
MVAPICH2-X 2.3 User Guide

MVAPICH TEAM

NETWORK-BASED COMPUTING LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

THE OHIO STATE UNIVERSITY

http://mvapich.cse.ohio-state.edu

Copyright (c) 2001-2020
Network-Based Computing Laboratory,

headed by Dr. D. K. Panda.
All rights reserved.

Last revised: August 19, 2020

http://mvapich.cse.ohio-state.edu

Contents

1 Overview of the MVAPICH2-X Project 1

2 Features 3

3 Download and Installation Instructions 9
3.1 Example downloading and installing MOFED4.7 package 9

3.1.1 About installation . 9
3.1.2 Installing with local Berkeley UPC translator support 9
3.1.3 Installing CAF with OpenUH Compiler . 9

3.2 Installation with Spack . 10
3.2.1 Install Spack and setup the environment . 10
3.2.2 Install XPMEM (If required) . 10
3.2.3 Install MVAPICH2-X . 11
3.2.4 Example: How to Run OSU Micro-benchmarks . 12

4 Basic Usage Instructions 13
4.1 Compile Applications . 13

4.1.1 Compile using mpicc for MPI or MPI+OpenMP Applications 13
4.1.2 Compile using oshcc for OpenSHMEM or MPI+OpenSHMEM applications 13
4.1.3 Compile using upcc for UPC or MPI+UPC applications 13
4.1.4 Compile using uhcaf for CAF and MPI+CAF applications 14
4.1.5 Compile using upc++ for UPC++ or MPI+UPC++ applications 14

4.2 Run Applications . 14
4.2.1 Run using mpirun rsh . 15
4.2.2 Run using oshrun . 16
4.2.3 Run using upcrun . 16
4.2.4 Run using cafrun . 16
4.2.5 Running UPC++ applications using mpirun rsh 17
4.2.6 Run using Hydra (mpiexec) . 17

5 Advanced MPI Usage Instructions 17
5.1 Support for User Mode Memory Registration (UMR) . 17
5.2 Support for Dynamic Connected Transport . 17
5.3 Support for Core-Direct Based Non-Blocking Collectives 18
5.4 Support for OSU InfiniBand Network Analysis and Monitoring (OSU INAM) Tool 19
5.5 Support for Shared Address Space based MPI Communication Using XPMEM 20
5.6 Support for Efficient Asynchronous Communication Progress 20
5.7 Running Collectives with Hardware based SHArP support 21

6 Hybrid (MPI+PGAS) Applications 22
6.1 MPI+OpenSHMEM Example . 22
6.2 MPI+UPC Example . 23
6.3 MPI+UPC++ Example . 25

7 OSU PGAS Benchmarks 27

i

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

7.1 OSU OpenSHMEM Benchmarks . 27
7.2 OSU UPC Benchmarks . 28
7.3 OSU UPC++ Benchmarks . 29

8 Runtime Parameters 31
8.1 Runtime Parameters for Dynamic Connected Transport 31

8.1.1 MV2 USE DC . 31
8.1.2 MV2 DC KEY . 31
8.1.3 MV2 NUM DC TGT . 31
8.1.4 MV2 SMALL MSG DC POOL . 31
8.1.5 MV2 LARGE MSG DC POOL . 32

8.2 Runtime Parameters for User Mode Memory Registration 32
8.2.1 MV2 USE UMR . 32
8.2.2 MV2 NUM UMRS . 32

8.3 Core-Direct Specific Runtime Parameters . 32
8.3.1 MV2 USE CORE DIRECT . 32
8.3.2 MV2 USE CORE DIRECT TUNING . 33
8.3.3 MV2 USE CD IALLGATHER . 33
8.3.4 MV2 USE CD IALLGATHERV . 33
8.3.5 MV2 USE CD IALLTOALL . 33
8.3.6 MV2 USE CD IALLTOALLV . 33
8.3.7 MV2 USE CD IALLTOALLW . 34
8.3.8 MV2 USE CD IBARRIER . 34
8.3.9 MV2 USE CD IBCAST . 34
8.3.10 MV2 USE CD IGATHER . 34
8.3.11 MV2 USE CD IGATHERV . 34
8.3.12 MV2 USE CD ISCATTER . 35
8.3.13 MV2 USE CD ISCATTERV . 35

8.4 Runtime Parameters for On Demand Paging . 35
8.4.1 MV2 USE ODP . 35
8.4.2 MV2 USE ODP PREFETCH . 35

8.5 CMA Collective Specific Runtime Parameters . 35
8.5.1 MV2 USE CMA COLL . 36
8.5.2 MV2 CMA COLL THRESHOLD . 36
8.5.3 MV2 USE CMA COLL ALLGATHER . 36
8.5.4 MV2 USE CMA COLL ALLTOALL . 36
8.5.5 MV2 USE CMA COLL GATHER . 36
8.5.6 MV2 USE CMA COLL SCATTER . 37

8.6 UPC Runtime Parameters . 37
8.6.1 UPC SHARED HEAP SIZE . 37

8.7 OpenSHMEM Runtime Parameters . 37
8.7.1 OOSHM USE SHARED MEM . 37
8.7.2 OOSHM SYMMETRIC HEAP SIZE . 37
8.7.3 OSHM USE CMA . 37

8.8 OSU INAM Specific Runtime Parameters . 38
8.8.1 MV2 TOOL INFO FILE PATH . 38

http://mvapich.cse.ohio-state.edu/ ii

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

8.8.2 MV2 TOOL QPN . 38
8.8.3 MV2 TOOL LID . 38
8.8.4 MV2 TOOL REPORT CPU UTIL . 38
8.8.5 MV2 TOOL REPORT MEM UTIL . 38
8.8.6 MV2 TOOL REPORT IO UTIL . 39
8.8.7 MV2 TOOL REPORT COMM GRID . 39
8.8.8 MV2 TOOL COUNTER INTERVAL . 39

8.9 Hierarchical Multi-Leader Collectives Runtime Parameters 39
8.9.1 MV2 ENABLE DPML COLL . 39

8.10 XPMEM based Point-to-point Communication Runtime Parameters 40
8.10.1 MV2 SMP USE XPMEM . 40

8.11 Shared Address Space based MPI Collectives Runtime Parameters 40
8.11.1 MV2 USE XPMEM COLL . 40
8.11.2 MV2 XPMEM COLL THRESHOLD . 40

8.12 Runtime Parameters for Asynchronous Communication Progress 41
8.12.1 MV2 ASYNC PROGRESS . 41
8.12.2 MV2 OPTIMIZED ASYNC PROGRESS . 41

8.13 Runtime Parameters for Collectives with Hardware based SHArP support 41
8.13.1 MV2 ENABLE SHARP . 41
8.13.2 MV2 SHARP HCA NAME . 42
8.13.3 MV2 SHARP PORT . 42

9 FAQ and Troubleshooting with MVAPICH2-X 43
9.1 General Questions and Troubleshooting . 43

9.1.1 Compilation Errors with upcc . 43
9.1.2 Unresponsive upcc . 43
9.1.3 Shared memory limit for OpenSHMEM / MPI+OpenSHMEM programs 43
9.1.4 Collective scratch size in UPC++ . 44
9.1.5 Install MVAPICH2-X to a specific location . 44
9.1.6 XPMEM based Collectives Performance Issue . 44

http://mvapich.cse.ohio-state.edu/ iii

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

1 Overview of the MVAPICH2-X Project

Message Passing Interface (MPI) has been the most popular programming model for developing parallel
scientific applications. Partitioned Global Address Space (PGAS) programming models are an attractive
alternative for designing applications with irregular communication patterns. They improve programmability
by providing a shared memory abstraction while exposing locality control required for performance. It is
widely believed that hybrid programming model (MPI+X, where X is a PGAS model) is optimal for many
scientific computing problems, especially for exascale computing.

MVAPICH2-X provides advanced MPI features/support (such as User Mode Memory Registration (UMR),
On-Demand Paging (ODP), Dynamic Connected Transport (DC), Core-Direct, SHARP, and XPMEM). It
also provides support for the OSU InfiniBand Network Analysis and Monitoring (OSU INAM) Tool.

It also provides a unified high-performance runtime that supports both MPI and PGAS programming
models on InfiniBand clusters. It enables developers to port parts of large MPI applications that are suited
for PGAS programming model. This minimizes the development overheads that have been a huge deterrent
in porting MPI applications to use PGAS models. The unified runtime also delivers superior performance
compared to using separate MPI and PGAS libraries by optimizing use of network and memory resources.
The DCT support is also available for the PGAS models.

MVAPICH2-X supports Unified Parallel C (UPC) OpenSHMEM, CAF, and UPC++ as PGAS models.
It can be used to run pure MPI, MPI+OpenMP, pure PGAS (UPC/OpenSHMEM/CAF/UPC++) as well as
hybrid MPI(+OpenMP) + PGAS applications. MVAPICH2-X derives from the popular MVAPICH2 library
and inherits many of its features for performance and scalability of MPI communication. It takes advantage
of the RDMA features offered by the InfiniBand interconnect to support UPC/OpenSHMEM/CAF/UPC++
data transfer and OpenSHMEM atomic operations. It also provides a high-performance shared memory
channel for multi-core InfiniBand clusters.

High Performance and Scalable Unified Communication Runtime

Support for Modern Multi-/Many-core Architectures
(Intel-Xeon, Intel-Xeon Phi, OpenPower, ARM…)

High Performance Parallel Programming Models

MPI
Message Passing Interface

PGAS
(UPC, OpenSHMEM, CAF, UPC++)

Hybrid --- MPI + X
(MPI + PGAS + OpenMP/Cilk)

Diverse APIs and Mechanisms

Optimized Point-to-

point Primitives

Collectives Algorithms

(Blocking and Non-

Blocking)

Remote Memory Access
Fault

Tolerance
Active Messages

Scalable Job

Startup

Introspection &

Analysis with OSU

INAM

Support for Modern Networking Technologies
(InfiniBand, iWARP, RoCE, Omni-Path…)

Support for Efficient Intra-node Communication
(POSIX SHMEM, CMA, LiMIC, XPMEM…)

Figure 1: MVAPICH2-X Architecture

The MPI implementation of MVAPICH2-X is based on MVAPICH2, which supports MPI-3 features.
The UPC implementation is UPC Language Specification 1.2 standard compliant and is based on Berke-
ley UPC 2.20.2 . OpenSHMEM implementation is OpenSHMEM 1.3 standard compliant and is based

http://mvapich.cse.ohio-state.edu/ 1

http://mvapich.cse.ohio-state.edu
http://upc.lbl.gov/docs/user/upc_spec_1.2.pdf
http://upc.lbl.gov/
http://upc.lbl.gov/
http://openshmem.org/

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

on OpenSHMEM Reference Implementation 1.3 . CAF implementation is Coarray Fortran Fortran 2015
standard compliant and is based on UH CAF Reference Implementation 3.0.39 .

The current release supports InfiniBand transport interface (inter-node), and Shared Memory Interface
(intra-node). The overall architecture of MVAPICH2-X is shown in the Figure 1.

This document contains necessary information for users to download, install, test, use, tune and trou-
bleshoot MVAPICH2-X 2.3. We continuously fix bugs and update this document as per user feedback.
Therefore, we strongly encourage you to refer to our web page for updates.

http://mvapich.cse.ohio-state.edu/ 2

http://openshmem.org
http://www.cacds.uh.edu/?q=hpctools

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

2 Features

MVAPICH2-X supports pure MPI programs, MPI+OpenMP programs, UPC programs, OpenSHMEM pro-
grams, CAF programs, UPC++ programs, as well as hybrid MPI(+OpenMP) + PGAS(UPC / OpenSHMEM
/ CAF / UPC++) programs. Current version of MVAPICH2-X 2.3 supports UPC, OpenSHMEM, CAF and
UPC++ as the PGAS model. High-level features of MVAPICH2-X 2.3 are listed below. New features com-
pared to 2.2 are indicated as (NEW).

MPI Features

• Support for MPI-3 features

• (NEW) Based on MVAPICH2 2.3.4. MPI programs can take advantage of all the features enabled
by default in OFA-IB-CH3, OFA-RoCE-CH3, PSM-CH3, and PSM2-CH3 interfaces of MVAPICH2
2.3.4

• (NEW) Support for ARM architecture

• (NEW) Collective tuning for ARM architecture

• (NEW) Collective tuning for Intel Skylake architecture

• (NEW) Support for Efficient Asynchronous Communication Progress

• (NEW) Improved Alltoallv algorithm for small messages

• Support for Omni-Path architecture

– Introduction of a new PSM2 channel for Omni-Path

• Support for OpenPower architecture

– (NEW) Improve performance for Intra- and Inter-node communication

– (NEW) Optimized inter-node and intra-node communication

– High performance two-sided communication scalable to multi-thousand nodes

– Optimized collective communication operations

∗ Shared-memory optimized algorithms for barrier, broadcast, reduce and allreduce operations
∗ Optimized two-level designs for scatter and gather operations
∗ Improved implementation of allgather, alltoall operations

– High-performance and scalable support for one-sided communication

∗ Direct RDMA based designs for one-sided communication
∗ Shared memory backed Windows for One-Sided communication
∗ Support for truly passive locking for intra-node RMA in shared memory backed windows

– Multi-threading support

∗ Enhanced support for multi-threaded MPI applications

http://mvapich.cse.ohio-state.edu/ 3

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

(NEW) MPI Advanced Features

• (NEW) Improved performance of large message communication

– Support for advanced co-operative (COOP) rendezvous protocols in SMP channel (OFA-IB-CH3
and OFA-RoCE-CH3 interfaces)

• (NEW) Support for RGET, RPUT, and COOP protocols for CMA and XPMEM

– Support for load balanced and dynamic rendezvous protocol selection (OFA-IB-CH3 and OFA-
RoCE-CH3 interfaces)

• (NEW) Support Data Partitioning-based Multi-Leader Design (DPML) for MPI collectives (OFA-IB-
CH3, PSM-CH3, and PSM2-CH3 interfaces)

• (NEW) Support Contention Aware Kernel-Assisted MPI collectives (OFA-IB-CH3, OFA-RoCE-CH3,
PSM-CH3, and PSM2-CH3 interfaces)

• (NEW) Support for Shared Address Space based MPI Communication Using XPMEM

– Support for pt-to-pt communication (OFA-IB-CH3 and OFA-RoCE-CH3 interfaces)

– Support for Bcast, Gather, Scatter, Allgather, Reduce, and Allreduce collectives (OFA-IB-CH3,
OFA-RoCE-CH3, PSM-CH3, and PSM2-CH3 interfaces)

• Support for Dynamically Connected (DC) transport protocol (OFA-IB-CH3 interface)

– Support for pt-to-pt, RMA and collectives

– (NEW) Improved connection establishment for DC transport

• Support for Hybrid mode with RC/DC/UD/XRC

• Support User Mode Memory Registration (UMR) for

• Efficient support for On Demand Paging (ODP) feature of Mellanox for point-to-point and RMA
operations

• Support for Core-Direct based Non-blocking collectives

– Support available for Ibcast, Ibarrier, Iscatter, Iscatterv, Igather, Igatherv, Ialltoall, Ialltoallv,
Ialltoallw, Iallgather and Iallgatherv

Unified Parallel C (UPC) Features

• UPC Language Specification 1.2 standard compliance

• Based on Berkeley UPC v2.20.2 (contains changes/additions in preparation for UPC 1.3 specification)

• Support for OpenPower architecture

• Support for Intel Knights Landing architecture

http://mvapich.cse.ohio-state.edu/ 4

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

– Optimized inter-node and intra-node communication

• Optimized RDMA-based implementation of UPC data movement routines

• Improved UPC memput design for small/medium size messages

• Support for GNU UPC translator

• Optimized UPC collectives (Improved performance for upc all broadcast,
upc all scatter, upc all gather, upc all gather all, and upc all exchange)

• Support for RoCE (v1 and v2)

• Support for Dynamically Connected (DC) transport protocol

• (NEW) Support for XPMEM-based collectives operations (Broadcast, Collect, Scatter, Gather)

OpenSHMEM Features

• (NEW) Based on OpenSHMEM v1.3 reference implementation

• (NEW) Support Non-Blocking remote memory access routines

• OpenSHMEM 1.3 standard compliance

• Support for OpenPower architecture

• Support for Intel Knights Landing architecture

– Optimized inter-node and intra-node communication

• Based on OpenSHMEM reference implementation v1.0h

• Support for on-demand establishment of connections

• Improved job start up and memory footprint

• Optimized RDMA-based implementation of OpenSHMEM data movement routines

• Support for OpenSHMEM ‘shmem ptr’ functionality

• Support for RoCE (v1 and v2)

• Support for Dynamically Connected (DC) transport protocol

• Efficient implementation of OpenSHMEM atomics using RDMA atomics

• Optimized OpenSHMEM put routines for small/medium message sizes

• Optimized OpenSHMEM collectives (Improved performance for shmem collect,
shmem fcollect, shmem barrier, shmem reduce and shmem broadcast)

• Optimized ’shmalloc’ routine

http://mvapich.cse.ohio-state.edu/ 5

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

• Improved intra-node communication performance using shared memory and CMA designs

• (NEW) Support for XPMEM-based collectives operations (Broadcast, Collect, Reduce all, Reduce,
Scatter, Gather)

CAF Features

• Based on University of Houston CAF implementation

• Efficient point-point read/write operations

• Efficient CO REDUCE and CO BROADCAST collective operations

• Support for RoCE (v1 and v2)

• Support for Dynamically Connected (DC) transport protocol

• Support for Intel Knights Landing architecture

UPC++ Features

• Based on Berkeley UPC++ 0.1

• Support for OpenPower architecture

• Support for Intel Knights Landing architecture

• Asynchronous task based execution

• Multi-dimensional arrays library

• Introduce UPC++ level support for new scatter collective operation (upcxx scatter)

• Optimized UPC collectives (improved performance for upcxx reduce, upcxx bcast, upcxx gather, up-
cxx allgather, upcxx alltoall)

• Support for RoCE (v1 and v2)

• Support for Dynamically Connected (DC) transport protocol

• (NEW) Support for XPMEM-based collectives operations (Broadcast, Collect, Scatter, Gather)

Hybrid Program Features

• Supports hybrid programming using MPI(+OpenMP), MPI(+OpenMP)+UPC, MPI(+UPC++),
MPI(+OpenMP)+OpenSHMEM and MPI(+OpenMP)+CAF

• Support for OpenPower architecture

• Support for Intel Knights Landing architecture for MPI+PGAS applications

http://mvapich.cse.ohio-state.edu/ 6

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

– Optimized inter-node and intra-node communication

• Compliance to MPI-3, UPC 1.2, OpenSHMEM 1.3 and CAF Fortran 2015 standards

• Optimized network resource utilization through the unified communication runtime

• Efficient deadlock-free progress of MPI and UPC/OpenSHMEM/CAF/UPC++ calls

Unified Runtime Features

• (NEW) Based on MVAPICH2 2.3.4 (OFA-IB-CH3 and OFA-RoCE-CH3 interfaces). All the run-
time features enabled by default in OFA-IB-CH3 interface of MVAPICH2 2.3.4 are available in
MVAPICH2-X 2.3. MPI, UPC, OpenSHMEM, CAF, UPC++ and Hybrid programs benefit from its
features listed below

– Scalable inter-node communication with highest performance and reduced memory usage

∗ Integrated RC/XRC design to get best performance on large-scale systems with reduced/
constant memory footprint

∗ RDMA Fast Path connections for efficient small message communication
∗ Shared Receive Queue (SRQ) with flow control to significantly reduce memory footprint of

the library.
∗ AVL tree-based resource-aware registration cache
∗ Automatic tuning based on network adapter and host architecture

– (NEW) The advanced MPI features listed in Section ”MPI Advanced Features” are available
with the unified runtime

– Optimized intra-node communication support by taking advantage of shared-memory communi-
cation

∗ Efficient Buffer Organization for Memory Scalability of Intra-node Communication
∗ Automatic intra-node communication parameter tuning based on platform

– Flexible CPU binding capabilities

∗ (NEW) Portable Hardware Locality (hwloc v1.11.13) support for defining CPU affinity
∗ Efficient CPU binding policies (bunch and scatter patterns, socket and numanode granular-

ity) to specify CPU binding per job for modern multi-core platforms
∗ Allow user-defined flexible processor affinity

– Two modes of communication progress

∗ Polling
∗ Blocking (enables running multiple processes/processor)

• Flexible process manager support

– Support for mpirun rsh, hydra, upcrun and oshrun process managers

Support for OSU InfiniBand Network Analysis and Management (OSU INAM) Tool v0.9.5

http://mvapich.cse.ohio-state.edu/ 7

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

• Capability to profile and report process to node communication matrix for MPI processes at user
specified granularity in conjunction with OSU INAM

• Capability to classify data flowing over a network link at job level and process level granularity in
conjunction with OSU INAM

• Capability to profile and report node-level, job-level and process-level activities for MPI communica-
tion in conjunction with OSU INAM (pt-to-pt, collectives and RMA) at user specified granularity

• Capability to profile and report the following parameters of MPI processes at node-level, job-level and
process-level at user specified granularity in conjunction with OSU INAM

– CPU Utilization

– Memory Utilization

– Inter-node communication buffer usage for RC transport

– Inter-node communication buffer usage for UD transport

http://mvapich.cse.ohio-state.edu/ 8

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

3 Download and Installation Instructions

The MVAPICH2-X package can be downloaded from here. Select the link for your distro. All MVAPICH2-
X RPMs are relocatable.

3.1 Example downloading and installing MOFED4.7 package

Below are the steps to download MVAPICH2-X RPMs:

$ wget http://mvapich.cse.ohio-state.edu/download/mvapich/mv2x/2.3/mvapich2-x-mofed4.5-gnu4.8.5-2.3-1.el7.tgz
$ tar mvapich2-x-mofed4.5-gnu4.8.5-2.3-1.el7.tgz
$ cd mvapich2-x-mofed4.5-gnu4.8.5-2.3-1.el7
$./install.sh <distro> <launcher> <pkg_type>

3.1.1 About installation

Running the install.sh script will install the software in /opt/mvapich2-x. The /opt/mvapich2-x/ direc-
tory contains the software built using gcc distributed with RHEL7 and RHEL6. The install.sh script runs the
near equivalent of the following command:

rpm -Uvh --nodeps *.rpm

This will upgrade any prior versions of MVAPICH2-X that may be present. These RPMs are relocatable
and advanced users may skip the install.sh script to directly use alternate commands to install the desired
RPMs.

3.1.2 Installing with local Berkeley UPC translator support

By default, MVAPICH2-X UPC uses the online UPC-to-C translator as the Berkeley UPC does. If your
install environment cannot access the Internet, upcc will not work. In this situation, a local translator should
be installed. The local Berkeley UPC-to-C translator can be downloaded from http://upc.lbl.gov/download/.
After installing it, you should edit the upcc configure file (/opt/mvapich2-x/gnu/etc/upcc.conf
or $HOME/.upccrc), and set the translator option to be the path of the local translator
(e.g. /usr/local/berkeley upc translator-<VERSION>/targ).

3.1.3 Installing CAF with OpenUH Compiler

The CAF implementation of MVAPICH2-X is based on the OpenUH CAF compiler. Thus an installation of
OpenUH compiler is needed. Here are the detailed steps to build CAF support in MVAPICH2-X:

Installing OpenUH Compiler

• $ mkdir openuh-install; cd openuh-install

http://mvapich.cse.ohio-state.edu/ 9

http://mvapich.cse.ohio-state.edu/downloads/#mv2x-23rc2
http://upc.lbl.gov/download/

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

• $ wget http://web.cs.uh.edu/˜openuh/download/packages/
openuh-3.0.39-x86 64-bin.tar.bz2

• $ tar xjf openuh-3.0.39-x86 64-bin.tar.bz2

• Export the PATH of OpenUH (/openuh-install/openuh-3.0.39/bin) into the environment.

Installing MVAPICH2-X CAF

• Install the MVAPICH2-X RPMs (simply use install.sh, and it will be installed in /opt/mvapich2-x)

Copy the libcaf directory from MVAPICH2-X into OpenUH

• $ cp -a /opt/mvapich2-x/gnu/lib64/gcc-lib /openuh-install
/openuh-3.0.39/lib

3.2 Installation with Spack

3.2.1 Install Spack and setup the environment

Install the latest version of Spack from the official github repo:

$ git clone https://github.com/spack/spack.git

Setup the environment:

$ source /spack/share/spack/setup-env.sh

3.2.2 Install XPMEM (If required)

To obtain the best performance from MVAPICH2-X, installation and loading of the XPMEM module is
strongly recommended. You can skip this step if you do not intend to use a variant of MVAPICH2-X which
uses XPMEM (MVAPICH2-X BASIC-XPMEM, MVAPICH2-X ADVANCED-XPMEM) or if XPMEM is
already installed and loaded on your system.

Download the XPMEM module from the following Gitlab link

$ git clone https://gitlab.com/hjelmn/xpmem.git

Build XPMEM:

$ cd xpmem

$./autogen.sh

$./configure --prefix=/opt/xpmem --with-default-prefix=/opt/xpmem
--with-module=/opt/xpmem/share/modules/xpmem

$ sudo make -j8 install

Load XPMEM:

http://mvapich.cse.ohio-state.edu/ 10

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

$ sudo insmod /opt/xpmem/lib/modules/4.14.123-111.109.amzn2.x86 64/xpmem.ko

$ sudo chmod 666 /dev/xpmem

You can check if XPMEM is loaded by following command and output:

$ lsmod | grep xpmem

xpmem 32569 0

3.2.3 Install MVAPICH2-X

MVAPICH2-X can only be installed from their respective binary mirrors. Follow the below steps to setup
the mirrors and trust the gpg keys.

Check if the gcc 4.8.5 compiler is loaded and discovered by spack. If not, load the compiler and run the
commands below again:

$ spack compiler find

$ spack compiler list

Add the required spack mirrors for MVAPICH2-X:

$ spack mirror add mvapich2x http://mvapich.cse.ohio-state.edu:8080/download/mvapich/spack-mirror/mvapich2x

Trust the public key used to sign the packages:

$ wget http://mvapich.cse.ohio-state.edu:8080/download/mvapich/spack-mirror/mvapich2x/build cache/public.key

$ spack gpg trust public.key

List the available variants and choose the desired spec to install:

$ spack buildcache list -L -v -a

Find the name of the package you wish to install and append the target architecture type to the installation
command:

$ spack install mvapich2x@2.3 distribution=mofed4.6
feature=advanced-xpmem pmi version=pmi1 process managers=mpirun
target=x86 64

You can now test your installation by having spack load it or by navigating to the install directory.

Use spack to load the installed binaries:

$ spack find -l -v -p mvapich2x

Note the hash of the required version - It’s the first word of the previous command’s output

$ spack load /mkquayp

$ which mpirun rsh

http://mvapich.cse.ohio-state.edu/ 11

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

3.2.4 Example: How to Run OSU Micro-benchmarks

OMB is installed as default in MVAPICH2-X install path. You can find OMB in ./libexec directory of the
install path. Navigate to the install path.

If you did not use spack load command, you may need to prepend MVAPICH2-X library to LD LIBRARY PATH
like this:

$ export LD LIBRARY PATH=$HOME/spack/opt/spack/linux-centos7-x86 64/gcc-4.8.5/mvapich2x/lib/:$LD LIBRARY PATH

Run OMB with this command:
$./bin/mpirun rsh -np 2 -hostfile /hostfile
./libexec/osu-micro-benchmarks/mpi/pt2pt/osu latency

Please email us at mvapich-help@cse.ohio-state.edu if your distro does not appear on the list or
if you experience any trouble installing the package on your system.

http://mvapich.cse.ohio-state.edu/ 12

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

4 Basic Usage Instructions

4.1 Compile Applications

MVAPICH2-X supports MPI applications, PGAS (OpenSHMEM, UPC, CAF, UPC++) applications and
hybrid (MPI+ OpenSHMEM, MPI+UPC, MPI+CAF or MPI+UPC++) applications. User should choose the
corresponding compilers according to the applications. These compilers (oshcc, upcc, uhcaf, upc++
and mpicc) can be found under <MVAPICH2-X INSTALL>
/bin folder.

4.1.1 Compile using mpicc for MPI or MPI+OpenMP Applications

Please use mpicc for compiling MPI and MPI+OpenMP applications. Below are examples to build MPI
applications using mpicc:

$ mpicc -o test test.c

This command compiles test.c program into binary execution file test by mpicc.

$ mpicc -fopenmp -o hybrid mpi openmp hybrid.c

This command compiles a MPI+OpenMP program mpi openmp hybrid.c into binary execution file
hybrid by mpicc, when MVAPICH2-X is built with GCC compiler. For Intel compilers, use -openmp
instead of -fopenmp; For PGI compilers, use -mp instead of -fopenmp.

4.1.2 Compile using oshcc for OpenSHMEM or MPI+OpenSHMEM applications

Below is an example to build an MPI, an OpenSHMEM or a hybrid application using oshcc:

$ oshcc -o test test.c

This command compiles test.c program into binary execution file test by oshcc.

For MPI+OpenMP hybrid programs, add compile flags -fopenmp, -openmp or -mp according to
different compilers, as mentioned in mpicc usage examples.

4.1.3 Compile using upcc for UPC or MPI+UPC applications

Below is an example to build a UPC or a hybrid MPI+UPC application using upcc:

$ upcc -o test test.c

This command compiles test.c program into binary execution file test by upcc.

Note: (1) The UPC compiler generates the following warning if MPI symbols are found in source code.
upcc: warning: ’MPI *’ symbols seen at link time: should you be using
’--uses-mpi’ This warning message can be safely ignored.

http://mvapich.cse.ohio-state.edu/ 13

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

(2) upcc requires a C compiler as the back-end, whose version should be as same as the compiler used by
MVAPICH2-X libraries. Take the MVAPICH2-X RHEL7 GCC RPMs for example, the C compiler should
be GCC 4.8.5. You need to install this version of GCC before using upcc.

4.1.4 Compile using uhcaf for CAF and MPI+CAF applications

Below is an example to build an MPI, a CAF or a hybrid application using uhcaf:

Download the UH test example

• $ wget http://web.cs.uh.edu/ openuh/download/packages/
caf-runtime-3.0.39-src.tar.bz2

• $ tar xjf caf-runtime-3.0.39-src.tar.bz2

• $ cd caf-runtime-3.0.39/regression-tests/cases/singles/should-pass

Compilation using uhcaf

To take advantage of MVAPICH2-X, user needs to specify the MVAPICH2-X as the conduit during the
compilation.

• $ uhcaf --layer=gasnet-mvapich2x -o event test event test.caf

4.1.5 Compile using upc++ for UPC++ or MPI+UPC++ applications

Below is an example to build a UPC++ or a hybrid MPI+UPC++ application using upc++:

$ upc++ -o test test.cpp

This command compiles test.cpp program into binary execution file test by upc++.

(2) In order to use complete set of features provided by UPC++, a C++ compiler is required as the back-end,
whose version should be as same as the compiler used by MVAPICH2-X libraries. Take the MVAPICH2-X
RHEL7 GCC RPMs for example, the C compiler should be GCC 4.8.5. You need to install this version of
GCC before using upc++.

4.2 Run Applications

This section provides instructions on how to run applications with MVAPICH2. Please note that on new
multi-core architectures, process-to-core placement has an impact on performance. MVAPICH2-X inherits
its process-to-core binding capabilities from MVAPICH2. Please refer to (MVAPICH2 User Guide) for
process mapping options on multi-core nodes.

http://mvapich.cse.ohio-state.edu/ 14

http://mvapich.cse.ohio-state.edu/support/

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

4.2.1 Run using mpirun rsh

The MVAPICH team suggests users using this mode of job start-up. mpirun rsh provides fast and scalable
job start-up. It scales to multi-thousand node clusters. It can be use to launch MPI, OpenSHMEM, UPC,
CAF and hybrid applications.

Prerequisites:

• Either ssh or rsh should be enabled between the front nodes and the computing nodes. In addition
to this setup, you should be able to login to the remote nodes without any password prompts.

• All host names should resolve to the same IP address on all machines. For instance, if a machine’s
host names resolves to 127.0.0.1 due to the default /etc/hosts on some Linux distributions it leads to
incorrect behavior of the library.

Jobs can be launched using mpirun rsh by specifying the target nodes as part of the command as
shown below:

$ mpirun rsh -np 4 n0 n0 n1 n1 ./test

This command launches test on nodes n0 and n1, two processes per node. By default ssh is used.

$ mpirun rsh -rsh -np 4 n0 n0 n1 n1 ./test

This command launches test on nodes n0 and n1, two processes per each node using rsh instead of
ssh. The target nodes can also be specified using a hostfile.

$ mpirun rsh -np 4 -hostfile hosts ./test

The list of target nodes must be provided in the file hosts one per line. MPI or OpenSHMEM ranks
are assigned in order of the hosts listed in the hosts file or in the order they are passed to mpirun rsh. i.e., if
the nodes are listed as n0 n1 n0 n1, then n0 will have two processes, rank 0 and rank 2; whereas n1 will have
rank 1 and 3. This rank distribution is known as “cyclic”. If the nodes are listed as n0 n0 n1 n1, then n0 will
have ranks 0 and 1; whereas n1 will have ranks 2 and 3. This rank distribution is known as “block”.

The mpirun rsh hostfile format allows users to specify a multiplier to reduce redundancy. It also allows
users to specify the HCA to be used for communication. The multiplier allows you to save typing by allowing
you to specify blocked distribution of MPI ranks using one line per hostname. The HCA specification allows
you to force an MPI rank to use a particular HCA. The optional components are delimited by a ‘:’. Comments
and empty lines are also allowed. Comments start with ‘#’ and continue to the next newline. Below are few
examples of hostfile formats:

$ cat hosts
sample hostfile for mpirun_rsh
host1 # rank 0 will be placed on host1
host2:2 # rank 1 and 2 will be placed on host 2
host3:hca1 # rank 3 will be on host3 and will use hca1
host4:4:hca2 # ranks 4 through 7 will be on host4 and use hca2

http://mvapich.cse.ohio-state.edu/ 15

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

if the number of processes specified for this job is greater than 8
then the additional ranks will be assigned to the hosts in a cyclic
fashion. For example, rank 8 will be on host1 and ranks 9 and 10
will be on host2.

Many parameters of the MPI library can be configured at run-time using environmental variables. In
order to pass any environment variable to the application, simply put the variable names and values just
before the executable name, like in the following example:

$ mpirun rsh -np 4 -hostfile hosts ENV1=value ENV2=value ./test

Note that the environmental variables should be put immediately before the executable. Alternatively,
you may also place environmental variables in your shell environment (e.g. .bashrc). These will be
automatically picked up when the application starts executing.

4.2.2 Run using oshrun

MVAPICH2-X provides oshrun and can be used to launch applications as shown below.

$ oshrun -np 2 ./test

This command launches two processes of test on the localhost. A list of target nodes where the
processes should be launched can be provided in a hostfile and can be used as shown below. The oshrun
hostfile can be in one of the two formats outlined for mpirun rsh earlier in this document.

$ oshrun -f hosts -np 2 ./test

4.2.3 Run using upcrun

MVAPICH2-X provides upcrun to launch UPC and MPI+UPC applications. To use upcrun, we suggest
users to set the following environment:

$ export MPIRUN CMD=’<path-to-MVAPICH2-X-install>/bin/mpirun rsh
-np %N -hostfile hosts %P %A’

A list of target nodes where the processes should be launched can be provided in the hostfile named as
“hosts”. The hostfile “hosts” should follow the same format for mpirun rsh, as described in Section 4.2.1.
Then upcrun can be used to launch applications as shown below.

$ upcrun -n 2 ./test

4.2.4 Run using cafrun

Similar to UPC and OpenSHMEM, to run a CAF application, we can use cafrun or mpirun rsh:

• Export the PATH and LD LIBRARY PATH of the GNU version of MVAPICH2-X (/opt/mvapich2-
x/gnu/bin, /opt/mvapich2-x/gnu/lib64) into the environment.

http://mvapich.cse.ohio-state.edu/ 16

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

• $ export UHCAF LAUNCHER OPTS="-hostfile hosts"

• $ cafrun -n 16 -v ./event test

4.2.5 Running UPC++ applications using mpirun rsh

To run a UPC++ application we need mpirun rsh:

• Export the PATH and LD LIBRARY PATH of the GNU version of MVAPICH2-X (/opt/mvapich2-
x/gnu/bin, /opt/mvapich2-x/gnu/lib64) into the environment.

• $ mpirun rsh -n 16 -hostfile <hosts> ./hello

4.2.6 Run using Hydra (mpiexec)

MVAPICH2-X also distributes the Hydra process manager along with with mpirun rsh. Hydra can be used
either by using mpiexec or mpiexec.hydra. The following is an example of running a program using
it:

$ mpiexec -f hosts -n 2 ./test

This process manager has many features. Please refer to the following web page for more details.

http://wiki.mcs.anl.gov/mpich2/index.php/Using the Hydra Process Manager

5 Advanced MPI Usage Instructions

5.1 Support for User Mode Memory Registration (UMR)

Support for the User Mode Memory Registration of InfiniBand is available for Mellanox ConnectIB (Dual-
FDR) and ConnectX-4 (EDR) adapters. This features requires Mellanox OFED version 2.4 (or higher) and
supported IB HCAs listed above. Note that users should be using the appropriate version of the MVAPICH2-
X RPM built with the support for advanced features to use this. Please refer to Section 8.2 of the userguide
for a detailed description of the UMR related runtime parameters.

This command launches test on nodes n0 and n1, two processes per node with support for User Mode
Memory Registration.

$ mpirun rsh -rsh -np 4 n0 n0 n1 n1 MV2 USE UMR=1
./test

5.2 Support for Dynamic Connected Transport

Support for the Dynamic Connected transport of InfiniBand is available for Mellanox ConnectIB (Dual-
FDR) and ConnectX-4 (EDR) adapters. This features requires Mellanox OFED version 2.4 (or higher) and

http://mvapich.cse.ohio-state.edu/ 17

http://wiki.mcs.anl.gov/mpich2/index.php/Using_the_Hydra_Process_Manager

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

supported IB HCAs listed above. It also automatically enables the Shared Receive Queue (SRQ) feature
available in MVAPICH2-X. Note that users should be using the appropriate version of the MVAPICH2-X
RPM built with the support for advanced features to use this. Please refer to Section 8.1 of the userguide for
a detailed description of the DC related runtime parameters.

This command launches test on nodes n0 and n1, two processes per node with support for Dynamic
Connected Transport.

$ mpirun rsh -rsh -np 4 n0 n0 n1 n1 MV2 USE DC=1
./test

This command launches test on nodes n0 and n1, two processes per node with support for Dynamic
Connected Transport with different number of DC initiator objects for small messages and large messages.

$ mpirun rsh -rsh -np 4 n0 n0 n1 n1 MV2 USE DC=1
MV2 SMALL MSG DC POOL=10 MV2 LARGE MSG DC POOL=10
./test

5.3 Support for Core-Direct Based Non-Blocking Collectives

The Mellanox ConnectX and ConnectIB series of InfiniBand HCAs provides support for offloading entire
collective communication operations. These features are exposed to the user through the interfaces pro-
vided in the latest Mellanox OFED drivers. MVAPICH2-X takes advantage of such capabilities to provide
hardware based offloading support for MPI-3 non-blocking collective operations. This allows for better com-
putation and communication overlap for MPI and hybrid MPI+PGAS applications. MVAPICH2-X 2.3 offers
Core-Direct based support for the following collective operations - MPI Ibcast, MPI Iscatter, MPI Iscatterv,
MPI Igather, MPI Igatherv, MPI Iallgather, MPI Iallgatherv, MPI Ialltoall, MPI Ialltoallv, MPI Ialltoallw,
and MPI Ibarrier. Note that users should be using the appropriate version of the MVAPICH2-X RPM built
with the support for advanced features to use this. Please refer to Section 8.9 of the userguide for a detailed
description of the Core-Direct related runtime parameters.

The Core-Direct feature and can be enabled or disabled globally by the use of the environment variable
MV2 USE CORE DIRECT.

This command launches test on nodes n0 and n1, two processes per node with support for Core-Direct
based non-blocking collectives.

$ mpirun rsh -rsh -np 4 n0 n0 n1 n1
MV2 USE CORE DIRECT=1 ./test

By default, when Core-Direct capabilities are turned on using the above variable, all supported non-
blocking collectives listed above leverage the feature. To specifically toggle Core-Direct capabilities on a
per collective basis, the following environment variables may be used:

MV2_USE_CD_IBCAST=0 #Disables Core-Direct support for MPI_Ibcast
MV2_USE_CD_ISCATTER=0 #Disables Core-Direct support for MPI_Iscatter
MV2_USE_CD_ISCATTERV=0 #Disables Core-Direct support for MPI_Iscatterv
MV2_USE_CD_IGATHER=0 #Disables Core-Direct support for MPI_Igather
MV2_USE_CD_IGATHERV=0 #Disables Core-Direct support for MPI_Igatherv
MV2_USE_CD_IALLGATHER=0 #Disables Core-Direct support for MPI_Iallgather

http://mvapich.cse.ohio-state.edu/ 18

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

MV2_USE_CD_IALLGATHERV=0 #Disables Core-Direct support for MPI_Iallgatherv
MV2_USE_CD_IALLTOALL=0 #Disables Core-Direct support for MPI_Ialltoall
MV2_USE_CD_IALLTOALLV=0 #Disables Core-Direct support for MPI_Ialltoallv
MV2_USE_CD_IALLTOALLW=0 #Disables Core-Direct support for MPI_Ialltoallw
MV2_USE_CD_IBARRIER=0 #Disables Core-Direct support for MPI_Ibarrier

This command launches test on nodes n0 and n1, two processes per node with Core-Direct based non-
blocking collectives support for all non-blocking collectives listed above except non-blocking broadcast.

$ mpirun rsh -rsh -np 4 n0 n0 n1 n1
MV2 USE CORE DIRECT=1 MV2 USE CD IBCAST=0 ./test

5.4 Support for OSU InfiniBand Network Analysis and Monitoring (OSU INAM) Tool

The OSU InfiniBand Network Analysis and Monitoring tool - OSU INAM monitors IB clusters in real time
by querying various subnet management entities in the network. It is also capable of interacting with the
MVAPICH2-X software stack to gain insights into the communication pattern of the application and classify
the data transferred into Point-to-Point, Collective and Remote Memory Access (RMA). OSU INAM can
also remotely monitoring the CPU utilization of MPI processes in conjunction with MVAPICH2-X. Note
that users should be using the appropriate version of the MVAPICH2-X RPM built with the support for
advanced features to use this. In this section, we detail how one should enable MVAPICH2-X to work in
conjunction with OSU INAM.

Please note that MVAPICH2-X must be launched with support for on-demand connection management
when running in conjunction with OSU INAM. One can achieve this by setting the MV2 ON DEMAND THRESHOLD
environment variable to a value less than the number of processes in the job.

Please refer to the Tools page in the MVAPICH website (http://mvapich.cse.ohio-state.
edu/tools/osu-inam) for more information on how to download, install and run OSU INAM. Please
refer to Section 8.8 of the userguide for a detailed description of the OSU INAM related runtime parameters.

This command launches test on nodes n0 and n1, two processes per node with support for sending the
process and node level information to the OSU INAM daemon.

$ mpirun rsh -rsh -np 4 n0 n0
n1 n1 MV2 ON DEMAND THRESHOLD=1
MV2 TOOL INFO FILE PATH=/opt/inam/.mv2-tool-mvapich2.conf
./test

$ cat /opt/inam/.mv2-tool-mvapich2.conf
MV2_TOOL_QPN=473 #UD QPN at which OSU INAM is listening.
MV2_TOOL_LID=208 #LID at which OSU INAM is listening.
MV2_TOOL_COUNTER_INTERVAL=30 #Specifies whether MVAPICH2-X should report

#process level CPU utilization information.
MV2_TOOL_REPORT_CPU_UTIL=1 #The interval at which MVAPICH2-X should

#report node, job and process level information.

http://mvapich.cse.ohio-state.edu/ 19

http://mvapich.cse.ohio-state.edu/tools/osu-inam
http://mvapich.cse.ohio-state.edu/tools/osu-inam

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

5.5 Support for Shared Address Space based MPI Communication Using XPMEM

MVAPICH2-X supports shared address-space based efficient MPI intra-node communication. This feature
requires XPMEM https://gitlab.com/hjelmn/xpmem kernel module. Currently, it provides sup-
port for efficient intra-node rendezvous communication and zero-copy MPI collective operations. Note that
the users should be using the appropriate version of the MVAPICH2-X RPM built with the support for XP-
MEM to use this. Please refer to Section 8.10.1 and Section 8.11.1 of the userguide for a detailed description
of the XPMEM based point-to-point and collective communication support in MVAPICH2-X.

XPMEM kernels module can be installed by following the instructions given below:

1. $./configure --prefix=/opt/xpmem \
--with-default-prefix=/opt/xpmem \
--with-module=/opt/xpmem/share/modules/xpmem

2. $ make -j 8
3. $ sudo make install
4. $ sudo insmod /opt/xpmem/lib/module/xpmem.ko ; \

sleep 1 ; \
sudo chmod 666 /dev/xpmem

5. $ make check

6. After installing in /opt, just load the module (step-4 only) on the
desired set of nodes.

The following command launches osu latency with two MPI processes on a single node and uses XP-
MEM based rendezvous communication mechanism.

$ mpirun rsh -np 2 n0 n1 MV2 SMP USE XPMEM=1 ./osu latency

The following command launches osu reduce on nodes n0 and n1, two processes per node with support
for XPMEM based MPI Reduce for message sizes greater than 4KB.

$ mpirun rsh -rsh -np 4 n0 n0 n1 n1 MV2 USE XPMEM COLL=1
MV2 XPMEM COLL THRESHOLD=4096 ./osu reduce

Note: XPMEM has a known issue where a remote memory segment that is “attached” using XPMEM, can
not be registered with InfiniBand device. In some cases, if severe performance degradation is observed when
using XPMEM based collectives, additionally setting following two parameters can circumvent the issue.

MV2 IBA EAGER THRESHOLD=262144 MV2 VBUF TOTAL SIZE=262144

5.6 Support for Efficient Asynchronous Communication Progress

MVAPICH2-X provides an optimized asynchronous progress to overlap computation and communication in
HPC applications. This design is recommended over thread-based asynchronous progress design in MPICH.
The optimized asynchronous progress design enables applications to use all available cores for compute
without sparing dedicated cores for asynchronous progress threads. Applications which use large (greater

http://mvapich.cse.ohio-state.edu/ 20

https://gitlab.com/hjelmn/xpmem

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

than eager threshold) non-blocking messages are suggested to use asynchronous progress design to gain
better overlap of computation and communication.

The optimized version of asynchronous communication progress design is enabled by using environment
variable MV2 OPTIMIZED ASYNC PROGRESS=1. Note that the optimized support needs the user to
enable basic asynchronous progress support by setting MV2 ASYNC PROGRESS=1.

This command launches test on nodes n0 and n1, two processes per node with support for Asynchronous
Progress design.

$ mpirun rsh -rsh -np 4 n0 n0 n1 n1 MV2 ASYNC PROGRESS=1
MV2 OPTIMIZED ASYNC PROGRESS=1 MV2 CPU BINDING POLICY=hybrid ./test

5.7 Running Collectives with Hardware based SHArP support

In MVAPICH2, support for SHArP-based collectives has been enabled for MPI applications running over
OFA-IB-CH3 interface. Currently, this support is available for the following collective operations:

• MPI Allreduce

This feature is turned off by default at runtime and can be turned on at runtime by using parameter
MV2 ENABLE SHARP=1 (8.13.1).

Note that the various SHArP related daemons (SHArP Aggregation Manager - sharpam and the local
SHArP daemon - sharpd must be installed, setup and running for SHArP support in MVAPICH2 to work
properly. This can be verified by running the sharp hello program available in the “bin” sub-folder of
the SHArP installation directory.

When using HPCX v1.7, we recommend setting SHARP COLL ENABLE GROUP TRIM=0 environ-
ment variable. Note that if you are using mpirun rsh you need to add -export option to make sure
that environment variable is exported correctly. This environment variable is a part of SHArP library. Please
refer to SHArP userguide for more information.

http://mvapich.cse.ohio-state.edu/ 21

http://www.mellanox.com/related-docs/prod_acceleration_software/SHARP_Deployment_Guide_v3.0.pdf

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

6 Hybrid (MPI+PGAS) Applications

MVAPICH2-X supports hybrid programming models. Applications can be written using both MPI and
PGAS constructs. Rather than using a separate runtime for each of the programming models, MVAPICH2-
X supports hybrid programming using a unified runtime and thus provides better resource utilization and
superior performance.

6.1 MPI+OpenSHMEM Example

A simple example of Hybrid MPI+OpenSHMEM program is shown below. It uses both MPI and OpenSH-
MEM constructs to print the sum of ranks of each processes.

1 #include <stdio.h>
2 #include <shmem.h>
3 #include <mpi.h>
4
5 static int sum = 0;
6 int main(int c, char *argv[])
7 {
8 int rank, size;
9
10 /* SHMEM init */
11 start_pes(0);
12
13 /* get rank and size */
14 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
15 MPI_Comm_size(MPI_COMM_WORLD, &size);
16
17 /* SHMEM barrier */
18 shmem_barrier_all();
19
20 /* fetch-and-add at root */
21 shmem_int_fadd(&sum, rank, 0);
22
23 /* MPI barrier */
24 MPI_Barrier(MPI_COMM_WORLD);
25
26 /* root broadcasts sum */
27 MPI_Bcast(&sum, 1, MPI_INT, 0, MPI_COMM_WORLD);
28
29 /* print sum */
30 fprintf(stderr, "(%d): Sum: %d\n", rank, sum);
31
32 shmem_barrier_all();

http://mvapich.cse.ohio-state.edu/ 22

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

33 return 0;
34 }

start pes in line 10 initializes the runtime for MPI and OpenSHMEM communication. An explicit
call to MPI Init is not required. The program uses MPI calls MPI Comm rank and MPI Comm size
to get process rank and size, respectively (lines 14-15). MVAPICH2-X assigns same rank for MPI and
PGAS model. Thus, alternatively the OpenSHMEM constructs my pe and num pes can also be used
to get rank and size, respectively. In line 17, every process does a barrier using OpenSHMEM construct
shmem barrier all.

After this, every process does a fetch-and-add of the rank to the variable sum in process 0. The sample
program uses OpenSHMEM construct shmem int fadd (line 21) for this. Following the fetch-and-add,
every process does a barrier using MPI Barrier (line 24). Process 0 then broadcasts sum to all processes
using MPI Bcast (line 27). Finally, all processes print the variable sum. Explicit MPI Finalize is not
required.

The program outputs the following for a four-process run:

$$> mpirun_rsh -np 4 -hostfile ./hostfile ./hybrid_mpi_shmem

(0): Sum: 6
(1): Sum: 6
(2): Sum: 6
(3): Sum: 6

The above sample hybrid program is available at <MVAPICH2-X INSTALL>/<gnu|intel>/share
/examples/hybrid mpi shmem.c

6.2 MPI+UPC Example

A simple example of Hybrid MPI+UPC program is shown below. Similarly to the previous example, it uses
both MPI and UPC constructs to print the sum of ranks of each UPC thread.

1 #include <stdio.h>
2 #include <upc.h>
3 #include <mpi.h>
4
5 shared [1] int A[THREADS];
6 int main() {
7 int sum = 0;
8 int rank, size;
9
10 /* get MPI rank and size */
11 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
12 MPI_Comm_size(MPI_COMM_WORLD, &size);

http://mvapich.cse.ohio-state.edu/ 23

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

13
14 /* UPC barrier */
15 upc_barrier;
16
17 /* initialize global array */
18 A[MYTHREAD] = rank;
19 int *local = ((int *)(&A[MYTHREAD]));
20
21 /* MPI barrier */
22 MPI_Barrier(MPI_COMM_WORLD);
23
24 /* sum up the value with each UPC thread */
25 MPI_Allreduce(local, &sum, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
26
27 /* print sum */
28 if (MYTHREAD == 0)
29 fprintf(stderr, "(%d): Sum: %d\n", rank, sum);
30
31 upc_barrier;
32
33 return 0;
34 }

An explicit call to MPI Init is not required. The program uses MPI calls MPI Comm rank and
MPI Comm size to get process rank and size, respectively (lines 11-12). MVAPICH2-X assigns same
rank for MPI and PGAS model. Thus, MYTHREAD and THREADS contains the UPC thread rank and
UPC thread size respectively, which is equal to the return value of MPI Comm rank and MPI Comm size.
In line 15, every UPC thread does a barrier using UPC construct upc barrier.

After this, every UPC thread set its MPI rank to one element of a global shared memory array A and
this element A[MYTHREAD] has affinity with the UPC thread who set the value of it (line 18). Then a local
pointer need to be set to the global shared array element for MPI collective functions. Then every UPC thread
does a barrier using MPI Barrier (line 22). After the barrier, MPI Allreduce is called (line 25) to sum
up all the rank values and return the results to every UPC thread, in sum variable. Finally, all processes print
the variable sum. Explicit MPI Finalize is not required.

The program can be compiled using upcc:

$$> upcc hybrid_mpi_upc.c -o hybrid_mpi_upc

The program outputs the following for a four-process run:

$$> mpirun_rsh -n 4 -hostfile hosts ./hybrid_mpi_upc
(0): Sum: 6
(3): Sum: 6
(1): Sum: 6
(2): Sum: 6

http://mvapich.cse.ohio-state.edu/ 24

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

The above sample hybrid program is available at <MVAPICH2-X INSTALL>/<gnu|intel>/share
/examples/hybrid mpi upc.c

6.3 MPI+UPC++ Example

A simple example of Hybrid MPI+UPC++ program is shown below. Similarly to the previous example, it
uses both MPI and UPC++ constructs to reduce the sum of ranks of each UPC++ thread on all ranks. The
sum will be reduced on all ranks but printed only on thread 0.

1 #include <upcxx.h>
2 #include <mpi.h>
3
4 using namespace upcxx;
5
6 int main (int argc, char** argv)
7 {
8 /* UPC++ init */
9 init(&argc, &argv);
10
11 shared_array<int> A(ranks());
12 int sum = 0;
13 int rank, size;
14
15 /* get rank and size */
16 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
17 MPI_Comm_size(MPI_COMM_WORLD, &size);
18
19 /* UPC++ barrier all */
20 barrier();
21
22 /* initialize global array */
23 A[myrank()] = rank;
24
25 /* cast value from shared array to local pointer */
26 int *local = ((int *) (&A[myrank()]));
27
28 /* MPI Barrier */
29 MPI_Barrier(MPI_COMM_WORLD);
30
31 /* sum up the value with each UPC++ thread */
32 MPI_Allreduce(local, &sum, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
33
34 /* print sum */
35 if (myrank() == 0)
36 std::cout << "Rank(" << rank << "): Sum: "<< sum << std::endl;

http://mvapich.cse.ohio-state.edu/ 25

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

37
38 /* UPC++ finalize */
39 finalize();
40
41 return 0;
42 }

An explicit call to MPI Init is not required. However, a call to UPC++’s init is required as in line 9. The
program uses MPI calls MPI Comm rank and MPI Comm size to get process rank and size, respectively
(lines 16-17). MVAPICH2-X assigns same rank for MPI and PGAS model. Thus, myrank() and ranks()
contains the UPC++ thread rank and UPC++ thread size respectively, which is equal to the return value of
MPI Comm rank and MPI Comm size. In line 20, every UPC++ thread does a barrier by explicitly calling
UPC++ function barrier().

After this, every UPC++ thread sets its MPI rank to one element of a global shared memory array A
and this element A[myrank()] has affinity with the UPC++ thread who set the value of it (line 23). Then
a local pointer need to be set to the global shared array element for MPI collective functions. Then every
UPC++ thread does a barrier using MPI Barrier (line 29). After the barrier, MPI Allreduce is called
(line 32) to sum up all the rank values and return the results to every UPC++ thread, in sum variable. Finally,
all processes print the variable sum. Explicit MPI Finalize is not required. However, UPC++’s finalize()
function is called in the end for graceful termination of UPC++ application (line 39).

The program can be compiled using upc++:

$$> upc++ hybrid_mpi_upcxx.cpp -o hybrid_mpi_upcxx

The program outputs the following for a four-process run:

$$> mpirun_rsh -n 4 -hostfile hosts ./hybrid_mpi_upcxx
(0): Sum: 6

The above sample hybrid program is available at <MVAPICH2-X INSTALL>/<gnu|intel>/share
/examples/hybrid mpi upcxx.c

http://mvapich.cse.ohio-state.edu/ 26

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

7 OSU PGAS Benchmarks

7.1 OSU OpenSHMEM Benchmarks

We have extended the OSU Micro Benchmark (OMB) suite with tests to measure performance of OpenSH-
MEM operations. OSU Micro Benchmarks (OMB-5.6.2) have OpenSHMEM data movement and atomic op-
eration benchmarks. The complete benchmark suite is available along with MVAPICH2-X binary package,
in the folder: <MVAPICH2-X INSTALL>/libexec/osu-micro-benchmarks. A brief description
for each of the newly added benchmarks is provided below.

Put Latency (osu oshm put):

This benchmark measures latency of a shmem putmem operation for different data sizes. The user is required
to select whether the communication buffers should be allocated in global memory or heap memory, through
a parameter. The test requires exactly two PEs. PE 0 issues shmem putmem to write data at PE 1 and then
calls shmem quiet. This is repeated for a fixed number of iterations, depending on the data size. The average
latency per iteration is reported. A few warm-up iterations are run without timing to ignore any start-up
overheads. Both PEs call shmem barrier all after the test for each message size.

Get Latency (osu oshm get):

This benchmark is similar to the one above except that PE 0 does a shmem getmem operation to read data
from PE 1 in each iteration. The average latency per iteration is reported.

Put Operation Rate (osu oshm put mr):

This benchmark measures the aggregate uni-directional operation rate of OpenSHMEM Put between pairs
of PEs, for different data sizes. The user should select for communication buffers to be in global memory
and heap memory as with the earlier benchmarks. This test requires number of PEs to be even. The PEs are
paired with PE 0 pairing with PE n/2 and so on, where n is the total number of PEs. The first PE in each
pair issues back-to-back shmem putmem operations to its peer PE. The total time for the put operations is
measured and operation rate per second is reported. All PEs call shmem barrier all after the test for each
message size.

Atomics Latency (osu oshm atomics):

This benchmark measures the performance of atomic fetch-and-operate and atomic operate routines sup-
ported in OpenSHMEM for the integer datatype. The buffers can be selected to be in heap memory or global
memory. The PEs are paired like in the case of Put Operation Rate benchmark and the first PE in each pair
issues back-to-back atomic operations of a type to its peer PE. The average latency per atomic operation and
the aggregate operation rate are reported. This is repeated for each of fadd, finc, add, inc, cswap and swap
routines.

Collective Latency Tests:

OSU Microbenchmarks consists of the following collective latency tests:

The latest OMB Version includes the following benchmarks for various OpenSHMEM collective operations
(shmem collect, shmem fcollect shmem broadcast, shmem reduce and shmem barrier).

http://mvapich.cse.ohio-state.edu/ 27

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

• osu oshm collect - OpenSHMEM Collect Latency Test

• osu oshm fcollect - OpenSHMEM FCollect Latency Test

• osu oshm broadcast - OpenSHMEM Broadcast Latency Test

• osu oshm reduce - OpenSHMEM Reduce Latency Test

• osu oshm barrier - OpenSHMEM Barrier Latency Test

These benchmarks work in the following manner. Suppose users run the osu oshm broadcast benchmark
with N processes, the benchmark measures the min, max and the average latency of the shmem broadcast
operation across N processes, for various message lengths, over a number of iterations. In the default ver-
sion, these benchmarks report average latency for each message length. Additionally, the benchmarks the
following options:

• “-f” can be used to report additional statistics of the benchmark, such as min and max latencies and
the number of iterations

• “-m” option can be used to set the maximum message length to be used in a benchmark. In the default
version, the benchmarks report the latencies for up to 1MB message lengths

• “-i” can be used to set the number of iterations to run for each message length

7.2 OSU UPC Benchmarks

OSU Microbenchmarks extensions include UPC benchmarks also. Current version (OMB-5.6.2) has bench-
marks for upc memput and upc memget. The complete benchmark suite is available along with MVAPICH2-
X binary package, in the folder: <MVAPICH2-X INSTALL>/libexec/osu-micro-benchmarks.
A brief description for each of the benchmarks is provided below.

Put Latency (osu upc memput):

This benchmark measures the latency of upc put operation between multiple UPC threads. In this bench-
mark, UPC threads with ranks less than (THREADS/2) issue upc memput operations to peer UPC threads.
Peer threads are identified as (MYTHREAD+THREADS/2). This is repeated for a fixed number of iterations,
for varying data sizes. The average latency per iteration is reported. A few warm-up iterations are run with-
out timing to ignore any start-up overheads. All UPC threads call upc barrier after the test for each
message size.

Get Latency (osu upc memget):

This benchmark is similar as the osu upc put benchmark that is described above. The difference is that the
shared string handling function is upc memget. The average get operation latency per iteration is reported.

Collective Latency Tests:

OSU Microbenchmarks consists of the following collective latency tests:

The latest OMB Version includes the following benchmarks for various UPC collective operations (upc all barrier,
upc all broadcast, upc all exchange, upc all gather, upc all gather all, upc all reduce, and upc all scatter).

http://mvapich.cse.ohio-state.edu/ 28

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

• osu upc all barrier - UPC Barrier Latency Test

• osu upc all broadcast - UPC Broadcast Latency Test

• osu upc all exchange - UPC Exchange Latency Test

• osu upc all gather all - UPC GatherAll Latency Test

• osu upc all gather - UPC Gather Latency Test

• osu upc all reduce - UPC Reduce Latency Test

• osu upc all scatter - UPC Scatter Latency Test

These benchmarks work in the following manner. Suppose users run the osu upc all broadcast with N
processes, the benchmark measures the min, max and the average latency of the upc all broad-cast operation
across N processes, for various message lengths, over a number of iterations. In the default version, these
benchmarks report average latency for each message length. Additionally, the benchmarks the following
options:

• “-f” can be used to report additional statistics of the benchmark, such as min and max latencies and
the number of iterations

• “-m” option can be used to set the maximum message length to be used in a benchmark. In the default
version, the benchmarks report the latencies for up to 1MB message lengths

• “-i” can be used to set the number of iterations to run for each message length

7.3 OSU UPC++ Benchmarks

In order to provide performance measurement of UPC++ operations, we have also extended OSU Mi-
crobenchmarks to include UPC++ based point-to-point and collectives benchmarks. These are included in
current version of OMB (OMB-5.6.2). The point-to-point benchmarks include upcxx async copy put
and upcxx async copy get. The complete benchmark suite is available along with MVAPICH2-X
binary package, in the folder: <MVAPICH2-X INSTALL>/libexec/osu-micro-benchmarks. A
brief description for each of the benchmarks is provided below.

Put Latency (osu upcxx async copy put):

This benchmark measures the latency of async copy (memput) operation between multiple UPC++
threads. In this benchmark, UPC++ threads with ranks less than (ranks()/2) copy data ‘from’ their
local memory ‘to’ their peer thread’s memory using async copy operation. By changing the src and
dst buffers in async copy, we can mimic the behavior of upc memput and upc memget. Peer threads
are identified as (myrank()+ranks()/2). This is repeated for a fixed number of iterations, for varying
data sizes. The average latency per iteration is reported. A few warm-up iterations are run without timing to
ignore any start-up overheads. All UPC++ threads call barrier() function after the test for each message
size.

Get Latency (osu upcxx async copy get):

http://mvapich.cse.ohio-state.edu/ 29

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

Similar to osu upcxx async copy put, this benchmark mimics the behavior of upc memget and
measures the latency of async copy (memget) operation between multiple UPC++ threads. The only
difference is that the src and dst buffers in async copy are swapped. In this benchmark, UPC++
threads with ranks less than (ranks()/2) copy data ‘from’ their peer thread’s memory ‘to’ their local
memory using async copy operation. The rest of the details are same as discussed above. The average
get operation latency per iteration is reported.

Collective Latency Tests:

OSU Microbenchmarks consists of the following collective latency tests:

The latest OMB Version includes the following benchmarks for various UPC++ collective operations (up-
cxx reduce, upcxx bcast, upcxx gather, upcxx allgather, upcxx alltoall, upcxx scatter).

• osu upcxx bcast - UPC++ Broadcast Latency Test

• osu upcxx reduce - UPC++ Reduce Latency Test

• osu upcxx allgather - UPC++ Allgather Latency Test

• osu upcxx gather - UPC++ Gather Latency Test

• osu upcxx scatter - UPC++ Scatter Latency Test

• osu upcxx alltoall - UPC++ AlltoAll (exchange) Latency Test

These benchmarks work in the following manner. Suppose users run the osu upcxx bcast with N pro-
cesses, the benchmark measures the min, max and the average latency of the upcxx bcast operation across N
processes, for various message lengths, over a number of iterations. In the default version, these benchmarks
report average latency for each message length. Additionally, the benchmarks the following options:

• “-f” can be used to report additional statistics of the benchmark, such as min and max latencies and
the number of iterations

• “-m” option can be used to set the maximum message length to be used in a benchmark. In the default
version, the benchmarks report the latencies for up to 1MB message lengths

• “-i” can be used to set the number of iterations to run for each message length

http://mvapich.cse.ohio-state.edu/ 30

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

8 Runtime Parameters

MVAPICH2-X supports all the runtime parameters of MVAPICH2 (OFA-IB-CH3). A comprehensive list
of all runtime parameters of MVAPICH2 2.3 can be found in User Guide. Runtime parameters specific to
MVAPICH2-X are listed below.

8.1 Runtime Parameters for Dynamic Connected Transport

MVAPICH2-X features support for the Dynamic Connected (DC) transport protocol from Mellanox. In this
section, we specify some of the runtime parameters that control these advanced features.

8.1.1 MV2 USE DC

• Class: Run time

• Default: 0 (Unset)

Enable the use of the Dynamic Connected (DC) InfiniBand transport.

8.1.2 MV2 DC KEY

• Class: Run time

• Default: 0

This parameter must be same across all processes that wish to communicate with each other in a job.

8.1.3 MV2 NUM DC TGT

• Class: Run time

• Default: 1

Controls the number of DC receive communication objects. Please note that we have extensively tuned this
parameter based on job size and communication characteristics.

8.1.4 MV2 SMALL MSG DC POOL

• Class: Run time

• Default: 8

Controls the number of DC send communication objects used for transmitting small messages. Please note
that we have extensively tuned this parameter based on job size and communication characteristics.

http://mvapich.cse.ohio-state.edu/ 31

http://mvapich.cse.ohio-state.edu/support/

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

8.1.5 MV2 LARGE MSG DC POOL

• Class: Run time

• Default: 8

Controls the number of DC send communication objects used for transmitting large messages. Please note
that we have extensively tuned this parameter based on job size and communication characteristics.

8.2 Runtime Parameters for User Mode Memory Registration

MVAPICH2-X provides support for the User Mode Memory Registration (UMR) feature from Mellanox. In
this section, we specify some of the runtime parameters that control these advanced features.

8.2.1 MV2 USE UMR

• Class: Run time

• Default: 0 (Unset)

Enable the use of User Mode Memory Registration (UMR) for high performance datatype based communi-
cation.

8.2.2 MV2 NUM UMRS

• Class: Run time

• Default: 256

Controls the number of pre-created UMRs for non-contiguous data transfer.

8.3 Core-Direct Specific Runtime Parameters

MVAPICH2-X features support for the Core-Direct (CD) collective offload interface from Mellanox. In this
section, we specify some of the runtime parameters that control these advanced features.

8.3.1 MV2 USE CORE DIRECT

• Class: Run time

• Default: 0 (Unset)

Enables core-direct support for non-blocking collectives.

http://mvapich.cse.ohio-state.edu/ 32

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

8.3.2 MV2 USE CORE DIRECT TUNING

• Class: Run time

• Default: 1 (Set)

Enables tuned version of core-direct support for non-blocking collectives that prioritizes overlap and latency
based on message size.

8.3.3 MV2 USE CD IALLGATHER

• Class: Run time

• Default: 1 (Set)

Enables core-direct support for non-blocking Allgather collective.

8.3.4 MV2 USE CD IALLGATHERV

• Class: Run time

• Default: 1 (Set)

Enables core-direct support for non-blocking Allgatherv collective.

8.3.5 MV2 USE CD IALLTOALL

• Class: Run time

• Default: 1 (Unset)

Enables core-direct support for non-blocking Alltoall collective.

8.3.6 MV2 USE CD IALLTOALLV

• Class: Run time

• Default: 1 (Unset)

Enables core-direct support for non-blocking Alltoallv collective.

http://mvapich.cse.ohio-state.edu/ 33

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

8.3.7 MV2 USE CD IALLTOALLW

• Class: Run time

• Default: 1 (Unset)

Enables core-direct support for non-blocking Alltoallw collective.

8.3.8 MV2 USE CD IBARRIER

• Class: Run time

• Default: 1 (Set)

Enables core-direct support for non-blocking Barrier collective.

8.3.9 MV2 USE CD IBCAST

• Class: Run time

• Default: 1 (Set)

Enables core-direct support for non-blocking Broadcast collective.

8.3.10 MV2 USE CD IGATHER

• Class: Run time

• Default: 1 (Set)

Enables core-direct support for non-blocking Gather collective.

8.3.11 MV2 USE CD IGATHERV

• Class: Run time

• Default: 1 (Set)

Enables core-direct support for non-blocking Gatherv collective.

http://mvapich.cse.ohio-state.edu/ 34

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

8.3.12 MV2 USE CD ISCATTER

• Class: Run time

• Default: 1 (Set)

Enables core-direct support for non-blocking Scatter collective.

8.3.13 MV2 USE CD ISCATTERV

• Class: Run time

• Default: 1 (Set)

Enables core-direct support for non-blocking Scatterv collective.

8.4 Runtime Parameters for On Demand Paging

MVAPICH2-X features support for the On Demand Paging (ODP) feature from Mellanox. In this section,
we specify some of the runtime parameters that control these advanced features.

8.4.1 MV2 USE ODP

• Class: Run time

• Default: 0 (Unset)

Enable the use of On-Demand Paging for inter-node communication

8.4.2 MV2 USE ODP PREFETCH

• Class: Run time

• Default: 1

Enable verbs-level prefetch operation to speed-up On-demand Paging based inter-node communication

8.5 CMA Collective Specific Runtime Parameters

MVAPICH2-X features support for contention-aware, kernel-assisted blocking collectives using Cross Mem-
ory Attach (CMA). These designs are applicable to the following interfaces: OFA-IB-CH3, OFA-IB-RoCE,
PSM-CH3, and PSM2-CH3. In this section, we specify some of the runtime parameters that control this
feature.

http://mvapich.cse.ohio-state.edu/ 35

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

8.5.1 MV2 USE CMA COLL

• Class: Run time

• Default: 1 (Set)

Enables support for CMA collectives.

8.5.2 MV2 CMA COLL THRESHOLD

• Class: Run time

• Default: Architecture Dependent

Specifies the message size above which CMA collectives are used.

8.5.3 MV2 USE CMA COLL ALLGATHER

• Class: Run time

• Default: 1 (Set)

Enables CMA collective support for Allgather.

8.5.4 MV2 USE CMA COLL ALLTOALL

• Class: Run time

• Default: 1 (Set)

Enables CMA collective support for Alltoall.

8.5.5 MV2 USE CMA COLL GATHER

• Class: Run time

• Default: 1 (Set)

Enables CMA collective support for Gather.

http://mvapich.cse.ohio-state.edu/ 36

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

8.5.6 MV2 USE CMA COLL SCATTER

• Class: Run time

• Default: 1 (Set)

Enables CMA collective support for Scatter.

8.6 UPC Runtime Parameters

8.6.1 UPC SHARED HEAP SIZE

• Class: Run time

• Default: 64M

Set UPC Shared Heap Size

8.7 OpenSHMEM Runtime Parameters

8.7.1 OOSHM USE SHARED MEM

• Class: Run time

• Default: 1

Enable/Disable shared memory scheme for intra-node communication.

8.7.2 OOSHM SYMMETRIC HEAP SIZE

• Class: Run time

• Default: 512M

Set OpenSHMEM Symmetric Heap Size

8.7.3 OSHM USE CMA

• Class: Run time

• Default: 1

Enable/Disable CMA based intra-node communication design

http://mvapich.cse.ohio-state.edu/ 37

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

8.8 OSU INAM Specific Runtime Parameters

8.8.1 MV2 TOOL INFO FILE PATH

• Class: Run time

• Default: “.mv2-tool-mvapich2.conf”

Specifies the path to the file containing the runtime parameters to enable node level, job level and pro-
cess level data collection for MVAPICH2-X. This file contains the following parameters MV2 TOOL QPN,
MV2 TOOL LID, MV2 TOOL REPORT CPU UTIL and MV2 TOOL COUNTER INTERVAL.

8.8.2 MV2 TOOL QPN

• Class: Run time

• Default: 0 (Unset)

Specifies the UD QPN at which OSU INAM is listening.

8.8.3 MV2 TOOL LID

• Class: Run time

• Default: 0 (Unset)

Specifies the IB LID at which OSU INAM is listening.

8.8.4 MV2 TOOL REPORT CPU UTIL

• Class: Run time

• Default: 1 (Set)

Specifies whether MVAPICH2-X should report process level CPU utilization information.

8.8.5 MV2 TOOL REPORT MEM UTIL

• Class: Run time

• Default: 1 (Set)

Specifies whether MVAPICH2-X should report process level memory utilization information.

http://mvapich.cse.ohio-state.edu/ 38

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

8.8.6 MV2 TOOL REPORT IO UTIL

• Class: Run time

• Default: 1 (Set)

Specifies whether MVAPICH2-X should report process level I/O utilization information.

8.8.7 MV2 TOOL REPORT COMM GRID

• Class: Run time

• Default: 1 (Set)

Specifies whether MVAPICH2-X should report process to node communication information. This parameter
only takes effect for multi-node runs.

8.8.8 MV2 TOOL COUNTER INTERVAL

• Class: Run time

• Default: 30

Specifies the interval at which MVAPICH2-X should report node, job and process level information.

8.9 Hierarchical Multi-Leader Collectives Runtime Parameters

MVAPICH2-X features support for the high-performance hierarchical multi-leader collectives designated for
multi/many-core processors with Omni-Path or Infiniband network architectures. Currently, MPI Allreduce
collective operation is supported with this feature. In this section, we specify the runtime parameter that
controls this advanced feature.

8.9.1 MV2 ENABLE DPML COLL

• Class: Run time

• Default: 1 (Set)

Enables support for hierarchical multi-leader collectives. This feature can be disabled by setting this param-
eter to 0.

http://mvapich.cse.ohio-state.edu/ 39

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

8.10 XPMEM based Point-to-point Communication Runtime Parameters

MVAPICH2-X provides support for XPMEM based intra-node communication channel to achieve direct
load/store based inter-process communication in MPI. This feature is designated for multi/many-core pro-
cessors with Infiniband network architectures and available for the OFA-IB-CH3 and OFA-RoCE-CH3 chan-
nels.. In this section, we specify the runtime parameter that controls this advanced feature.

8.10.1 MV2 SMP USE XPMEM

• Class: Run time

• Default: 1 (Set)

Enables support for XPMEM based intra-node communication. This feature can be disabled by setting this
parameter to 0.

8.11 Shared Address Space based MPI Collectives Runtime Parameters

MVAPICH2-X features support for the high-performance shared-address-space based multi-leader collec-
tives, enabled via load/store semantics, targeting modern multi/many-core processors. Currently, MPI Reduce
and MPI Allreduce operations are supported with multi-leader design while MPI Bcast, MPI Scatter, MPI Gather,
and MPI Allgather collectives are supported using heirarchical designs e.g., direct load/store for intra-node
phase and best tuned algorithm for inter-node. These are available for OFA-IB-CH3, OFA-RoCE-CH3,
PSM-CH3, and PSM2-CH3 channels. In this section, we specify the runtime parameter that controls these
advanced features.

8.11.1 MV2 USE XPMEM COLL

• Class: Run time

• Default: 1 (Set)

Enables support for shared address-space (XPMEM) based collectives. This variable enables and disables
all the XPMEM collectives. This feature can be disabled by setting this parameter to 0.

8.11.2 MV2 XPMEM COLL THRESHOLD

• Class: Run time

• Default: Architecture Specific

http://mvapich.cse.ohio-state.edu/ 40

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

This threshold sets the value in bytes after which all the XPMEM collectives are used. The threshold
values for each collective are set based on the architecture-specific tuning (typically same as eager to ren-
dezvous switchover threshold). Setting this variable will override the thresholds set for individual collectives
and use this value instead as the new threshold for all the XPMEM collectives.

8.12 Runtime Parameters for Asynchronous Communication Progress

MVAPICH2-X features support of Asynchronous Communication Progress. In this section, we specify some
of the runtime parameters that control these advanced features.

8.12.1 MV2 ASYNC PROGRESS

• Class: Run time

• Default: 0 (Unset)

Enables use of the basic asynchronous communication progress scheme.

8.12.2 MV2 OPTIMIZED ASYNC PROGRESS

• Class: Run time

• Default: 0 (Unset)

Enables use of optimized asynchronous communication progress scheme.

8.13 Runtime Parameters for Collectives with Hardware based SHArP support

MVAPICH2-X supports SHArP-based collectives for MPI applications running over OFA-IB-CH3 interface.
In this section, we specify some of the runtime parameters that control these advanced features.

8.13.1 MV2 ENABLE SHARP

• Class: Run time

• Default: 0

• Applicable interface(s): OFA-IB-CH3

Set this to 1, to enable hardware SHArP support in collective communication

http://mvapich.cse.ohio-state.edu/ 41

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

8.13.2 MV2 SHARP HCA NAME

• Class: Run time

• Default: unset

• Applicable interface(s): OFA-IB-CH3

By default, this is set by the MVAPICH2 library. However, you can explicitly set the HCA name which is
realized by the SHArP library.

8.13.3 MV2 SHARP PORT

• Class: Run time

• Default: 1

• Applicable interface(s): OFA-IB-CH3

By default, this is set by the MVAPICH2 library. However, you can explicitly set the HCA port which is
realized by the SHArP library.

http://mvapich.cse.ohio-state.edu/ 42

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

9 FAQ and Troubleshooting with MVAPICH2-X

Based on our experience and feedback we have received from our users, here we include some of the prob-
lems a user may experience and the steps to resolve them. If you are experiencing any other problem, please
feel free to contact us by sending an email to mvapich-help@cse.ohio-state.edu.

9.1 General Questions and Troubleshooting

9.1.1 Compilation Errors with upcc

Current version of upcc available with MVAPICH2-X package gives a compilation error if the gcc version
is not 4.4.7. Please install gcc version 4.4.7 to fix this.

9.1.2 Unresponsive upcc

By default, upcc compiler driver will transparently use Berkeley’s HTTP-based public UPC-to-C translator
during compilation. If your system is behind a firewall or not connected to Internet, upcc can become
unresponsive. This can be solved by using a local installation of UPC translator, which can be downloaded
from here.

The translator can be compiled and installed using the following commands:

$ make
$ make install PREFIX=<translator-install-path>

After this, upcc can be instructed to use this translator.

$ upcc -translator=<translator-install-path> hello.upc -o hello

9.1.3 Shared memory limit for OpenSHMEM / MPI+OpenSHMEM programs

By default, the symmetric heap in OpenSHMEM is allocated in shared memory. The maximum amount of
shared memory in a node is limited by the memory available in /dev/shm. Usually the default system
configuration for /dev/shm is 50% of main memory. Thus, programs which specify heap size larger than
the total available memory in /dev/shm will give an error. For example, if the shared memory limit is
8 GB, the combined symmetric heap size of all intra-node processes shall not exceed 8 GB.

Users can change the available shared memory by remounting /dev/shm with the desired limit. Alter-
natively, users can control the heap size using OOSHM SYMMETRIC HEAP SIZE (Section 8.7.2) or disable
shared memory by setting OOSHM USE SHARED MEM=0 (Section 8.7.1). Please be aware that setting a very
large shared memory limit or disabling shared memory will have a performance impact.

http://mvapich.cse.ohio-state.edu/ 43

mailto:mvapich-help@cse.ohio-state.edu
http://upc.lbl.gov/download/source.shtml#translator

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

9.1.4 Collective scratch size in UPC++

While running UPC++ collectives which require high memory footprints the users may encounter errors
stating scratch size limit reached. You can increase the scratch size by exporting following environment
variable.

export GASNET COLL SCRATCH SIZE=256M (or higher).

9.1.5 Install MVAPICH2-X to a specific location

MVAPICH2-X RPMs are relocatable. Please use the --prefix option during RPM installation for in-
stalling MVAPICH2-X into a specific location. An example is shown below:

$ rpm -Uvh --prefix <specific-location>
mvapich2-x gnu-2.2-0.3.rc2.el7.centos.x86 64.rpm
openshmem-osu gnu-2.2-0.2.rc2.el7.centos.x86 64.rpm
berkeley upc-osu gnu-2.2-0.2.rc2.el7.centos.x86 64.rpm
berkeley upcxx-osu gnu-2.2-0.1.rc2.el7.centos.x86 64.rpm
osu-micro-benchmarks gnu-5.3-1.el7.centos.x86 64.rpm

9.1.6 XPMEM based Collectives Performance Issue

Note: XPMEM has a known issue where a memory region that is attached using XPMEM, can not be
registered with InfiniBand device. In some cases, if severe performance degradation is observed when using
XPMEM based collectives, additionally setting following two parameters can circumvent the performance
degradation.

MV2 IBA EAGER THRESHOLD=262144 MV2 VBUF TOTAL SIZE=262144

http://mvapich.cse.ohio-state.edu/ 44

	Overview of the MVAPICH2-X Project
	Features
	Download and Installation Instructions
	Example downloading and installing MOFED4.7 package
	About installation
	Installing with local Berkeley UPC translator support
	Installing CAF with OpenUH Compiler

	Installation with Spack
	Install Spack and setup the environment
	Install XPMEM (If required)
	Install MVAPICH2-X
	Example: How to Run OSU Micro-benchmarks

	Basic Usage Instructions
	Compile Applications
	Compile using mpicc for MPI or MPI+OpenMP Applications
	Compile using oshcc for OpenSHMEM or MPI+OpenSHMEM applications
	Compile using upcc for UPC or MPI+UPC applications
	Compile using uhcaf for CAF and MPI+CAF applications
	Compile using upc++ for UPC++ or MPI+UPC++ applications

	Run Applications
	Run using mpirun_rsh
	Run using oshrun
	Run using upcrun
	Run using cafrun
	Running UPC++ applications using mpirun_rsh
	Run using Hydra (mpiexec)

	Advanced MPI Usage Instructions
	Support for User Mode Memory Registration (UMR)
	Support for Dynamic Connected Transport
	Support for Core-Direct Based Non-Blocking Collectives
	Support for OSU InfiniBand Network Analysis and Monitoring (OSU INAM) Tool
	Support for Shared Address Space based MPI Communication Using XPMEM
	Support for Efficient Asynchronous Communication Progress
	Running Collectives with Hardware based SHArP support

	Hybrid (MPI+PGAS) Applications
	MPI+OpenSHMEM Example
	MPI+UPC Example
	MPI+UPC++ Example

	OSU PGAS Benchmarks
	OSU OpenSHMEM Benchmarks
	OSU UPC Benchmarks
	OSU UPC++ Benchmarks

	Runtime Parameters
	Runtime Parameters for Dynamic Connected Transport
	MV2_USE_DC
	MV2_DC_KEY
	MV2_NUM_DC_TGT
	MV2_SMALL_MSG_DC_POOL
	MV2_LARGE_MSG_DC_POOL

	Runtime Parameters for User Mode Memory Registration
	MV2_USE_UMR
	MV2_NUM_UMRS

	Core-Direct Specific Runtime Parameters
	MV2_USE_CORE_DIRECT
	MV2_USE_CORE_DIRECT_TUNING
	MV2_USE_CD_IALLGATHER
	MV2_USE_CD_IALLGATHERV
	MV2_USE_CD_IALLTOALL
	MV2_USE_CD_IALLTOALLV
	MV2_USE_CD_IALLTOALLW
	MV2_USE_CD_IBARRIER
	MV2_USE_CD_IBCAST
	MV2_USE_CD_IGATHER
	MV2_USE_CD_IGATHERV
	MV2_USE_CD_ISCATTER
	MV2_USE_CD_ISCATTERV

	Runtime Parameters for On Demand Paging
	MV2_USE_ODP
	MV2_USE_ODP_PREFETCH

	CMA Collective Specific Runtime Parameters
	MV2_USE_CMA_COLL
	MV2_CMA_COLL_THRESHOLD
	MV2_USE_CMA_COLL_ALLGATHER
	MV2_USE_CMA_COLL_ALLTOALL
	MV2_USE_CMA_COLL_GATHER
	MV2_USE_CMA_COLL_SCATTER

	UPC Runtime Parameters
	UPC_SHARED_HEAP_SIZE

	OpenSHMEM Runtime Parameters
	OOSHM_USE_SHARED_MEM
	OOSHM_SYMMETRIC_HEAP_SIZE
	OSHM_USE_CMA

	OSU INAM Specific Runtime Parameters
	MV2_TOOL_INFO_FILE_PATH
	MV2_TOOL_QPN
	MV2_TOOL_LID
	MV2_TOOL_REPORT_CPU_UTIL
	MV2_TOOL_REPORT_MEM_UTIL
	MV2_TOOL_REPORT_IO_UTIL
	MV2_TOOL_REPORT_COMM_GRID
	MV2_TOOL_COUNTER_INTERVAL

	Hierarchical Multi-Leader Collectives Runtime Parameters
	MV2_ENABLE_DPML_COLL

	XPMEM based Point-to-point Communication Runtime Parameters
	MV2_SMP_USE_XPMEM

	Shared Address Space based MPI Collectives Runtime Parameters
	MV2_USE_XPMEM_COLL
	MV2_XPMEM_COLL_THRESHOLD

	Runtime Parameters for Asynchronous Communication Progress
	MV2_ASYNC_PROGRESS
	MV2_OPTIMIZED_ASYNC_PROGRESS

	Runtime Parameters for Collectives with Hardware based SHArP support
	MV2_ENABLE_SHARP
	MV2_SHARP_HCA_NAME
	MV2_SHARP_PORT

	FAQ and Troubleshooting with MVAPICH2-X
	General Questions and Troubleshooting
	Compilation Errors with upcc
	Unresponsive upcc
	Shared memory limit for OpenSHMEM / MPI+OpenSHMEM programs
	Collective scratch size in UPC++
	Install MVAPICH2-X to a specific location
	XPMEM based Collectives Performance Issue

