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ABSTRACT

Advances in processor, network and protocol technologies have made clusters of
workstations an attractive platform for high performance computing. Emerging appli-
cations in cluster environments require frequent data transfer between process mem-
ories. This tremendous data transfer requires synchronization at various points to
maintain the consistency in data. One-sided communication has gained a lot of at-
tention to support efficient data transfer capabilities for irregular applications. Thus,
there is a very strong need to synchronize these one-sided operations at various check-
points, without affecting the performance of one-sided data transfers.

In this thesis we propose ways to optimize the performance of collective commu-
nication operations of the one-sided communication library ARMCI by optimizing
the current synchronizing primitive fence operation and later by introducing a new
barrier function. The optimization uses the minimum number of messages exchanged
between communicating nodes as well as supports efficient buffer management. The
factor of improvement in the performance of the fence operation using our implemen-
tation has been observed to be up to 1.72 for an 8-node system. The new barrier
function gives a factor of improvement of 3.58 over the previous method of performing
the barrier operation on an 8-node system. We have also extended our work to im-

plement a new and more efficient remote lock operation to enhance the performance
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of the communication library further. We achieve a factor of improvement of 1.7 over

the current implementation of locks in ARMCI.
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CHAPTER 1

INTRODUCTION

The importance of parallelism in satisfying the application demand for ever greater
performance can be brought into sharper focus by looking more closely at the ad-
vancements in the underlying technology and architecture. Parallelism is becoming
the basis for solving harder and bigger problems. The quest for performance is so
keen that parallelism is being exploited at many different levels and at various points
in the computer design space. Such parallelism is being exhibited even on desktop
systems with multiple processors.

The transition to parallel programming, including new algorithms, or attention to
communication and synchronization requirements in existing algorithms, has largely
taken place in the high-performance end of computing. This has increased the use of
collection of workstations on a fast network, also known as clusters [2], in the world
of high-performance computing. Performance of inter-processor communication plays
an important role in these clusters. Designing high performance communication sub-
systems for these clusters is a major challenge. Solutions to this challenge include
exploiting the capability of the underlying network and the high speed Network In-

terface Cards (NICs) [13], while trying to satisfy the communication requirements of



the upper level programming models. In the following sections we provide a brief

overview related to these issues before describing our problem statement.

1.1 User Level Protocols

The increased availability of the high-speed local area networks has shifted the
bottleneck in local-area communication from the limited bandwidth of network fabrics
to the software path traversed by messages at the sending and receiving ends. In
particular, in a traditional UNIX networking architecture, the path taken by messages
through OS involves several copies and crosses multiple levels of abstraction between
the device driver and the user application. The resulting processing overheads limit
the peak communication bandwidth and cause high end-to-end message latencies.

This has triggered a lot of research in areas related to utilizing smart NICs and
processors on the smart NICs in protocol processing. This has led to the development
of the OS bypass protocols or user level protocols [1]. User Level Protocols and their
implementations on programmable network interface cards have been alleviating the
communication bottleneck for high speed interconnects. User level protocols address
these issues by making sure that the parts of the protocol or the entire protocol is
moved to the user space from the kernel space. One of the first examples of user level
protocols is U-Net.

Figure 1.1 shows the difference between the traditional networking architecture
and the user level protocol architecture, like U-Net. In traditional systems, the NIC
would simply take the data from the host and put it on the interconnect and upon
receiving the data simply forward it to the host node for processing. However, mod-

ern high speed interconnects such as Myrinet [3] make use of modern smart NICs
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Figure 1.1: (a)Traditional networking architecture and (b) U-Net architecture [1]

which have programmable processors and memory, which make them capable of shar-
ing some of the message processing work with the host. Hence, host can dedicate
more cycles to the computation thereby enhancing application speed up. Thus, the
use of smart NICs have removed the overhead of kernel processing and reduced the

communication latency by reducing the network latency.

1.2 Programming models for Clusters

The basic processing element from PCs to large systems, is rapidly becoming a
symmetric multiprocessor system (SMP). As a result, the nodes of a parallel computer
will often be an SMP. The resulting mixed hardware models (combining shared-
memory and distributed memory) provides a challenge to system software developers
to provide users with programming models that are portable, understandable, and
efficient.

Generally three programming models are widely used for programming in cluster
environment: shared-memory, message passing and get/put one-sided communica-

tion.
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Figure 1.2: Message Passing Programming model

1.2.1 Message Passing

By message passing [4] we mean the transfer of data between processes by send/receive
operations, in which both processes must participate in the data transfer. The data
owner must know when and which process needs the data and data transfer implies a
form of synchronization between the sender and receiver. Asynchronous send/receive
operations might diffuse the synchronization point, but the cooperation is still re-

quired. Figure 1.2 shows the block diagram of message passing programming model.

1.2.2 Shared Memory

A shared memory system makes a global physical memory equally accessible to
all processors. These systems offer a general and convenient programming model
that enables simply sharing through a uniform mechanism of reading and writing
shared data structures in the common memory. Since shared-memory system is very
flexible, a new concept Distributed Shared Memory [5] system has emerged to provide
the advantages of shared-memory system on distributed machines. A DSM system
logically implements the shared-memory model on a physically distributed system.

DSM mechanism allows a process to access shared data which is not physically resident
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Figure 1.3: Distributed Shared Memory Programming model

on that machine. When a process accesses data in the shared address space, the shared
memory address maps to the physical memory address. The mapping is done by a
layer of software implemented either in the operating system kernel or as a runtime
library. To coordinate access to the shared memory by multiple processes, some form
of synchronization, like locks, barriers, semaphores and monitors, must be provided.

Figure 1.3 shows the block diagram of the DSM model.
1.2.3 Get/Put One-Sided Communication

In one-sided communication|[7] a process can be allowed to access dedicated seg-
ments of memory of another process for reading, writing or updating, without the
explicit participation of the other process. Such remote accesses take effect after
an appropriate synchronization operation is performed. A distinguished feature of
one-sided communication is that only one process is responsible for initiating the
communication between two processes, and must supply all necessary parameters for
the communication operation. The get/put one-sided communication model uses get
and put operations to implement the one-sided communication. A get operation is
a remote read operation and a put operation is a remote write operation. Both get
and put operations access remote memory without any intervention from the remote

node. One-sided communication certainly has a lot of advantages in many application
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Figure 1.4: Get/Put One-Sided Communication Programming model

categories, specifically applications related to the computational chemistry where a
process needs to make unpredictable reference to remote data. Figure 1.4 shows the

schematic diagram of get/put one-sided communication model.

1.3 Problem Statement and Approach

One-sided communication has gained a lot of attention in research community
because of its simple progress rules and no cooperation required from the receiver side.
As a result, one-sided communication is becoming popular and the MPI standard also
has defined a set of one-sided calls in its 2.0 release [7]. The SHMEM library developed
by Cray is a one-sided library for the CrayT3E and SGI origin systems for contiguous
data transfer[6]. The Aggregate Remote Memory Copy Interface (ARMCI) [6] is
another library that offers one-sided communication calls for remote memory copy
functionality mainly focusing on non-contiguous data transfer.

Ordering of different operations in a one-sided communication library is very im-
portant as it simplifies programming and is required in many applications such as
computational chemistry. Some systems enforce ordering of the unordered operations
by providing synchronization operations. Synchronization operations are essential for
ordering operations and thus maintaining data consistency, though they could have a

negative impact on the application performance. This motivates the need to develop
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synchronization operations on a given platform in the most efficient manner, which
can achieve ordering with a lower overhead inside the communication system.
To implement the synchronization operations in the most efficient manner there

are three major issues we need to consider:

1. Reduce the number of messages required to communicate among all the partic-

ipating computing nodes during the synchronization.
2. Reduce the number of buffers required to store control messages.

3. Reduce the waiting time of a computing node to come out of the synchronization
operation initiated by it or some other node, participating in the synchronization

operation.

In this thesis we address these major issues for ARMCI - A portable aggregate
remote memory copy interface. We start with the current synchronization primitives
in ARMCI such as fence operation and locks, optimize them and eventually replace
them with new and better implementations. The optimization and new implementa-
tion is done for ARMCI on the Myrinet/GM communication layer. We address the

above mentioned issues as follow:

1. Optimize the fence operation in ARMCI on GM, by reducing the time for a

computing node to come out of the fence operation.

2. Implement a new barrier operation in ARMCI on GM which requires less num-

ber of messages and less wait time.

3. Implement a new lock algorithm which reduces the contention on one node.



By incorporating our ideas for addressing these issues, we achieve the improvement
in the performance of the fence operation up to 70% for an 8-node system. The
new barrier function gives up to 138% improvement over the previous method of
performing the barrier operation on an 8-node system. The implementation of a new
and more efficient remote lock operation, we achieve up to 40% improvement over the

current implementation of locks in ARMCI.

1.4 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2 we discuss about user
level communication protocol Myrinet /GM and the basic concepts of the ARMCI and
general communication paradigm of ARMCI. In Chapter 3 we describe the optimiza-
tion of fence operation in ARMCI on GM. In Chapter 4 we describe the implemen-
tation details of the new barrier function in ARMCI with some experimental results.
In Chapter 5 we describe how to implement distributed locks in ARMCI on GM with

some experimental results. In Chapter 6 we conclude and discuss future work.



CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter we talk about the user level communication protocol GM in gen-
eral. We also briefly discuss the organization of ARMCI-Aggregate Remote Memory
Copy Interface, as a portable one-sided communication library and synchronization
operations supported by ARMCI. Later, we provide a brief overview of the architec-

ture and implementation details of ARMCI.

2.1 User Level Communication Protocol - Myrinet/GM

In this section, we discuss the communication protocols for Myrinet, a modern,
worm-hole routed, network technology for local and system area networks. GM [8] is
a low level message passing system for the Myrinet network. The GM system includes
a driver, the Myrinet-interface control program and the GM API, the GM library and

header files. GM features include:

1. concurrent, protected, user-level access to the Myrinet interface
2. reliable, ordered delivery of messages
3. automatic mapping and route computation

4. automatic recovery from transient network problems
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5. scalability to thousands of nodes

6. low host-cpu utilization

During the execution of a program the driver is used mainly for opening ports,
pinning and unpinning memory, and to put process to sleep or wake them when
blocking functions are used. A port is an abstraction through which a process can
communicate with the NIC. Once a port is opened, the process can communicate with
the NIC, bypassing the operating system and avoiding system call overhead. Each
NIC can support up to 8 ports, some of them are reserved.

Flow control is used to avoid the buffer overflows. GM uses the concept of tokens
to provide flow control and reliability. When a process opens a port, it has a certain
number of send tokens and receive tokens. Each send event requires a send token. To
send a message, a process fills in a send token describing the send event and queues
it on the send token queue. The NIC polls this queue for new send tokens. When
the NIC gets a new send token it DM As the data from the specified host buffer, and
transmits the packet to the destination. Once the NIC has completed the send, and
has freed the resources corresponding to that event, the send token is returned to the
process. The host should not modify the data, which is to be sent, until the send
token is returned from the NIC.

In order to receive a message, the process must allocate a buffer into which the
message will be received and pass a receive token describing the buffer to the NIC.
Once the NIC has DM Aed the data from a receive message into the buffer, the receive
token is returned to the process. Messages may only be sent from and received
into buffers which are pinned in memory. Memory is pinned using special functions
supplied by GM.

10



GM is a connectionless model because there is no need for the user process to
establish a connection with a remote host. Once the mapping of destination address
to routing paths is completed, a user process simply builds a message and sends it
to any host in the network. In a large scale Myrinet network, proper mapping of
destinations to routing paths is essential to provide deadlock free communication.

GM is a lightweight communication layer, and as such it has certain limitations
including inability to send messages from or receive messages into non-DMA-able
memory, lack of support for gather and scatter operations and inability to register

shared memory under Linux.

2.2 ARMCI - Aggregate Remote Memory Copy Interface

ARMCI, aggregate remote memory copy interface, is a one-sided communication
library that offers remote memory copy functionality. It aims to be fully portable
and compatible with message-passing libraries such as MPI or PVM. ARMCI offers
both simpler and low-level model than MPI-2 one-sided communication to streamline
the implementation and improve its portable performance. The ARMCI specifica-
tion does not describe or assume any particular implementation model, for example
threads.

In scientific computing, applications require transfer of non-contiguous data trans-
fer. With remote copy APIs supporting only contiguous data transfer, it becomes
very inefficient, transferring non-contiguous data into contiguous block of data using
multiple communication operation.

The Aggregate Remote Memory Copy Interface [6] is a one-sided communication

library targeting non-contiguous data transfer. In particular, ARMCI is meant to be
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used primarily by library implementors rather than application developers. Examples
of libraries that ARMCI is aimed at include Global Arrays [10], P++/Overture and
PCRC Adlib run time system.

It is very important for a communication library such as ARMCI to have straight-
forward progress rules. Simple progress rules simplify the development and perfor-
mance analysis built on top of libraries that use ARMCI, and avoid dealing with
ambiguities of the platform-specific implementations. Therefore, the ARMCI remote
copy operations are truly one sided and complete regardless of the actions taken by
the remote process.

Applications that frequently use hybrid programming model require a compati-

bility with message-passing. Both blocking and non-blocking APIs are needed.
2.2.1 ARMCI Operations

ARMCIT supports the following classes of operations:

1. Data transfer operations such as get and put.

2. Atomic operations such as accumulate and read-modify-write.
3. Distributed mutex operations such as lock and unlock.

4. Progress and ordering such as fence and allfence.

5. Memory allocation such as malloc, cleanup, abort and error.

2.2.2 Client-server Architecture

To support the full set of remote memory operations on clusters of workstations

with GM protocol, ARMCI uses client-server architecture [9]. Figure 2.1 shows the

12
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Figure 2.1: Client-server Architecture of ARMCI

client-architecture on SMP. It is implemented by starting on each machine “server”
thread(s) dedicated to remote memory operations that are issued by remote clients
(user tasks). If the implementation of network protocols is not thread-safe, a heavy-
weight process can be used instead. The server thread upon receiving a request
executes a handler function corresponding to the appropriate remote memory oper-
ation and if needed sends data back to the client. The optimal number of server
threads needed depends on several factors such as number of processors and user
tasks/processes per node, network throughput and the communication load and pat-
terns in applications. For performance reasons, on the current networks and hard-
ware with low number of processors per SMP node, a single thread is appropriate.
In libraries that offer specific interfaces for memory allocation such as MPI-2 and
ARMCI, one thread could suffice since their memory allocation operations can allo-
cate the shared memory. Otherwise, one thread per user process would be required.

The combination of server threads, network protocols and OS support for mutual

13



exclusion is sufficient to implement a full set of remote memory operations and also
deliver high performance. With this architecture, special care is required to minimize
the resource consumption for the benefits of applications.

To prevent server thread/process, in the absence of one-sided communication re-
quests, from consuming CPU resources needed by user processes, blocking wait rather
than active polling of the network interfaces is appropriate. GM offers blocking com-
munication calls that effectively block the calling thread until an associated commu-
nication event occurs.

With this architecture in mind we explore the implementation of synchronization

primitives, fence, barrier and locks of the ARMCI communications library on GM.
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CHAPTER 3

OPTIMIZATION OF FENCE OPERATION IN ARMCI

ARMCI supports synchronization operations with data transfer operations. Some
of the synchronization operations supported by ARMCI are local and global fence,
atomic read-modify-write and mutex operations. In this chapter, we focus on the

fence operation.

3.1 Fence Operation

When a blocking put operation completes, the data has been copied out of the
calling process memory but has not necessarily arrived at its destination. This is
a local completion. A global completion of the outstanding put operations can be
achieved by calling ARMCI Fence or ARMCI_AllFence. ARMCI Fence blocks the
calling process until all the put operations issued by it to the specific remote process
complete at the destination. ARMCI_AllFence does the same for all the outstanding
put operations issued by the calling process regardless of the destinations.

The fence operation assures that all the outstanding remote memory operations
issued by the calling process are complete. This is important, for example, in critical
sections of the code, to assure that changes to protected data are complete before

releasing a mutex. The fence operation applies only for the remote store operations.
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Its implementation is closely connected to the underlying network and remote memory

operation protocols.
3.1.1 Current Implementation

Since ARMCI has a client-server architecture, there is one server thread and a
number of client threads running on a node. The function ARMCI _Fence sends a
request for acknowledgment to the remote server on which the client has issued a
put operation. The ARMCI_Fence operation is specific to one destination only. The
function ARMCI_AllFence calls ARMCI_Fence for each server on which computations
are going on. The main function of the fence operation is to block the client until it
gets an acknowledgment from each server. The client thread starts all the requests
for the computation and the server thread does all the data transfer and computation
on data. The client thread on each node maintains a list of servers on which it has
started computations. In the ARMCI_AllFence operation, the client thread on the
client node sends a request for acknowledgment to each of the server in the list. Each
server thread on the server node then sends an acknowledgment to the client node
once it finishes all the computations issued by that particular client node.

In the original implementation of ARMCI_AllFence, the client node sends a mes-
sage to the server node and waits for the acknowledgment and then sends a message
to the next server and so on, as shown in the figure 3.1. As a result, too much time
is spent in waiting for the acknowledgment. The number of messages required in this

scheme is 2*(N-1)+InN, where N is the number of nodes

16
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Figure 3.1: ARMCI_AllFence Block Diagram

3.1.2 Our Implementation

In our approach, instead of sending a message to one server, waiting for the
acknowledgment from it and then going to next one, we have modified this function
in such a manner that it sends a request for acknowledgment to a set of K servers
and then receives acknowledgment from each of these servers, as shown in figure 3.2.
K can be equal to the number of servers in the list of servers maintained by the client
node. But as the number of nodes can be large for scientific applications, the number
of buffers required for sending those many messages will require very large amounts
of memory. Hence, we have restrained our implementation to K consecutive request
messages, where the value of K depends on the number of buffers available for sending
the requests.

Suppose a client node has N server nodes in its list of servers, we send a request
message to the first K server nodes in the list and wait for the acknowledgment

from each of these servers. By doing, so we are overlapping the wait time for the

17
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Figure 3.2: Optimized ARMCI_AllFence

acknowledgment with the send time for the next request message. Similarly, we send
the request message for the next K servers in the list and wait for acknowledgment
from these servers and so on till we have sent request messages to all the server nodes
and have received acknowledgments from all of the server nodes. If N is not an exact
multiple of K, we repeat the above procedure for[N/K]| times plus one iteration for
the remaining servers on the list.

In our scheme we also tried to minimize the contention on a particular server. If all
the nodes participating in a fence operation send a request for an acknowledgment to
a particular server, the server gets overloaded, which increases the delay in response.
Hence, we randomize the issuance of requests by a client on different servers so that
all the clients do not send a request message to the same server at the same time,

which reduces the contention on a particular server.

18



3.2 Performance Evaluation

The tests were performed on an eight node cluster of quad Pentium III 700MHz
machines (Dell 6400’s), which have LANai 7.2 cards with 66MHz NIC processors,
running Linux with kernel version 2.2.17. The machines are connected by a Myrinet
LAN network with LANai 7.2 cards via an 16-port switch.

We tested the performance of our approach and compared it with original imple-
mentation. In each iteration, the client node issues an accumulate operation on the
server node followed by a fence operation. We timed these tests for 1000 iterations,
and then the average was computed for the result. Figure 3.3-3.6 show the results of
this test. Fig. 3.3 and 3.5 are the latency graphs for the fence operation. Fig. 3.4
and 3.6 show the performance improvement for 4 nodes and 8 nodes, respectively.

In case of 4 nodes, we performed the test for two cases. In the first case, each
client issues a number of put operations on two remote servers and in the second case
each client issues a number of put operations on three remote servers. For the first
case, we performed the test by taking K = 1,2, where K is the number of buffers
required to send the request messages. For the second case, we performed the test
by taking K = 1,2,3. We observed that by providing more number of buffers the
performance improves even more. For each case, we took the average of latencies of
all the client nodes. The maximum factor of improvement we achieved for 4 nodes is
1.31 over the current implementation.

Similarly, in case of 8 nodes, we performed the test for four cases. In the first case,
each client issues a number of put operations on two remote servers, in the second case
each client issues a number of put operations on four remote servers, in the third case

each client issues a number of put operations on six remote servers and in the fourth
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case each client issues a number of put operations on seven remote servers. For the
first case, we performed the test by taking K = 3, for the second case, we performed
the test by taking K = 3,5, for the third and the fourth case we performed the test
by taking K = 3,5,7. Again, here we observed that by providing more number of
buffers the performance improves even more. For each case we took the average of
latencies of all the client nodes participating in the fence operation. The maximum
factor of improvement in the performance achieved for 8 nodes is 1.72 over the current

implementation .
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CHAPTER 4

IMPLEMENTATION OF BARRIER OPERATION IN
ARMCI

Parallel programs are commonly written using barriers to synchronize parallel
processes. Upon reaching a barrier, a process must stall until all the participating
processes reach the barrier. A fast implementation of barrier is important because it
allows fine grained parallel programs to be more efficient. It is therefore important

to minimize the latency of the barrier operation.

4.1 Achieving Barrier Operation in ARMCI

The ARMCIT library currently does not have a barrier primitive defined in its
implementation. The main function of the fence operation is to block the client until
it gets an acknowledgment from each server. In the ARMCI_AllFence operation a
client thread on the client node sends a request for acknowledgment to each of the
server in the list. Each server thread on the server node then sends an acknowledgment
to the client node once it finishes all the computations issued by that particular client
node. Currently a barrier can be achieved using ARMCI_AllFence followed by an
MPI_Barrier. The number of messages required in this scheme is 2 x (N — 1) for the

ARMCI_AlFence and log,(/N) messages for the MPI_Barrier. Hence, the complexity
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in terms of number of messages is 2 x (N — 1) + log,(N), where N is the number of

nodes participating in the barrier operation.

4.2 Our Implementation

In our implementation of the barrier operation in ARMCI library, our objective
is to achieve a fence as well as a barrier operation. In the new implementation,
we keep track of the number of put operations issued by the client thread and the
number of put requests completed by the server thread. The server thread increments
the counter in the shared memory between the client and the server thread on the
same node after the completion of each put operation issued to it. When the client
thread reaches the barrier point, it calls a pairwise exchange operation to exchange
the counter on each client node to calculate the total number of operations issued
on its server. When the number of put operations issued by all the client nodes on
a server equal the number of operations completed by that server, the client on that
node calls a pairwise exchange one more time to inform the other nodes that it has

reached it’s barrier point.

4.3 Algorithm and the Pseudo-code

In this algorithm we aim to combine fence and barrier operations. The data

structures required for this scheme are:
1. An array on the client side op_init [N].

2. A counter op_done in the shared memory between a client and a server on a

single node.
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Figure 4.1: Block Diagram for new implementation of the Barrier operation

This is shown in figure 4.1. Size of the op_init[N] array is equal to the number
of nodes. The index for the array on the client side is the server id Si.

When a client initiates a put operation on the server of a remote node, it increments
the count of the entry in the array op_init[] for that server. Similarly, when a server
completes a put operation issued by a particular client, it increments the count of the
counter op_done in the shared memory.

When a node reaches the barrier operation, it calls the pair wise exchange algo-
rithm to get the number of put operations issued on a particular server. In the pair
wise exchange algorithm, a client gets the copy of the array op_init[] from other
clients. Then we add up the values of the array for the particular server to determine
the number of put operations issued by all the clients on that server.

Once we get the number of put operations issued on a server by all the clients,

we wait until the count of the number of put operations issued on the server is equal
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/* N isthe number of nodes. */
* Variables declared in the shared memory of the server and client on one node. */
int op_done;

{/*Client Side*/

int op_init[N];

while (tbarrier()){ /* Until node reaches the barrier point, the client
will keep initiating the put operation and value of Si
will keep changing depending on computation.
Function barrier() will return a true value when the
client will reach the barrier. */

armci_Put(Si); /* Operation initiated by client on server Si */

if(Si'=Ci) op_init[SI]++; /* Thiswill be apart of ARMCI_Put(). */

}

pairwise_exchange(); /* Here Client will call for the pair wise exchange
agorithm to get the array op_init() from the other
nodes. */

add the valuesin all the arrays (received after pair wise exchange) for all the servers.

while (armci_done!=armci_init[Si]); /* Wait till server completes al the put operations
issued onit. */

pairwise_exchange(); /* Here Client will call for the pair wise exchange
algorithm to inform other nodes that it's server has
finished all the put operations issued on it. */

initialize(); /* Reinitiaize the data structure on the client side as
well asin the shared memory. */

}*END*/

{/* Server Side*/

finished_Put; /*  Server completes the put
operation. */

if(Si!=Ci)op_donet++;

H*END*/

Figure 4.2: Pseudo-code for the Barrier function

to the number of put operations completed by the server. When the two counts are
equal, client calls the pair wise exchange algorithm to check whether all the other
nodes have reached the barrier. All the nodes participate in the pair wise exchange
and when all the servers have completed the put operations, all the participating
nodes come out of the barrier operation.

The pseudo-code for the algorithm is shown in figure 4.2. Since the new algorithm
requires two pairwise exchanges to achieve the barrier operation and the number

of messages required for one pairwise exchange is log,(N), the complexity of this
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algorithm in terms of number of messages required to complete the entire barrier

operation is 2 X log,(N), where N is the number of nodes.

4.4 Performance Evaluation

The tests were performed on an 8-node cluster of quad Pentium IIT 700MHz
machines (Dell 6400’s), which have LANai 7.2 cards with 66MHz NIC processors,
running Linux with kernel version 2.2.17. The machines are connected by a Myrinet
LAN network with LANai 7.2 cards via a 16-port switch.

A number of different sets of performance readings are taken for the new imple-
mentation. One set of readings is for the worst-case scenario in which we issue a
number of put operations on remote nodes and immediately call the barrier function.
Another set of experiment entails providing different delays between the issuing of
put operations and calling the barrier function. We have performed the same set of
tests for 2 different message sizes in the put operation, one for a message size of 100
bytes and one for 4000 bytes.

We have obtained the following results for these tests.

The graphs in figure 4.3 show the latency of ARMCI_Barrier for the worst case
scenario, in which there is no delay between issuing the put operations and calling
the barrier operation for two message sizes: 100 bytes and 4000 bytes. The term
‘current’ means the current technique for achieving the barrier and 'new’ means the
new barrier operation. The number following the current/new gives the message size.
It is to be noted that we are achieving a factor of improvement of 3.58 over the
current implementation of the barrier operation and it scales well as the number of

nodes increases.

27



ARMCI_Barrier Latency for nodelay

[2]

'g 1200

$ 1000 - G

b —e—current100
o 800 -

S —=—newl00
‘e 600 e

S 400 N //l\\. current4000
> S % new4000
e 200 -

[¢3]

E O T T T T T T

-

node2 node3 node4 node5 node6 node7 node8

No. of nodes

Figure 4.3: Latency of ARMCI_Barrier with no delay

The graphs in figure 4.4 show the latency of the new barrier function for the
message size of 100 bytes. We have performed the latency test for different delays
of 10us, 50us and 100us. Here again, current and new mean the same as in previous
graph, but the number followed by current/new indicates the delay between issuing
the put operation and calling the barrier operation.

The graph in figure 4.5 shows the latency of the new barrier function for message
size 4000 bytes. We have performed the latency test for different delays ranging from
50us, 100us and 200us.

We wanted to see the impact of delay between the issuance of put operations and
the calling of barrier function, to see the robustness of the new algorithm. We also
wanted to see the effect of different size of messages in put operation. Hence, we
performed the above tests by inserting some delay between the issuance of put opera-
tions and calling the barrier function for two message sizes 100 bytes and 4000 bytes.

The graphs in figure 4.4 and figure 4.5 show that delay between the computations
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and calling the barrier function for both the message sizes does not alter the behavior

of the barrier operation.
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CHAPTER 5

OPTIMIZATION OF LOCK OPERATION IN ARMCI

Efficient implementation of synchronization operations such as locks and semaphores
is important in parallel and distributed systems. Mutual exclusion operations are im-
plemented using a wide range of algorithms. The simple algorithms tend to be fast
when there is no contention for the lock but inefficient under high contention, whereas
sophisticated algorithms are the ones that deal well with contention, but have a higher
cost in the low contention case. Some performance goals [11] for implementing locks
are low latency, low traffic, scalability, low storage cost and fairness. In our new
implementation of locks in ARMCI, we aim to achieve most of the above mentioned

goals.

5.1 Current Implementation

Locks are important for implementing mutual exclusion in remote memory op-
erations. In ARMCI, a user can allocate a set of mutex variables on each process
and then use lock and unlock operation to acquire and release a lock. ARMCI has
a hybrid implementation for lock mechanism: the server based queue algorithm [12]
for the remote lock operation and the ticket based algorithm [11] for the local lock

operation.
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5.1.1 Server Based Queue Lock

In the server based queue, the server maintains a queue of processes that request
a particular lock on each node. In this scheme, a lock operation involves sending a
request to the server. This request is simply a control message that identifies the
mutex and the process on which the mutex resides. The server inspects the queue for
the specific mutex and if it is free, it responds to the client with the token for that
mutex. If the lock is not available, the server adds the process to the queue for that
lock and leaves the client blocked waiting for a response. A client releases the mutex
by sending a request to the server that includes the token for the mutex. The server
inspects the queue of waiting clients and if the queue is not empty, it sends a message

to the next process in the queue.
5.1.2 Ticket Algorithm Based Lock

The ticket based algorithm for locks works just like the teller line at a bank. Every
process wanting to acquire the lock takes a ticket number and then busy-waits on a
global variable until the global variable equals the ticket number obtained. To release
the lock, a process simply increments the global variable so that the next waiting
process can acquire the lock. The atomic primitive needed is fetch and increment,
which a process uses when it first reaches the lock operation to obtain its ticket
number from a shared counter. No atomic operation is needed to actually obtain the
lock upon a release since only the unique process that has its ticket number equal to
global variable attempts to enter the critical section when it sees a release. Figure

5.1 and 5.2 show the acquire and release of a lock in ticket lock, respectively.
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5.1.3 ARMCI Implementation

In ARMCI, when a client wants to acquire a lock, it first checks whether the lock
is residing on its server or a remote server. If it’s on the local server, it gets a ticket
number from the server. The fetch and increment operation is achieved by calling
ARMCI read-modify-write operation. The client then sends a request to the server,
which upon receiving the request sends a ticket number to the client and increments
the counter of ticket number. The server which owns the lock has a shared counter.
A client waiting for acquiring a lock constantly polls, locally, on the shared counter
using the ARMCI get operation. When the shared counter equals the ticket number
the client has, the client is said to acquire the lock.

If the server which owns the lock is on a remote node then the client requests for a
ticket number from the remote server. The remote server upon receiving the request
checks whether the ticket number generated for the requesting node is equal to the
shared counter. If it is equal, then the server immediately sends the ticket number
to the remote client and client acquires the lock. If the shared counter is not equal
to the ticket number generated for the requesting client, then, the server puts the
client node id in a blocking queue. When a client releases the lock, it sends its token
back to the server.The server when receives the token, grants the lock to the next
process in the blocking queue. Hence, in case of remote lock, the client does not have
to poll constantly on a remote counter using ARMCI put operation and instead just

gets blocked.
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5.2 Our implementation

5.2.1 Trade-offs of Current Implementation

The ticket lock generates much less traffic than other algorithms like the testédset
[11] lock. The ticket lock also requires constant and small storage and is fair since the
client processes obtain the lock in the order of their fetch and increment operation.

The ticket lock has a read traffic problem for local locks in a SMP node at the
time of lock release. The reason for this is that all the local processes spin-wait on the
same shared variable. When that variable is written at release, all processors’ cached
copies are invalidated, and they incur read misses. The read misses cause unnecessary
traffic. There are other algorithms which can reduce the traffic at the time release,
but they increase the space requirements, e.g. array-based locks.

In case of remote lock operation, if there are many clients requesting the lock, the
remote server is flooded with requests. In case of remote lock operation, the server
maintains the queue of the blocked processes. Thus, receiving so many requests

simultaneously and the granting of locks would slow it down.
5.2.2 Software Queuing

In our implementation of local lock, we plan to reduce the traffic while not increas-
ing the space requirement and for the remote lock we plan to reduce the workload
of server by implementing a distributed queue. We use a software queuing[12] lock
in our new implementation. A software queuing lock both reduces the traffic at the
time of lock release and ensures all spinning will be on locally allocated variables.

The basic idea behind the software queuwing lock is to have a distributed linked

list or a queue of the waiters on that particular lock. The head node in the link list
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represents the client that holds the lock. Every other node is a client that is waiting
on the lock and is allocated in that client’s local memory. There is also a tail pointer
that points to the last node in the queue, that is, the last node that has tried to
acquire the lock.

In this algorithm, each client node has a next variable which points to the client
which has requested the lock immediately after the current client node, and a boolean
variable locked, which indicates whether the client is waiting for the lock or not. These
two variables are in the shared memory so that remote memory operations can be
performed on them. Lock a variable which points to the last client in the queue and
is created on the node which owns the lock.

When a client requests a lock, it first sets its next variable to NULL. Next, it
performs a fetch & store operation on the lock variable to determine the address of
its predecessor client node that had requested lock before it. If the queue is empty,
then this client will acquire the lock. If the queue is not empty, then the requesting
client will set its locked variable to true and performs an ARMCI put operation to
write its own address to its predecessor client’s next variable, thereby inserting itself
in the queue. It then polls on its local variable locked until it becomes false.

To release a lock, the client node which is holding the lock now (current node),
checks if its nert variable is NULL. If its next variable is not NULL, it performs an
ARMCI Put operation on its successor client node’s locked variable in the queue, by
setting it to false, thereby successfully releasing the lock. Otherwise, if it is NULL
then it performs an ARMCI compare & swap operation to ensure that really no one
is in the queue waiting to be released and the lock variable points to itself. On a

successful compare € swap operation, lock is set to NULL and then lock is released.
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Figure 5.3: Example of a distributed lock

If the compare & swap operation has failed, it means that someone just got in the
queue and has modified the lock variable, but has not modified the next variable of
the current client node. So the current client node will poll on its next variable. Once
the new requesting client node sets the next variable of the current client node, it
sets the locked variable of the new requesting client node to true by performing an
ARMCI Put operation.

We will get a better picture of how the software queuing works by looking at the
pictorial representation of the lock. Assume that lock in Figure 5.3 is initially free.
When process 1 tries to acquire the lock, it acquires it and the queue looks as shown
in Figure 5.1(a). In step (b), process 2 tries to acquire the lock, so it is put on the
queue and the tail pointer of the queue now points to it. Process 3 is treated similarly
when it tries to acquire the lock in step (c). Process 2 and process 3 are spinning on
local flags associated with their queue nodes while process 1 holds the lock. In step

(d), process 1 releases the lock. It then “wakes up” the next process, 2, in the queue,
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by writing the flag associated with process 2 and leaves the queue. Process 2 now
holds the lock and it is at the head of the queue. The tail pointer does not change
at all in any of these steps. In step (e), process 2 releases the lock similarly, passing
it to process 3. There are no other waiting processes, so process 3 is both the head
and tail of the queue. If process 3 releases the lock before another process tries to
acquire it, then the lock pointer will be NULL and the lock will be free again. In this
way processes are granted the lock in FIFO order with regard to the order in which

they tried to acquire it.
5.2.3 Design Challenges

Since the software queuing algorithm for the lock is implemented for the dis-
tributed memory, we cannot simply use memory pointers for the next and lock vari-
ables as used in the original algorithm. A remote memory location is specified as a
pair of the node id and memory address.

ARMCI supports swap operation for integers and long type variables and the
compare & swap operation does not exist currently in ARMCI library. Since our
implementation requires RMW operation for data structures, we added two functions

to the ARMCI API, a swap operation and a compare & swap for data structures.

5.3 Performance Evaluation

In this section, we evaluate the performance benefits of our implementation. The
performance results were obtained by running experiments on a cluster consisting of
eight quad 7T00MHz Pentium III machines each with 1GB of RAM, running Linux
kernel version 2.2.18. These machines are connected by another Myrinet LAN network

using NICs with 66Hz LANai 9 processors. These are connected to an 16-port switch.
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In the lock test with contention, we took the average time it takes for all the
processes to repeatedly acquire and release a remote lock. To plot the graph we took
average of all the averages. To vary the load, we added more nodes which repeatedly
locking and unlocking the same lock. The figure 5.4 shows the latency of ARMCI_Lock
and figure 5.5 shows the latency of ARMCI_Unlock with contention.

We can see from the graph that the new implementation of ARMCI_Lock performs
better than the current implementation of ARMCI_Lock. It scales well with the
increase in the number of nodes. We achieve a factor of improvement of 1.7 over
the current implementation. In the graph for ARMCI_Unlock, we see that the new
implementation performs worse than the current implementation, but as number of
nodes increases, it performs on par with the current implementation. The reason for
the worse performance of the new implementation is that for very less number of nodes
contending for lock the last node releasing performs a read-modify-write operation,

which is quite expensive. As the number of nodes increases this time averages out.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this thesis we proposed to optimize the performance of the collective com-
munication of one-sided communication library ARMCI. We know that ARMCI has
client-server architecture and the server handles all the data requesting messages.
Hence, if the server is flooded with such requests it will degrade the performance of
the application using ARMCI. Increase in such requests means that more buffers are
required to store all the requests at the same time, which increases the consumption
of resources. The increase in contention on server also increases the wait time of the
client requesting data from the server. In this thesis we analyzed the factors which
increase the contention on the server and tried to eliminate those factors with new
and better implementations.

First we analyzed and optimized the fence operation in ARMCI, which is the only
means of synchronizing all the processes at one point, by reducing the contention.
By doing so, we also tried to minimize the number of buffers required for the fence
operation. The new implementation results in a significant reduction of the wait time
of a node to come out of the fence operation. The factor of improvement in the
performance of the fence operation using our implementation has been observed to
be up to 1.72 for an 8-node system. Then we implemented a new barrier operation to
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achieve synchronization in a faster manner. The new implementation of the barrier
operation requires less number of messages to be exchanged between the clients and
the servers, which eventually reduces the contention on the server. The new barrier
function gives a factor of improvement of 3.58 over the previous method of performing
the barrier operation on an 8-node system. We also explored the locks in ARMCI.
We found that the locks can be implemented in a better manner as compared to
the current implementation. We implemented a software queue based scheme, which
reduces the contention on the server. We achieve a factor of improvementof 1.7 over
the current implementation of locks in ARMCI.

In future, we would like to do some real life application based evaluation for our
new implementations. Though, all the graphs in the previous chapters show that
the new implementations are scalable, we would still like to analyze in future the
scalability of our implementations on a large cluster.

We would like to implement a non-blocking algorithm for the barrier operation.
Also, we would like to explore the one-sided data transfer primitives like get/put.
These primitives have already been pipelined by a former student of NOWIlab, Vinod
Tipparaju, but there is still scope of improvement in the performance of these prim-

itives by making them non-blocking.
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