
Designing and Enhancing

the Sockets Direct Protocol (SDP)

over iWARP and InfiniBand

A Thesis

Presented in Partial Fulfillment of the Requirements for

the Degree Master of Science in the

Graduate School of The Ohio State University

By

Sitha Bhagvat, B. E.

* * * * *

The Ohio State University

2006

Master’s Examination Committee:

Prof. Dhabaleswar K. Panda, Adviser

Prof. P. Sadayappan

Approved by

Adviser

Graduate Program in
Computer Science and

Engineering



c© Copyright by

Sitha Bhagvat

2006



ABSTRACT

Earlier generation protocols such as TCP/IP have traditionally been imple-

mented in the host kernel space and have not been able to scale with the increasing

network speeds. Accordingly, they form the primary communication bottleneck in

current high-speed networks. In order to allow existing TCP/IP applications that

had been written on top of the sockets interface to take advantage of high-speed

networks, researchers have come up with a number of solutions including high-

performance sockets. The primary idea of high-performance sockets is to build a

pseudo sockets-like implementation which utilizes the advanced features of high-

speed networks while maintaining the TCP/IP sockets interface; this allows ex-

isting TCP/IP sockets based applications to transparently achieve a high perfor-

mance. The Sockets Direct Protocol (SDP) is an industry standard for such high-

performance sockets over the InfiniBand (IB) network and the Internet Wide-Area

RDMA Protocol (iWARP) over Ethernet networks.

In this thesis, we focus on designing and enhancing SDP over iWARP and IB.

Specifically, we divide the research performed into two parts: (ii) designing SDP

over iWARP, understanding the various implications associated with such a design

and proposing a framework integrating SDP and iWARP to allow for higher per-

formance and (ii) designing various enhancements for the SDP implementation over

IB to better utilize the support provided by the network adapter and thus improve
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end performance. We also provide details of our designs in this thesis and present

preliminary performance studies to indicate the promise offered by these designs.
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CHAPTER 1

INTRODUCTION

Cluster systems are becoming increasingly popular in various application do-

mains mainly due to their high performance-to-cost ratio. Out of the current Top

500 Supercomputers, 364 systems are clusters [26]. Cluster systems are now present

at all levels of performance, due to the increasing capability of commodity proces-

sors, memory and the network communication stack. Since the nodes in a cluster

system rely on the network communication stack in order to coordinate and commu-

nicate with each other, it forms a critical component in the efficiency and scalability

of the system. Therefore, it is of particular interest. The network communication

stack itself comprises of two components: (i) the network hardware and (ii) the

communication protocol and the associated software stack.

With respect to the first component, during the last few years, the research and

industry communities have been proposing and implementing high-speed networking

hardware such as InfiniBand (IB) [4], 10-Gigabit Ethernet (10GigE) [20, 27, 28, 21]

and Myrinet [15], in order to provide efficient support for such cluster systems

amongst others. For the second component (communication protocol stack), how-

ever, there has not been as much success.
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Earlier generation communication protocols such as TCP/IP [38, 42] relied upon

the kernel for processing the messages. This caused multiple copies and kernel

context switches in the critical message passing path. Thus, the communication

performance was low. Researchers have been looking at alternatives to increase the

communication performance delivered by clusters in the form of low-latency and

high-bandwidth user-level protocols such as FM [33] and GM [18] for Myrinet [15],

EMP [37, 36] for Gigabit Ethernet [23], etc.

These developments are reducing the gap between the performance capabilities

of the physical network and that obtained by the end users. While this approach

is good for developing new applications, it might not be so beneficial for existing

applications. A number of applications have been developed on kernel-based pro-

tocols such as TCP/IP or UDP/IP using the sockets interface. To support such

applications on high performance user-level protocols without any changes to the

application itself, researchers have come up with different techniques including high-

performance sockets implementations [12, 30, 35, 14]. High-performance sockets are

pseudo sockets-like implementations to meet two primary goals: (i) to directly and

transparently allow existing sockets applications to be deployed on to clusters con-

nected with modern networks such as IB and iWARP and (ii) allow such deployment

while retaining most of the raw performance provided by the networks.

In an attempt to standardize these efforts towards high-performance sockets

implementations, the RDMA Consortium brought out a new standard known as the

Sockets Direct Protocol (SDP) [2]. Figure 1.1 shows the traditional TCP/IP stack

and the SDP stack over IB or iWARP.
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Figure 1.1: Kernel-level and User-level Sockets Implementation on IB (a) Traditional
TCP/IP Stack (b) SDP over InfiniBand

1.1 Sockets Direct Protocol: State-of-the-Art and Limita-

tions

As indicated earlier, the SDP standard attempts to transparently provide high

performance for existing sockets-based applications over high-speed networking stacks

such as IB and iWARP. While, there are several implementations of the SDP stan-

dard [10, 25, 24, 7], these lack in several aspects. Some of these aspects correspond

to designs proposed in the SDP standard which might not be optimal in all scenar-

ios, while the others are specific to existing SDP implementations where the current

designs have scope for improvement in multiple dimensions. In this section, we point

out three such limitations:
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1. The SDP standard deals with IB and iWARP uniformly. This means that,

the SDP implementation has to be independent of the underlying network

communication stack. In reality, however, IB and iWARP are vastly different.

IB has been designed mainly for SAN environments, whereas iWARP is aimed

to bring the SAN capabilities (e.g., RDMA) to the WAN. The way each of

these network stacks is implemented could affect the performance of SDP

significantly.

2. Communication efficiency in any protocol stack largely depends on the effi-

ciency of the flow-control mechanism; this dependency is typically higher for

small messages where the actual data transfer time is not very large. The

SDP standard specifies a flow control mechanism known as credit-based flow

control for this. As we will see in the later chapters, the credit based flow

control mechanism is quite inefficient in resource usage and suffers from poor

performance. In order to deal with the limitations of credit-based flow-control,

previous researchers have proposed other mechanisms such as the packetized

flow-control [6]. While packetized flow control achieves a better resource usage

and performance as compared to credit-based flow control it has other costs

such as non-optimal communication progress.

3. For large message transfers, the SDP standard specifies a zero-copy based

mechanism. However, this scheme has been proposed keeping the capabilities

of a certain class of sockets interface known as the asynchronous sockets in

mind. For the more widely used class of sockets interface, i.e., synchronous

sockets, this scheme does not provide the best performance. We had previously

4



proposed a scheme known as Asynchronous Zero-copy SDP (AZ-SDP) [7] to

handle this limitation.

In this thesis we will study the first two drawbacks of SDP.

1.2 Thesis Overview and Proposed Framework

Keeping in mind the issues described in Section 1.1, we propose the two following

objectives:

1. Design and implement SDP over iWARP and understand the implications of

such an implementation. Specifically, we analyze the limitations of a generic

implementation of SDP over iWARP (i.e., an implementation which is decou-

pled with the iWARP design), and propose a framework to integrate SDP and

iWARP to achieve high performance.

2. Design enhancements for SDP over IB to better utilize the support provided

by the network adapter and thus improve end performance.

The proposed framework can be seen in the Figure 1.2. The major components

of this framework are the SDP/iWARP and flow control aspects in SDP/IB.

Different designs for iWARP exist. Some of these achieve complete WAN com-

patibility while others choose to relax this constraint to achieve a better perfor-

mance. As we will see in Chapter 3, if complete WAN compatibility is desired,

traditional designs of SDP used in the context of iWARP do not provide the best

performance. For the SDP/iWARP component, we take a two step approach: (i) we

first analyze the failure of traditional SDP designs over completely WAN compatible

iWARP and (ii) design a new framework integrating SDP and iWARP, which not

5
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Figure 1.2: Proposed Framework: (a) SDP/iWARP (b) Flow-control in SDP/IB

only achieves complete WAN compatibility, but also does it while achieving a high

performance.

For the flow-control in SDP/IB component, we design a new NIC-assisted flow-

control mechanism for SDP/IB which retains the benefits of existing flow control

mechanisms while efficiently handling their limitations. Specifically, it extends the

previously proposed packetized flow-control mechanism to achieve its efficient re-

source utilization and high performance while handling its limitations with respect

to communication progress.

The rest of this thesis is arranged as follows. We present detailed background

of iWARP, InfiniBand, and SDP in Chapter 2. We present the detailed design

of SDP over iWARP in Chapter 3, along with the analysis of the effects of such

an implementation. In Chapter 4, we describe the issues with the existing SDP

flow control mechanisms and propose a new flow control mechanism which utilizes

6



the hardware capabilities of IB to address the limitations of existing mechanisms.

Conclusions and future work are indicated in Chapter 5.
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CHAPTER 2

BACKGROUND AND MOTIVATION

In this chapter, we start with an overview of iWARP in Section 2.1. Next, in

Section 2.2, we provide a brief background on the InfiniBand (IB) architecture and a

subset of its features. The Sockets Direct Protocol (SDP) is described in Section 2.3.

2.1 Overview of iWARP

Though hardware-based implementations of TCP/IP, such as the TCP Offload

Engines (TOEs), have been able to handle most of the inefficiencies of the host-based

TCP/IP stack, their capabilities are limited [11, 29, 31, 9, 13]. For example, TOEs

do not provide capabilities such as Remote Direct Memory Access (RDMA) or zero-

copy communication, which are common features in other high-speed interconnects

(e.g., IB).

The Internet Wide Area RDMA Protocol (iWARP) is a new initiative by the

Internet Engineering Task Force (IETF) [22] and the Remote Direct Memory Access

Consortium (RDMAC) [17] in order to meet these limitations. The iWARP stan-

dard, when offloaded on to the network adapter, provides two primary extensions to

the TOE stack: (i) it exposes a rich interface including zero-copy, asynchronous and

one-sided communication primitives and (ii) it extends the TCP/IP implementation

8



on the TOE to allow such communication while maintaining compatibility with the

existing TCP/IP implementations.

The iWARP stack comprises of up to three protocol layers on top of a reliable IP-

based protocol such as TCP: (i) RDMA Protocol (RDMAP) interface, (ii) Remote

Direct Data Placement (RDDP) [5] layer and (iii) Marker PDU Aligned (MPA) [19]

layer.

The RDMAP layer is a thin interface which allows applications to interact with

the RDDP layer. The RDDP layer uses an IP based reliable protocol stack such as

TCP to perform the actual data transmission. The MPA stack is an extension to the

TCP/IP stack in order to maintain backward compatibility with the existing infras-

tructure. Details about the RDDP and MPA layers are provided in Sections 2.1.1

and 2.1.2, respectively.

2.1.1 Remote Direct Data Placement (RDDP)

The iWARP standard was developed to serve two purposes. First, the protocol

should be able to provide high performance in System-area Network (SAN) environ-

ments by utilizing an offloaded protocol stack and zero-copy data transfer between

host memories. Second, the protocol should maintain compatibility with the existing

IP infrastructure using an implementation over an IP based reliable transport layer

stack. Maintaining these two features involves novel designs for several aspects. We

describe some of these designs corresponding to the RDDP layer, in this section.

In-Order Delivery and Out-of-Order Placement: RDDP relies on de-

coupling of placement and delivery of messages, i.e., placing the data in the user

buffer is performed in a decoupled manner with informing the application that the

9



data has been placed in its buffer. In this approach, the sender breaks the message

into multiple segments of MTU size; the receiver places each segment directly into

the user buffer, performs book-keeping to keep track of the data that has already

been placed and once all the data has been placed, informs the user about the

arrival of the data. This approach has two benefits: (i) there are no additional

copies for unexpected messages involved in this approach and (ii) when a segment

is dropped, the future segments do not need to be buffered till this segment arrives;

they can directly be placed into the user buffer as and when they arrive. This

approach, however, involves two important features to be satisfied by each segment:

self-describing and self-contained segments. The self-describing property of segments

involves adding enough information in the segment header so that each segment can

individually be placed at the appropriate location without any information from the

other segments. The information contained in the segment includes the message

sequence number (MSN), the offset in the message buffer to which the segment has

to be placed (MO) and others. Self-containment of segments involves making sure

that each segment contains either a part of a single message, or the whole of a

number of messages, but not parts of more than one message.

2.1.2 Marker PDU Aligned (MPA)

The RDDP protocol by itself has several deficiencies as listed below:

1. RDDP is an end-node protocol. The intermediate nodes do not have to sup-

port RDDP. This leads to a problem known as “Middle Box Fragmentation”

10



for Layer-4 switches. Layer-4 switches (e.g., firewalls, load-balances) are trans-

port protocol specific and capable of making decisions regarding the forward-

ing of the arriving message segments. In order to optimize such forwarding,

several implementations of layer-4 switches support techniques such as TCP

Splicing [16] which relax the requirement for one-to-one correspondence be-

tween the segments coming in and the segments going out of the switch, i.e.,

the segments coming in might be re-fragmented and/or re-assembled at the

switch. Thus, if the network infrastructure has layer-4 switches in the path

(e.g., Internet traffic), it is practically impossible for the end node to recognize

the RDDP headers especially when some packets are dropped. This mandates

that the protocol not assume the self-containment property at the receiver

end, and add additional information in each segment to help recognize the

RDDP header.

2. It has been previously shown that the data-integrity check performed by

TCP/IP (i.e., checksum) is not entirely reliable in several environments [39].

Accordingly, end users have demanded additional stronger data-integrity checks

to ensure no data corruption. Several upper layers such as iSCSI [34] typically

perform additional data integrity checks such as the 32-bit Cyclic Redundancy

Check (CRC-32) for this reason.

In order to tackle this problem, iWARP introduces a new protocol layer known

as MPA. Figure 2.1 illustrates the new segment format with MPA. This new segment

is known as the Framing Protocol Data Unit (FPDU). The FPDU format has three

essential changes:

11



• Markers: Strips of data to pointing to the RDDP header. These are spaced

uniformly based on the TCP sequence number and provide the receiver with a

deterministic way to find them and eventually the right header for the segment.

• Cyclic Redundancy Check (CRC): A stronger data integrity check.

• Segment Pad Bytes: Pad bytes to ensure alignment with the TCP segment.

Pad CRC

Segment Length

DDP
Header

DDP
Header

Marker

Payload (IF ANY)

Payload (IF ANY)

Figure 2.1: Marker PDU Aligned (MPA) protocol Segment format

2.2 Overview of InfiniBand Architecture

The InfiniBand Architecture (IB) is an industry standard that defines a Sys-

tem Area Network (SAN) to design clusters offering low latency and high band-

width. The compute nodes are connected to the IB fabric by means of Host Channel

Adapters (HCAs). IB defines a semantic interface called as Verbs for the consumer

applications to communicate with the HCAs. VAPI is one such interface developed

12



by Mellanox Technologies [1]. Other such Verbs interfaces (e.g., Gen2 verbs) also

exist.

IB mainly aims at reducing the system processing overhead by decreasing the

number of copies associated with a message transfer and removing the kernel from

the critical message passing path. This is achieved by providing the consumer

applications direct and protected access to the HCA. The specification for the verbs

interface includes a queue-based interface, known as a Queue Pair (QP), to issue

requests to the HCA. Figure 2.2 illustrates the InfiniBand Architecture model.

Send Rcv
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P

Send Rcv

Q
P

CQE CQE

PHY Layer

Link Layer

Network 
Layer

Transport
Layer

PHY Layer

Link Layer

Network 
Layer

Transport
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Consumer Transactions,

(IBA Operations)
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Packet

IBA Operations

(IBA Packets)
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Packet Packet
C
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nn

el
 A

da
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Fabric

Figure 2.2: InfiniBand Architecture (Courtesy InfiniBand Specifications)
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2.2.1 IB Communication

Each Queue Pair is a communication endpoint. A Queue Pair (QP) consists

of the send queue and the receive queue. Two QPs on different nodes can be

connected to each other to form a logical bi-directional communication channel. An

application can have multiple QPs. Communication requests are initiated by posting

Work Queue Entries (WQEs) to these queues. Each WQE is associated with one or

more pre-registered buffers from which data is either transferred (for a send WQE)

or received (receive WQE). The application can either choose the request to be a

Signaled (SG) request or an Un-Signaled request (USG). When the HCA completes

the processing of a signaled request, it places an entry called as the Completion

Queue Entry (CQE) in the Completion Queue (CQ). The consumer application can

poll on the CQ associated with the work request to check for completion. There

is also the feature of triggering event handlers whenever a completion occurs. For

un-signaled requests, no kind of completion event is returned to the user. However,

depending on the implementation, the driver cleans up the Work Queue Request

from the appropriate Queue Pair on completion.

2.2.2 RDMA Communication Model

IB supports two types of communication semantics: channel semantics (send-

receive communication model) and memory semantics (RDMA communication model).

In channel semantics, every send request has a corresponding receive request at

the remote end. Thus, there is a one-to-one correspondence between every send and

receive operation. Failure to post a receive descriptor on the remote node results in

the message being dropped and retransmitted for a user specified amount of time.
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In the memory semantics, Remote Direct Memory Access (RDMA) operations

are used. These operations are transparent at the remote end since they do not

require the remote end to involve in the communication. Therefore, an RDMA

operation has to specify both the memory address for the local buffer as well as that

for the remote buffer. There are two kinds of RDMA operations: RDMA Write and

RDMA Read. In an RDMA write operation, the initiator directly writes data into

the remote node’s user buffer. Similarly, in an RDMA Read operation, the initiator

directly reads data from the remote node’s user buffer.

Most entries in the WQE are common for both the Send-Receive model as well

as the RDMA model, except an additional remote buffer virtual address which has

to be specified for RDMA operations.

2.2.3 Atomic Operations Over IB

In addition to RDMA, the reliable communication classes also optionally support

atomic operations directly against the memory at the end node. Atomic operations

are posted as descriptors at the sender side as in any other type of communication.

However, the operation is completely handled by the NIC and involves very little

host intervention and resource consumption.

The atomic operations supported are Fetch-and-Add and Compare-and-Swap,

both on 64-bit data. The Fetch and Add operation performs an atomic addition at

the remote end. The Compare and Swap is used to compare two 64-bit values and

swap the remote value with the data provided if the comparison succeeds.
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2.3 Sockets Direct Protocol

The SDP standard focuses specifically on the wire protocol, finite state machine

and packet semantics. Operating system issues, etc., can be implementation specific.

It is to be noted that SDP supports only SOCK STREAM or streaming sockets

semantics and not SOCK DGRAM (datagram) or other socket semantics.

SDP’s Upper Layer Protocol (ULP) interface is a byte-stream protocol that is

layered on top of IB or iWARP’s message-oriented transfer model. The mapping of

the byte stream protocol to the underlying message-oriented semantics was designed

to enable ULP data to be transfered by one of two methods: through intermediate

private buffers (using a buffer copy) or directly between ULP buffers (zero copy). A

mix of send/receive and RDMA mechanisms are used to transfer ULP data.

The SDP specification also suggests two additional control messages known as

Buffer Availability Notification messages, viz., source-avail and sink-avail messages

for performing zero-copy data transfer.

Sink-avail Message: If the data sink has already posted a receive buffer and

the data source has not sent the data message yet, the data sink does the following

steps: (i) registers the receive user-buffer (for large message reads) and (ii) sends

a sink-avail message containing the receive buffer handle to the source. The data

source on a data transmit call, uses this receive buffer handle to directly RDMA

write the data into the receive buffer.

Source-avail Message: If the data source has already posted a send buffer

and the available SDP window is not large enough to contain the buffer, it does the

following two steps: (i) registers the transmit user-buffer (for large message sends)

and (ii) sends a source-avail message containing the transmit buffer handle to the
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data sink. The data sink on a data receive call, uses this transmit buffer handle to

directly RDMA read the data into the receive buffer.

Based on the details provided in the standard, there have been several imple-

mentations of SDP. Specifically, for the buffer copy based implementations of SDP,

communication is carried out in intermediate private buffers using flow-control mech-

anisms such as credit-based flow control and packetized flow control [6], each having

its own limitations.

For the zero-copy based implementations of SDP, the source-avail and sink-avail

based mechanism described in the standard is most relevant only for asynchronous

sockets due to their capability of exposing multiple source or sink buffers simul-

taneously to the remote node. Accordingly, most current implementations for syn-

chronous sockets do not implement these and use only the buffer copy based scheme.

Recently, Goldenberg et. al., have suggested a zero-copy SDP scheme [25, 24]. In

this scheme, they utilize a restricted version of the source-avail based zero-copy

communication model for synchronous sockets. Due to the semantics of the syn-

chronous sockets, however, the restrictions affect the performance achieved by zero-

copy communication significantly. Further, a more advanced zero-copy scheme with

asynchronous communication pattern for synchronous sockets has been suggested

by Balaji et. al [7]. This scheme improves performance of SDP by allowing multiple

outstanding messages.
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CHAPTER 3

DESIGNING THE SOCKETS DIRECT PROTOCOL
(SDP) OVER IWARP

As mentioned earlier, the SDP standard deals with IB and iWARP uniformly.

This means that, the SDP implementation has to be independent of the underlying

network communication stack. In reality, however, IB and iWARP are vastly differ-

ent. IB has been designed mainly for SAN environments, whereas iWARP is aimed

to bring the SAN capabilities (e.g., RDMA) to Ethernet-based WAN environments.

The way each of these network stacks is implemented could affect the performance

of SDP vastly.

Specifically, in the case of iWARP, several implementations exist. These imple-

mentations can be broadly categorized into WAN compatible iWARP implemen-

tations and WAN-incompatible implementations. WAN-compatible iWARP imple-

mentations are completely compatible with the general TCP/IP based WAN envi-

ronment. WAN-incompatible iWARP implementations, on the other hand, give up

such compatibility to some extent in order to achieve a better performance.

Several WAN compatible iWARP implementations have been proposed earlier.

Each of these implementations has its own limitations. The performance of an

upper layer such as SDP depends on the performance of the underlying iWARP
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Figure 3.1: (a) 10 Gigabit Ethernet TOE stack (b) iWARP protocol stack

implementation. For this reason, it is important to understand the different designs

that are available for iWARP. We will discuss these in Section 3.1.

In this chapter, we first describe the design of a generic SDP implementation

over iWARP and show its performance. We highlight the limitations of such an

implementation and describe the reasons for its low performance. In Section 3.2.2,

we propose a new integrated framework for SDP and iWARP which overcomes the

performance limitations of the generic SDP/iWARP design while still maintaining

complete WAN compatibility. Section 3.3 shows the performance of various iWARP

implementations and that of SDP/iWARP. We provide a summary in Section 3.4.
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3.1 Design Choices for iWARP

In this section, we briefly describe the different design choices for iWARP im-

plementation over Ethernet. The existing iWARP implementations can be broadly

categorized into (i) WAN-compatible iWARP and (ii) WAN-incompatible iWARP.

As discussed in 2.1.2, to achieve WAN compatibility, iWARP’s MPA layer is nec-

essary. WAN-compatible iWARP refers to the marker-based design of iWARP

which achieves complete WAN compatibility with layer-4 Ethernet devices. WAN-

incompatible iWARP, on the other hand, refers to the design of iWARP which does

not implement the marker insertion logic which is necessary for WAN compatibility.

Such iWARP enabled adapters are compatible only up to layer-3.

For completely WAN compatible iWARP, three design choices exist. They are

(i) Software iWARP, (ii) NIC-offloaded iWARP and (iii) Host-assisted iWARP.

1. Software iWARP Implementation: This is a completely host-based im-

plementation of iWARP. It is a generic implementation which can be used on

any Ethernet adapter while maintaining complete compatibility with hardware

iWARP implementations. There are several design aspects associated with im-

proving the performance of this implementation, which have been described

in [8].

2. NIC-offloaded iWARP Implementation: This is an implementation of

iWARP that is completely based on the hardware and firmware present on

the network adapter. This approach is similar to that taken by most modern

SANs such as InfiniBand, Myrinet [3], etc., for providing RDMA capabilities.
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3. Host-assisted iWARP Implementation: This is a hybrid implementa-

tion which takes the best characteristics of both the software iWARP imple-

mentation as well as the NIC-offloaded iWARP implementation. Specifically,

host-assisted iWARP performs compute intensive tasks such as CRC-based

data integrity (part of MPA), connection demultiplexing and packet processing

(part of RDDP) completely on the network adapter using dedicated process-

ing engines (e.g., CRC engines), while retaining tasks such as marker insertion

(part of MPA) in the host space.

In both our SDP/iWARP designs, we use host-assisted iWARP. As mentioned

earlier, host-assisted iWARP performs marker insertion in software. It inserts mark-

ers into the data stream, while copying it into a temporary buffer. Though message

copy is expensive for large message sizes, the NIC now can DMA larger chunks of

data and send them out on the network, resulting in higher throughput. This is the

reason for choosing Host-assisted iWARP for our SDP/iWARP implementations.

3.2 Sockets Direct Protocol over iWARP

As mentioned in Section 2.3, several implementations of SDP/InfiniBand already

exist. However, there has been no previous study on SDP over iWARP. The first

scheme for SDP/iWARP implementation described in this section is similar to the

existing SDP/IB implementations. We then describe the drawback with this im-

plementation of SDP/iWARP and propose an integrated SDP/iWARP framework

which is presented in Section 3.2.2.
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3.2.1 Generic SDP/iWARP design

SDP is a byte-stream transport protocol that closely mimics TCP’s stream se-

mantics. SDP is an industry standard specification for InfiniBand and iWARP; it

utilizes their advanced capabilities such as protocol offload, kernel bypass, and zero

copy capabilities to achieve high performance without requiring any modifications

to the application. Because of this, SDP can achieve lower CPU and memory band-

width utilization when compared to conventional implementations of sockets over

TCP/IP, while preserving the familiar byte-stream oriented semantics upon which

most current network applications depend. This SDP implementation is intended

to emulate sockets semantics over TCP/IP, and to be layered on top of iWARP

mapped over TCP/IP. This layering is shown in Figure 3.2.

iWARP

TCP/IP

Network Interconnect

Hardware Offloaded
or

Software

Hardware offloaded
TCP/IP

SDP

10 Gigabit Ethernet

Figure 3.2: Sockets Direct Protocol over iWARP
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SDP’s Upper Layer Protocol (ULP) interface is a byte-stream protocol that is

layered on top of iWARP’s message-oriented transfer model. This mapping is de-

signed so as to enable ULP data to be transfered by one of two methods: through

intermediate private buffers (using a buffer copy) or directly between ULP buffers

(zero copy). In this thesis, we only concentrate on a buffer copy based implementa-

tion and defer the zero-copy implementation for future work.

In order to implement SDP over iWARP, several design challenges had to be

tackled. These designs are similar to the SDP implementations over InfiniBand and

can be found in [10]. We summarize a few of them in this section.

Credit-based flow control: The iWARP specification requires the receiver to

pre-advertise a receive buffer before the sender can send the corresponding data.

However, this requirement is not a part of the sockets specification. Accordingly,

a sockets application might send data out before the receiver advertises the receive

buffer. This constraint is known as the buffer pre-posting constraint. In order to

handle this constraint, we use a credit based mechanism as described in Section 4.1.1

One problem with applying this algorithm directly is that the acknowledgment

message also uses up a temporary buffer and hence a credit. Thus, if the number of

credits is too few, this might result in a livelock. In order to avoid this livelock, we

use the concept of delayed acknowledgments (explained later in this section) where

we avoid sending acknowledgments for every free receive buffer, but rather coalesce

multiple of these messages and send them together in one message.

Handling fork(): According to the semantics of TCP/IP sockets, if a parent

process has an open socket connection, when it forks another child process, both the

parent as well as the child process can read or write on the open socket. In order to
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tackle this problem, we use a token based approach, i.e., every socket has a token.

Only the process which holds the token can read or write to the socket. Now, if the

parent process has the token and the child process wants to read from or write to

the socket, it needs to request the parent process for the token and wait to receive

it before performing and socket operation. Note that this issue has a number of

corner cases which we had to deal with, e.g., if the parent process has already read

data into its temporary buffers and has to give up its token to the child process, it

needs to transfer all the data it read to the child process as well.

Delayed Acknowledgments: This is essentially an enhancement to the credit-

based flow-control approach. In this approach, in order to improve the throughput

achieved, instead of sending an acknowledgment for every data message received,

we send an acknowledgment when half the credits are used up. This ensures that

there is lesser traffic on the network, lesser work to be done by the protocol stacks

and higher performance for the applications.

3.2.2 Design of Integrated SDP/iWARP Framework

As we will see in Section 3.3, the generic SDP implementation suffers from mis-

matches in the various layers of the stack. SDP is a byte-stream protocol, i.e., it

does not deal with message boundaries and tries to coalesce messages, while iWARP

is a message-oriented protocol, i.e., it tries to preserve the message boundaries and

adds additional processing overhead (e.g., marker insertion) in order to deal with the

streaming-based TCP/IP protocol. In other words, the SDP/iWARP stack moves

data from the streaming-based SDP stack to the message-oriented iWARP stack
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and finally back to the streaming-based TCP/IP stack, adding additional overhead

at each layer.

The SDP specification forces the implementation of SDP to be decoupled from

the iWARP implementation, i.e., the iWARP implementation cannot assume that

its upper layer is SDP and SDP cannot assume any details about the implementation

of the iWARP layer. While this is understandable from the stand-point of generality,

it is not the best for achieving high performance. For a clearer understanding of

this overhead, we propose an integrated SDP/iWARP stack in this Section. The

main idea of this design is that the iWARP stack provides an extended interface

for the SDP ULP and the SDP ULP can assume that the underlying protocol is

host-assisted iWARP.

Specifically, the SDP implementation does not perform any buffering of the data

on the sender side, but rather passes on the data directly to the iWARP stack. The

iWARP stack (host-assisted) performs the actual buffering of the data while simulta-

neously utilizing this buffering operation to insert markers at appropriate locations.

Similarly, on the receiver side, the iWARP stack does not remove the markers from

the received data, but rather hands over the entire data segment (together with

strips of markers in between the data stream) to the SDP layer. The SDP layer re-

moves the markers before handing over the data to the application. In summary, the

integration of the SDP/iWARP stack allows to reduce the buffering requirements

and memory transactions of the stack and thus improve the performance.

Performance results comparing the integrated stack with the generic SDP imple-

mentation as well as with SDP/iWARP without markers are shown in Section 3.3.3.

25



3.3 Performance Results

In this section we describe our evaluation framework and compare the perfor-

mance of three different iWARP designs. Further, we also evaluate the Integrated

SDP and iWARP implementation and compare it with the generic SDP design over

iWARP.

3.3.1 Experimental testbed

For the experimental testbed, we used a cluster of four nodes built around Super-

Micro SUPER X5DL8-GG motherboards with ServerWorks GC LE chipsets, which

include 133-MHz PCI-X interfaces. Each node has two Intel Xeon 3.0 GHz proces-

sors with a 512-KB cache and a 533 MHz front-side bus and 2 GB of 266-MHz DDR

SDRAM.

The nodes are connected with Chelsio T110 10-Gigabit Ethernet TCP Offload

Engines through a 12-port Fujitsu XG800 cut-through switch. The driver version

on the network adapters is 1.2.0.

3.3.2 iWARP Evaluation

In this section, we evaluate the three different mechanisms proposed to im-

plement iWARP using standard ping-pong latency and unidirectional bandwidth

micro-benchmarks.

Figure 3.3 shows a comparison of the ping-pong latency of the three designs. For

small messages, all three schemes perform similarly at about 16µs. However, as the

message size increases software iWARP performs the worst amongst all the designs.

This is expected as this design does not take advantage of any advanced hardware
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present on the network adapter and performs all operations in software. Comparing

NIC-offloaded iWARP and host-assisted iWARP, we notice that the performance

of NIC-offloaded iWARP deteriorates with increasing message size and it is outper-

formed by the host-assisted iWARP implementation. This trend is attributed to

the overhead of multiple DMAs on NIC-offloaded iWARP, e.g., for a 2KB message,

the host-assisted iWARP performs just one DMA operations, while with a standard

marker separation length of 512 bytes NIC-offloaded iWARP needs to perform 5-6

DMA operations.

Figure 3.4 shows a comparison of the uni-directional bandwidth of the three

designs. The basic trend for this result is also quite similar to the ping-pong la-

tency performance. The software iWARP implementation again performs the worst

achieving a throughput of only about 2Gbps. This is attributed mainly to the over-

head associated with copying data as well as the CRC data-integrity check, which

increases linearly with the message size. Comparing NIC-offloaded iWARP and host-

assisted iWARP, for very small messages NIC-offloaded iWARP performs slightly

better than host-assisted iWARP – we are currently analyzing this behavior to un-

derstand its reasoning. For the peak throughput, however, host-assisted iWARP out-

performs the NIC-offloaded iWARP with throughputs of about 6Gbps and 3.5Gbps,

respectively. The reason for the performance limitation of NIC-offloaded iWARP is

again the number of DMA operations, i.e., according to the design of NIC-offloaded

iWARP, it can perform DMA operations of only about 512 bytes in each operation.

Though, pipelining the DMA operations can improve the performance a little, it is

eventually limited by the DMA overhead. Host-assisted iWARP, on the other hand,
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can DMA full length 2KB data chunks in each operation and thus can achieve a

higher performance.

Figure 3.4 also shows the CPU utilized by the different iWARP implementations.

As shown in the figure, NIC-offloaded iWARP uses the least amount of host-CPU us-

ing less than 15% for all message sizes and practically 0% for large messages. This is

expected since this is a complete hardware offloaded implementation; further, being

a zero-copy implementation, for large messages, the message transfer initiation time

(done by the host) is negligible compared to the actual transfer time. The high CPU

utilization of software iWARP is also expected since it performs all tasks, includ-

ing highly compute intensive tasks such as the CRC calculation, in software. The

surprising thing, however, is that the CPU utilization of the host-assisted iWARP

is even higher than the software iWARP implementation. This is attributed to the

higher performance of host-assisted iWARP. Note that the host-assisted iWARP

implementation performs a copy of the data into a temporary buffer before trans-

mitting it in order to insert the markers at appropriate locations. Now, since the

performance of host-assisted iWARP is higher than that of software iWARP, the

data is sent out of the temporary buffer quickly, thus requiring the CPU to spend a

larger fraction of the time performing the memory copy operation; this results in a

higher CPU utilization.

3.3.3 SDP evaluation

In this section, we evaluate the SDP implemented on top two different versions

of iWARP, viz., iWARP with markers and iWARP without markers. That is, we
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compare the performance of SDP over WAN compatible iWARP with that of SDP

over WAN-incompatible iWARP.

As shown in Figure 3.5, the implementation of SDP over WAN-incompatible

iWARP achieves a slightly better latency of 15µs as compared to the 16µs achieved

by SDP over WAN-compatible iWARP. Also, Figure 3.6 shows that the bandwidth

achieved by the SDP/iWARP with markers is close to 5.2Gbps as compared to the

6.4Gbps achieved by SDP/iWARP (no markers).

As described in Section 3.2.2, the primary reason for this lower performance is

the additional overhead added by the MPA layer for marker insertion. SDP/iWARP

(no markers), on the other hand, does not implement any kind of marker inser-

tion logic and hence avoids significant overhead. Effectively, by giving up WAN-

compatibility, SDP/iWARP is able to achieve better performance than SDP/iWARP

(with markers). In Figures 3.5 and 3.6, we present the performance of the inte-

grated SDP/iWARP stack that is described in Section 3.2.2 as compared to the

SDP/iWARP (no markers).

Figure 3.7 compares the ping-pong latency of the integrated SDP/iWARP stack

with that of SDP/iWARP with markers and SDP/iWARP without markers. As the

figure indicates, both integrated SDP/iWARP and SDP/iWARP without markers

achieve similar performance of about 15µsec. That is the integrated SDP/iWARP

framework achieves better performance than the generic SDP/iWARP implementa-

tion without sacrificing WAN compatibility. The reason is as follows: In integrated

SDP/iWARP, buffering of data by the SDP layer and insertion of markers by iWARP

layer are combined into a single operation. Thus, we reduce one copy on the sender
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side. On receiver side, iWARP does not remove the markers. The SDP layers re-

moves the markers while it buffers the data. Thus, each message transfer takes two

lesser memory copies there by resulting in better performance.

In figure 3.8, we present the performance of the three SDP/iWARP stacks. It

can be seen that the uni-directional throughput of both integrated SDP/iWARP and

SDP/iWARP (no markers) is very similar, confirming that integrated SDP/iWARP

achieves better performance than the generic SDP/iWARP and almost same per-

formance as SDP/iWARP (no markers) without the loss of WAN compatibility.

It is to be noted that through the integration, we can gain some performance,

but lose out on generality. However, more importantly, we notice that for ULPs like

SDP which do not expose the advanced feature set of iWARP (e.g., RDMA), an
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implementation over iWARP does not gain any significantly hike in performance.

In fact, due to the compatibility overheads added by the iWARP stack, utilizing the

TOE directly without going through the iWARP stack might be a better solution.

Having said that, we also point out that for ULPs which do utilize the advanced

features of iWARP (e.g., one-sided communication in MPI), an implementation on

top of iWARP instead of directly on TOEs might be better.

3.4 Summary

The Internet Wide Area RDMA Protocol (iWARP) is an industry standard spec-

ification for achieving the capabilities of traditional system-area networks for Eth-

ernet, while maintaining wide-area network (WAN) compatibility. In this chapter,
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we first designed a generic SDP/iWARP implementation and showed that to main-

tain WAN compatibility, the SDP/iWARP stack has to sacrifice some performance.

Also, due to mismatch between SDP stack and the iWARP stack, several data copy

operations are performed, which affect the performance. Next, we designed an in-

tegrated framework for SDP and iWARP which avoids the repetition of processing

in the SDP and iWARP layers and achieves better performance while maintaining

complete WAN compatibility. Our experimental results have shown that Integrated

SDP/iWARP performs close to 20% better than the generic SDP/iWARP imple-

mentation.
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CHAPTER 4

DESIGNING NIC-ASSISTED FLOW CONTROL FOR
THE SOCKETS DIRECT PROTOCOL (SDP) OVER

INFINIBAND

Most high-speed networks have strict requirements on their upper layers that the

receiver has to post a receive descriptor informing the network adapter about where

to place the incoming message before the message is actually sent by the sender.

Not doing so might result in limited retransmissions of the message (increasing the

network load) and/or the connection being dropped or terminated. This is referred

to as the buffer pre-posting constraint. Thus, most programming models and upper

layers use different flow control mechanism to handle this requirement.

Flow control mechanism can be divided into two classes: (i) strong flow control

mechanisms and (ii) weak flow control mechanisms. In the strong flow control

mechanism, the sender NEVER sends data before the receiver is ready to receive it.

Most programming models and other upper layers use this kind of flow-control. On

the other hand, weak flow control mechanisms relax the buffer pre-posting constraint.

In weak flow control, the sender assumes that the receiver has enough buffers posted

and keeps sending messages. The receiver, on the other hand, asynchronously tries

to keep up with the sender. The SRQ-based design of MPI [40, 41, 32], which is an
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example of weak flow control, implements a scheme where every time the receiver

runs out of credits, an interrupt is generated. During the interrupt handling, more

receiver buffers are posted. In this thesis, we will focus only on strong flow control

schemes.

There are several strong flow control mechanisms that have been proposed earlier.

Amongst these, credit-based flow control is the most commonly used flow control

mechanism (used in MPI, file systems, high performance sockets, etc.). However,

as we will see in Section 4.1.1, while this scheme is simple, it could result in severe

under-utilization of resources and performance degradation. In order to meet the

limitations of credit-based flow control, Balaji et. al., recently proposed a new mech-

anism known as packetized flow control. Packetized flow control utilizes the RDMA

capabilities of IB to improve resource utilization. It also improves performance

through coalescing of data and there by sending larger messages on the network.

This scheme, however, could lead to indefinite lack of communication progress.

In this chapter, we propose a new flow-control mechanism known as NIC-assisted

flow control. This mechanism utilizes the hardware flow-control capabilities of IB to

maintain the performance of packetized flow control and allow for better communi-

cation progress. We propose several novel designs for achieving this including: (a)

Virtual window mechanism and (b) Asynchronous Interrupt-based mechanism. We

also show preliminary results for our design, where our scheme achieves a similar

throughput as packetized flow control, while achieving close to 20% better commu-

nication progress performance.
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The rest of the chapter is arranged as follows. Section 4.1 gives an overview of

the existing flow-control techniques. We then present the detailed design of NIC-

assisted flow-control mechanism in Section 4.3. Experimental results showing these

schemes is given in Section 4.4. A brief summary is provided in Section 4.5.

4.1 Overview of Existing Flow Control Mechanisms

To handle the buffer pre-posting constraint, most programming models and upper

layers use the credit-based flow-control approach. We give a detailed description of

this scheme along with its limitations in sections 4.1.1 and 4.1.2.

Recently, a new flow-control mechanism for SDP known as the packetized flow

control has been proposed, which utilizes RDMA-based one-sided communication

operations to perform complete sender-side buffer management for both the sender

as well as the receiver buffers. This allows the user to remove the “communication

gap” that is formed between the sender and the receiver for managing buffers and

helps us in improving the buffer usage as well as the performance achievable by SDP.

Packetized flow control mechanism and its limitations are described in sections 4.1.3

and 4.1.4.

4.1.1 Credit-based Flow-control in SDP

As mentioned earlier, most programming models and upper layers use the credit-

based flow control mechanism for communication. Here we provide a brief overview

of the same.

In this approach, the sender is given a certain number of credits (tokens). It

loses a credit for every message sent and gains a credit for every acknowledgment

received. If the sender is given N credits, the SDP layer has to make sure that there
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Figure 4.1: The Credit Based Approach

are enough descriptors and buffers pre-posted for N unexpected message arrivals on

the receiver side. In this way, the substrate can tolerate up to N outstanding send()

calls before the corresponding recv() for the first send() is called (Figure 4.1).

In the credit-based flow control approach, the receiver is blind to the sizes of the

incoming messages. Accordingly, statically sized buffers (of size S ) are allocated

in circular fashion, both on the sender and the receiver side. There are as many

intermediate buffers, of size S, as the number of credits. So, if there are credits

available, the sender can directly copy the outstanding message into the intermediate

buffer and send it out to the next available receive buffer. If the message is S bytes

or smaller in size, it is copied to the intermediate buffer on the sender side and sent

38



to the receiver side intermediate buffer. If the message is larger than S bytes in size,

it is broken up into S byte chunks and copied into as many intermediate buffers as

available. Data from each of these buffers is sent out as soon as a credit is available.

4.1.2 Limitations with Credit-based Flow Control

The main disadvantage of the credit-based flow control scheme is based on the

way it handles the communication of small messages, i.e., when the sender is trans-

mitting small messages, each message uses up an entire buffer on the receiver side,

thus wasting the buffer space available. For example if each message is only 1 byte

and each buffer is 8 KB, effectively 99.98% of the buffer space is un-utilized. This

wastage of buffers also reflects on the number of messages that are sent out, i.e.,

excessive under-utilization of buffer space might result in the SDP layer to believe

that it has used up its resources in spite of having free resources.

Another disadvantage of the credit-based flow control mechanism is its network

utilization. Since this approach directly sends out data as soon as the sender has

requested for transmission, it might result in very small messages being posted to

the network. This, of course, results in the under-utilization of the network and

hence in degradation in performance.

4.1.3 Packetized Flow control in SDP

As described in the previous section (Section 4.1.1), the credit-based flow control

mechanism has its own disadvantages. Packetized flow-control has been designed

to solve these problems. In this section, we provide the design and implementation

details of the same.
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Packetized flow-control (Figure 4.2) utilizes advanced network features such as

RDMA to tackle the limitations of credit based flow control. In this scheme, the

entire intermediate buffer is one continuous buffer instead of several buffers con-

nected in a circular list. Or in other words, the intermediate buffer is packetized

into buffers of 1 byte size. The entire buffer management, for both the sender as

well as the receiver, is carried out on the sender side alone using RDMA operations.

Since the sender knows exactly what size messages it is sending, it can manage the

receiver buffer in a better manner. When the new message has to be sent out, the

sender knows the address of the next free location on the receiver side and can place

the new message in the appropriate position using an RDMA write operation. Thus

the wastage of buffers is minimal in this approach and close to the ideal 100% in

most cases.

Further, if the application posts a new message to be sent after all the credits

have been used up, the message can be copied to the intermediate buffer (where
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there is more space available due to better buffer management) and sent at a later

time. The application send() call returns allowing the application to carry on with

its computation. This allows the SDP layer to coalesce multiple small messages into

one larger message, thus improving network utilization and hence performance.

In summary, the advantages of Packetized flow control are two fold. First, it

avoids buffer wastage for small and medium sized messages. Sender side buffer

management assures that there is no buffer wastage. Second, it increases throughput

for small and medium sized messages by coalescing small messages when the sender

is out of remote credits.

4.1.4 Limitations with Packetized Flow Control

While the packetized flow-control mechanism discussed in the previous section

(Section 4.1.3), can achieve a better resource utilization and a high performance, it

has certain disadvantages such as indefinite lack of communication progress in some

cases. We describe this limitation in this section.

The design of packetized flow control is completely sender based, i.e., sender

performs buffer management for both the sender and the receiver. The receiver is

only involved in receiving the data into the application buffer. Consider an example

where the sender has initiated a large number of message sends. The sockets buffer

is typically 64KB in size. Suppose, the sender initiates a data transfer of 128KB. Of

this, 64KB is directly posted to the network to be buffered on the receiver side. After

this, assuming that the receiver is not actively receiving data, the sender will run

out of credits. Thus, the remaining 64KB is copied to the intermediate buffer and

the control is returned back to the application. Now, suppose the application on the
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sender side goes into a computation loop, and the receiver sends an acknowledgment

during this time. In this situation, the sender has both remote credits as well as

data to send (in its intermediate buffer). However, until the application comes out

of its computation loop and calls a communication function, no progress can be

made.

Note that credit-based flow control does not face this limitation since for every

data transmission call, if the sender does not have any credits, it blocks till credits

are received and posts the data to the network before returning the control to the

application.

4.2 Overview of InfiniBand Message Level Flow control

We provide a brief overview of the flow control mechanism provided by InfiniBand

hardware in this section.

IB provides a message level end-to-end flow control capability for reliable con-

nections that can be used by a receiver to optimize the use of its receive resources.

Essentially, a sender cannot send a request message unless it had appropriate credits

to do so. Encoded credits are transported to from the receiver to the sender in an

acknowledge message.

Each credit represents the receive resources needed to receive one inbound send

message. Specifically, each credit represents one WQE posted to the receive queue.

The presence of a receive credit does not, however, necessarily mean that enough

physical memory has been allocated. For example, it is still possible, even if sufficient

credits are available, to encounter a condition where there is insufficient memory

available to receive the entire inbound message.
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Two mechanisms are defined for transporting credits from the receiver’s receive

queue to the sender’s send queue. The credits can be piggybacked onto an existing

acknowledge message, or a special unsolicited acknowledge message can be generated

by the receiver. Piggybacked credits are those credits that are carried in an already

scheduled acknowledge packets.

1. Piggybacked Credits: Piggybacking of end-to-end credits refers to trans-

ferring credits to the sender in a normal acknowledge packet. Credits can

be piggybacked onto any acknowledge packets with a valid Message Sequence

Number (MSN).

2. Unsolicited Acknowledge packet: An unsolicited acknowledge message

appears to the sender like a duplicate of the most recent positive acknowledge

message. Unsolicited acknowledge may be sent by the receiver at any time.

The sender’s send queue simply recovers the credit field from the most re-

cently received acknowledge packets. Since an unsolicited acknowledge packet

appears to the sender as a duplicate response, it has no effect on the sender

other than transfer of the credits.

4.3 Design of NIC-assisted Flow Control

Previously proposed flow-control mechanisms, as described in Section 4.1, are

entirely implemented in software. While this gives them the additional flexibility

of making intelligent choices (e.g., coalescing of data, segmentation), they suffer

from various limitations including performance and resource usage (for credit-based

flow control) and lack of communication progress (for packetized flow control). IB’s
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hardware flow control, on the other hand, performs the entire flow control in hard-

ware. While this has certain advantages, such as asynchronous (hardware controlled)

communication progress, it lacks the intelligent schemes such as coalescing and seg-

mentation of data, that are used by previous mechanisms.

NIC-assisted flow control is a hybrid software-hardware flow control mechanism

that performs some tasks in software while taking advantage of the flow control

mechanism provided by InfiniBand (described in Section 4.2). There are two main

schemes in the NIC-assisted flow control mechanism. The first one is a virtual

window based scheme which is used mainly to avoid data corruption and thus main-

tain correctness. The second scheme is an asynchronous interrupt based scheme.

This scheme is an enhancement to the virtual window based scheme to improve the

performance by coalescing data. We describe the two schemes in detail.

4.3.1 Virtual Window-based Scheme

Virtual window-based scheme is a mechanism to ensure that the sender never

overruns the receiver during flow control. As mentioned earlier, IB’s hardware flow

control is not byte-level flow control. So, when a sender sees a receive request,

it could send a message that is larger than the posted receive buffer, resulting in

erroneous behavior. To avoid this, the sender and receiver should agree on what

size messages to send and when to send an acknowledgment. For this, we define a

virtual window (W).

In this scheme, the sender keeps track of the size of the messages it is trying

to send out and the amount of free buffer space available on the receiver side. It

ensures that message segments posted to the network are always smaller than or
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equal to W by performing appropriate segmentation. The receiver, on the other

hand does not advertise a free buffer every time it copies a message into application

buffer. Instead, it only does so if it has at least W amount of free socket buffer space.

If remote credits are not available, the sender copies the messages into the sockets

buffer and hands them over to the NIC. When the NIC sees that the receiver has

advertised a buffer, it sends the next posted message on the network. Now, since

the sender always guarantees that each message it at most W bytes and the receiver

always advertises a buffer when its at least W bytes, there is no buffer overflow.

Further, since the NIC is handling the communication, progress can be carried on

even if the sender is busy computing.

The point to be noted here, however, is that when the sender has no remote cred-

its available, it does not coalesce messages. It copies the message to the temporary

buffer and directly posts it to the NIC. Thus, though we are achieving good com-

munication progress, we are sending out a large number of smaller messages on the

network which could eventually result in a performance degradation as compared to

packetized flow control.

4.3.2 Asynchronous Interrupt-based Scheme

Asynchronous interrupt-based scheme (Figure 4.3), is proposed as an enhance-

ment to the virtual window scheme described in Section 4.3.1.

In this scheme, the sockets buffer is divided into two portions, one portion is

handled by the software and another portion is handled by the NIC (this distinction

is followed only when the sender side has run out of remote credits). All messages

in the NIC handled portion are handed over to the NIC as soon as they are copied.
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All messages copied into the software handled portion are treated in the same way

as packetized flow control, i.e., they are coalesced without handing over to the NIC.

Specifically, when the sender is out of remote credits and it has more data to be

sent out, it copies the data first to the NIC handled portion of the sockets buffer

and posts these messages to the NIC. Messages that arrive after this portion is full

are copied to the software handled portion of the buffer.

Considering the example stated earlier, let us suppose that the sender is doing

some computation now. As described in the virtual window scheme, the receiver

advertises a buffer when there is at least W sized buffer free. The sender sees this

sends the next message that was posted to it. This is from the NIC handled portion

of the buffer. Simultaneously, it generates an interrupt. The interrupt is handled as

follows – the SDP library now looks into the software handled portion of the sockets

buffer. It coalesces the messages in this portion to segments of size W and posts
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these messages to the NIC. After all the messages in the NIC handled portion are

sent out, then the sender side NIC can send out these coalesced messages out onto

the network instead of just small messages.

The interrupt handling mechanism in this scheme is quite expensive. However,

while the software is handling this interrupt, the NIC still has some more messages

to be sent out from the portion of the buffer it is handling. The transfer of these mes-

sages overlaps with the interrupt handling routine hiding its overhead and allowing

for an improved performance. As we will see in the next section, the performance

of NIC-assisted flow control is close to that of packetized flow-control, showing that

the interrupt handling overhead is overlapped with data transmission and does not

affect performance adversely.

4.4 Experimental Results

In this section, we describe our evaluation framework and compare the perfor-

mance of our NIC-assisted flow control scheme with that of the existing credit-based

and packetized flow control mechanisms.

The experimental test-bed consists of four nodes with dual 3.6 GHz Intel Xeon

EM64T processors. Each node has a 2 MB L2 cache and 512 MB of 333 MHz DDR

SDRAM. The nodes are equipped with Mellanox MT25208 InfiniHost III DDR PCI-

Express adapters (capable of a link-rate of 20 Gbps) and are connected to a Mellanox

MTS-2400, 24-port fully non-blocking DDR switch.

Figure 4.4 shows the ping-pong latency of SDP with the three flow-control mech-

anisms. As it can be seen, all the three schemes perform almost the same. The reason

for this can be explained by the way these schemes differ. These schemes perform

47



Ping-Pong Latency

0

5

10

15

20

25

30

35

1 2 4 8 16 32 64 128 256 512 1K 2K 4K

Message Size (bytes)

La
te

nc
y 

(u
s)

Packetized Flow Control Credit-based Flow Control NIC Assisted Flow Control

Figure 4.4: SDP/IB with NIC-assisted Flow Control Micro-benchmarks: Latency

differently only when there are no more remote credits available. In the ping-pong

latency test, the sender sends one message and waits till it gets a message from the

remote side. Thus, the sender and receiver never run out of remote credits during

the test and so all the three schemes behave similarly.

In Figure 4.5, we present the performance results for the uni-directional through-

put test. As expected, packetized flow control performs the best and credit based

flow control performs the worst. The important point to be noted is that NIC-

based flow control scheme performs close to that of packetized flow control, i.e., the

overhead of interrupt handling in NIC-assisted flow control is overlapped with data

transfer time and is almost negligible.
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The next test is a communication progress test which is similar to a bursty

ping-pong latency test to compare the differences between the three flow control

mechanisms. The communication progress test is designed as follows. The sender

sends a burst of 100 1KB messages to the receiver and then receives 100 messages

from the receiver. The receiver first receives 100 messages and then sends 100

messages. Between the send and receive communication operations, however, both

the sender and receiver perform computation for a fixed amount of time.

In this test, communication progress is said to be good when the data is sent out

as soon as it is copied into the intermediate socket buffers; in this case the compu-

tation loops on the sender and receiver side are highly parallelized (Figure 4.6(a)).
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Bad communication progress occurs when the data is not sent out as soon as it is

copied into the intermediate socket buffers; in this case the sender can copy data

and enter a computation cycle. Though the receiver is ready to receive data, till the

sender calls another communication call, the buffered data cannot be sent out. In

this case, the computation cycles on the sender and the receiver side are completely

sequentialized (shown in Figure 4.6(b)).

Figure 4.7 shows the results from the communication progress test. The amount

of computation between each burst of communication is varied on x-axis and y-axis

shows the latency for each value of computation. As it can be seen, packetized flow

control performs the worst with credit based and NIC-assisted performing better

and almost equally.

The reason for such results is explained as follows. In credit based flow control,

the sender returns from a send call only when it has actually sent the messages on

to the network. Communication progress in this case is similar to Figure 4.6. Pack-

etized flow control sends messages onto the network as long as it has remote credits.

For sockets buffer of size 64K, the number of 1K messages it can send out is 64. The

remaining 36 messages are copied to the intermediate sockets buffer and the sender

goes into computation. The receiver, however has received only 64 messages and is

waiting for the remaining 36 messages. When the sender completes its computation

and is in its next communication cycle, it notices that there are unsent messages

and sends these out to the network. After receiving these messages, the receiver

now goes into computation while the sender is waiting to receiver messages. This is

shown in Figure 4.6(b). In NIC-assisted flow control scheme, the first 64 messages

are sent while the remaining 36 messages are buffered and handed over to the NIC
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to handle. The NIC asynchronously sends out data even when the sender is in a

computation cycle, thus allowing for better communication progress.

4.5 Summary

In this chapter, we have discussed the limitations with the existing flow control

mechanisms in the current implementations of SDP over InfiniBand. We have also

proposed a new flow control mechanism known as NIC-assisted flow control to take

advantage of the hardware flow-control mechanism provided by IB. Our experimen-

tal results show that NIC-assisted flow control performs close to packetized flow

control while achieving better communication progress (up to 25% better in some

cases).
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CHAPTER 5

CONCLUDING REMARKS AND FUTURE WORK

Traditional communication protocols such as TCP/IP have been implemented

in the host kernel space and have not been able to scale with the increasing net-

work speeds of the current high-speed networks. In order to allow existing TCP/IP

sockets based applications take advantage of these high-speed networks, researchers

have proposed different solutions such as high-performance sockets implementations.

The main idea of these high-performance sockets is to provide a pseudo sockets-like

interface for end-applications to use while internally utilizing the advanced capabil-

ities of the high-speed networks. The Sockets Direct Protocol (SDP) is an industry

standard for such high-performance sockets implementations over InfiniBand and

iWARP.

5.1 Summary of Research Contributions

This thesis deals with two main components in SDP: (a) designing SDP over

iWARP, studying the various implications associated with such a design and propos-

ing an integrated SDP over iWARP framework to achieve high performance and (ii)

designing various enhancements for SDP over InfiniBand to better utilize the hard-

ware support provided by the network adapter.
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For the first component, we have first analyzed the capabilities of the traditional

design of SDP when applied to iWARP and shown its performance limitations. We

have then explored the cause for such performance limitations and have designed an

integrated framework with SDP and iWARP which allows a superior performance

when compared to the traditional SDP implementation. The performance results,

that we showed, demonstrate that the integrated SDP/iWARP framework performs

up to 20% better than the basic SDP/iWARP design in some cases.

For the second component, we have studied the limitations of existing flow con-

trol mechanisms available for SDP/IB (credit-based and packetized flow control)

and proposed a more advanced flow-control mechanism, known as NIC-assisted flow

control. This new mechanism retains the benefits of existing mechanisms while

efficiently handling their limitations, i.e., it achieves the high-performance of the

packetized flow control while addressing its non-optimal communication progress as

compared to the credit-based flow control mechanism. Specifically, we take advan-

tage of the hardware flow control mechanism provided by InfiniBand to achieve this.

Our performance results show that while achieving nearly similar performance as

the packetized flow control scheme, our design shows up to 25% improvement in

communication progress.

5.2 Future Research Directions

Apart from the work done in this thesis, there are several aspects that require

further research to complete the understanding and analysis of the proposed research

area. In this section, we will discuss some of these aspects.
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Zero-copy communication for SDP/iWARP: The current implementation

of SDP/iWARP only performs buffer-copy based communication, i.e, a copy of the

data needs to be made before any communication can be performed. This can re-

sult severe negative impact including increased memory traffic, cache pollution and

high CPU usage amongst others. One of the major benefits of iWARP compared

to TOEs is RDMA, which can result in zero-copy communication for SDP/iWARP,

potentially curbing the above mentioned negative aspects. Thus, a zero-copy imple-

mentation of SDP/iWARP is amongst the primary extensions to the current work.

Studying other Programming Models over iWARP: The current study

only focused on one programming mode, i.e., sockets. However, there are several

other widely used programming models such as the Message Passing Interface (MPI),

whose interaction with the iWARP stack has not been studied earlier.

Connection Caching in SDP: While SDP has a good data transfer perfor-

mance, its performance for non data-touching operations such as connection estab-

lishment is not the best. For several applications, connection establishment falls in

the critical path. Specifically, for every request a connection is established between

the client and the server and is torn down at the end of the request. For such

applications, caching the connection can improve the performance significantly.
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