalidation latency and
write latency, the coarse vector multidestination schemes (m_dir;CB; and m_dir;CB;) are able to
perform better than the m_dir; B schemes. This indicates that reducing the number of invalidation
messages need not directly lead to reduction in invalidation and write latencies. Fig. 7.9(e) shows
the impact of all schemes on the overall execution time. It can be observed that the m_dir; B and
m_dir;CB; schemes are able to come closer (within 1-2%) to the full-map and u_dirgCV; schemes.
This clearly suggests that limited directory schemes with a single pointer each can be very effective
when used in conjunction with the multidestination message passing mechanism.

LU

Figure 7.10 shows the results of LU on an 8 x 8 system. LU is a computationally intensive
application. Thus, the schemes demonstrate different characteristics. As the number of pointers
increases, all schemes are able to reduce the invalidation traffic. For 1-pointer, the m_dir;C B and
m_dir1C By schemes are able to perform the best. However, with 3 pointers, the m_dirsB scheme
is able to reduce the invalidation and overall network traffic considerably. Figs. 7.10(c) and (d)
show the impact on the invalidation latency and write latency, respectively. It can be observed
that with 1-pointer, the m_dir;C'B; scheme is able to reduce the latencies considerably. Compared
to the u_dir; B scheme, the m_dir;C B, scheme is able to reduce the average invalidation latency
by a factor of 7.0 and average write latency by a factor of 3.2. Fig. 7.10(e) shows the impact on
execution time. Since the LU is a computationally intensive application, few changes are observed
with a higher number of pointers. With 1-pointer, the m_dir; B scheme is able to reduce the overall
execution time by 18% compared to the u_dir1 B scheme. The m_dir;CB; scheme is able to come
closer to the full-map scheme.

Figure 7.11 shows the results for LU on an 8 x 4 system. Here the benefits of multidestination
message passing are less compared to the 64 processor system. For 1-pointer, the multidestination
schemes are able to reduce the invalidation traffic, total network traffic, average invalidation latency,
and write latency. For more pointers, these advantages diminish. With respect to the overall
execution time, as shown in Fig. 7.11(e), it can be observed that all schemes are able to perform
equally well.

Radix

Figure 7.12 shows the results for Radix on an 8 x 8 system. It can be observed that with
1-pointer, the m_dir; B scheme is able to reduce the number of invalidation messages by a factor
of 5.0 compared to the u_dir1 B scheme. The m_diriC By scheme is able to reduce the number of
invalidation messages by a factor of 1.8 compared to the u_dir;CVg scheme. With more number
of pointers, all schemes are able to perform equally well. Similar trends are also observed with
respect to total network traffic, average invalidation latency, and memory latency. Figure 7.12(e)
shows the impact on the overall execution time. It can be seen that the m_dir; B scheme is able
to reduce program execution time by a factor of 3.47 compared to the u_diry B scheme. Similarly,
the m_dir; CB; scheme is 76% better than the u_diriCV3 scheme. The m_diriCB; scheme is able
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to bring the overall execution time closer to that of the full-map scheme as well as the u_diroCVg
and u_dirgCVy schemes.

Figure 7.13 shows the results of Radix on an 8 X 4 system. Similar trends are also observed
here except that the dynamics of the schemes for 1-pointer get interchanged. With respect to 1-
pointer, the u_dir; CVg scheme performs the best for invalidation messages, network traffic, average
invalidation latency, and memory latency. However, with respect to the overall execution time, the
m_dir1C B; scheme performs the best. The m_dir; B scheme performs 90% better than the u_dir, B
scheme. The m_diriC B scheme performs 4% better than the u_dir; CVg scheme.

Water

Figure 7.14 shows the results of Water on an 8 x 8 system. It can be observed that the
multidestination schemes are able to perform better compared to the unicast-based schemes. For
1-pointer, both the m_dir;CB; and the m_dir;CBy schemes are able to reduce the number of
invalidation messages by a factor of 5.4 compared to the u_diri B scheme and by a factor of 1.5
compared to the u_diriCVg scheme. A similar trend is observed for total network traffic. With
respect to the average network latency and write latency, the m_dir; C B scheme performs the best
with one pointer. With more pointers, the m_dir; B schemes perform the best. With respect to
the overall execution time, with 1-pointer, the m_dir;C B; scheme is able to reduce the program
execution time by a factor of 1.5. It comes closer to the execution time of the full-map scheme
(within 5%) and coarse vector schemes (within 5%).

Figure 7.15 shows the results for Water on an 8x4 system. With 1-pointer, the m_diri B
scheme is able to reduce number of invalidation messages by a factor of 7.7 compared to the
u_dir1 B scheme. As the number of pointers increases, the m_dir; B scheme is able to demonstrate
its superiority. Similar trends are also observed for the overall network traffic. With respect to the
average invalidation latency and write latency, the multidestination schemes are able to perform
better. For 1-pointer, the m_dir; B scheme is able to reduce the write latency by a factor of 1.9
compared to the u_dir; B scheme. Similarly, the m_diriCB; and m_diriC Bs schemes are able to
reduce write latency by a factor of 1.3 compared to the u_dir;CVg scheme. With respect to the
overall execution time, for 1-pointer case, all schemes except the u_dir; B scheme perform equally
well and they are comparable to the full-map scheme.

The results mentioned above show the following five common trends: 1) multidestination mes-
sage passing can be used for both broadcast and coarse vector schemes to deliver better performance,
2) benefits of multidestination message passing are better with lower number of pointers, 3) multi-
destination message passing schemes with 1-pointer can deliver performance closer to the full-map
directory, 4) performance of multidestination message passing schemes with 1-pointer comes closer
to coarse vector and broadcast schemes with higher number of pointers, 5) benefits of multidesti-
nation message passing increase with an increase in system size. These trends suggest that future
generation systems can take advantage of multidestination message passing with fewer pointers
(even 1) to build scalable and cost-effective DSM systems.

7.4 Related Work

A number of other limited directory schemes have been proposed in the literature. Some
representative ones are eviction [24], superset [3], gray-code [103], and dynamic-vector [100]. The
dir; NB [24] scheme tries to completely avoid any invalidation broadcast by evicting an existing
sharing node under pointer overflow. The superset scheme [3] allows tri-state information with
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each directory entry being 2log P bits. A variation known as gray-code scheme [103] optimizes the
superset scheme for near-neighbor sharing. A dynamic-vector scheme (dir; DV,.) [100] optimizes
the dir;C'V,. scheme by allowing the coarse vector granularity to vary dynamically according to the
sharing pattern.

All of the above schemes have been proposed in the context of unicast message-passing. Our
main objective in this chapter has been to demonstrate how efficient limited directory schemes can
be designed by taking advantage of multidestination message passing support from the underlying
network. Thus, instead of evaluating all limited directory schemes, we have considered two repre-
sentative ones. For all other schemes, our multidestination message passing mechanisms can also
be applied to improve the performance. The resulting complexity and performance gain can vary
from one scheme to another depending on how well the multidestination messages are used in the
schemes.

In addition to the hardware schemes discussed so far, there are some interesting software assisted
limited directory schemes, like LimitLESS scheme [81] and dir; SW™ [148]. The main focus of such
schemes is to use the existing hardware as effectively as possible to cope with lower sharing degrees
and to deal with larger sharing degrees through software. In this chapter, we have focused only on
hardware assisted limited directories. The concepts can also be extended to the software assisted
schemes.

Besides hardware cache coherency, much research has been done for complete software DSM
systems [93, 5]. Here the emphasis has been on avoiding false sharing as well as reducing coherence
traffic. For networks supporting multicasting capability, our proposed schemes can also be used for
reducing coherence traffic.

In the context of evaluating cache-coherence protocols together with network behavior, Bhuyan
et al. have recently proposed novel schemes [83, 95]. They have shown that a single invalidation mes-
sage with implicit multiple destinations along hierarchical rings, statically defined using embedded
virtual channels on a hypercube machine, can be used to broadcast invalidation messages quickly.
A distributed hierarchical directory organization/protocol is cleverly used in the proposed scheme.
In our work, we do not use any such embedding. Instead, we only use base-routing-conformed paths
to define the multidestination worms. We also use a combination of multidestination and gather
worms to reduce the invalidation latency considerably.

7.5 Summary

Most existing limited directory schemes use only point-to-point network messages to implement
invalidations. Such a design leads to severe performance degradation when the number of pointers
per directory entry is very small. New generation networks are providing architectural support
for efficient collective communication operations. In this chapter, we investigate the performance
potential by exploring such support in designing more cost-effective limited directory schemes for
DSM systems. The study is carried out for wormhole k-ary n-cube networks supporting the multi-
destination message passing mechanism. Our emphasis has been on variations of the u_dir; B and
u_dir;CV schemes that work efficiently with (complete/selective) broadcast and gather operations
with multidestination messages. We have proposed three schemes, the m_dir; B, m_dir;CB;, and
m_dir;CBs, and evaluated them for 32 and 64 processor systems with SPLASH2 benchmarks and
compared their performance with limited directory schemes using unicast message passing (u_dir; B
and u_dir;C'V'). We have shown that 1) the m_dir; B (with a single pointer) can reduce the program
execution time by up to a factor of 3.47 compared to the u_dir; B scheme, and 2) the performance
of the m_dir1 B (with one pointer) scheme is close to the performance of the u_dirsCV scheme
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(with three pointers) and to the performance of the fully-mapped scheme. For 1-3 pointers, the
m_dir;C By and m_dir;C By schemes are shown to further reduce program execution time compared
to the m_dir; B scheme. For 1 pointer, m_dir;C B; performs better than the u_diriC'V scheme by
a factor of up to 1.66. These results indicate that limited directory schemes with only a single
pointer can be designed to work efficiently on new generation wormhole DSMs with multidestina-
tion message passing. Such results provide strong guidelines to build future scalable DSM systems
in a cost-effective manner.
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CHAPTER 8

DESIGNING UNBALANCED REQUEST AND REPLY NETWORKS

Having studied network support for specific high overhead transactions at the protocol layer
such as cache invalidation in the previous two chapters, we now look at methods to enhance the
network itself to make the protocol layer more efficient. Specifically, we examine the virtual channel
mechanism in DSM systems to obtain more performance benefits.

Virtual channels [41] have been proposed as an attractive mechanism to avoid deadlocks [8,
43], provide adaptivity [20], increase throughput [44], and reduce latency in wormhole routed
networks [44]. In recent years, several commercial network switching products [49, 124, 144] have
incorporated virtual channel mechanism as a major feature for improving network performance.
Out of these products, the SGI Spider interconnect [49] is directly geared towards cache-coherent
DSM systems.

Similar to many other studies in interconnection networks, studies on using virtual channels have
focused on synthetic traffic (uniform/non-uniform/hot-spot), arbitrary message lengths, and mes-
sage generation intervals following some probabilistic distributions. Some crucial characteristics of
DSM systems including the cause-effect relationship between messages (remote read/write request
message followed by a reply message), bi-modal traffic (short messages reflecting control messages
in a cache-coherency protocol and long messages reflecting transfer of cache-lines), and the peri-
odic generation of messages by processors (based on the computational granularity) have not been
considered. Most of the studies also ignore the impact of the network interface (NI) and assume
that the NI contains infinite number of physical injection and consumption channels. Therefore,
using the virtual channel mechanism in DSM systems is a topic worth further investigation.

Recently, an application-driven study [142] has shown that only a negligible performance benefit
exists in using virtual channels and adaptive routing in a DSM system. According to this study,
the enhancements due to virtual channels and adaptive routing might not be justified considering
the associated increase in router complexity. However, four important factors have been overlooked
in this study:

e An equal number of virtual channels have been used in the request and reply networks,
ignoring the fact that a typical request message is much shorter than a typical reply message
in a DSM system. The request and reply messages travel in separate (virtual) networks to
avoid deadlocks [91]. Since the volume of traffic is not the same in the request and reply
networks, it is not clear whether equal number of virtual channels assigned to each of these
two networks can deliver good performance.

e Network interfaces having a single injection channel and a single consumption channel have
been used to connect nodes to routers having multiple virtual channels. This puts a severe
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limitation on the number of live messages in the network at any given time. Thus, increasing
the number of virtual channels inside the network does not promise a performance benefit.

e In-order message delivery has been enforced by the network interface adapter, and a simple
FIFO cache coherence protocol has been used. In such a design, messages arriving out-of-
order (due to virtual channels) have to wait at the network interface adapter until the arrivals
of their logical preceding messages. Such an approach prevents the directory controller of the
destination node from processing these messages in a timely fashion. This results in an
increase in effective message latency and nullifies the latency reduction gained by the virtual
channel mechanism.

e A performance degradation model for implementing the virtual channel mechanism has been
used in the evaluation [9]. However, new techniques [49] are available today to design routers
with a moderate number of virtual channels (up to 4 or 5) without increasing the routing
decision delay for the header flit. Using these techniques, all tail flits can be properly pipelined
and moved at the full link speed regardless of the routing delay of the header flit.

This leads to a set of interesting problems: 1) whether virtual channels can provide performance
benefit for DSM systems and 2) how to allocate a set of virtual channels between the request and
reply networks to obtain maximum performance benefit.

In this chapter, we study how to effectively use the virtual channel mechanism in DSM sys-
tems. We propose two design guidelines: 1) having a larger number of virtual channels in the reply
network than that in the request network and 2) using an equal number of virtual channels inside
the network and at the network interface. We perform application-driven simulations to evaluate
various design alternatives following the above guidelines. Our results show that a network con-
figuration consisting of one request virtual channel, two reply virtual channels, and three virtual
channels per injection/consumption channel provides the best design from a cost-performance per-
spective. We also study the impact of several critical system parameters (such as cache line size,
switch routing delay, and network topology) on the new designs. Overall, this study demonstrates
that a carefully coordinated design using the virtual channel mechanism can considerably improve
the performance of a DSM system.

The rest of this chapter is organized as follows. Section 8.1 estimates communication require-
ments and identifies the limitations in the current DSM systems when multiple virtual channels
are used. Section 8.2 proposes three solutions for resolving each of the limitations. Results of our
simulation evaluation on design alternatives are discussed in Section 8.3. Section 8.4 briefly reviews
related work. Concluding remarks are made in Section 8.5.

8.1 Limitations of Current Approach
In this section we discuss the limiting factors in the design of current generation DSM systems.
8.1.1 TUnbalanced Usage of Request and Reply Networks

Communication Behavior in DSM Systems

As discussed in Chapter 3, the communication behavior in a DSM system is affected by three
factors: the cache coherence protocol, system configuration, and application. The cache coherence
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protocol decides the message chain for each memory block state transition. The system configu-
ration decides the sizes of messages. The application decides the total number and the mixture of
various memory block state transitions.

Regardless of the specifics of any directory-based write-invalidation coherence protocol used in
a DSM system, all messages generated by the protocol can be classified into four broad categories:
authority, replacement, invalidation, and adjustment. The authority category contains the basic
types of messages that involve the permissions for using data. The replacement category contains
the types of messages related to cache replacement. The invalidation category contains the messages
occurring only in cache invalidation. The adjustment category contains the messages related to
accessing semi-locked (compatible accesses to a block in wait states) or fully-locked (conflicting
accesses to a block in wait states) cache lines or main memory blocks. Most known cache coherence
protocols use a subset or a variation of these four categories of messages.

As described before, traffic in a DSM system has a bi-modal distribution on message size. The
short messages are used for exchanging various types of control information while the long messages
are used for data transfer. A short message normally contains information about the type of the
message, the ID of the requester, and the block address of the target global memory, in addition
to a few extra bits for network routing and fault-tolerance. A long message normally contains
a complete copy of a memory block (cache line) besides all the information required for a short
message. Thus, once a system configuration is fixed, the sizes of the short and long messages in
the system are fixed. Let us denote the sizes of these messages as Lg and L;, respectively.

Table 8.1 shows the characteristics of traffic generated by each of the four categories in the
request and reply networks. The numbers denoted in the table are defined as the total number of
messages in each category during the complete execution of an application.

Request Network Reply Network
Category Typical Message | Size | Cnt [| Typical Message | Size | Cnt
shared-read-request shared-data-reply
exclusive-read-request exclusive-data-reply
Authority exclusive-upgrade-request L n? || update-data-reply L nf
update-home-request exclusive-grant1
clean-replacement’
Replacement dirty-replacement L, n
Invalidation || invalidation-request L, | nj || invalidation-ack L, | n}
reject-signals
Adjustment wait-signals L, nj

Table 8.1: The characteristics of traffic generated by each of the four generic categories of cache
coherence messages in the request network and the reply network.

!This is a short message.
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Estimated Load on Request and Reply Networks

Let us estimate the traffic load (volumes) on the request and reply networks. We denote the
load on the request network as V7 and the load on the reply network as VP. Using the notations
from Table 8.1, we have the following equations:

Vvl = piLs+niL, (8.1)
VP = nlLy+nbL,+nbLs +nlL,
Assuming only point-to-point messages are used in the DSM system (based on current DSM sys-
tems), the following relationships hold:
nd = nb+nf (8.3)
nd = nl
Combining Eqns. (8.1-8.4), we have the following relationship:
Vi < VP (8.5)

Eqgn. (8.5) indicates that the traffic load on the reply network and the request network is not
balanced.
With a closer look, we can observe following three useful relationships:

e The value of nf depends on behavior of the application and the cache size, associativity, etc.
Because the number of (dirty) replacement can not be larger than the combined number of
exclusive-data-reply and exclusive-grant messages, the following relationship hold:

nh < nf (8.6)

e The value of n§ depends on the read/write ratio of the application and the application sharing
pattern (the number of sharers invalidated on each write). In a full-map directory system,
the following relationship holds. The reason being the number of invalidation requests/replies
equals to the number of sharers at any given moment, which can not be larger than the number
of shared-data-reply messages.

ny < nf (8.7)

e The value of n}] depends on the application sharing pattern and coherence protocol. However,
each reject/wait signal must corresponds to an authority request. Thus, we have:

ny < nf (8.8)

It is noted that Eqns. (8.6-8.8) are quite conservative. Based on the results from our DSM
system simulations and the common wisdom, over the course of an application execution, it can
be assumed that nf < n¥, nf <« nf, and n} < n{ = n!. Combining these assumptions and

Eqns. (8.1-8.4), we have the following much simplified approximation:
VIV = Ls/L (8.9)

Eqn. (8.9) indicates that the traffic load on the reply network is much heavier than that on the
request network over the whole execution course of an application in a DSM system — our target
state of operation for the system.
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Latencies in Request and Reply Networks

The previous discussions on the load imbalance on request and reply networks show that the
bandwidth requirements of the two networks are quite different. Assuming uniform traffic and equal
resource being provided in both networks, the average message latencies in these two networks can
be illustrated as shown in Fig. 8.1 according to the theoretical performance model for networks [44].
It indicates that the reply network typically operates at a higher load due to heavier traffic and
leads to increased latency for reply messages.

........ msg sizeof L;
—— msgsizeof L
% s Operating point
of reply network .
Operating point ¢

of request network o

Latency (cycle)

Received Load (flit/node/cycle)

Figure 8.1: Comparing the theoretical latencies of messages in the request and reply networks by
assuming these two networks being physically separated.

A fundamental characteristic of DSM systems is the cause-effect relationship between the re-
quest and reply messages. The latency of a round trip (i.e., a request message followed by the
associated reply message) is critical for system performance. Current generation implementations
of DSM systems provide equal resources to both networks, leading to low latency for request mes-
sages but high latency for reply messages. Such implementations often deliver sub-optimal system
performance.

It is noted that the interaction between messages in the two virtual networks when they share
a single physical network has not been accounted in Fig. 8.1. Nevertheless, the above discussion
indicates that allocating equal resources such as virtual channels between the request and reply
networks, as all current DSM systems do, is not a good design strategy.

8.1.2 Bottleneck at the Network Interface

Now, let us focus on the limitation of current generation NIs. Communication in a network
with multiple virtual channels using the conventional NI is done in the following way. First, at the
sending side, a message is constructed within the sending buffers at the NI. Second, the (physical)
injection channel at the NI gets reserved, and then a worm associated with the message starts
moving into the network in a flit by flit fashion. As the header flit of the worm moves through each
router towards its destination, a virtual channel gets reserved at each hop. Once the header flit
reaches the NI of the destination, the (physical) consumption channel and a receiving buffer gets
reserved. Finally, all the tail flits move towards the destination in a pipelined fashion.
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During the entire process, contention can occur whenever the injection channel, the consumption
channel, or any virtual channel inside the network is not available. Bubbles are inserted into the
worm when some of the reserved virtual channels share the underlying physical channels with other
worms in the network. All these factors contribute to an increase of the time interval that an
injection/consumption channel must be reserved for transferring a message. Such an increase of
the time interval to transfer a message forces an injection/consumption channel to remain idle for
a longer period of time. Thus, the usage of virtual channels in the network may reduce contention
inside the network. But it aggravates contention at the NI. An example of such contention is
illustrated in Fig. 8.2. Such contention at the NI has also been identified in the context of distributed
memory systems in a separate research [16].

incoming ROUTER outgoing
channels channels
physical
input s output channel
buffer crossoar - puffer
———[1D / IE== 1 .
0 moving
worm
————1m - N
M —+ 0
. % blocked
: arm
————+11 0
e— | v [ —
T
~ 0

injection
channel

consumption
channel

network interface

Figure 8.2: An example snapshot of a typical router and the network interface supporting one
physical injection/consumption channel. There are three concurrently bypassing worms in the
router. One worm is being injected from the NI to the router into the network. Two worms are
terminating at this router.

8.2 Proposed Solutions

In this section, we propose a set of solutions which remove the limitations discussed in the pre-
vious section. These solutions lead to better designs for DSM systems. In the following section, we
evaluate the new designs through simulation and establish guidelines for designing better systems.

8.2.1 TUnbalanced Partitioning of Virtual Channels

As mentioned earlier, the contention in one virtual network (say the reply network) can affect
the traffic in the other (the request network) because a single physical network is shared. In
Section 8.1, we observed that the load in the reply network is considerably higher than that in
the request network. Thus, to obtain better performance, our basic idea is to reduce the average
message latency in the reply network significantly with little or no increase in the average message
latency in the request network. Intuitively, more resources are needed in the reply network than the
request network due to the higher volume of traffic in the reply network. We propose to accomplish
this by using more virtual channels in the reply network. This provides the DSM system of having:
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1) more reply messages (worms) in the system at any given time and 2) more opportunities for a
reply worm to move around when contention occurs. Given a set of virtual channels per physical
channel, an optimal unbalanced partitioning of the channels between the request and reply networks
is difficult to derive using analytical modeling because it depends on too many factors. We will
evaluate such interesting design alternatives using simulation in Section 8.3.

8.2.2 Supporting Virtual Injection/Consumption Channels at the NI

We propose to alleviate the bottleneck at the NI by supporting the virtual channel mechanism
over the physical injection/consumption channel. We call these new virtual channels as virtual in-
jection/consumption channels. At the router side, the implementation requires that the port used
by injection/consumption channel be designed in a way similar to any ports in the router. At the
NT side, the implementation can be done with little additional cost. Since there are only two differ-
ent sizes of messages (both relatively small), the total storage required for multiple simultaneous
sending /receiving buffers is quite affordable. Simple control logic can be devised to operate the
sending/receiving buffer as a set of small parallel units instead of a large strict FIFO. With such
virtual channels at the NI, a worm is allowed to use the physical injection/consumption channel to
transfer the flits from/into a different sending/receiving buffer when its preceding messages have not
yet been entirely injected/consumed. Therefore, more than one worm can be injected/consumed
at the NI at the same time in an interleaved manner.

8.3 Simulation Experiments and Results

In this section, we present detailed simulation results comparing the performance of DSM system
using various network and network interface configurations. These configurations are based on our
solutions proposed in the previous section.

8.3.1 Simulation Experiments

This section describes our basic methodology and the default system and application parameters
used in simulation experiments.

Simulation Environment

The hardware cache coherent multiprocessor we simulated has an architecture similar to the
FLASH machine [85]. The system consists of 64 processing nodes interconnected in a topology
of K-ary N-cube (2D mesh as default except when we study the impact of topology). Each node
contains one processor. The processor is assumed to be a 300 MHz single-issue microprocessor
with a perfect instruction cache and a 128 KB 2-way set associative data cache with a line size of
128 bytes. The cache is assumed to operate in dual-port mode using write-back and write-allocate
policies. The instruction latencies, issue rules, and memory interface are modeled based on the
DLX design [60]. The memory bus is assumed to be 8 bytes wide. On a memory block access,
the first word of the block is returned in 30 processor cycles (100 ns). The successive words in the
block follow in a pipelined fashion. There are 8 coalescing transaction buffers at each node used
for resolving outstanding remote memory requests. Each buffer can hold one cache line and merge
multiple writes into the line. The machine is assumed to use a non-FIFO coherence protocol similar
to the one in the SGI Origin [88] and supporting the release consistency memory model [85, 88].
The synchronization protocol assumed in the system is the QOLB protocol, which is similar to
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the one used in DASH [91]. The node simulator models the internal structures and the queuing
and contention at the node controller, the main memory, and the cache [110]. Table 8.2 shows the
default memory hierarchy parameters, node controller occupancy delays, network parameters, and
network interface parameters used in our simulations.

I Memory Hierarchy Parameters | Network Parameters |
Processor frequency 300MHz Network frequency 200MHz
Cache access 1 cycle Channel width / Flit size 2 bytes
Cache line size (L) 128 bytes Link Propagation 1 net cycle
Cache set associativity 2 Router switch delay 1 net cycle
Cache size per node 128 Kbytes Routing delay 3 net cycles
Memory word width (W) | 8 bytes/cycle Physical network 1
Memory response delay 30 cycles Virtual networks 2
Cache fill time 30+L/W cycles || Topology 2D
Memory access time 30+L/W cycles
Size per trans. buffer L bytes
No. of trans. buffers 8

I Node Controller Occupancy | Network Interface Parameters |
Directory check 7 cycles Outgoing message startup | 15 cycles
Directory check&update | 14 cycles Incoming message dispatch | 8 cycles
Each invalidation 12 cycles Control message size 6 bytes
Message forward 3 cycles Data message size 6+L bytes

Table 8.2: Default system parameters used in the simulation.

We used four applications — FFT (64K points), Radix (1M keys, 1K radix, 1M max), Barnes
(8K bodies, 4 steps), and LU (512x512, 8x8 blocks) — in our simulations.

Network Configurations Evaluated

From the earlier discussion, it is clear that there are many possible network configurations with a
given number of virtual channels. For example, consider a DSM system which supports four virtual
channels. Three different partitions of the virtual channels are possible. A (3,1) partition has three
lanes in the request network and one lane in the reply network. The other two partitions can be
denoted as (2,2) and (1,3). Now, the question is which partitioning scheme provides the best perfor-
mance? Due to the complicated interference between the two virtual networks, the answer to this
question is non-trivial. Additionally, we have the flexibility of using virtual injection/consumption
channels at the NI. Since the number of lanes per physical injection and consumption channel are
independent of each other and independent of the number of virtual channels inside the network,
it leads to a large number of network configurations. To keep this simulation study under control,
we evaluated the networks with moderate number (up to 5) of virtual channels.

For convenience of discussion, let us denote a network configuration by a tuple (g, p, 7, ¢), where
q,p,1,c denote the number of virtual lanes in the request network, reply network, per injection
channel, and per consumption channel, respectively. When there is only one physical injection or
consumption channel, s =1 or ¢ = 1 is used.
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Performance Metrics

We present all our simulation results in two sets: the execution time and the network latency.
This helps us to correlate the behaviors of the underlying network with the overall DSM system
performance and to gain important insights into the network design issues. The overall execution
time is broken down into four components: the CPU computation time (C), the memory read
waiting time (R), the memory write waiting time (W), and the synchronization waiting time (S).
All the times we present are normalized to that of the left most system configuration for each
application except when stated otherwise. The network latencies for two types (request and reply)
of messages are presented in absolute time (microseconds). The presented latencies are the average
of the measured raw network latencies globally clocked from the start of the injection of the first
flit at the sender till the completion of the consumption of the last flit at the receiver across all the
messages of the same type.

8.3.2 Simulation Results

In this section, we first evaluate the performance benefit of virtual injection/consumption chan-
nels. Next, we compare the performance of various partitioning of virtual channels in the network.
Finally, we examine the impact of three critical system parameters on the overall performance.

Effect of Virtual Injection and Consumption Channels

We first studied the effect of virtual injection channels and virtual consumption channels on
the overall execution time of each benchmark application. The four configurations used in the
experiments were: (1,1,1,1), (1,1,2,2), (2,2,1,1), and (2,2,4,4). The results are shown in Fig. 8.3.

It can be observed that the overall execution time was reduced in all but one case when virtual
injection/consumption channels were used compared to those configurations when they were not
used. As the number of virtual channels increases and the bandwidth of the underlying physical
channel remains constant, the overall system performance improves for all applications. The actual
reduction in execution time varies across applications, with a maximum of 10.4% seen in FFT from
configuration (2,2,1,1) to configuration (2,2,4,4).

One exception occurred in Radix when the configuration was changed from (1,1,1,1) to (1,1,2,2).
Instead of decreasing, the overall execution time increased by 1.1%. The reason for this abnormality
could be due to a change in the critical execution path of the application.

From the timing breakdowns, it can be observed that the CPU computation time remained
almost constant across all network configurations in every application. This is expected for the
following reason. The amount of computation per processing node is largely fixed for a given input
data set and system size for these applications. Improving network performance helps to cut down
various waiting times but not the CPU computation times.

To gain more insights into the direct effect of virtual injection/consumption channels on the
network performance, let us examine the changes in the average message latencies in the request
and reply networks. Figure 8.4 shows the results from the same set of experiments. It can be
observed that the average message latency of request/reply network is usually smaller in systems
which used virtual injection/consumption channels compared to that in systems which did not use
them. This trend is more prominent for systems with two virtual channels in each network. This
indicates that an incoming/outgoing message is more often blocked by another incoming/outgoing
message at the NI in a system which supports virtual channels inside the network but not at the
NT.
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Figure 8.3: The effect of virtual injection and virtual consumption channels on the overall execution
time of benchmark applications.
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Figure 8.4: The effect of virtual injection and virtual consumption channels on the average message
latencies in the request and reply networks.
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Based on the above results, in the following subsections, we focus on network configurations with
the number of virtual injection/consumption channels at the NI being equal to the total number
of virtual channels in the network.

Effect of Unbalanced Virtual Channel Partitioning

Next, we studied the effect of virtual channel partitioning between the request and reply net-
works. We performed evaluations on network configurations with no more than five virtual channels.
There were nine different network configurations: (2,1,3,3) and (1,2,3,3) with 3 virtual channels;
(3,1,4,4), (2,2,4,4), and (1,3,4,4) with 4 virtual channels; and (4,1,5,5), (3,2,5,5), (2,3,5,5), and
(1,4,5,5) with 5 virtual channels. These configurations were compared with the (1,1,2,2) base
configuration. The results of the execution times are shown in Fig. 8.5.
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Figure 8.5: The effect of virtual channel partitioning on the overall execution time.

As expected, for all the applications, the overall execution times were reduced for those con-
figurations which used two or more virtual lanes in the reply network. Specifically, configurations
with more virtual channels in the reply network, like (1,2,3,3), (1,3,4,4), and (1,4,5,5), provided
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the best or close to the best performance in their respective group. The maximum reduction in the
execution time of each application ranged from 3.2% in Barnes to 60.3% in Radix. The main reason
behind the small performance improvement in Barnes is that the CPU computation time is very
dominant (close to 80% in our base configuration) in the overall execution time. Similarly, the high
performance improvement in Radix can be contributed to the dominant memory access waiting
time (about 70% in the base configuration). Therefore, the maximum performance improvements
of 26.8% and 13.4% in FFT (45% computation time) and LU (60% computation time) respectively
are more representative.

The results also show that configuration (1,2,3,3) is an interesting design alternative from cost-
performance point of view. It gains close to the maximum performance improvement by using just
one more virtual channel in the reply network than the minimum required in DSM systems.

Figure 8.6 shows the average message latencies in the request and reply networks from the same
set of experiments. It can be observed that the average message latency in the request network
decreased initially and flattened out (or increased slightly) as more virtual channels were moved
from the request network to the reply network within each group. On the other hand, the average
message latency in the reply network kept decreasing towards a certain value as it obtained more

virtual channels.
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Figure 8.6: The effect of virtual channel partitioning on the average message latencies in the request

and reply networks.

Another observation is that the knee points of all the curves appear at the positions when there
are two virtual lanes in the reply network. It correlates to our finding that configuration (1,2,3,3)
is the most promising alternative from a cost-performance perspective.
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In the next three subsections, we examine how and to what extent the performance benefit of
multiple virtual channels change when varying (one at a time) the values of three critical system
parameters.

Impact of Cache Line Size

First, we studied the impact of cache line size on the benefit of virtual channels. Modern
DSM systems tend to use large cache line size (typical 128 or 256 Bytes) to save the cost of
main memory directories and cache tags and exploit the spatial locality of memory references. We
selected four configurations (1,1,2,2), (1,2,3,3), (1,3,4,4), and (1,4,5,5) and performed simulations
by varying cache line size from 64 to 128 and to 256 bytes. Figures 8.7 and 8.8 show the results
of the application execution times and the average message latencies. All the execution times are
normalized with respect to the configuration (1,1,2,2) with a line size of 128 bytes (the left most
bar in the middle group) for each application. As expected, more virtual channels in the reply
network are found to be beneficial. This trend becomes stronger as the cache line size grows.
Specifically, maximum performance improvement increases from 23.4% to 32.7% in FFT, from
51.7% to 62.3% in Radix, from 1.6% to 9.4% in Barnes, from 13.3% (with a line of 128 bytes) to
18.6% in LU. According to a study done in [35], the execution time of a DSM application shows a
bathtub behavior as the cache line size changes with a pollution point around 64 bytes. Thus, it is
reasonable to expect similar or larger performance gain when some other cache line size is used in
a real system.

It can again be observed that the configuration (1,2,3,3) remains attractive for a wide range
of cache line sizes. The difference between the performance of this configuration and that of the
optimal configuration using more number of virtual channels grows slowly as the cache line size
increases. This is shown quite clearly from the changes in the sharpness with which the curves turn
at the knee points in Fig. 8.8.

Impact of Routing Delay

Next, we studied the impact of routing decision delay on the benefit of virtual channels. Some
researchers believe that the network speed can not remain unchanged as more number of virtual
channels are supported. In an earlier study [9], a performance model of 30% slowdown in network
cycle time for adding each virtual channel has been proposed. However, a more careful analysis on
the problem reveals that the slowdown is mainly caused by the routing delay of the header flit at a
router. As the network technology advances and better pipelining techniques are developed, several
commercial routers [49, 124] supporting a moderate number of virtual channels have been designed
successfully without noticeably increasing the network cycle time and routing delay. However,
for an in-depth investigation, we selected two configurations (1,3,4,4) and (1,4,5,5) and performed
simulations by varying routing delay from 3 network cycles to 4 network cycles (33% slowdown) and
using the same network cycle time. We did not select (1,2,3,3) configuration because there are good
reasons to believe that no noticeable increase in routing delay is needed to increase the number of
virtual channels from 2 to 3. Figures 8.9 and 8.10 show the results of the application execution
times and the average message latencies, respectively. It can be observed that such an increase in
the routing delay causes marginally increase in the overall execution time (less than 2.8% in all our
experiments). This indicates that the performance of DSM systems is not so sensitive to reasonably
increased routing delay. However, the performance is quite sensitive to the overall network cycle
time (or link cycle time) increase as reported in [32, 35, 142].
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Figure 8.10: Impact of switch routing delay on the average message latencies.

Impact of Topology

Finally, we studied the impact of network topology. We focused on the k-ary n-cube topologies.
Recently, there are some renewed interests of using higher dimensional k-ary n-cube topologies in
DSM systems because of many different reasons [45, 88]. Thus, we selected three configurations
(1,1,2,2), (1,2,3,3), and (1,3,4,4) and performed simulations by varying dimensionality from 2 to 3
to 6 and keeping the total number of processing nodes fixed at 64. Figures 8.11 and 8.12 show the
results of the application execution times and the average message latencies, respectively. It can
be observed that the performance benefit of using virtual channels reduces as the dimensionality
increases. Specifically, the performance improvement decreases from 26.8% to 3.5% in FFT, from
57.0% to 32.8% in Radix, from 2.9% to no gain in Barnes, and from 13.1% to 4.2% in LU. This is
not surprising because the network bisection bandwidth increases as the dimensionality increases
(under constant link width). The actual physical bisection bandwidth increases from 6.4GB/s to
12.8GB/s to 25.6GB/s. Thus, less contention occurs in the network and virtual channels become
less useful. This indicates that the benefit of contention reduction obtained by using more virtual
channels can also be obtained by using more physical channels at a higher cost. This is confirmed
in Fig. 8.12 which shows that the reductions in average message latencies decrease significantly
from 2D to 3D to 6D in all the applications.

8.4 Related Work

Using multiple virtual channels with various buffer sizes in DSM systems was first studied
in [84]. However, with more realistic assumptions on the existing technologies, the study in [142]
has suggested that it may be unjustified to use virtual channel mechanism in DSM systems with
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respect to cost-performance viewpoint. But, as we have shown in this study, incorporating virtual
channel mechanism into DSM systems in an efficient manner can provide a significant performance
improvement. The performance impact of network contention under various designs of cache and
memory module, processor speed, and different network components has been reported in [35]. A
set of guidelines have been proposed in [32] for designing better networks for DSM systems with
two virtual networks (with one virtual channel each) and one injection and consumption channel
at the network interface. Impact of multiple physical injection/consumption channels has been
the focus of study in [16]. However, this study has been done with respect to uniform traffic
distribution in distributed memory systems. Traffic non-uniformities in the forward and reverse
multistage networks in the Cedar system have been investigated in [139]. Strategies for improving
the performance of dance-hall vector multiprocessors using MIN networks have been proposed in

this study.

8.5 Summary

In this chapter we have presented two simple techniques for exploiting the promising perfor-
mance benefit of the virtual channel mechanism in distributed shared memory systems. Virtual
injection and consumption channels can be implemented at very little additional cost to the existing
designs of switches and network interfaces. Unbalanced virtual channel partitioning between the
request and reply networks requires some design changes within the routers without any increase
in cost. The effects of the virtual channel mechanism with both techniques have been evaluated
through simulations using a set of representative benchmark applications.

Our results indicate that a network configuration consisting of one request virtual lane, two reply
virtual lanes, three virtual lanes per injection/consumption channel is the most cost-effective design
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alternative. Overall, we have shown that the virtual channel mechanism can reduce the execution
time of a DSM application significantly. In addition, we have shown that the performance benefit
of using virtual channels increases with a larger cache line size, is not so sensitive to changes
in routing delay, and decreases in a higher dimensional k-ary n-cube topology under constant
physical link bandwidth constraint. This study demonstrates that the virtual channel mechanism
can significantly improve the performance of a distributed shared memory system.
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CHAPTER 9

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

In this chapter we summarize the contributions of this thesis, and suggest some directions for
future research.

9.1 Summary of Research Contributions

This thesis makes the following major contributions for designing efficient communication sub-
systems for distributed shared memory (DSM) systems.

1. Network Contention Analysis: Various types of network contention at the network inter-
face and inside the network in distributed shared memory systems are identified. A framework
is presented for modeling, isolating, and analyzing the impact of these types of network con-
tention on the performance of DSM systems. It is shown that network contention, especially
contention inside network, can affect the performance of DSM systems significantly. The
analysis also provides new insights into the network behavior in DSM systems.

2. Analytical Performance Modeling: A parameterized model is developed to estimate the
performance of DSM systems. The model captures the fundamental characteristics of basic
system components—the program, processor, cache, coherence scheme, memory, and network.
It characterizes the complex interactions between system design parameters via a set of linear
equations. Using this model, it is shown that architects can easily estimate the performance
of a system and identify its bottlenecks. This model is also used to derive a set of guidelines
for selecting network design parameters for future DSM systems.

3. Designing Pipelined Node-Network Interfaces: The overhead incurred at the node-
network interface in DSM systems is an important component of remote memory access
latency. A new design of pipelined node-network interface is proposed for supporting cut-
through delivery and partial cache-filling, eliminating store-and-forward operations at various
stages in the data reply phase. This design demonstrates significant reduction in the restart
and back-to-back memory latencies compared to the conventional block-based interface.

4. Incorporating Multiple-path Network: Multiple network paths between a pair of nodes
exist in current generation DSM systems. They are helpful in increasing network bandwidth
and reducing network contention, leading to lower network latency. A novel, block correlated
FIFO channel (C-FIFO) design strategy and its implementation using current technology is
proposed for incorporating multiple-path networks in DSM systems. Evaluations demonstrate
that this strategy and the associated implementation provide a significant cost-performance
advantage over the existing design strategies and implementations.
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5. Reducing Invalidation Overhead: The problem of high protocol processing overhead
and network congestion caused by cache invalidations is analyzed in depth. A number of
multidestination-based mechanisms which utilize hardware support at the router are proposed
for reducing such overhead and congestion. These mechanisms can be applied to DSM systems
using full-map cache coherence schemes and to systems using limited directory schemes. It is
shown that with moderate hardware support at the router, the invalidation problem can be
alleviated substantially.

6. Designing Unbalanced Network: The inherent characteristics of request and reply traf-
fic are analyzed and traced back to the working principles of the DSM systems. To better
accommodate the two different types of traffic, unbalanced network designs are proposed.
Specifically, more virtual channels are shown to be suitable for the reply traffic which de-
mands much higher network bandwidth than the request traffic. It is clearly shown that such
designs can improve the overall system performance significantly compared to the conven-
tional balanced network designs.

Overall, the contributions of this thesis have been to show that the performance of DSM sys-
tems can be enhanced significantly with moderate modifications to existing communication subsys-
tem architectures. The performance benefits of these modifications have been established through
theoretical analysis and extensive simulation-based experiments. The designs and enhancements
developed in this thesis therefore hold significant promise for being implemented in current and
future generation DSM systems.

9.2 Suggestions for Future Research

The topic addressed by this thesis is a fertile area for further research with immediate impact
in the computer industry. Almost all major manufacturers of high performance computing systems
either have or have announced their own product lines of DSM systems or some kind of hybrid sys-
tems, such as clustering symmetric multiprocessor (SMP) systems. Many interesting and practical
problems in this area still wait for solutions. In this section, we describe some of the problems and
provide a few suggestions.

e Commercial Application Based System Evaluation: Enterprise computing like on-line
transaction processing, decision supporting, Internet-based web services, etc., is a major mar-
ket segment for DSM systems. It is important to evaluate the impact of any architectural
innovation on commercial applications [140]. Technically, porting commercial applications to
our DSM testbed [110] is not much different from porting the scientific computing bench-
marks such as SPLASH/SPLASH2 [127, 126]. However, two main obstacles prevent us from
doing so. First, the source codes of such applications are mostly proprietary and hard to
obtain. Even characteristics of such workload are commercial secrets in the industry. Second,
most such applications require enormous amount of computing power and storage, making
execution-driven simulation not feasible. Most recently, some research [140, 86] has focused
on commercial application based evaluation using TPC-C and TPC-D benchmark suite. An
interesting observation from these studies is that commercial applications tend to have more
communication and less data locality. Therefore, the hardware designs and enhancements
proposed in this thesis are expected to improve system performance even more. However,
by including commercial applications as part of our evaluation benchmark suites, new subtle
characteristics may be found, leading to design better architectural support for DSM systems.
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e Efficient Network Topologies for DSM Systems: In this thesis, we largely assume
a k-ary n-cube network. However, an untouched and interesting question is which network
topologies such as k-ary n-cube, multi-stage interconnection (MIN), rings, or irregular network
are efficient for DSM systems. It is a common belief that efficient topologies must have
low latency and high communication bandwidth. To achieve such objectives, the topologies
must have a small diameter, short average distance between nodes, and multiple distinct
paths between nodes. It is also interesting to investigate the performance benefits of various
collective communication mechanisms proposed for these network topologies [74, 76, 75, 129,
131, 135, 130, 132, 128]. Other important and practical considerations such as reliability,
availability, serviceability, reconfigurability, etc., can further complicate the solution. The
results of such a study will help identify ideal topologies with a given number of nodes,
switches, and cables.

e Efficient Network Routing Schemes for DSM Systems: A topic closely related to the
study on efficient topologies is to develop efficient routing schemes for the resultant topologies.
In general, deadlock-free routing schemes [26, 43, 54, 55] and deadlock recovery schemes [8]
have been well studied and some of them have been shown to provide good performance in
various networks under synthetic traffic. However, very little research has been done in the
context of DSM systems due to the complexity in the nature of the problem. Some preliminary
results of our most recent work in this direction has been reported in [125].

e Clustered Hybrid Systems: A recent trend in high-performance computing industry is to
build cost-effective clustered systems. Such a system consists of a hierarchical organization
with a small cluster of processors forming the basic building block. The Stanford DASH [91]
and the Cray T3D [77] are earlier examples. Many latest versions of the IBM SP use SMP
nodes, each node consisting of 2 to 8 processors. Often the processors in such systems are
interconnected by two or more levels of networks with different topologies, for example, a
bus or crossbar for intra-cluster, and a MIN or k-ary n-cube for inter-cluster connection.
Preliminary studies [13, 12, 109, 14, 17, 11, 65, 66] have been performed on the issues involving
unicast/multicast communication primitives in clustered systems [15]. Interestingly, most
clustered systems support a programming paradigm with a somewhat coherent global memory
space. Therefore, how to extend the mechanisms proposed for efficient communication in this
thesis to such systems is worth further exploration.

e Supporting Coherent Memory Space Atop VIA: Recently, virtual interface architec-
ture (VIA) has been proposed as an industry standard for low latency and high bandwidth
communication between computers in system area networks (SAN). The Fast Messages com-
munication library [107, 106] and U-net communication messaging layer [143, 145] are two
software packages with architectures very similar to the VIA. It is very possible that VIA
based hardware and software libraries will be the industrial standard for internal communica-
tion in high-performance systems. How to cost-effectively support a somewhat coherent global
memory space on top of VIA is a new and exciting area for future study with potentially a
strong impact on industry.
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