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Abstract

As new processor and memory architectures advance,
clusters start to be built from larger SMP systems, which
makes MPI intra-node communication a critical issue in
high performance computing. This paper presents a new
design for MPI intra-node communication that aims to
achieve both high performance and good scalability in a
cluster environment. The design distinguishes small and
large messages and handles them differently to minimize the
data transfer overhead for small messages and the mem-
ory space consumed by large messages. Moreover, the
design utilizes the cache efficiently and requires no lock-
ing mechanisms to achieve optimal performance even with
large system size. This paper also explores various opti-
mization strategies to reduce polling overhead and main-
tain data locality. We have evaluated our design on NUMA
and dual core NUMA systems. The experimental results on
NUMA system show that the new design can improve MPI
intra-node latency by up to 35% and bandwidth by up to
50% compared to MVAPICH. While running the bandwidth
benchmark, the measured L2 cache miss rate is reduced by
half. The new design also improves the performance of MPI
collective calls by up to 25%. The results on dual core
NUMA system show that the new design can achieve 0.48
usec in CMP latency.
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Uniform Memory Access (NUMA), Multi-core Processor,
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1. Introduction

Cluster of workstations is one of the most popular archi-
tectures in the arena of high performance computing due
to its cost-effectiveness. A cluster is typically built from
Symmetric Multi-Processor (SMP) systems connected by
high speed networks. Traditional SMP systems depend on
a shared memory bus for different processors to access the
memory. Due to the scalability concern of this model, most
traditional SMP systems have a small number of processors
within one node. For example, the most commonly used
SMPs are equipped with dual processors. However, with
the emerging new technologies such as Non-Uniform Mem-
ory Access (NUMA) [1] and Multi-Core Processor [8] (also
called Chip-level MultiProcessing or CMP), SMP nodes
tend to have larger system sizes. 4-way and 8-way SMPs are
gaining more and more popularity. SMPs with even more
processors are also emerging. The increased system size in-
dicates that a parallel application running on a cluster will
have more intensive intra-node communication. With MPI
being the most widely used parallel computing paradigm, it
is extremely crucial to have a high performance and scalable
architecture for MPI intra-node communication.

There are limitations in the current existing schemes.
Some are not scalable with respect to memory usage,
and some require locking mechanisms among processes to
maintain consistency thus the performance is suboptimal for
a large number of processes. Moreover, few research has
been done to study the interaction between the multi-core
systems and MPI implementations. In this paper we take on
the challenges and design a user space memory copy based
architecture that aims to improve MPI intra-node commu-
nication performance by taking advantage of the advanced
features provided by the modern systems. We focus on two
types of modern systems - NUMA and multi-core systems.
We want to achieve two goals in our design: 1. To obtain
low latency and high bandwidth between processes, and 2.
To have reduced memory usage for better scalability. We
achieve the first goal by efficiently utilizing the L2 cache



and avoiding the use of lock. We achieve the second goal
by separating the buffer structures for small and large mes-
sages, and using a shared buffer pool for each process to
send large messages. We have also explored various op-
timization strategies to further improve the performance,
such as reducing the polling overhead, and exploiting pro-
cessor affinity for better data locality.

We have evaluated our design on NUMA and dual core
NUMA systems. The experimental results on the NUMA
system show that the new design can improve MPI intra-
node latency by up to 35% and bandwidth by up to 50%
compared to MVAPICH. The L2 cache miss rate when run-
ning the bandwidth benchmark is reduced by half. The new
design also improves the performance of MPI collective
calls by up to 25%. We have also studied the impact of our
design on the dual core NUMA system. The results show
that the new design can achieve 0.48 usec in CMP latency.

The rest of the paper is organized as the following:
In Section 2, we introduce some background knowledge,
including advanced system architectures, MPI intra-node
communication, and MVAPICH (high performance MPI
over InfiniBand). We illustrate our design and the analy-
sis of the design in Section 3. Performance evaluation and
comparison are presented in Section 4. Related work is dis-
cussed in Section 5. And finally, in Section 6 we conclude
and point out future work directions.

2. Background

2.1. Advanced System Architectures

Figure 1 illustrates a typical cluster that is built from
SMPs. A parallel application running on a cluster can ex-
change data among processes through either intra- or inter-
node communication. Traditionally, within an SMP node
processors access the main memory through a shared bus.
In recent years, new architectures are emerging to improve
both the performance and scalability of SMP systems. In
this section we briefly describe two of the major technolo-
gies: Non-Uniform Memory Access (NUMA) and multi-
core processor.

NUMA is a computer memory design where the mem-
ory access time depends on the memory location relative
to a processor. Under NUMA, memory is shared between
processors, but a processor can access its own local mem-
ory faster than non-local memory. Therefore, data locality
is critical to the performance of an application. Modern op-
erating systems allocate memory in a NUMA-aware man-
ner. Memory pages are always physically allocated local
to processors where they are first touched, unless the de-
sired memory is not available. Solaris has been supporting
NUMA architecture for a number of years [18]. Linux also
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Figure 1. An Illustration of a Cluster Built
From SMPs

started to be NUMA-aware from 2.6 kernel. In this paper
we focus on Linux.

Multi-core processor technology is proposed to achieve
higher performance without driving up power consump-
tion and heat. It is also called Chip-level MultiProcessing
(CMP). Both AMD [2] and Intel [3] have multi-core prod-
ucts. In this architecture, two or more processor cores are
integrated into a single chip. The processor cores on the
same chip can have separate L2 caches, or they can share the
same L2 cache. Cache-to-cache transfer between two pro-
cessors on the same chip is much faster than that between
different chips. Therefore, one of the key issues in taking
advantage of the multi-core architecture is to efficiently uti-
lize the L2 cache. Of course, efficient cache utilization is
essentially a key issue to all kinds of platforms, including
NUMA system.

2.2. MPI Intra-node Communication

There exist various mechanisms for MPI intra-node com-
munication. These mechanisms can be broadly classi-
fied into three categories, namely NIC-based loopback,
kernel-assisted memory mapping, and user space memory
copy [11, 15].

The NIC-based loopback approach does not distinguish
intra-node traffic from inter-node traffic. It depends on the
NIC to detect the fact that the source and the destination
processes are on the same node. The NIC then loopbacks
the message instead of injecting it into the network. The
kernel-assisted memory mapping approach takes help from
the operating system kernel to copy the messages directly
from one process’ memory space to another. This approach
can also deploy the copy-on-write optimization to reduce
the number of copies. The third approach, user space mem-
ory copy, involves a shared memory region that the pro-
cesses can attach to and use it as a communication chan-
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nel. The sending process copies the messages to the shared
memory region, and the receiving process copies the mes-
sages from the shared memory region to its own buffer.

The user space memory copy scheme has several advan-
tages. It provides much higher performance compared to
NIC-based loopback. In addition, it is more portable than
the kernel-assisted memory mapping approach across dif-
ferent operating systems and versions, because it does not
require any service directly from the kernel. Due to these
advantages, many MPI implementations choose to use the
user space memory copy approach for intra-node communi-
cation, such as MVAPICH [5], MPICH-MX [6], and Neme-
sis [10]. Our design is also based on user space memory
copy. The drawback of the user space memory copy ap-
proach is that it usually depends on the processor to perform
memory copy and can achieve less computation and com-
munication overlap compared with the NIC-based loopback
approach.

2.3. MVAPICH

We incorporated our design into MVAPICH [5], a high
performance MPI implementation over InfiniBand clusters.
The implementation is based on MPICH [14]. MVAPICH is
currently being used by more than 340 organizations across
28 different countries to extract the benefits of Infiniband
for MPI applications.

Current MVAPICH utilizes a user space shared mem-
ory approach for its intra-node communication. Each pair
of processes on the same node allocate two shared mem-
ory buffers between them for exchanging messages to each
other. If P processes are present on the same node, the to-

tal size of the shared memory region that needs to be allo-
cated will be P*(P-1)*BufSize, where BufSize is the size of
each shared buffer. As an example, Figure 2 illustrates the
scenario for four processes on the same node. Each pro-
cess maintains three shared buffers represented with RBxy,
which refers to a Receive Buffer of process y that holds mes-
sages particularly sent by process x.

The send/receive mechanism is straightforward as illus-
trated in Figure 2, where processes 0 and 2 exchange mes-
sages to each other in parallel. The sending process writes
the data from its source buffer into the shared buffer corre-
sponding to the designated process (Steps 1 and 3). After
the sender finishes copying the data, then the receiving pro-
cess copies the data from the shared buffer into its destina-
tion local buffer (Steps 2 and 4).

Message matching is performed based on source rank,
tag, and context id which identifies the communicator. Mes-
sage ordering is ensured by the memory consistency model
and use of memory barrier if the underlying memory model
is not consistent.

3. Proposed Design

In this section, we provide a detailed illustration of our
proposed design. Our design goal is to develop a shared
memory communication model that is efficient and scalable
with respect to both performance and memory usage. In the
following subsections, we start with the overall design ar-
chitecture, followed by a description on how the algorithm
of intra-node communication works. Design analysis and
several optimization strategies are presented in the end of
this section.

3.1 Overall Architecture

Throughout this paper, we use a notation P to symbolize
the number of processes running in the same node. Each
process has P� 1 small-sized Receive Buffers (RB), one
Send Buffer Pool (SBP), and a collection of P� 1 Send
Queues (SQ). Figure 3 illustrates the overall architecture,
where four processes are involved in the intra-node commu-
nication. In this illustration, we use notations x and y to de-
note a process local ID. The shared memory space denoted
as RBxy refers to a Receive Buffer of process y, which re-
tains messages specifically sent by process x. A Send Buffer
Pool that belongs to a process with local ID x is represented
with SBPx. A buffer in the pool is called a cell. Every pro-
cess owns an array of pointers, where each pointer points to
the head of a queue represented with SQxy, which refers to a
Send Queue of process y that holds data directed to process
x.

The sizes of the receive buffer and the buffer cell as well
as the number of cells in the pool are tunable parameters
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Figure 3. Overall Architecture of the Proposed
Design

that can be determined empirically to achieve optimal per-
formance. Based on our experiments, we choose to set the
size of receive buffer to be 32 KB, the size of the buffer cell
to be 8 KB, and the total number of cells in each send buffer
pool to be 128.

3.2 Message Transfer Schemes

From our past experience, transferring small messages
usually occurs more frequently than large messages. There-
fore, sending small messages should be prioritized and han-
dled efficiently with the purpose of improving the over-
all performance. In our design, small messages are ex-
changed through copying directly into receiving process’
receive buffer. This approach is so simple that extra over-
head is minimized. On the other hand, as the message size
grows, the memory size required for the data transfer in-
creases as well, which may lead to performance degradation
if it is not handled properly. Therefore, we suggest different
ways of handling small and large messages.

The workflows of sending and receiving small and large
messages are presented in the following.

3.2.1. Small Message Transfer Procedure. Figure 4 de-
picts how a small message is transferred by one process
and retrieved by another. In this example, process 0 is the
sender, while process 1 is the receiver. The figure does not
show the processes 2 and 3 since they do not participate
in the data transfer. The send/receive mechanism for small
messages is straightforward as explained below.

1. The sending process directly accesses the receiving
process’ receive buffer to write the actual data to be
sent, which is obtained from the source buffer.
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2. The receiving process copies the data from its receive
buffer into its final spot in the destination buffer.

This procedural simplicity minimizes unnecessary setup
overhead for every message exchange.

3.2.2. Large Message Transfer Procedure. Figure 5
demonstrates a send/receive progression between two pro-
cesses, where process 0 sends a message to process 1. For
compactness, processes 2 and 3 are not shown in the figure
since they are not involved in the communication process.

A sending procedure comprises of the following three
steps:

1. The sending process fetches a free cell from its send
buffer pool, copies the message from its source buffer
into the free cell, and then marks the cell busy.

2. The process enqueues the loaded cell into the corre-
sponding send queue.

3. The process sends a control message, which contains



the address location information of the loaded cell, and
writes it into the receiving process’ receive buffer.

A receiving procedure consists of the following three
steps:

4. The receiving process reads the received control mes-
sage from its receive buffer to get the address location
of the cell containing the data being transferred.

5. Using the address information obtained from the previ-
ous step, the process directly accesses the cell contain-
ing the transferred data, which is stored in the sending
process’ send queue.

6. The process copies the actual data from the referenced
cell into its own destination buffer, and subsequently
marks the cell free.

In this design, when the message to be transferred is
larger than the cell size, it is packetized into smaller pack-
ets, each transferred independently. The packetization con-
tributes to a better throughput because of the pipelining ef-
fect, where the receiver can start copying the data out before
the entire message is completely copied in.

In Steps 1 and 6, a cell is marked busy and free, respec-
tively. A busy cell indicates that the cell has been loaded
with the data and should not be disturbed until the cor-
responding receiver finishes reading the data in the cell;
whereas a free cell simply indicates that the cell can be used
for transferring a new message. After the receiving process
marks a cell free, the free cell remains residing in the send-
ing process’ send queue, until reclaimed by the sender. The
cell reclamation process is done by the sender at the time
it initiates a new data transfer (Step 1). We call this cell
reclamation scheme mark-and-sweep.

Transferring large messages utilizes indirection, which
means the sender puts a control message to the receiver’s
receive buffer to instruct the receiver to get the actual data.
There are two reasons to use indirection instead of letting
the receiver poll both its receive buffer and the send queue
corresponding to it at the sender side. First, polling more
buffers adds unnecessary overhead; and second, the receiver
needs to explicitly handle message ordering if messages
come from different channels.

3.3 Analysis of the Design

In this section we analyze our proposed design based on
the important issues in designing an efficient and scalable
shared memory model.

3.3.1. Lock Avoidance. A locking mechanism is required
to maintain consistency when two or more processes at-
tempt to access a shared resource. A locking operation car-

ries a fair amount of overhead and may delay memory activ-
ity from other processes. Therefore, it is desirable to design
a lock-free model.

In our design, locking is avoided by imposing a rule that
only one reader and one writer exist for each resource. It
is obvious that there are only one reader and one writer for
each send queue and receive buffer, hence they are free from
locking mechanism. However, enforcing one-reader-one-
writer rule on the send buffer pools can be tricky. After a
receiving process finishes copying data from a cell, the cell
needs to be placed back into the sender’s send buffer pool
for future reuse. Intuitively, the receiving process should
be the one that returns the cell back into the send buffer
pool, however, this may lead to multiple processes returning
free cells to one sending process at the same time and cause
consistency issue. In order to maintain both consistency
and good performance, we use a mark-and-sweep technique
to impose the one-reader-one-writer rule on the send buffer
pools, as already explained in Section 3.2.2.

3.3.2. Effective Cache Utilization. In this section we an-
alyze the cache utilization for small and large messages re-
spectively. In our design, small messages are transferred
through receive buffers directly. Since the receive buffers
are solely designed for small messages, the buffer size can
be really small that it can completely fit in the cache. There-
fore, successive accesses into the same receive buffer will
result in more cache hits and lead to a better performance.

In the communication design for large messages, after
the receiver finishes copying data out from the loaded cell,
the cell will be marked free and reclaimed by the sender
for future reuse. Since the sender can reuse cells that it
used previously, there is a chance that the cells are still res-
ident in the cache, therefore, the sender gets the benefit that
it does not need to access the memory for every send. If
the receiver also has the same cell in its cache, then the re-
ceiver also does not need to access the memory, because
only cache-to-cache transfer is needed.

3.3.3. Efficient Memory Usage. We first illustrate the
scalability issue in the current MVAPICH intra-node com-
munication support. As we mentioned in Section 2.3, the
current MVAPICH allocates a shared memory region of size
P� �P� 1� �Bu f Size, where BufSize is the size of each re-
ceive buffer (1 MB by default). This implies that the shared
memory consumption becomes huge for large values of P.

In contrast, the proposed design provides a better scala-
bility as it only necessitates one send buffer pool per pro-
cess, regardless of how many processes participate in the
intra-node communication. The new design uses the same
method as the original MVAPICH design for small mes-
sage communication, which requires P� �P�1� number of
receive buffers. Despite such polynomial complexity, the
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total memory space pre-allocated for receive buffers is still
low due to the small size design of receive buffers. It is
to be noted that simply reducing the receive buffer size in
MVAPICH is not practical because large messages will suf-
fer from lack of shared memory space. Simply having a
send buffer pool without the receive buffers might be also
not efficient because small messages may waste a large por-
tion of the buffer.

We calculated the total shared memory usage of both
MVAPICH (the original design) and the new design. In Fig-
ure 6, we can observe that the shared memory consumption
of the new design is substantially lower than the original
design when the number processes that are involved in the
intra-node communication gets larger.

3.4 Optimization Strategies

We discuss several optimization strategies to our design
in order to further improve performance.

3.4.1. Reducing Polling Overhead. Each process needs
to poll its receive buffers to detect incoming new messages.
Two variables are maintained for buffer polling: total-in
and total-out, which keep track of how many bytes of data
have entered and exited the buffer. When total-in is equal to
total-out, it means there is no new messages residing in the
polled buffer. If total-in is greater than total-out, it means
the polled buffer contains a new message. total-in can never
be less than total-out.

In our design, every process has P� 1 receive buffers
that it needs to poll. To alleviate this polling overhead, we
arrange the two variables (i.e. total-in and total-out) asso-
ciated with the P� 1 buffers in a contiguous array. Such
arrangement will significantly reduce the polling time by
exploiting cache spatial locality, where the variables can be
accessed directly from the cache.

3.4.2. Reducing Indirection Overhead. Utilizing the in-
direction technique, which is explained in Section 3.2, re-
sults in additional overhead because, to retrieve a message,
the receiving process needs to perform two memory ac-
cesses: to read the control message and to read the actual
data packet. Our solution to alleviate this overhead is to as-
sociate only one control message with multiple data pack-
ets. But it is to be noted that if we send too many data pack-
ets before sending any control message, the receiver might
not be able to detect incoming messages timely. Thus the
optimal value of the number of control messages should be
determined experimentally.

3.4.3. Exploiting Processor Affinity. As we mentioned in
Section 2.1, NUMA-aware operating systems always try to
allocate memory pages local to processors where they are
first referenced. However, the operating system may mi-
grate a process to some other processor at a later stage due
to the reason of load balancing, thus make the process away
from its data. To prevent process migration, we want to
bind a process to a specific processor. Under Linux 2.6 ker-
nel, this can be accomplished by using the sched setaffinity
system call [12]. We apply this approach to our design to
keep the data locality. Processor affinity is also good for
multi-core processor systems, because it prevents a process
migrating away from the cache which contains its data.

4. Performance Evaluation

In this section, we present the performance evaluation
of the proposed intra-node communication design on both
NUMA and dual core NUMA clusters.

Experimental Setup: The NUMA cluster is composed of
two nodes. Each node is equipped with quad AMD Opteron
Processor (single core) running at 2.0 GHz. Each processor
has a 1024 KB L2 cache. The two nodes are connected by
InfiniBand. We refer to this cluster as cluster A in the fol-
lowing sections. The dual core NUMA cluster, referred to
as cluster B, also has two nodes connected by InfiniBand.
Each node is equipped with four Dual Core AMD Opteron
Processor (two cores on the same chip and two chips in to-
tal). The processor speed is 2.0 GHz, and the L2 cache size
is 1024 KB per core. The operating system on the two clus-
ters is Linux 2.6.16. The MVAPICH version used is 0.9.7.

We compare the performance of our design to the de-
sign in MVAPICH. In the following sections, we refer to
the design in MVAPICH as the Original Design, and the
design proposed in this paper as the New Design. Latency
is measured in unit of micro second (us), and bandwidth is
measured in million bytes per second (MB/sec).
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Figure 7. Latency on NUMA Cluster

4.1. Latency and Bandwidth on NUMA Cluster

In this section we evaluate the basic ping pong latency
and uni-directional bandwidth on one node in cluster A.
From Figure 7 we can see that the new design improves
the latency of small and medium messages by up to 15%,
and improves the large message latency by up to 35%. The
bandwidth is improved by up to 50% as shown in Figure 8.
The peak bandwidth is raised from 1200 MB/sec to 1650
MB/sec.

4.2. L2 Cache Miss Rate

To further analyze the reason of the performance gain
presented in Section 4.1, we measured the L2 cache miss
rate while running the latency and bandwidth benchmarks.
The tool used to measure the cache miss rate is Valgrind [4],
and the benchmarks are the same as used in Section 4.1.
The results are shown in Figure 9. The results indicate that
a large portion of the performance gain comes from the effi-
cient use of the L2 cache by the new design. This conforms
well to our theoretical analysis of the new design discussed
in Section 3.3.2.

4.3. Impact on MPI Collective Functions

MPI collective functions are frequently used in MPI ap-
plications, and their performance is critical to many of the
applications. Since MPI collective functions can be imple-
mented on top of point-to-point based algorithms, in this
section we study the impact of the new design on MPI col-
lective calls. The experiments were conducted on cluster
A.

Figure 10 shows the performance of MPI Barrier, which
is one of the most frequently used MPI collective functions.
We can see from the figure that the new design improves

MPI Barrier performance by 17% and 19% on 2 and 4 pro-
cesses respectively, and the improvement is 8% on 8 pro-
cesses. The drop of performance improvement on 8 pro-
cesses is caused by the mixture of intra- and inter-node com-
munication that takes place within the two separate nodes
in cluster A. Therefore, only a fraction of the overall perfor-
mance can be enhanced by the intra-node communication.

Figure 11 presents the performance of another important
collective call MPI Alltoall on one node with 4 processes
on cluster A. In MPI Alltoall every process does a person-
alized send to every other process. This figure shows that
the performance can be improved by up to 10% for small
and medium messages and 25% for large messages.

4.4. Latency and Bandwidth on Dual Core NUMA
Cluster

Multi-core processor is an emerging new processor ar-
chitecture that few study has been done with respect to how
it interacts with MPI implementations. Our initial research
on such topic is presented next, and we plan to do more in-
depth analysis in the future. The experiments were carried
out on cluster B.

Figure 12 demonstrates the latency of small, medium,
and large messages respectively. CMP stands for Chip-level
MultiProcessing, which we use to represent the communi-
cation between two processors (cores) on the same chip. We
refer to communication between two processors on differ-
ent chips as SMP (Symmetric MultiProcessing). From Fig-
ure 12 we notice that CMP has a lower latency for small
and medium messages than SMP. This is because when the
message is small enough to be resident in the cache, the pro-
cessors do not need to access the main memory, thus only
cache-to-cache transfer is needed. Cache-to-cache transfer
is much faster if two processors are on the same chip. How-
ever, when the message is large and the processors need to
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Figure 9. L2 Cache Miss Rate
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Figure 10. MPI Barrier Performance
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Figure 11. MPI Alltoall Performance
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Figure 12. Latency on Dual Core NUMA Cluster



access the main memory to get the data, CMP has a higher
latency because the two processors on the same chip will
have contention for memory. Figure 12 also shows that the
new design improves the SMP latency for all message sizes.
It also improves CMP latency for small and medium mes-
sages, but not for large messages. Further investigation is
needed to fully understand the reason.

The bandwidth results, shown in Figure 13, indicate the
same trend. Again, the new design improves SMP band-
width for all message sizes, and CMP bandwidth for small
and medium messages.

5. Related Work

Some earlier work has been done to improve the per-
formance of intra-node communication in cluster architec-
tures. The work in [9] presents different mechanisms for
data transfer in an SMP machine (i.e. copy through shared
memory buffer, using message queues, the Ptrace system
call, kernel module based copy, and a high speed network
card) and has shown the performance evaluations for each
technique. The intra-node communication design proposed
in [15] makes use of Linux kernels to allow a kernel mod-
ule to copy messages directly from one process’s address
space to another. [11] studied the polling overhead asso-
ciated with MPI intra- and inter-node communication, and
proposed an adaptive scheme for efficient polling. In [10],
the authors implemented a new message passing communi-
cation subsystem for MPICH2 [7], called Nemesis, which
makes use of copy through shared message queues as its
intra-node data transfer, and uses atomic operations for pro-
cess synchronizations. Our design model proposed in this
paper is different from the Nemesis work in the sense that it
transfers messages through both message queues and shared
memory buffers, coupled with the indirection technique to
avoid the use of locking and atomic operations. More-
over, our proposed design also features efficient cache uti-
lization. In addition to Nemesis, many open source MPI
projects have intra-node communication support, such as
MPICH-MX [6], MPICH-GM [16], LAM/MPI [17], and
Open MPI [13].

6. Conclusions and Future Work

In this paper, we have designed and implemented a
high performance and scalable MPI intra-node communi-
cation scheme that uses the system cache efficiently, re-
quires no locking mechanisms, and has low memory us-
age. Our experimental results show that the proposed de-
sign can improve MPI intra-node latency by up to 35%
compared to MVAPICH on single core NUMA systems,
and improve bandwidth by up to 50%. The improvement
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Cluster

in point-to-point communication also reduces MPI collec-
tive call latency - up to 19% for MPI Barrier and 25% for
MPI Alltoall. We have also done initial study on the in-
teraction between multi-core systems and MPI. From the
experimental results we see that the design proposed in this
paper can also improve intra-node communication perfor-
mance for multi-core systems.

We plan to do application level evaluation on large-scale
clusters in the future to study how the new design helps
the MPI application performance. We also plan to do more
in-depth investigation on MPI intra-node communication
design for multi-core systems.

Software Distribution: The design proposed in this
paper will be available for downloading in upcoming
MVAPICH releases.
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