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Abstract

Barrier synchronization is a common operation in par-
allel and distributed systems. A fast implementation is im-
portant because it allows fine grained parallel programs to
be more efficient. It is therefore important to minimize the
latency of barrier operations. Modern network interface
cards (NICs) have programmable processors which can be
used to support collective communications such as barrier.
In [4] we have designed and implemented a NIC-based bar-
rier feature over GM. This new NIC-based barrier opera-
tion raises many open questions which must be answered.
Does the NIC-based barrier perform better than the host-
based barrier? How does the performance of the NIC-
based barrier change with better NICs? Is the NIC-based
barrier scalable? How does the performance of the NIC-
based barrier affect the granularity of computation? How
does the NIC-based barrier affect the performance of appli-
cations? In this paper, we take on these challenges. We find
that the NIC-based barrier performs better than the host-
based barrier with up to a 2.22 factor of improvement on
an eight node system at the MPI-level. We also find that the
factor of improvement values increase with the number of
nodes indicating that the NIC-based barrier is more scal-
able. We find that the NIC-based barrier also allows for
finer grained computation without affecting the efficiency of
the program. These results indicate that NIC-based barrier
in current and future clusters can deliver significant perfor-
mance benefits to the applications.

1 Introduction
Barrier synchronization is a common operation in paral-

lel and distributed systems. It is a common synchronization
operation in both message passing as well as shared mem-
ory systems [2, 11, 14, 10, 15, 13, 6]. An efficient imple-
mentation is important because during the operation, gener-
ally no computation can be performed, unless the program-
ming model supports split-phase, or fuzzy, barriers[9]. The
commonly used MPI model does not support split-phased
barriers. A fast barrier implementation also impacts the�
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granularity of the parallel program: A fine grained parallel
program will not be efficient if the barrier latency is high.
It is therefore important to minimize the latency of barrier
operations.

In a typical barrier operation, participating nodes ex-
change messages to determine whether all nodes have
reached the barrier. On current clusters, the barrier proto-
col is typically processed at the host. For instance, a barrier
message originates at the host of one node, it is transferred
to the Network Interface Card (NIC) which transmits it to
the NIC of the other node. That NIC receives the barrier
message and transfers it to the host. If necessary, the host
will send another barrier message to another host which
must be transferred to the NIC to be transmitted as before.
Thus, a typical barrier operation on current systems using
host-based point-to-point operations may be very expen-
sive. Modern NICs have programmable processors. Such
programmable NICs can be used to support collective com-
munications such as barrier in an efficient manner. In [4] we
have designed and implemented a NIC-based barrier over
GM, Myricom’s message passing system[12]. In a NIC-
based barrier the protocol is processed at the NIC rather
than at the host. By basing the barrier protocol at the NIC,
the barrier messages need not be passed up to the host to
have the next message sent back down from the host to the
NIC. Instead, upon the reception of a barrier message, the
NIC can immediately send the next barrier message. This
leads to a more efficient implementation of barrier with re-
duced latency.

This new NIC-based barrier operation raises many open
questions which must be answered. Does the NIC-based
barrier perform better than the host-based barrier? While
we have shown in [4] that the NIC-based barrier gives up to
a 1.83 factor of improvement over the host-based barrier at
the GM level, it remains to be seen how much performance
benefit can be observed at the MPI level using the new im-
plementation. Is the NIC-based barrier scalable? How does
the performance of the NIC-based barrier change with bet-
ter NICs? Given that cluster sizes are growing we must see
whether the operation will still be efficient over a large num-
ber of nodes. How does the performance of the NIC-based
barrier affect the granularity of computation? With a more
efficient barrier operation, finer grained parallel programs
should be possible. How does the NIC-based barrier affect
the performance of applications?



In this paper, we take on these challenges. We have mod-
ified the MPICH[8] port over GM to use the NIC-based bar-
rier operation implemented in [4]. This was done in an ef-
ficient manner and it introduces only a 3.22 � s overhead to
the GM NIC-based barrier operation for 16 nodes. This al-
lows many existing MPI applications to take advantage of
this efficient operation. Furthermore, we find that the NIC-
based barrier performs better than the host-based barrier at
the MPI level: The latency of a 16 node MPI barrier using
the NIC-based barrier operation is 105.37 � s while that us-
ing the host based barrier operation is 216.70 � s. We also
find that the NIC-based barrier is more scalable than the
host-based barrier: The factor of improvement values in-
crease with the number of nodes participating in the bar-
rier. We find that the NIC-based barrier also allows for
finer grained computation without affecting the efficiency of
the program. Finally, by using synthetic applications on an
eight node system, we find up to a 1.93 factor of improve-
ment in the applications using a NIC-based barrier versus
using a host-based barrier.

The paper is organized as follows. Section 2 provides
an overview of the NIC-based barrier and the basic bar-
rier algorithm. Section 3 describes the changes we made
to MPICH to use the NIC-based barrier. In Section 4 we
evaluate the NIC-based barrier implementation along the di-
mensions discussed above. Section 5 concludes the paper.

2 Overview of NIC-based barrier

We presented the design and implementation of the
NIC-based barrier in [4]. The implementation was done
as a modification to GM, Myricom’s message passing
system[12]. In order to perform the evaluations described
in this paper, we additionally had to modify the MPICH[8]
port over GM, version 1.2..3, to use the NIC-based barrier.
Here we give a short overview of the concept behind the
NIC-based barrier and its implementation on GM. Readers
are encouraged to refer to [4] for details.

2.1 Basic idea

In a NIC-based barrier operation, the barrier protocol is
performed at the NIC, rather than at the host. The host com-
mands the NIC to start the barrier and the NIC informs the
host when the barrier has completed. Figure 1 shows block
diagrams for host-based and NIC-based barriers on a four
node system. In both examples the same basic protocol is
used, except the difference is where the protocol is being
performed. The basic protocol for four nodes proceeds in
two steps. In the first step, nodes 0 and 1 exchange mes-
sages at the same time that nodes 2 and 3 are exchanging
messages. Once those messages have been exchanged, the
second step proceeds where nodes 0 and 2 exchange mes-
sages while nodes 1 and 3 are exchanging messages. Note
that messages which are exchanged within a step, e.g., when
nodes 0 and 1 are exchanging messages, they are sent con-
currently. For example, node 0 sends its message to node 1
immediately, without waiting to receive the message from
1, and similarly, node 1 sends its message to node 0 without
waiting for the message from node 0. Once a node has sent
the message for that step, however, it must wait to receive
the corresponding message before completing that step.

In Figure 1, the diagram on the left represents the host-
based barrier (as currently implemented in MPICH[8]). In
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Host
Node 0

Node 2 Node 3 Node 2 Node 3

Node 1Node 0Node 1

Figure 1. Host-based barrier (left) and NIC-
based barrier (right)

this diagram, each of the messages originates at a host and
is received by a host. This means that before a node com-
pletes the first step, the message sent to it in that step must
be received by the NIC and passed up to the host, then the
message for the second step must be passed back down to
the NIC to be transmitted to the other node. The diagram
on the right in Figure 1 represents the NIC-based barrier.
In this diagram, the host sends a message to the NIC then
waits for a notification from the NIC that the barrier has
completed. The protocol messages are exchanged between
the NICs. Because the messages do not have to be passed
all the way to the host, the time is reduced between when
the message of one step is received and the message from
the next step is sent.

2.2 Barrier algorithm

We have implemented a NIC-based barrier on GM,
Myricom’s message passing system, version 1.2.3 in [4].

In [4] we implemented the NIC-based barrier using two
algorithms. In this paper we only consider one algorithm,
the pairwise exchange algorithm, since this performed bet-
ter than the other. This is the same basic algorithm used
in the MPICH implementation of barrier. At a conceptual
level, the algorithm runs as follows. Assuming we have a
power-of-two number of nodes, we start the algorithm by
placing each node into its own group; i.e., if we have �
nodes, then there are � groups each with one node. Then
the algorithm proceeds recursively by merging groups, two
at a time, until there is only one group. The algorithm
is then finished. To merge two groups, each node in one
group exchanges messages with exactly one node in the
other group. The nodes in those two groups then form one
new group. Because the message exchanges can happen
concurrently, this can be accomplished in one step. The al-
gorithm runs in a total of �������	� steps if � is a power of
two.

If � is not a power of two, then we divide the nodes into
a set 
 and a set 
�� such that  
� is the largest power of two
less than � . We then pair each node in 
�� with a node in 
 .
Each node in 
 � will send a message to its corresponding
node in 
 , which waits for the message. Next, the nodes in

 perform a barrier as described above. Finally, the nodes in

 which had received a message from the nodes in 
�� send
a message back to their corresponding node in 
�� . For non-
power-of-two number of nodes the algorithm should run in� ��������������� steps.

2.3 Estimated performance benefits

Figure 2 shows timing diagrams comparing the latencies
of an eight node barrier using the host-based barrier and
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Figure 2. Timing diagrams comparing latencies for a) host-based barrier and b) NIC-based barrier.

a NIC-based barrier. The barrier algorithm for eight nodes
proceeds similarly to the four node barrier described in Sec-
tion 2.1, except that it has three steps rather than two. For
simplicity, in this example we assume that each node starts
the barrier at exactly the same time. We also assume that
the network is wormhole routed and that the NICs have sep-
arate send and receive ports, so a message can be sent and
received simultaneously.

Figure 2(a) shows the timing diagram for one node per-
forming a host-based barrier. The diagram is divided into
two timelines, one for the host and one for the NIC. On the
host timeline, 
 ����� represents the time spent by the host to
initiate a send on the NIC. Once the send has been initiated,

����
	 on the NIC timeline represents the time the NIC
spends transferring the data for the message from the host
memory to the NIC send buffer using DMA. Next, ������
represents the time the NIC spends transmitting the mes-
sage onto the network. Since we assume that the network is
wormhole routed, and that all other nodes started their bar-
riers at exactly the same time, the corresponding message
arrives at the NIC after a delay of � � ��������� from when the
message had started being transmitted. � ����� represents the
time for the message to be received from the network into
the NIC receive buffers. Once the message has been re-
ceived into a receive buffer, the message is transferred to
the host using DMA. This time is represented by �����
	 .� � ��� � represents the time for the host to process the re-
ceived message. This same process is repeated two more
times to exchange messages with the other two nodes.

Figure 2(b) shows the timing diagram for one node per-
forming a NIC-based barrier. Here, 
 �!��� represents the
time the host spends to initiate the barrier operation. Be-
cause there is no data to be transferred from the host, the
NIC can immediately transmit a barrier message. ��"�#�
represents the time that the NIC spends transmitting the bar-
rier message. After a delay of � � ��������� the corresponding
message arrives at the receiver. Once the message is re-
ceived at the receiver NIC, it (the receiver NIC) can imme-
diately start transmitting the next message. Once the last
message has been received, the NIC transfers the comple-
tion notification to the host. This time is represented by
�����
	 . Finally,

� � ����� represents the time for the host
to process the notification. From these diagrams, we can
see that the latency of an eight node host-based barrier is$�%'& 
 ����� � 
����
	 � � � ���(���)� �*� ����� �*�����
	 �� � ��� �,+ , while the latency for a NIC-based barrier is only& 
 ����� � $-%.& � � ���(���)� �*� �����/+ �*�����
	 � � � �����/+ .
This suggests that the NIC-based barrier should perform
better than the host-based barrier. It also suggests that per-

formance benefits may increase with respect to system size,
send/receive overheads, etc. However, the exact benefits are
not known. We focus on this aspect in Section 4.

3 Modifications to MPICH to use the
NIC-based barrier

In this section we describe the modifications we made
to MPICH so that it uses the NIC-based barrier. First we
give an overview of how GM works and the modifications
that were made to GM to support NIC-based barrier in [4].
Then, we describe our modifications to MPICH.

3.1 Overview of GM

GM consists of a driver, a library and a Myrinet control
program (MCP). The driver loads the MCP on to the NIC
when it is loaded. During the execution of a program the
driver is used mainly for opening ports, pinning and unpin-
ning memory, and to put processes to sleep or wake them
when blocking functions are used. A port is an abstraction
through which a process can communicate with the NIC.
Once a port is opened, the process can communicate with
the NIC, bypassing the operating system and avoiding sys-
tem call overhead. Each NIC can support a maximum of
eight ports, some of which are reserved.

At the host level GM is connectionless, but provides re-
liability by maintaining reliable connections between NICs
of different nodes. Flow control is used between the NIC
and the host to avoid buffer overflows. To provide this
reliability GM uses the concept of tokens. When a pro-
cess opens a port, it has a certain number of send tokens
and receive tokens. Each send token corresponds to a send
event. To send a message, the process calls gm send
with callback() to fill in a send token describing the
send event and queues it on the token queue. The NIC polls
this queue for new send tokens. When the NIC gets a new
send token it will DMA the data from the specified host
buffer, and transmit the packet to the destination. Once the
NIC has completed the send, and has freed the resources
corresponding to that event, the send token is returned to the
process. This is done implicitly when the callback function
associated with the send call is executed. The host should
not modify the data which is to be sent until the send to-
ken is returned from the NIC. When a deprecated version
of the send call, gm send(), is used, the send token is re-
turned to the process using the receive operation instead of
the callback.

In order to receive a message, the process must allo-
cate a buffer into which the message will be received and
pass a receive token describing the buffer to the NIC using



gm provide receive buffer(). Once the NIC has
DMAed the data from a received message into the buffer,
the receive token is returned to the process. The process
detects returned receive tokens by polling gm receive()
or by calling gm blocking receive(). Messages may
only be sent from and received into buffers which are pinned
in memory. Memory is pinned using special functions sup-
plied by GM.

3.2 NIC-based barrier in GM

In [4], we added two new procedures to GM called
gm provide barrier buffer() and gm barrier
with callback(). The gm provide barrier
buffer() procedure transfers a barrier receive token to
the NIC. The NIC will return this token to the process when
the barrier has completed. This procedure is actually a
misnomer because no buffer is needed by the barrier. It
was named this because it is the analog of gm provide
receive buffer().

The gm barrier with callback() procedure fills
in a send token describing the nodes and ports with which
to exchange messages and queues it on the send queue. The
NIC, upon receiving the token, will perform the barrier op-
eration, then return the receive token, previously provided
by a gm provide barrier buffer() call, to the pro-
cess indicating that the barrier has completed. Note that the
send token need not be returned when the receive token is
returned. For instance, if there is a non-power of 2 number
of nodes participating in the barrier, then some nodes in the
set 
 , described in section 2.2, will be sending messages to
the nodes in the set 
�� . In this case, the NIC need not wait
for this last message to be sent before returning the receive
token to notify the process. The send token will then be
returned when this last send is complete.

3.3 MPICH modifications

MPICH is designed using a layered approach, such that
all that needs to be done to port MPICH to use a new com-
munications device, is to write a new channel interface for
that device. The channel interface defines a set of low level
data-transfer primitives which are used by the upper lay-
ers. The host-based MPI Barrier() barrier operation
is normally implemented at an upper layer using the high
level MPI Sendrecv() call. However, if a barrier oper-
ation is implemented in a channel interface, then by defin-
ing the MPID Barrier and MPID FN Barrier macros,
that operation will be used instead of the upper layer one.

We modified MPICH version 1.2..3 which has been
ported to use GM[12] by Myricom. In the GM chan-
nel interface, a send is queued at the host until there
is a send token available to issue a gm send() call.
When the token is returned, the entry for that send is
marked as complete. Receive requests are similarly queued,
and marked as complete when the receive token is re-
turned. The MPID DeviceCheck() procedure receives
messages from the NIC and marks the completed sends as
complete. It also keeps track of the token counts and sends
pending messages when send tokens are available.

We implemented a low level procedure called
gmpi barrier() to perform the NIC-based barrier.
The macros described above were defined to refer to this
function. This function first determines the list of nodes

with which the NIC will exchange messages. This is done
using the same basic algorithm that the MPICH host-based
barrier algorithm uses, which was described in Section
2.2. Next, the procedure calls MPID DeviceCheck()
until all pending sends and receives have completed and
until there is at least one send token and at least one
receive token available. Now the procedure is ready to
perform the barrier. The procedure calls gm provide
barrier buffer() followed by gm barrier with
callback() and decrements the send and receive token
counts. The procedure now sets a flag barrier done
and polls MPID DeviceCheck() until the flag is set.
The procedure MPID DeviceCheck() was modified to
set this flag when a barrier receive token is received. When
the callback function associated with the barrier is called,
the send token count is incremented.

4 Performance evaluation

In this section, we evaluate performance benefits of our
implementation. The evaluation is done along multiple an-
gles:

MPI-level overhead: We have evaluated the amount of
overhead that the MPI layer adds to the barrier latency com-
pared to the GM-level barrier. This will indicate whether
applications at the MPI level can effectively utilize the per-
formance of the NIC-based barrier.

MPI-level performance and scalability: Scalability is
an important factor in collective communications. Modern
clusters can have 1,000 or more nodes, so it is important that
collective communication operations such as barrier per-
form well as the system size increases. We evaluated the
performance of the NIC-based barrier and compared it to
the host-based barrier at the MPI level. We also compared
the scalability of the NIC-based barrier to the host-based
barrier.

Granularity of computation: The latency of a barrier
operation affects the granularity of computation. If the cost
of performing a barrier is high, then the amount of com-
putation performed between barriers will have to be large,
otherwise the efficiency of the program suffers. So, by re-
ducing the latency of the barrier, the program can be written
using finer granularity without loosing efficiency. We eval-
uated the performance of a computational loop with barrier
for varying granularity of computation.

Varying arrival times: In most real applications, nodes
participating in a barrier may arrive at the barrier at differ-
ent times. We evaluated the performance of the NIC-based
and host-based barriers while varying the delay between the
barriers.

Performance evaluation with synthetic application:
Because the barrier latency in many message passing sys-
tems has been high, few benchmarks exist which use barrier
heavily. For instance, the NAS[1] benchmarks use very few
barriers. In order to simulate a higher granularity applica-
tion, we wrote a synthetic benchmark. Each synthetic ap-
plication performs several phases of computation each fol-
lowed by a barrier. The length of the computation varies
from one phase to the next. We compared the overall ex-
ecution times of the applications using NIC-based barrier
and host-based barrier.

The performance results were run on a cluster of 16 dual
300MHz Pentium II machines each with 128MB of RAM,



running RedHat 6.0 with SMP kernel version 2.2.5. The
machines are connected by a Myrinet[3] LAN network us-
ing NICs with 33MHz LANai 4.3 processors. These are
connected to a 16 port switch. Eight of these machines
are also connected by another Myrinet LAN network us-
ing NICs with 66MHz LANai 7.2 processors. These are
connected to an eight port switch.

We describe the results of our evaluation in the following
subsections.

4.1 MPI-level overhead

To evaluate the MPI overhead, we compared the laten-
cies of the barrier operations at the GM level and at the
MPI level. To determine the latency of the barriers, we
performed 10,000 consecutive barriers and took the aver-
age latency of each barrier at each node. Figure 3 shows the
results of these experiments using 33MHz LANai 4.3 and
66MHz LANai 7.2 NICs. When using the 33MHz NICs
there was a 3.22 � s overhead for the 16 node NIC-based
barrier. For the 66MHz NICs, there was only a 1.16 � s
overhead for the eight node NIC-based barrier. Note that
the overhead of MPI operation to initiate a NIC-based bar-
rier does grow slightly with the number of nodes. For the
pairwise-exchange algorithm that we are using, it grows at
a rate of ����� ��� , where � is the number of nodes partici-
pating in the barrier. By taking this into account, it can be
observed that our MPI-level barrier implementation to use
the GM-level NIC-based barrier is extremely efficient.
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latencies of NIC-based barriers using 33MHz
LANai 4.3 and 66MHz LANai 7.2 NICs

4.2 MPI-level performance and scalability

To evaluate the performance of NIC-based barriers at the
MPI-level, we performed 10,000 consecutive barriers using
the MPI Barrier() function, and took the average la-
tency of each barrier at each node. These experiments were
performed for host-based and NIC-based barriers using both
LANai 4.3 NICs and LANai 7.2 NICs. Figures 4(a) and
4(b) show the results of these experiments for power-of-two
numbers of nodes. Figure 4(a) shows a latency of 105.37 � s
for the NIC-based barrier (NB) compared to 216.70 � s for
the host-based (HB) barrier using the 33MHz LANai 4.3
NICs for a 16 node barrier. Similarly, a barrier latency
of 46.41 � s is observed for the NIC-based barrier using the
66MHz LANai 7.2 NICs for an eight node barrier, com-
pared to 102.86 � s for the host-based barrier.

Figure 4(b) shows the factors of improvement for the
NIC-based barrier over the host-based barrier. Notice that
the NIC-based barrier delivered a 2.09 factor of improve-
ment for 16 nodes using the LANai 4.3 NICs and a 2.22 fac-
tor of improvement for 8 nodes using the LANai 7.2 NICs.
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Figure 4. Performance of NIC-based bar-
rier versus host-based barrier using 33MHz
LANai 4.3 and 66MHz LANai 7.2 NICs

Notice also that for both NICs the factor of improvement in-
creases with system size. This indicates that the NIC-based
barrier scales better than the host-based barrier. Figure 5(a)
shows the barrier latency for all (including non-power of
two) nodes and Figure 5(b) the factor of improvement of
the NIC-based barrier versus the host-based barrier for these
nodes. From these graphs we see that even with non-power-
of-two numbers of nodes, the NIC-based barrier scales bet-
ter than the host-based barrier. Notice that, in some cases,
the latency of performing a barrier with a non-power-of-two
number of nodes is greater than the latency of performing a
barrier with a greater power-of-two number of nodes (e.g.,
7 nodes v.s. 8 nodes for NIC-based using the LANai 4.3).
This is because for a barrier with a non-power-of-two num-
ber of nodes, two extra steps must be taken to send and re-
ceive from the nodes in set 
�� , as described in Section 2.2.

4.3 Granularity of computation

To examine the effects of NIC-based barrier on granu-
larity of computation, we performed 10,000 loops of com-
putation at the MPI-level followed by an MPI-level barrier.
We varied the length of the computation to simulate differ-
ent levels of granularity. In Figure 6, we varied the length
of computation from 1.50 � s to 129.75 � s to examine the
effects of NIC-based barrier for very fine levels of granu-
larity. Figure 6 shows the average execution time (compu-
tation time and barrier time) per loop as the computation
time varies. Results are presented for both NIC-based (NB)
and host-based (HB) barriers on eight nodes using 33MHz
LANai 4.3 (33) and 66MHz LANai 7.2 (66) NICs. Notice
that for the host-based barriers, we see a flat spot where the
execution time does not increase much for computation time
per loop going up to around 17 � s for the LANai 4.3 NICs
and around 8 � s for the LANai 7.2 NICs. This is due to to
fact that when the host sends the last message of a barrier
and completes the barrier, the NIC may still be transferring
the message from the host to the transmit buffer or trans-
mitting the message when the next barrier call is made. The
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next barrier will send a message which must be delayed un-
til the NIC has finished the previous message. We don’t see
the same effect with the NIC-based barrier because the NIC
does not notify the host that the barrier has completed un-
til just before it starts transmitting the last message. By the
time the notification reaches the host and the host initiates
the next barrier, the message will have been transmitted.

To compare the granularity of computation possible us-
ing NIC-based barriers versus using host-based barriers, we
plotted graphs which show the minimum computation time
required between barriers for a program to have a certain ef-
ficiency factor. We assume that the program performs com-
putation followed by a barrier, and performs no other com-
munication. We define our efficiency factor as the ratio of
computation time to the total execution time (i.e., computa-
tion time and barrier time). Figures 7(a) through 7(d) show
the computation time required to achieve efficiency factors
of 0.25, 0.50, 0.75 and 0.90 for both the LANai 4.3 and the
LANai 7.2 NICs.

We see from these figures that the minimum computa-
tion time for a particular efficiency factor when using NIC-

based barriers is less than that when using host-based bar-
riers. For instance, Figure 7(b) shows the graph for a 0.50
efficiency factor. The minimum computation time for 16
nodes is 366.40 � s for the host-based barrier and 204.76 � s
for the NIC-based barrier using the LANai 4.3 NICs. For
the LANai 7.2 NICs over eight nodes, the host-based bar-
rier requires 179.18 � s of computation between barriers to
maintain the efficiency factor, while the NIC-based barrier
needs only 120.62 � s of computation. For a 0.90 factor
of efficiency, Figure 7(d) shows that using the LANai 4.3,
the host-based barrier requires 1,831.98 � s, as compared to
1,023.82 � s for the NIC-based barrier to maintain the effi-
ciency factor. Using the LANai 7.2 NIC, the host-based
barrier needs 895.91 � s of computation time while the NIC-
based barrier needs only 603.11 � s for 0.90 factor of effi-
ciency. From these results we can see that finer granularity
programs can be written using NIC-based barrier without
losing efficiency.

4.4 Varying arrival times

In real applications, the nodes participating in a barrier
do not always reach the barrier at the same time. Often
some nodes reach the barrier before others. To examine the
effects of varying arrival times on barrier performance, we
performed 10,000 loops of computation followed by a bar-
rier. The length of computation at each node was varied by
a percentage of the mean in both directions from the mean
(e.g., 4096 � s

�
20%). Figure 8 shows the execution time

of this benchmark for 16 nodes with the computation time
varying from 64 � s to 4096 � s with a 20% variation in the
computation time using LANai 4.3 NICs. Notice that the
difference in the execution time of the benchmarks using
NIC-based barriers and host-based barriers gets smaller as
the computation time gets larger. This is because the total
variation in the arrival times gets larger. Figure 9 shows the
difference between the benchmarks using host-based and
NIC-based barriers over 16 nodes using LANai 4.3 NICs.
Notice that the difference gets smaller as the computation
time and percent variation increases, i.e., as the total varia-
tion in arrival time increases. Notice also, that for 0% varia-
tion the difference does not decrease. This indicates that the
amount of computational delay itself does not affect the dif-
ference in execution time, but rather it is the total amount of
variation that affects the difference. So, as the variation in
arrival times increases, the execution time of the benchmark
using NIC-based barriers increases slightly faster than that
for the benchmark using host-based barriers. This indicates
that the host-based barrier is not as sensitive to a variation
in arrival time as the NIC-based barrier. Even though the
NIC-based barrier is more sensitive to the variation in ar-
rival time than the host-based barrier, it always performs
better than the host-based barrier.

4.5 Synthetic application performance

In order to evaluate how the barrier performance would
affect an application, we ran three synthetic MPI-level ap-
plications. The synthetic applications consist of several
steps each of which consists of computation followed by
a barrier. The mean computation time varies from one step
to the next. Within each step, the computation time varies
randomly from one node to the next by

�
10% from the

mean. The execution time of each synthetic application
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Figure 7. Computation time required to achieve a particular efficiency factor using 33MHz LANai 4.3
and 66MHz LANai 7.2 NICs

was taken over 10,000 runs. The first application was de-
signed such that it performed eight steps and had computa-
tion times of 10, 20, 30, ����� , 80 � s, for the respective steps,
for a total of 360 � s of computation. This application can
be seen as communication intensive. The second applica-
tion had 20 steps and had computation times of 10, 20, 30,
����� , 200 � s, for a total of 2,100 � s of computation. The third
application had 10 steps and had computation times of 100,
500, 1,000, 2,000, 3,000, 500, 500, 250, 600, 1,000 � s for
a total of 9450 � s of computation. This application can be
seen as computation intensive. Figure 10(a) shows these
results for host-based (HB) and NIC-based (NB) barriers
using 33MHz LANai 4.3 (33) and 66MHz LANai 7.2 (66)
NICs. Notice that in all cases the NIC-based barrier per-
forms better than the host-based barrier. Figure 10(b) shows
the factor of improvement for the applications using NIC-
based barriers versus the applications using host-based bar-
riers. For all applications, we see that the factor of improve-
ment is increasing. Figure 10(c) shows the efficiency factor
for the applications. Notice that for each application the
NIC-based barrier has a higher efficiency factor than the
host-based barrier. These results indicate that a NIC-level
barrier implementation on large clusters using NICs with
faster processors can deliver very good performance bene-
fits at the application level.

5 Conclusions

This paper evaluated the performance of the NIC-based
barrier by comparing it to the traditional host-based barrier.
In [4] we implemented the NIC-based barrier in GM and
showed that it performed better than the host-based barrier.
In this paper we modified MPICH version 1.2..3 which runs
over GM, to use the NIC-based barrier. This was done in
an efficient manner which added only 3.22 � s overhead to
the GM implementation of the NIC-based barrier over 16
nodes using the 33MHz LANai 4.3 NICs. When comparing
the performance of the barriers at the MPI level, we found

a 2.09 factor of improvement for 16 nodes using the LANai
4.3 NICs and a 2.22 factor of improvement for 8 nodes us-
ing the 66 MHz LANai 7.2 NICs. Furthermore, the factor
of improvement increased with the number of participating
nodes. This indicates that the NIC-based barrier scales bet-
ter than the host-based barrier.

We also evaluated the impact of the NIC-based barrier
on the granularity of computation. We found that for a pro-
gram to have a 0.90 factor of efficiency using the LANai
4.3 NICs, at least 1831.98 � s of computation must be per-
formed per barrier if the host-based barriers are used, but
only 1023.82 � s if a NIC-based barrier is used. This value
is 44% lower than for the host-based barrier. So, using the
NIC-based barrier allows for finer grained programs with-
out lowering the efficiency. We noticed that the NIC-based
barrier is more sensitive to variation in arrival times than the
host-based barrier. However, the NIC-based barrier always
performed better than the host-based barrier. To evaluate
the impact of using the NIC-based barrier on applications,
we used synthetic applications. This indicates that using
the NIC-based barrier in applications which perform many
barrier calls will deliver significant performance benefits.

We are currently evaluating the impact of using NIC-
based barriers in different programming models and ap-
plications, such as, Global Arrays[13], Bulk Synchronous
Programming[7], and Buffered Coscheduling[15]. We also
intend to evaluate the benefits of NIC-based barriers for
larger system sizes using modeling and experimental eval-
uation. More generally, we intend to study whether other
collective communication operations (such as reduction and
all-to-all) could benefit from a NIC-based implementation.

Additional Information: Additional papers related to this re-
search can be obtained from the following Web pages: Network-
Based Computing Laboratory (http://nowlab.cis.ohio-state.edu)
and Parallel Architecture and Communication Group (http://www.
cis.ohio-state.edu/ � panda/pac.html). If you are interested in us-
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ing this software, please contact Dr. D. K. Panda at panda@cis.
ohio-state.edu.
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