
MVAPICH2 2.2 User Guide

MVAPICH TEAM

NETWORK-BASED COMPUTING LABORATORY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

THE OHIO STATE UNIVERSITY

http://mvapich.cse.ohio-state.edu

Copyright (c) 2001-2016
Network-Based Computing Laboratory,

headed by Dr. D. K. Panda.
All rights reserved.

Last revised: February 20, 2017

http://mvapich.cse.ohio-state.edu

Contents

1 Overview of the MVAPICH Project 1

2 How to use this User Guide? 1

3 MVAPICH2 2.2 Features 2

4 Installation Instructions 13
4.1 Building from a tarball . 13
4.2 Obtaining and Building the Source from SVN repository 13
4.3 Selecting a Process Manager . 14

4.3.1 Customizing Commands Used by mpirun rsh . 15
4.3.2 Using SLURM . 15
4.3.3 Using SLURM with support for PMI Extensions 15

4.4 Configuring a build for OFA-IB-CH3/OFA-iWARP-CH3/OFA-RoCE-CH3 16
4.5 Configuring a build for NVIDIA GPU with OFA-IB-CH3 19
4.6 Configuring a build for Shared-Memory-CH3 . 20
4.7 Configuring a build for OFA-IB-Nemesis . 20
4.8 Configuring a build for Intel TrueScale (PSM-CH3) . 21
4.9 Configuring a build for Intel Omni-Path (PSM2-CH3) . 22
4.10 Configuring a build for TCP/IP-Nemesis . 23
4.11 Configuring a build for TCP/IP-CH3 . 24
4.12 Configuring a build for OFA-IB-Nemesis and TCP/IP Nemesis (unified binary) 24
4.13 Configuring a build for Shared-Memory-Nemesis . 25

5 Basic Usage Instructions 26
5.1 Compile Applications . 26
5.2 Run Applications . 26

5.2.1 Run using mpirun rsh . 26
5.2.2 Run using Hydra (mpiexec) . 28
5.2.3 Run using SLURM . 29
5.2.4 Run on PBS/Torque Clusters . 29
5.2.5 Run with Dynamic Process Management support 30
5.2.6 Run with mpirun rsh using OFA-iWARP Interface 30
5.2.7 Run with mpirun rsh using OFA-RoCE Interface 30
5.2.8 Run using IPoIB with mpirun rsh or mpiexec . 31
5.2.9 Run using ADIO driver for Lustre . 32
5.2.10 Run using TotalView Debugger Support . 32
5.2.11 Run using a profiling library . 33

6 Advanced Usage Instructions 34
6.1 Running on Customized Environments . 34
6.2 Export Environment . 34

6.2.1 Sample Use . 34
6.3 Configuration File Processing . 35

6.3.1 Sample Use . 35

i

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

6.4 Suspend/Resume Support . 36
6.5 Running with Efficient CPU (Core) Mapping . 36

6.5.1 Using HWLOC for CPU Mapping . 36
6.5.2 User defined CPU Mapping . 38
6.5.3 Performance Impact of CPU Mapping . 39

6.6 Running with LiMIC2 . 40
6.7 Running with Shared Memory Collectives . 41
6.8 Running Collectives with Hardware based Multicast support 41
6.9 Running MPI Gather collective with intra-node Zero-Copy designs (using LiMIC2) 42
6.10 Running with scalable UD transport . 42
6.11 Running with Integrated Hybrid UD-RC/XRC design . 42
6.12 Running with Multiple-Rail Configurations . 42
6.13 Enhanced design for Multiple-Rail Configurations . 44
6.14 Running with Fault-Tolerance Support . 45

6.14.1 System-Level Checkpoint/Restart . 45
6.14.2 Multi-Level Checkpointing with Scalable Checkpoint-Restart (SCR) 49
6.14.3 Job Pause-Migration-Restart Support . 52
6.14.4 Run-Through Stabilization . 53
6.14.5 Network Fault Tolerance with Automatic Path Migration 53

6.15 Running with RDMA CM support . 54
6.16 Running MVAPICH2 in Multi-threaded Environments 54
6.17 Compiler Specific Flags to enable OpenMP thread binding 54
6.18 Optimizations Specific to Intel Knight’s Landing (KNL) Processors 55
6.19 Running with Hot-Spot and Congestion Avoidance . 55
6.20 Running on Clusters with NVIDIA GPU Accelerators . 56
6.21 MPIRUN RSH compatibility with MPIEXEC . 57

6.21.1 Interaction with SLURM . 57
6.21.2 Interaction with PBS . 58

6.22 Running with Intel Trace Analyzer and Collector . 58
6.23 Running with MCDRAM support on Intel Knight’s Landing (KNL) processor 59

7 OSU Benchmarks 61
7.1 Download and Build Stand-alone OSU Benchmarks Package 63
7.2 Running . 63

7.2.1 Running OSU Latency and Bandwidth . 63
7.2.2 Running OSU Message Rate Benchmark . 64
7.2.3 Running OSU Collective Benchmarks . 64
7.2.4 Running Benchmarks with CUDA/OpenACC Extensions 65

8 Scalability features and Performance Tuning for Large Scale Clusters 67
8.1 Optimizations for homogeneous clusters . 67
8.2 Improving Job startup performance . 67

8.2.1 Configuration Options (Launcher-Agnostic) . 67
8.2.2 Runtime Parameters (Launcher-Agnostic) . 67
8.2.3 Enabling Optimizations Specific to mpirun rsh . 68
8.2.4 Enabling Optimizations Specific to SLURM . 68

http://mvapich.cse.ohio-state.edu/ ii

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

8.3 Basic QP Resource Tuning . 68
8.4 RDMA Based Point-to-Point Tuning . 69
8.5 Shared Receive Queue (SRQ) Tuning . 69
8.6 eXtended Reliable Connection (XRC) . 69
8.7 Shared Memory Tuning . 70
8.8 On-demand Connection Management Tuning . 70
8.9 Scalable Collectives Tuning . 70

8.9.1 Optimizations for MPI Bcast . 71
8.9.2 Optimizations for MPI Reduce and MPI Allreduce 71
8.9.3 Optimizations for MPI Gather and MPI Scatter . 71

8.10 Process Placement on Multi-core platforms . 72
8.11 HugePage Support . 72

9 FAQ and Troubleshooting with MVAPICH2 73
9.1 General Questions and Troubleshooting . 73

9.1.1 Issues with MVAPICH2 and Python based MPI programs 73
9.1.2 Issues with MVAPICH2 and Google TCMalloc . 73
9.1.3 Impact of disabling memory registration cache on application performance 74
9.1.4 MVAPICH2 failed to register memory with InfiniBand HCA 74
9.1.5 Invalid Communicators Error . 74
9.1.6 Are fork() and system() supported? . 75
9.1.7 MPI+OpenMP shows bad performance . 75
9.1.8 Error message “No such file or directory” when using Lustre file system 75
9.1.9 Program segfaults with “File locking failed in ADIOI Set lock” 75
9.1.10 Running MPI programs built with gfortran . 75
9.1.11 How do I obtain MVAPICH2 version and configuration information? 76
9.1.12 How do I compile my MPI application with static libraries, and not use shared libraries? 76
9.1.13 Does MVAPICH2 work across AMD and Intel systems? 76
9.1.14 I want to enable debugging for my build. How do I do this? 76
9.1.15 How can I run my application with a different group ID? 77

9.2 Issues and Failures with Job launchers . 77
9.2.1 /usr/bin/env: mpispawn: No such file or directory 77
9.2.2 TotalView complains that “The MPI library contains no suitable type definition for

struct MPIR PROCDESC” . 77
9.3 Problems Building MVAPICH2 . 77

9.3.1 Unable to convert MPI SIZEOF AINT to a hex string 77
9.3.2 Cannot Build with the PathScale Compiler . 78
9.3.3 nvlink fatal : Unsupported file type ’../lib/.libs/libmpich.so’ 78
9.3.4 Libtool has a problem linking with non-GNU compiler (like PGI) 78

9.4 With OFA-IB-CH3 Interface . 78
9.4.1 Cannot Open HCA . 78
9.4.2 Checking state of IB Link . 79
9.4.3 Creation of CQ or QP failure . 79
9.4.4 Hang with the HSAM Functionality . 79
9.4.5 Failure with Automatic Path Migration . 79
9.4.6 Error opening file . 80

http://mvapich.cse.ohio-state.edu/ iii

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

9.4.7 RDMA CM Address error . 80
9.4.8 RDMA CM Route error . 80

9.5 With OFA-iWARP-CH3 Interface . 80
9.5.1 Error opening file . 80
9.5.2 RDMA CM Address error . 80
9.5.3 RDMA CM Route error . 80

9.6 Checkpoint/Restart . 80
9.6.1 Failure during Restart . 80

10 MVAPICH2 General Parameters 82
10.1 MV2 IGNORE SYSTEM CONFIG . 82
10.2 MV2 IGNORE USER CONFIG . 82
10.3 MV2 USER CONFIG . 82
10.4 MV2 DEBUG CORESIZE . 82
10.5 MV2 DEBUG SHOW BACKTRACE . 83
10.6 MV2 SHOW ENV INFO . 83
10.7 MV2 SHOW CPU BINDING . 83

11 MVAPICH2 Parameters (CH3-Based Interfaces) 84
11.1 MV2 ALLREDUCE 2LEVEL MSG . 84
11.2 MV2 CKPT AGGREGATION BUFPOOL SIZE . 84
11.3 MV2 CKPT AGGREGATION CHUNK SIZE . 84
11.4 MV2 CKPT FILE . 84
11.5 MV2 CKPT INTERVAL . 85
11.6 MV2 CKPT MAX SAVE CKPTS . 85
11.7 MV2 CKPT NO SYNC . 85
11.8 MV2 CKPT USE AGGREGATION . 86
11.9 MV2 DEBUG FT VERBOSE . 86
11.10 MV2 CM RECV BUFFERS . 86
11.11 MV2 CM SPIN COUNT . 86
11.12 MV2 CM TIMEOUT . 87
11.13 MV2 CPU MAPPING . 87
11.14 MV2 CPU BINDING POLICY . 87
11.15 MV2 CPU BINDING LEVEL . 88
11.16 MV2 SHOW CPU BINDING . 88
11.17 MV2 DEFAULT MAX SEND WQE . 88
11.18 MV2 DEFAULT MAX RECV WQE . 88
11.19 MV2 DEFAULT MTU . 89
11.20 MV2 DEFAULT PKEY . 89
11.21 MV2 ENABLE AFFINITY . 89
11.22 MV2 GET FALLBACK THRESHOLD . 89
11.23 MV2 IBA EAGER THRESHOLD . 90
11.24 MV2 IBA HCA . 90
11.25 MV2 INITIAL PREPOST DEPTH . 90
11.26 MV2 IWARP MULTIPLE CQ THRESHOLD . 90
11.27 MV2 KNOMIAL INTRA NODE FACTOR . 91

http://mvapich.cse.ohio-state.edu/ iv

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

11.28 MV2 KNOMIAL INTER NODE FACTOR . 91
11.29 MV2 MAX INLINE SIZE . 91
11.30 MV2 MAX NUM WIN . 91
11.31 MV2 NDREG ENTRIES . 92
11.32 MV2 NUM HCAS . 92
11.33 MV2 NUM PORTS . 92
11.34 MV2 DEFAULT PORT . 92
11.35 MV2 NUM SA QUERY RETRIES . 93
11.36 MV2 NUM QP PER PORT . 93
11.37 MV2 RAIL SHARING POLICY . 93
11.38 MV2 RAIL SHARING LARGE MSG THRESHOLD 93
11.39 MV2 PROCESS TO RAIL MAPPING . 94
11.40 MV2 RDMA FAST PATH BUF SIZE . 94
11.41 MV2 NUM RDMA BUFFER . 94
11.42 MV2 ON DEMAND THRESHOLD . 94
11.43 MV2 HOMOGENEOUS CLUSTER . 95
11.44 MV2 PREPOST DEPTH . 95
11.45 MV2 PROCESS TO RAIL MAPPING . 95
11.46 MV2 PSM DEBUG . 95
11.47 MV2 PSM DUMP FREQUENCY . 96
11.48 MV2 PUT FALLBACK THRESHOLD . 96
11.49 MV2 RAIL SHARING LARGE MSG THRESHOLD 96
11.50 MV2 RAIL SHARING POLICY . 96
11.51 MV2 RDMA CM ARP TIMEOUT . 97
11.52 MV2 RDMA CM MAX PORT . 97
11.53 MV2 RDMA CM MIN PORT . 97
11.54 MV2 REDUCE 2LEVEL MSG . 97
11.55 MV2 RNDV PROTOCOL . 98
11.56 MV2 R3 THRESHOLD . 98
11.57 MV2 R3 NOCACHE THRESHOLD . 98
11.58 MV2 SHMEM ALLREDUCE MSG . 98
11.59 MV2 SHMEM BCAST LEADERS . 99
11.60 MV2 SHMEM BCAST MSG . 99
11.61 MV2 SHMEM COLL MAX MSG SIZE . 99
11.62 MV2 SHMEM COLL NUM COMM . 99
11.63 MV2 SHMEM DIR . 99
11.64 MV2 SHMEM REDUCE MSG . 100
11.65 MV2 SM SCHEDULING . 100
11.66 MV2 SMP USE LIMIC2 . 100
11.67 MV2 SMP USE CMA . 100
11.68 MV2 SRQ LIMIT . 101
11.69 MV2 SRQ MAX SIZE . 101
11.70 MV2 SRQ SIZE . 101
11.71 MV2 STRIPING THRESHOLD . 101
11.72 MV2 SUPPORT DPM . 102
11.73 MV2 USE APM . 102

http://mvapich.cse.ohio-state.edu/ v

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

11.74 MV2 USE APM TEST . 102
11.75 MV2 USE BLOCKING . 102
11.76 MV2 USE COALESCE . 103
11.77 MV2 USE DIRECT GATHER . 103
11.78 MV2 USE DIRECT SCATTER . 103
11.79 MV2 USE HSAM . 103
11.80 MV2 USE IWARP MODE . 104
11.81 MV2 USE LAZY MEM UNREGISTER . 104
11.82 MV2 USE RoCE . 104
11.83 MV2 DEFAULT GID INDEX . 104
11.84 MV2 USE RDMA CM . 105
11.85 MV2 RDMA CM CONF FILE PATH . 105
11.86 MV2 USE RDMA FAST PATH . 105
11.87 MV2 USE RDMA ONE SIDED . 105
11.88 MV2 USE RING STARTUP . 106
11.89 MV2 USE SHARED MEM . 106
11.90 MV2 USE SHMEM ALLREDUCE . 106
11.91 MV2 USE SHMEM BARRIER . 106
11.92 MV2 USE SHMEM BCAST . 106
11.93 MV2 USE SHMEM COLL . 107
11.94 MV2 USE SHMEM REDUCE . 107
11.95 MV2 USE SRQ . 107
11.96 MV2 GATHER SWITCH PT . 107
11.97 MV2 SCATTER SMALL MSG . 108
11.98 MV2 SCATTER MEDIUM MSG . 108
11.99 MV2 USE TWO LEVEL GATHER . 108
11.100 MV2 USE TWO LEVEL SCATTER . 108
11.101 MV2 USE XRC . 109
11.102 MV2 VBUF POOL SIZE . 109
11.103 MV2 VBUF SECONDARY POOL SIZE . 109
11.104 MV2 VBUF TOTAL SIZE . 109
11.105 MV2 SMP EAGERSIZE . 110
11.106 MV2 SMPI LENGTH QUEUE . 110
11.107 MV2 SMP NUM SEND BUFFER . 110
11.108 MV2 SMP SEND BUF SIZE . 110
11.109 MV2 USE HUGEPAGES . 111
11.110 MV2 HYBRID ENABLE THRESHOLD . 111
11.111 MV2 HYBRID MAX RC CONN . 111
11.112 MV2 UD PROGRESS TIMEOUT . 111
11.113 MV2 UD RETRY TIMEOUT . 112
11.114 MV2 UD RETRY COUNT . 112
11.115 MV2 USE UD HYBRID . 112
11.116 MV2 USE ONLY UD . 112
11.117 MV2 USE UD ZCOPY . 113
11.118 MV2 USE LIMIC GATHER . 113
11.119 MV2 USE MCAST . 113

http://mvapich.cse.ohio-state.edu/ vi

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

11.120 MV2 MCAST NUM NODES THRESHOLD . 113
11.121 MV2 USE CUDA . 114
11.122 MV2 CUDA BLOCK SIZE . 114
11.123 MV2 CUDA KERNEL VECTOR TIDBLK SIZE . 114
11.124 MV2 CUDA KERNEL VECTOR YSIZE . 114
11.125 MV2 CUDA NONBLOCKING STREAMS . 115
11.126 MV2 CUDA IPC . 115
11.127 MV2 CUDA SMP IPC . 115

12 MVAPICH2 Parameters (OFA-IB-Nemesis Interface) 116
12.1 MV2 DEFAULT MAX SEND WQE . 116
12.2 MV2 DEFAULT MAX RECV WQE . 116
12.3 MV2 DEFAULT MTU . 116
12.4 MV2 DEFAULT PKEY . 116
12.5 MV2 IBA EAGER THRESHOLD . 116
12.6 MV2 IBA HCA . 117
12.7 MV2 INITIAL PREPOST DEPTH . 117
12.8 MV2 MAX INLINE SIZE . 117
12.9 MV2 NDREG ENTRIES . 117
12.10 MV2 NUM RDMA BUFFER . 117
12.11 MV2 NUM SA QUERY RETRIES . 118
12.12 MV2 PREPOST DEPTH . 118
12.13 MV2 RNDV PROTOCOL . 118
12.14 MV2 R3 THRESHOLD . 118
12.15 MV2 R3 NOCACHE THRESHOLD . 119
12.16 MV2 SRQ LIMIT . 119
12.17 MV2 SRQ SIZE . 119
12.18 MV2 STRIPING THRESHOLD . 119
12.19 MV2 USE BLOCKING . 119
12.20 MV2 USE LAZY MEM UNREGISTER . 120
12.21 MV2 USE RDMA FAST PATH . 120
12.22 MV2 USE SRQ . 120
12.23 MV2 VBUF POOL SIZE . 120
12.24 MV2 VBUF SECONDARY POOL SIZE . 120
12.25 MV2 VBUF TOTAL SIZE . 121
12.26 MV2 RUN THROUGH STABILIZATION . 121

13 MPIRUN RSH Parameters 122
13.1 MV2 COMM WORLD LOCAL RANK . 122
13.2 MV2 COMM WORLD LOCAL SIZE . 122
13.3 MV2 COMM WORLD RANK . 122
13.4 MV2 COMM WORLD SIZE . 122
13.5 MV2 FASTSSH THRESHOLD . 122
13.6 MV2 NPROCS THRESHOLD . 123
13.7 MV2 MPIRUN TIMEOUT . 123
13.8 MV2 MT DEGREE . 123

http://mvapich.cse.ohio-state.edu/ vii

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

13.9 MPIEXEC TIMEOUT . 123
13.10 MV2 DEBUG FORK VERBOSE . 124

http://mvapich.cse.ohio-state.edu/ viii

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

1 Overview of the MVAPICH Project

InfiniBand, Omni-Path, Ethernet/iWARP and RDMA over Converged Ethernet (RoCE) are emerging as high-
performance networking technologies to deliver low latency and high bandwidth. They are also achieving
widespread acceptance due to their open standards.

MVAPICH (pronounced as “em-vah-pich”) is an open-source MPI software to exploit the novel features
and mechanisms of these networking technologies and deliver best performance and scalability to MPI ap-
plications. This software is developed in the Network-Based Computing Laboratory (NBCL), headed by
Prof. Dhabaleswar K. (DK) Panda.

The MVAPICH2 MPI library supports MPI-3 semantics. This open-source MPI software project started
in 2001 and a first high-performance implementation was demonstrated at SuperComputing ’02 conference.
After that, this software has been steadily gaining acceptance in the HPC, InfiniBand, Omni-Path, Ether-
net/iWARP and RoCE communities. As of September 8, 2016, more than 2,650 organizations (National
Labs, Universities and Industry) world-wide (in 81 countries) have registered as MVAPICH users at MVA-
PICH project web site. There have also been more than 387,000 (0.38 million) downloads of this software
from the MVAPICH project site directly. In addition, many InfiniBand, Omni-Path, Ethernet/iWARP and
RoCE vendors, server vendors, systems integrators and Linux distributors have been incorporating MVA-
PICH2 into their software stacks and distributing it. MVAPICH2 distribution is available under BSD licens-
ing.

Several InfiniBand systems using MVAPICH2 have obtained positions in the TOP 500 ranking. The
June ’16 list includes the following systems: 12th ranked Stampede system at TACC with 519,640-cores,
15th ranked Pleiades system at NASA with 185,344 cores, and 31st ranked Tsubame 2.5 system at Tokyo
Institute of Technology with 74,520 cores.

More details on MVAPICH software, users list, mailing lists, sample performance numbers on a wide
range of platforms and interconnects, a set of OSU benchmarks, related publications, and other InfiniBand-
and iWARP-related projects (parallel file systems, storage, data centers) can be obtained from our web-
site:http://mvapich.cse.ohio-state.edu.

This document contains necessary information for MVAPICH2 users to download, install, test, use, tune
and troubleshoot MVAPICH2 2.2. We continuously fix bugs and update update this document as per user
feedback. Therefore, we strongly encourage you to refer to our web page for updates.

2 How to use this User Guide?

This guide is designed to take the user through all the steps involved in configuring, installing, running and
tuning MPI applications over InfiniBand using MVAPICH2 2.2.

In Section 3 we describe all the features in MVAPICH2 2.2. As you read through this section, please
note our new features (highlighted as NEW) compared to version 2.1. Some of these features are designed
in order to optimize specific type of MPI applications and achieve greater scalability. Section 4 describes in
detail the configuration and installation steps. This section enables the user to identify specific compilation
flags which can be used to turn some of the features on or off. Basic usage of MVAPICH2 is explained
in Section 5. Section 6 provides instructions for running MVAPICH2 with some of the advanced features.

http://mvapich.cse.ohio-state.edu/ 1

http://nowlab.cse.ohio-state.edu
http://www.cse.ohio-state.edu/~panda
http://mvapich.cse.ohio-state.edu

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

Section 7 describes the usage of the OSU Benchmarks. In Section 8 we suggest some tuning techniques for
multi-thousand node clusters using some of our new features. If you have any problems using MVAPICH2,
please check Section 9 where we list some of the common problems people face. Finally, in Sections 11 and
12, we list all important run time parameters, their default values and a short description.

3 MVAPICH2 2.2 Features

MVAPICH2 (MPI-3 over InfiniBand) is an MPI-3 implementation based on MPICH ADI3 layer. MVA-
PICH2 2.2 is available as a single integrated package (with MPICH 3.1.4). The current release supports ten
different underlying transport interfaces, as shown in Figure 1.

Figure 1: Overview of different available interfaces of the MVAPICH2 library

• OFA-IB-CH3: This interface supports all InfiniBand compliant devices based on the OpenFabrics
layer. This interface has the most features and is most widely used. For example, this interface can be
used over all Mellanox InfiniBand adapters, IBM eHCA adapters and TrueScale adapters.

• OFA-IB-Nemesis: This interface supports all InfiniBand compliant devices based on the OpenFabrics
layer with the emerging Nemesis channel of the MPICH stack. This interface can be used by all
Mellanox InfiniBand adapters.

• OFA-iWARP-CH3: This interface supports all iWARP compliant devices supported by OpenFabrics.
For example, this layer supports Chelsio T3 adapters with the native iWARP mode.

• OFA-RoCE-CH3: This interface supports the emerging RoCE (RDMA over Converged Ethernet)
interface for Mellanox ConnectX-EN adapters with 10/40GigE switches. It provides support for RoCE
v1 and v2.

• TrueScale (PSM-CH3): This interface provides native support for TrueScale adapters from Intel over
PSM interface. It provides high-performance point-to-point communication for both one-sided and
two-sided operations.

• Omni-Path (PSM2-CH3): This interface provides native support for Omni-Path adapters from Intel
over PSM2 interface. It provides high-performance point-to-point communication for both one-sided
and two-sided operations.

http://mvapich.cse.ohio-state.edu/ 2

http://www.mpich.org/
http://www.openfabrics.org

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

• Shared-Memory-CH3: This interface provides native shared memory support on multi-core platforms
where communication is required only within a node. Such as SMP-only systems, laptops, etc.

• TCP/IP-CH3: The standard TCP/IP interface (provided by MPICH) to work with a range of network
adapters supporting TCP/IP interface. This interface can be used with IPoIB (TCP/IP over InfiniBand
network) support of InfiniBand also. However, it will not deliver good performance/scalability as
compared to the other interfaces.

• TCP/IP-Nemesis: The standard TCP/IP interface (provided by MPICH Nemesis channel) to work
with a range of network adapters supporting TCP/IP interface. This interface can be used with IPoIB
(TCP/IP over InfiniBand network) support of InfiniBand also. However, it will not deliver good per-
formance/scalability as compared to the other interfaces.

• Shared-Memory-Nemesis: This interface provides native shared memory support on multi-core plat-
forms where communication is required only within a node. Such as SMP-only systems, laptops,
etc.

MVAPICH2 2.2 is compliant with MPI 3 standard. In addition, MVAPICH2 2.2 provides support and op-
timizations for NVIDIA GPU, multi-threading and fault-tolerance (Checkpoint-restart, Job-pause-migration-
resume). A complete set of features of MVAPICH2 2.2 are indicated below. New features compared to 2.1
are indicated as (NEW).

• Based on MPICH-3.1.4

• MPI-3 standard compliance

– Nonblocking collectives

– Neighborhood collectives

– MPI Comm split type support

– Support for MPI Type create hindexed block

– Nonblocking communicator duplication routine MPI Comm idup (will only work for single-
threaded programs)

– MPI Comm create group support

– Support for matched probe functionality

– Support for ”Const” (disabled by default)

• CH3-level design for scaling to multi-thousand cores with highest performance and reduced memory
usage.

– (NEW) Support for MPI-3 RMA in OFA-IB-CH3, OFA-IWARP-CH3, OFA-RoCE-CH3, TrueScale
(PSM-CH3) and Omni-Path (PSM2-CH3)

– (NEW) Support for Omni-Path architecture

∗ (NEW) Introduction of a new PSM2-CH3 channel for Omni-Path

– (NEW) Support for OpenPower architecture

– (NEW) Support for Intel Knights Landing architecture

http://mvapich.cse.ohio-state.edu/ 3

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

∗ (NEW) Optimized inter-node and intra-node communication

– Exposing several performance and control variables to MPI-3 Tools information interface (MPIT)

∗ (NEW) Enhanced PVAR support

– (NEW) Enable support for multiple MPI initializations

– (NEW) Enhanced performance for small messages

– Flexibility to use internal communication buffers of different size

– (NEW) Enhanced performance for MPI Comm split through new bitonic algorithm

– (NEW) Tuning internal communication buffer size for performance

– Improve communication performance by removing locks from critical path

– Enhanced communication performance for small/medium message sizes

– Reduced memory footprint

– Multi-rail support for UD-Hybrid channel

– Support for InfiniBand hardware UD-Multicast based collectives

– HugePage support

– Integrated Hybrid (UD-RC/XRC) design to get best performance on large-scale systems with
reduced/constant memory footprint

– Support for running with UD only mode

– Support for MPI-2 Dynamic Process Management on InfiniBand Clusters

– eXtended Reliable Connection (XRC) support

∗ Enable XRC by default at configure time

– Multiple CQ-based design for Chelsio 10GigE/iWARP

– Multi-port support for Chelsio 10GigE/iWARP

– Enhanced iWARP design for scalability to higher process count

– Support iWARP interoperability between Intel NE020 and Chelsio T4 adapters

– Support for 3D torus topology with appropriate SL settings

– Quality of Service (QoS) support with multiple InfiniBand SL

– (NEW) Enabling support for intra-node communications in RoCE mode without shared memory

– On-demand Connection Management: This feature enables InfiniBand connections to be setup
dynamically, enhancing the scalability of MVAPICH2 on clusters of thousands of nodes.

∗ (NEW) Support for backing on-demand UD CM information with shared memory for min-
imizing memory footprint
∗ Improved on-demand InfiniBand connection setup
∗ On-demand connection management support with IB CM (RoCE Interface)
∗ Native InfiniBand Unreliable Datagram (UD) based asynchronous connection management

for OpenFabrics-IB interface.
∗ RDMA CM based on-demand connection management for OpenFabrics-IB and OpenFabrics-

iWARP interfaces.

http://mvapich.cse.ohio-state.edu/ 4

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

– Message coalescing support to enable reduction of per Queue-pair send queues for reduction
in memory requirement on large scale clusters. This design also increases the small message
messaging rate significantly. Available for OFA-IB-CH3 interface.

– RDMA Read utilized for increased overlap of computation and communication for OpenFabrics
device. Available for OFA-IB-CH3 and OFA-IB-iWARP-CH3 interfaces.

– Shared Receive Queue (SRQ) with flow control. This design uses significantly less memory for
MPI library. Available for OFA-IB-CH3 interface.

– Adaptive RDMA Fast Path with Polling Set for low-latency messaging. Available for OFA-IB-
CH3 and OFA-iWARP-CH3 interfaces.

– Header caching for low-latency

– CH3 shared memory channel for standalone hosts (including SMP-only systems and laptops)
without any InfiniBand adapters

– (NEW) Unify process affinity support in OFA-IB-CH3, PSM-CH3 and PSM2-CH3 channels

– (NEW) Support to enable affinity with asynchronous progress thread

– (NEW) Allow processes to request MPI THREAD MULTIPLE when socket or NUMA node
level affinity is specified

– (NEW) Reorganized HCA-aware process mapping

– (NEW) Dynamic identification of maximum read/atomic operations supported by HCA

– Enhanced scalability for RDMA-based direct one-sided communication with less communica-
tion resource. Available for OFA-IB-CH3 and OFA-iWARP-CH3 interfaces.

– Removed libibumad dependency for building the library

– Option to disable signal handler setup

– Tuned thresholds for various architectures

– Option for selecting non-default gid-index in a loss-less fabric setup in RoCE mode

– Option to use IP address as a fallback if hostname cannot be resolved

– Improved job startup time

– Enhanced startup time for UD-Hybrid channel

– Provided a new runtime variable MV2 HOMOGENEOUS CLUSTER for optimized startup on
homogeneous clusters

– Improved debug messages and error reporting

– Supporting large data transfers (>2GB)

• Support for MPI communication from NVIDIA GPU device memory

– Support for MPI Scan and MPI Exscan collective operations from GPU buffers

– Multi-rail support for GPU communication

– Support for non-blocking streams in asynchronous CUDA transfers for better overlap

– Dynamic CUDA initialization. Support GPU device selection after MPI Init

– Support for running on heterogeneous clusters with GPU and non-GPU nodes

http://mvapich.cse.ohio-state.edu/ 5

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

– Tunable CUDA kernels for vector datatype processing for GPU communication

– Optimized sub-array data-type processing for GPU-to-GPU communication

– Added options to specify CUDA library paths

– Efficient vector, hindexed datatype processing on GPU buffers

– Tuned MPI performance on Kepler GPUs

– Improved intra-node communication with GPU buffers using pipelined design

– Improved inter-node communication with GPU buffers with non-blocking CUDA copies

– Improved small message communication performance with CUDA IPC design

– Improved automatic GPU device selection and CUDA context management

– Optimal communication channel selection for different GPU communication modes (DD, HH
and HD) in different configurations (intra-IOH a and inter-IOH)

– Provided option to use CUDA library call instead of CUDA driver to check buffer pointer type

– High performance RDMA-based inter-node point-to-point communication (GPU-GPU, GPU-
Host and Host-GPU)

– High performance intra-node point-to-point communication for multi-GPU adapters/node (GPU-
GPU, GPU-Host and Host-GPU)

– Enhanced designs for Alltoall and Allgather collective communication from GPU device buffers

– Optimized and tuned support for collective communication from GPU buffers

– Non-contiguous datatype support in point-to-point and collective communication from GPU
buffers

– (NEW) Updated to sm 20 kernel optimizations for MPI Datatypes

– Taking advantage of CUDA IPC (available in CUDA 4.1) in intra-node communication for mul-
tiple GPU adapters/node

– Efficient synchronization mechanism using CUDA Events for pipelined device data transfers

• OFA-IB-Nemesis interface design

– OpenFabrics InfiniBand network module support for MPICH Nemesis modular design

– Optimized adaptive RDMA fast path with Polling Set for high-performance inter-node commu-
nication

– Shared Receive Queue (SRQ) support with flow control, uses significantly less memory for MPI
library

– Header caching for low-latency

– Support for additional features (such as hwloc, hierarchical collectives, one-sided, multi-threading,
etc.), as included in the MPICH Nemesis channel

– Support of Shared-Memory-Nemesis interface on multi-core platforms requiring intra-node com-
munication only (SMP-only systems, laptops, etc.)

– Support for 3D torus topology with appropriate SL settings

– Quality of Service (QoS) support with multiple InfiniBand SL

http://mvapich.cse.ohio-state.edu/ 6

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

– Automatic inter-node communication parameter tuning based on platform and adapter detection

– Flexible HCA selection

– Checkpoint-Restart support

– Run-through stabilization support to handle process failures

– Enhancements to handle IB errors gracefully

• Flexible process manager support

– Support for PMI-2 based startup with SLURM

– (NEW) Enhanced startup performance with SLURM

∗ (NEW) Support for PMIX Iallgather and PMIX Ifence

– (NEW) Enhanced startup performance and reduced memory footprint for storing InfiniBand end-
point information with SLURM

∗ (NEW) Support for shared memory based PMI operations

– (NEW) Improved job startup performance with mpirun rsh

– (NEW) Improved startup performance for TrueScale (PSM-CH3) channel

– Improved hierarchical job startup performance

– Enhanced hierarchical ssh-based robust mpirun rsh framework to work with any interface (CH3
and Nemesis channel-based) including OFA-IB-Nemesis, TCP/IP-CH3 and TCP/IP-Nemesis to
launch jobs on multi-thousand core clusters

– Introduced option to export environment variables automatically with mpirun rsh

– Support for automatic detection of path to utilities(rsh, ssh, xterm, TotalView) used by mpirun rsh
during configuration

– Support for launching jobs on heterogeneous networks with mpirun rsh

– MPMD job launch capability

– Hydra process manager to work with any of the ten interfaces (CH3 and Nemesis channel-based)
including OFA-IB-CH3, OFA-iWARP-CH3, OFA-RoCE-CH3 and TCP/IP-CH3

– Improved debug message output in process management and fault tolerance functionality

– Better handling of process signals and error management in mpispawn

– Flexibility for process execution with alternate group IDs

– Using in-band IB communication with MPD

– SLURM integration with mpiexec.mpirun rsh to use SLURM allocated hosts without specifying
a hostfile

– Support added to automatically use PBS NODEFILE in Torque and PBS environments

– Support for suspend/resume functionality with mpirun rsh framework

– Exporting local rank, local size, global rank and global size through environment variables (both
mpirun rsh and hydra)

• Support for various job launchers and job schedulers (such as SGE and OpenPBS/Torque)

http://mvapich.cse.ohio-state.edu/ 7

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

• Configuration file support (similar to one available in MVAPICH). Provides a convenient method for
handling all runtime variables through a configuration file.

• Fault-tolerance support

– Checkpoint-Restart Support with DMTCP (Distributed MultiThreaded CheckPointing)

– Enable hierarchical SSH-based startup with Checkpoint-Restart

– Enable the use of Hydra launcher with Checkpoint-Restart for OFA-IB-CH3 and OFA-IB-Nemesis
interfaces

– Checkpoint/Restart using LLNL’s Scalable Checkpoint/Restart Library (SCR)

∗ Support for application-level checkpointing
∗ Support for hierarchical system-level checkpointing

– Checkpoint-restart support for application transparent systems-level fault tolerance. BLCR-
based support using OFA-IB-CH3 and OFA-IB-Nemesis interfaces

∗ Scalable Checkpoint-restart with mpirun rsh framework
∗ Checkpoint-restart with Fault-Tolerance Backplane (FTB) framework (FTB-CR)
∗ Checkpoint-restart with intra-node shared memory (user-level) support
∗ Checkpoint-restart with intra-node shared memory (kernel-level with LiMIC2) support
∗ Checkpoint-restart support with pure SMP mode
∗ Allows best performance and scalability with fault-tolerance support
∗ Run-through stabilization support to handle process failures using OFA-IB-Nemesis inter-

face
∗ Enhancements to handle IB errors gracefully using OFA-IB-Nemesis interface

– Application-initiated system-level checkpointing is also supported. User application can request
a whole program checkpoint synchronously by calling special MVAPICH2 functions.

∗ Flexible interface to work with different files systems. Tested with ext3 (local disk), NFS
and PVFS2.

– Network-Level fault tolerance with Automatic Path Migration (APM) for tolerating intermittent
network failures over InfiniBand.

– Fast Checkpoint-Restart support with aggregation scheme

– Job Pause-Migration-Restart Framework for Pro-active Fault-Tolerance

∗ Enable signal-triggered (SIGUSR2) migration

– Fast process migration using RDMA

– Support for new standardized Fault Tolerant Backplane (FTB) Events for Checkpoint-Restart
and Job Pause-Migration-Restart Framework

• Enhancement to software installation

– Revamped Build system

∗ Uses automake instead of simplemake,
∗ Allows for parallel builds (”make -j8” and similar)

– Full autoconf-based configuration

http://mvapich.cse.ohio-state.edu/ 8

http://ftg.lbl.gov/CheckpointRestart/CheckpointRestart.shtml
http://ftg.lbl.gov/CheckpointRestart/CheckpointRestart.shtml
http://www.mcs.anl.gov/research/cifts/index.php

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

– Automatically detects system architecture and adapter types and optimizes MVAPICH2 for any
particular installation.

– An utility (mpiname) for querying the MVAPICH2 library version and configuration information

– Automatically builds and installs OSU Benchmarks for end-user convenience

• Optimized intra-node communication support by taking advantage of shared-memory communication.
Available for all interfaces (IB and iWARP).

– Enhanced intra-node SMP performance

– Tuned SMP eager threshold parameters

– New shared memory design for enhanced intra-node small message performance

– Support for single copy intra-node communication using Linux supported CMA (Cross Memory
Attach)

∗ Enabled by default

– Kernel-level single-copy intra-node communication solution based on LiMIC2

∗ Upgraded to LiMIC2 version 0.5.6 to support unlocked ioctl calls
∗ LiMIC2 is designed and developed by jointly by The Ohio State University and System

Software Laboratory at Konkuk University, Korea.

– Efficient Buffer Organization for Memory Scalability of Intra-node Communication

– Multi-core optimized

– Adjust shared-memory communication block size at runtime

– Automatic intra-node communication parameter tuning based on platform

– Efficient connection set-up for multi-core systems

– (NEW) Portable Hardware Locality (hwloc v1.11.2) support for defining CPU affinity

– Efficient CPU binding policies (bunch and scatter) to specify CPU binding per job for modern
multi-core platforms with SMT support

– Enhanced support for CPU binding with socket and numanode level granularity

– Show current CPU bindings with MV2 SHOW CPU BINDING

– Improved usability of process to CPU mapping with support of delimiters (’,’ , ’-’) in CPU listing

– Also allows user-defined CPU binding

– Optimized for Bus-based SMP and NUMA-Based SMP systems.

– Efficient support for diskless clusters

• Optimized collective communication operations. Available for OFA-IB-CH3, OFA-iWARP-CH3, and
OFA-RoCE-CH3 interfaces

– Optimized collectives (bcast, reduce, and allreduce) for 4K processes

– Optimized and tuned blocking and non-blocking collectives for OFA-IB-CH3, OFA-IB-Nemesis
and TrueScale (PSM-CH3) channels

– Enhanced MPI Bcast, MPI Reduce, MPI Scatter, MPI Gather performance

http://mvapich.cse.ohio-state.edu/ 9

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

– Hardware UD-Multicast based designs for collectives - Bcast, Allreduce and Scatter

– Intra-node Zero-Copy designs for MPI Gather collective (using LiMIC2)

– Enhancements and optimizations for point-to-point designs for Broadcast, Allreduce collectives

– Improved performance for shared-memory based collectives - Broadcast, Barrier, Allreduce, Re-
duce

– Performance improvements in Scatterv and Gatherv collectives for CH3 interface

– Enhancements and optimizations for collectives (Alltoallv, Allgather)

– Tuned Bcast, alltoall, Scatter, Allgather, Allgatherv, Reduce, Reduce Scatter, Allreduce collec-
tives

• Integrated multi-rail communication support. Available for OFA-IB-CH3 and OFA-iWARP-CH3 in-
terfaces.

– Supports multiple queue pairs per port and multiple ports per adapter

– Supports multiple adapters

– Support to selectively use some or all rails according to user specification

– Support for both one-sided and point-to-point operations

– Reduced stack size of internal threads to dramatically reduce memory requirement on multi-rail
systems

– Dynamic detection of multiple InfiniBand adapters and using these by default in multi-rail con-
figurations (OFA-IB-CH3, OFA-iWARP-CH3 and OFA-RoCE-CH3 interfaces)

– Support for process-to-rail binding policy (bunch, scatter and user-defined) in multi-rail config-
urations (OFA-IB-CH3, OFA-iWARP-CH3 and OFA-RoCE-CH3 interfaces)

• Support for InfiniBand Quality of Service (QoS) with multiple lanes

• Multi-threading support. Available for all interfaces (IB and iWARP), including TCP/IP.

– Enhanced support for multi-threaded applications

• High-performance optimized and scalable support for one-sided communication: Put, Get and Accu-
mulate. Supported synchronization calls: Fence, Active Target, Passive (lock and unlock). Available
for all interfaces.

– Support for handling very large messages in RMA

– Enhanced direct RDMA based designs for MPI Put and MPI Get operations in OFA-IB-CH3
channel

– Optimized communication when using MPI Win allocate for OFA-IB-CH3 channel

– Direct RDMA based One-sided communication support for OpenFabrics Gen2-iWARP and RDMA
CM (with Gen2-IB)

– Shared memory backed Windows for one-sided communication

• Two modes of communication progress

– Polling

http://mvapich.cse.ohio-state.edu/ 10

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

– Blocking (enables running multiple MPI processes/processor). Available for OpenFabrics (IB
and iWARP) interfaces.

• Advanced AVL tree-based Resource-aware registration cache

• Adaptive number of registration cache entries based on job size

• (NEW) Automatic detection and tuning for 24-core Haswell architecture

• (NEW) Automatic detection and tuning for 28-core Broadwell architecture

• (NEW) Automatic detection and tuning for Intel Knights Landing architecture

• Automatic tuning based on both platform type and network adapter

• (NEW) Remove verbs dependency when building the PSM-CH3 and PSM2-CH3 channels

• Progress engine optimization for TrueScale (PSM-CH3) interface

• Improved performance for medium size messages for TrueScale (PSM-CH3) channel

• Multi-core-aware collective support for TrueScale (PSM-CH3) channel

• Collective optimization for TrueScale (PSM-CH3) channel

• Memory Hook Support provided by integration with ptmalloc2 library. This provides safe release of
memory to the Operating System and is expected to benefit the memory usage of applications that
heavily use malloc and free operations.

• Warn and continue when ptmalloc fails to initialize

• Support for TotalView debugger with mpirun rsh framework

• Support for linking Intel Trace Analyzer and Collector

• Shared library support for existing binary MPI application programs to run.

• Enhanced debugging config options to generate core files and back-traces

• Use of gfortran as the default F77 compiler

• ROMIO Support for MPI-IO.

– Optimized, high-performance ADIO driver for Lustre

• Single code base for the following platforms (Architecture, OS, Compilers, Devices and InfiniBand
adapters)

– (NEW) Architecture: OpenPower, EM64T, x86 64 and x86

– Operating Systems: (tested with) Linux

– Compilers: GCC, Intel, PGI, Ekopath and Open64

– (NEW) Devices: OFA-IB-CH3, OFA-iWARP-CH3, OFA-RoCE-CH3, TrueScale (PSM-CH3),
Omni-Path (PSM2-CH3), TCP/IP-CH3, OFA-IB-Nemesis and TCP/IP-Nemesis

http://mvapich.cse.ohio-state.edu/ 11

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

– InfiniBand adapters (tested with):

∗ Mellanox InfiniHost adapters (SDR and DDR)
∗ Mellanox ConnectX (DDR and QDR with PCIe2)
∗ Mellanox ConnectX-2 (QDR with PCIe2)
∗ Mellanox ConnectX-3 (FDR with PCIe3)
∗ Mellanox Connect-IB (Dual FDR ports with PCIe3)
∗ Mellanox Connect-4 (EDR with PCIe3)
∗ Intel TrueScale adapter (SDR)
∗ Intel TrueScale adapter (DDR and QDR with PCIe2)

– (NEW) Intel Omni-Path adapters (tested with):

∗ (NEW) Intel Omni-Path adapter (100 Gbps with PCIe3)

– 10GigE (iWARP and RoCE) adapters:

∗ (tested with) Chelsio T3 and T4 adapter with iWARP support
∗ (tested with) Mellanox ConnectX-EN 10GigE adapter
∗ (tested with) Intel NE020 adapter with iWARP support

– 40GigE RoCE adapters:

∗ (tested with) Mellanox ConnectX-EN 40GigE adapter

The MVAPICH2 2.2 package and the project also includes the following provisions:

• Public SVN access of the code-base

• A set of micro-benchmarks (including multi-threading latency test) for carrying out MPI-level perfor-
mance evaluation after the installation

• Public mvapich-discuss mailing list for mvapich users to

– Ask for help and support from each other and get prompt response

– Enable users and developers to contribute patches and enhancements

http://mvapich.cse.ohio-state.edu/ 12

https://mvapich.cse.ohio-state.edu/svn/mpi/mvapich2/
http://mail.cse.ohio-state.edu/mailman/listinfo/mvapich-discuss

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

4 Installation Instructions

The MVAPICH2 installation process is designed to enable the most widely utilized features on the target
build OS by default. The other interfaces, as indicated in Figure 1, can also be selected on Linux. This
installation section provides generic instructions for building from a tarball or our latest sources.

In order to obtain best performance and scalability while having flexibility to use a large number of
features, the MVAPICH team strongly recommends the use of following interfaces for different adapters:
1) OFA-IB-CH3 interface for all Mellanox InfiniBand adapters, 2) TrueScale (PSM-CH3) interface for all
Intel InfiniBand adapters, 3) OFA-RoCE-CH3 interface for all RoCE adapters, 4) OFA-iWARP-CH3 for all
iWARP adapters and 5) Shared-Memory-CH3 for single node SMP system and laptop.

Please see the appropriate subsection for specific configuration instructions for the interface-adapter you
are targeting.

4.1 Building from a tarball

The MVAPICH2 2.2 source code package includes MPICH 3.1.4. All the required files are present as a
single tarball. Download the most recent distribution tarball from:
http://mvapich.cse.ohio-state.edu/downloads

Unpack the tarball and use the standard GNU procedure to compile:

$ tar -xzf mvapich2-2.2.tgz \
$ cd mvapich2-2.2
$./configure
$ make
$ make install

We now support parallel make and you can use the -j<num threads> option to speed up the build process.
You can use the following example to spawn 4 threads instead of the preceding make step.

$ make -j 4

In order to install a debug build, please use the following configuration option. Please note that using
debug builds may impact performance.

$./configure --enable-g=all --enable-error-messages=all \
$ make
$ make install

4.2 Obtaining and Building the Source from SVN repository

These instructions assume you have already installed subversion.

The MVAPICH2 SVN repository is available at: https://mvapich.cse.ohio-state.edu/svn/mpi/mvapich2

Please keep in mind the following guidelines before deciding which version to check out:

http://mvapich.cse.ohio-state.edu/ 13

http://mvapich.cse.ohio-state.edu/downloads
https://mvapich.cse.ohio-state.edu/svn/mpi/mvapich2

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

• “tags/2.2” is the exact version released with no updates for bug fixes or new features.

– To obtain the source code from tags/2.2:
$ svn co
https://mvapich.cse.ohio-state.edu/svn/mpi/mvapich2/tags/2.2
mvapich2

• “trunk” will contain the latest source code as we enhance and improve MVAPICH2. It may contain
newer features and bug fixes, but is lightly tested.

– To obtain the source code from trunk:
$ svn co https://mvapich.cse.ohio-state.edu/svn/mpi/mvapich2/trunk
mvapich2

The mvapich2 directory under your present working directory contains a working copy of the MVAPICH2
source code. Now that you have obtained a copy of the source code, you need to update the files in the source
tree:

$ cd mvapich2
$./autogen.sh

This script will generate all of the source and configuration files you need to build MVAPICH2. You will
need autoconf version >= 2.67, automake version >= 1.12.3, libtool version >= 2.4

$./configure
$ make
$ make install

4.3 Selecting a Process Manager

MVAPICH2 provides the mpirun rsh/mpispawn framework from MVAPICH distribution. Using mpirun rsh
should provide the fastest startup of your MPI jobs. More details can be found in Section 5.2.1. In addition,
MVAPICH2 also includes the Hydra process manager from MPICH-3.1.4. For more details on using Hydra,
please refer to Section 5.2.2.

By default, mpiexec uses the Hydra process launcher. Please note that neither mpirun rsh, nor Hydra
require you to start daemons in advance on the nodes used for a MPI job. Both mpirun rsh and Hydra can be
used with any of the eight interfaces of this MVAPICH2 release, as indicated in Figure 1.

http://mvapich.cse.ohio-state.edu/ 14

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

4.3.1 Customizing Commands Used by mpirun rsh

Usage: ./configure [OPTION]... [VAR=VALUE]...

To assign environment variables (e.g., CC, CFLAGS...), specify them as VAR=VALUE. See below for
descriptions of some of the useful variables.

RSH CMD path to rsh command
SSH CMD path to ssh command
ENV CMD path to env command
DBG CMD path to debugger command
XTERM CMD path to xterm command
SHELL CMD path to shell command
TOTALVIEW CMD path to totalview command

4.3.2 Using SLURM

If you’d like to use SLURM to launch your MPI programs please use the following configure options.

To configure MVAPICH2 to use PMI-1 support in SLURM:

$./configure --with-pmi=pmi1 --with-pm=slurm

To configure MVAPICH2 to use PMI-2 support in SLURM:

$./configure --with-pmi=pmi2 --with-pm=slurm

4.3.3 Using SLURM with support for PMI Extensions

MVAPICH2 automatically detects and uses PMI extensions if available from the process manager. To build
and install SLURM with PMIX support, please follow these steps:

Download the SLURM source tarball for SLURM-15.08.8 from http://slurm.schedmd.com/download.html.

Download the patch to add PMI Extensions in SLURM from http://mvapich.cse.ohio-state.edu/download/
mvapich/osu-shmempmi-slurm-15.08.8.patch.

$ tar -xzf slurm-15.08.8.tar.gz
$ patch < osu-shmempmi-slurm-15.08.8.patch
$./configure --prefix=/path/to/slurm/install
--disable-pam
$ make -j4 && make install && make install-contrib

To configure MVAPICH2 with the modified SLURM, please use:

$./configure --with-pm=slurm --with-pmi=pmi2
--with-slurm=/path/to/slurm/install

Please refer to Section 5.2.3 for information on how to run MVAPICH2 using SLURM.

http://mvapich.cse.ohio-state.edu/ 15

http://slurm.schedmd.com/download.html
http://mvapich.cse.ohio-state.edu/download/mvapich/osu-shmempmi-slurm-15.08.8.patch
http://mvapich.cse.ohio-state.edu/download/mvapich/osu-shmempmi-slurm-15.08.8.patch

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

4.4 Configuring a build for OFA-IB-CH3/OFA-iWARP-CH3/OFA-RoCE-CH3

OpenFabrics (OFA) IB/iWARP/RoCE with the CH3 channel is the default interface on Linux. It can be
explicitly selected by configuring with:

$./configure --with-device=ch3:mrail
--with-rdma=gen2

Both static and shared libraries are built by default. In order to build with static libraries only, configure
as follows:

$./configure --with-device=ch3:mrail --with-rdma=gen2
--disable-shared

To enable use of the TotalView debugger, the library needs to be configured in the following manner:

$./configure --with-device=ch3:mrail --with-rdma=gen2
--enable-g=dbg --enable-debuginfo

Configuration Options for OpenFabrics IB/iWARP/RoCE

• Configuring with Shared Libraries

– Default: Enabled

– Enable: --enable-shared

– Disable: --disable-shared

• Configuring with TotalView support

– Default: Disabled

– Enable: --enable-g=dbg
--enable-debuginfo

• Path to OpenFabrics Header Files

– Default: Your PATH

– Specify: --with-ib-include=path

• Path to OpenFabrics Libraries

– Default: The systems search path for libraries.

– Specify: --with-ib-libpath=path

• Support for Hybrid UD-RC/XRC transports

– Default: Disabled

– Enable: --enable-hybrid

• Support for RDMA CM

– Default: enabled, except when BLCR support is enabled

– Disable: --disable-rdma-cm

http://mvapich.cse.ohio-state.edu/ 16

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

• Support for RoCE

– Default: enabled

• Registration Cache

– Default: enabled

– Disable: --disable-registration-cache

• ADIO driver for Lustre:

– When compiled with this support, MVAPICH2 will use the optimized driver for Lustre. In order
to enable this feature, the flag
--enable-romio --with-file-system=lustre
should be passed to configure (--enable-romio is optional as it is enabled by default).
You can add support for more file systems using
--enable-romio --with-file-system=lustre+nfs+pvfs2

• LiMIC2 Support

– Default: disabled

– Enable:
--with-limic2[=<path to LiMIC2 installation>]
--with-limic2-include=<path to LiMIC2 headers>
--with-limic2-libpath=<path to LiMIC2 library>

• CMA Support

– Default: enabled

– Disable: --without-cma

• Header Caching

– Default: enabled

– Disable: --disable-header-caching

• MPI Tools Information Interface (MPI-T) Support

– Default: disabled

– Enable: --enable-mpit-pvars

• Checkpoint/Restart

– Option name: --enable-ckpt

– Require: Berkeley Lab Checkpoint/Restart (BLCR)

– Default: disabled

http://mvapich.cse.ohio-state.edu/ 17

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

The Berkeley Lab Checkpoint/Restart (BLCR) installation is automatically detected if installed in the
standard location. To specify an alternative path to the BLCR installation, you can either use:

--with-blcr=<path/to/blcr/installation>
or
--with-blcr-include=<path/to/blcr/headers>
--with-blcr-libpath=<path/to/blcr/library>

• Checkpoint Aggregation

– Option name: --enable-ckpt-aggregation or --disable-ckpt-aggregation

– Automatically enable Checkpoint/Restart

– Require: Filesystem in Userspace (FUSE)

– Default: enabled (if Checkpoint/Restart enabled and FUSE is present)

The Filesystem in Userspace (FUSE) installation is automatically detected if installed in the standard
location. To specify an alternative path to the FUSE installation, you can either use:

--with-fuse=<path/to/fuse/installation>
or
--with-fuse-include=<path/to/fuse/headers>
--with-fuse-libpath=<path/to/fuse/library>

• Application-Level and Transparent System-Level Checkpointing with SCR

– Option name: --with-scr

– Default: disabled

SCR caches checkpoint data in storage on the compute nodes of a Linux cluster to provide a fast,
scalable checkpoint / restart capability for MPI codes.

• Process Migration

– Option name: --enable-ckpt-migration

– Automatically enable Checkpoint/Restart

– Require: Fault Tolerance Backplane (FTB)

– Default: disabled

The Fault Tolerance Backplane (FTB) installation is automatically detected if installed in the standard
location. To specify an alternative path to the FTB installation, you can either use:

--with-ftb=<path/to/ftb/installation>
or
--with-ftb-include=<path/to/ftb/headers>
--with-ftb-libpath=<path/to/ftb/library>

• eXtended Reliable Connection

http://mvapich.cse.ohio-state.edu/ 18

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

– Default: enabled (if OFED installation supports it)

– Enable: --enable-xrc

– Disable: --disable-xrc

• HWLOC Support (Affinity)

– Default: enabled

– Disable: --without-hwloc

• Support for 64K or greater number of cores

– Default: 64K or lower number of cores

– Enable: --with-ch3-rank-bits=32

4.5 Configuring a build for NVIDIA GPU with OFA-IB-CH3

This section details the configuration option to enable GPU-GPU communication with the OFA-IB-CH3
interface of the MVAPICH2 MPI library. For more options on configuring the OFA-IB-CH3 interface,
please refer to Section 4.4.

• Default: disabled

• Enable: --enable-cuda

The CUDA installation is automatically detected if installed in the standard location. To specify an
alternative path to the CUDA installation, you can either use:
--with-cuda=<path/to/cuda/installation>
or
--with-cuda-include=<path/to/cuda/include>
--with-cuda-libpath=<path/to/cuda/libraries>

In addition to these we have added the following variables to help account for libraries being installed in
different locations:
--with-libcuda=<path/to/directory/containing/libcuda>
--with-libcudart=<path/to/directory/containing/libcudart

Note: If using the PGI compiler, you will need to add the following to your CPPFLAGS and CFLAGS. You’ll also
need to use the --enable-cuda=basic configure option to build properly. See the example below.

Example: ./configure --enable-cuda=basic CPPFLAGS="-D x86 64
-D align \(n\)= attribute \(\(aligned\(n\)\)\)
-D location \(a\)= annotate \(a\)
-DCUDARTAPI="
CFLAGS="-ta=tesla:nordc"

http://mvapich.cse.ohio-state.edu/ 19

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

4.6 Configuring a build for Shared-Memory-CH3

The default CH3 channel provides native support for shared memory communication on stand alone multi-
core nodes that are not equipped with InfiniBand adapters. The steps to configure CH3 channel explicitly can
be found in Section 4.4. Dynamic Process Management (5.2.5) is currently not supported on stand-alone
nodes without InfiniBand adapters.

4.7 Configuring a build for OFA-IB-Nemesis

The Nemesis sub-channel now is supported over OFA-IB. It can be built with:

$./configure --with-device=ch3:nemesis:ib

Both static and shared libraries are built by default. In order to build with static libraries only, configure
as follows:

$./configure --with-device=ch3:nemesis:ib --disable-shared

To enable use of the TotalView debugger, the library needs to be configured in the following manner:

$./configure --with-device=ch3:nemesis:ib --enable-g=dbg
--enable-debuginfo

Configuration options for OFA-IB-Nemesis:

• Configuring with Shared Libraries

– Default: Enabled

– Enable: --enable-shared

– Disable: --disable-shared

• Configuring with TotalView support

– Default: Disabled

– Enable: --enable-g=dbg
--enable-debuginfo

• Path to IB Verbs

– Default: System Path

– Specify: --with-ibverbs=<path> or
--with-ibverbs-include=<path> and --with-ibverbs-lib=<path>

• Registration Cache

– Default: enabled

– Disable: --disable-registration-cache

• Header Caching

http://mvapich.cse.ohio-state.edu/ 20

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

– Default: enabled

– Disable: --disable-header-caching

• Support for 64K or greater number of cores

– Default: 64K or lower number of cores

– Enable: --with-ch3-rank-bits=32

• Checkpoint/Restart

– Default: disabled

– Enable: --enable-checkpointing and --with-hydra-ckpointlib=blcr

– Require: Berkeley Lab Checkpoint/Restart (BLCR)

The Berkeley Lab Checkpoint/Restart (BLCR) installation is automatically detected if installed in the
standard location. To specify an alternative path to the BLCR installation, you can either use:
--with-blcr=<path/to/blcr/installation>
or
--with-blcr-include=<path/to/blcr/headers>
--with-blcr-libpath=<path/to/blcr/library>

4.8 Configuring a build for Intel TrueScale (PSM-CH3)

The TrueScale (PSM-CH3) interface needs to be built to use MVAPICH2 on Intel TrueScale adapters. It can
built with:

$./configure --with-device=ch3:psm

Both static and shared libraries are built by default. In order to build with static libraries only, configure
as follows:

$./configure --with-device=ch3:psm --disable-shared

To enable use of the TotalView debugger, the library needs to be configured in the following manner:

$./configure --with-device=ch3:psm --enable-g=dbg
--enable-debuginfo

Configuration options for Intel TrueScale PSM channel:

• Configuring with Shared Libraries

– Default: Enabled

– Enable: --enable-shared

– Disable: --disable-shared

• Configuring with TotalView support

– Default: Disabled

http://mvapich.cse.ohio-state.edu/ 21

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

– Enable: --enable-g=dbg --enable-debuginfo

• Path to Intel TrueScale PSM header files

– Default: The systems search path for header files

– Specify: --with-psm-include=path

• Path to Intel TrueScale PSM library

– Default: The systems search path for libraries

– Specify: --with-psm-lib=path

• Support for 64K or greater number of cores

– Default: 64K or lower number of cores

– Enable: --with-ch3-rank-bits=32

4.9 Configuring a build for Intel Omni-Path (PSM2-CH3)

The Omni-Path (PSM2-CH3) interface needs to be built to use MVAPICH2 on Intel Omni-Path adapters. It
can built with:

$./configure --with-device=ch3:psm

Both static and shared libraries are built by default. In order to build with static libraries only, configure
as follows:

$./configure --with-device=ch3:psm --disable-shared

To enable use of the TotalView debugger, the library needs to be configured in the following manner:

$./configure --with-device=ch3:psm --enable-g=dbg
--enable-debuginfo

Configuration options for Intel Omni-Path PSM2 channel:

• Configuring with Shared Libraries

– Default: Enabled

– Enable: --enable-shared

– Disable: --disable-shared

• Configuring with TotalView support

– Default: Disabled

– Enable: --enable-g=dbg --enable-debuginfo

• Path to Intel Omni-Path PSM2 header files

– Default: The systems search path for header files

http://mvapich.cse.ohio-state.edu/ 22

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

– Specify: --with-psm2-include=path

• Path to Intel Omni-Path PSM2 library

– Default: The systems search path for libraries

– Specify: --with-psm2-lib=path

• Support for 64K or greater number of cores

– Default: 64K or lower number of cores

– Enable: --with-ch3-rank-bits=32

4.10 Configuring a build for TCP/IP-Nemesis

The use of TCP/IP with Nemesis channel requires the following configuration:

$./configure --with-device=ch3:nemesis

Both static and shared libraries are built by default. In order to build with static libraries only, configure
as follows:

$./configure --with-device=ch3:nemesis --disable-shared

To enable use of the TotalView debugger, the library needs to be configured in the following manner:

$./configure --with-device=ch3:nemesis --enable-g=dbg
--enable-debuginfo

Additional instructions for configuring with TCP/IP-Nemesis can be found in the MPICH documentation
available at: http://www.mcs.anl.gov/research/projects/mpich2/documentation/index.php?s=docs

• Configuring with Shared Libraries

– Default: Enabled

– Enable: --enable-shared

– Disable: --disable-shared

• Configuring with TotalView support

– Default: Disabled

– Enable: --enable-g=dbg
--enable-debuginfo

• Support for 64K or greater number of cores

– Default: 64K or lower number of cores

– Enable: --with-ch3-rank-bits=32

http://mvapich.cse.ohio-state.edu/ 23

http://www.mcs.anl.gov/research/projects/mpich2/documentation/index.php?s=docs

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

4.11 Configuring a build for TCP/IP-CH3

The use of TCP/IP requires the explicit selection of a TCP/IP enabled channel. The recommended channel
is ch3:sock and it can be selected by configuring with:

$./configure --with-device=ch3:sock

Both static and shared libraries are built by default. In order to build with static libraries only, configure
as follows:

$./configure --with-device=ch3:sock --disable-shared

To enable use of the TotalView debugger, the library needs to be configured in the following manner:

$./configure --with-device=ch3:sock --enable-g=dbg
--enable-debuginfo

• Configuring with Shared Libraries

– Default: Enabled

– Enable: --enable-shared

– Disable: --disable-shared

• Configuring with TotalView support

– Default: Disabled

– Enable: --enable-g=dbg
--enable-debuginfo

• Support for 64K or greater number of cores

– Default: 64K or lower number of cores

– Enable: --with-ch3-rank-bits=32

Additional instructions for configuring with TCP/IP can be found in the MPICH documentation available
at:

http://www.mcs.anl.gov/research/projects/mpich2/documentation/index.php?s=docs

4.12 Configuring a build for OFA-IB-Nemesis and TCP/IP Nemesis (unified binary)

MVAPICH2 supports a unified binary for both OFA and TCP/IP communication through the Nemesis inter-
face.

In order to configure MVAPICH2 for unified binary support, perform the following steps:

$./configure --with-device=ch3:nemesis:ib,tcp

You can use mpicc as usual to compile MPI applications. In order to run your application on OFA:

http://mvapich.cse.ohio-state.edu/ 24

http://www.mcs.anl.gov/research/projects/mpich2/documentation/index.php?s=docs

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

$ mpiexec -f hosts ./a.out -n 2

To run your application on TCP/IP:

$ MPICH NEMESIS NETMOD=tcp mpiexec -f hosts ./osu latency -n 2

4.13 Configuring a build for Shared-Memory-Nemesis

The use of Nemesis shared memory channel requires the following configuration.

$./configure --with-device=ch3:nemesis

Both static and shared libraries are built by default. In order to build with static libraries only, configure
as follows:

$./configure --with-device=ch3:nemesis --disable-shared

To enable use of the TotalView debugger, the library needs to be configured in the following manner:

$./configure --with-device=ch3:nemesis --enable-g=dbg
--enable-debuginfo

Additional instructions for configuring with Shared-Memory-Nemesis can be found in the MPICH docu-
mentation available at: http://www.mcs.anl.gov/research/projects/mpich2/documentation/index.php?s=docs

• Configuring with Shared Libraries

– Default: Enabled

– Enable: --enable-shared

– Disable: --disable-shared

• Configuring with TotalView support

– Default: Disabled

– Enable: --enable-g=dbg
--enable-debuginfo

http://mvapich.cse.ohio-state.edu/ 25

http://www.mcs.anl.gov/research/projects/mpich2/documentation/index.php?s=docs

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

5 Basic Usage Instructions

5.1 Compile Applications

MVAPICH2 provides a variety of MPI compilers to support applications written in different programming
languages. Please use mpicc, mpif77, mpiCC, or mpif90 to compile applications. The correct com-
piler should be selected depending upon the programming language of your MPI application.

These compilers are available in the MVAPICH2 HOME/bin directory. MVAPICH2 installation direc-
tory can also be specified by modifying $PREFIX, then all the above compilers will also be present in the
$PREFIX/bin directory.

5.2 Run Applications

This section provides instructions on how to run applications with MVAPICH2. Please note that on new
multi-core architectures, process-to-core placement has an impact on performance. Please refer to Sec-
tion 6.5 to learn about running MVAPICH2 library on multi-core nodes.

5.2.1 Run using mpirun rsh

The MVAPICH team suggests users using this mode of job start-up for all interfaces (including OFA-IB-
CH3, OFA-IB-Nemesis, OFA-iWARP-CH3, OFA-RoCE-CH3, TrueScale (PSM-CH3), Omni-Path (PSM2-
CH3), Shared memory-CH3, TCP/IP-CH3 and TCP/IP-Nemesis) This mpirun rsh scheme provides fast
and scalable job start-up. It scales to multi-thousand node clusters.

Prerequisites:

• Either ssh or rsh should be enabled between the front nodes and the computing nodes. In addition
to this setup, you should be able to login to the remote nodes without any password prompts.

• All host names should resolve to the same IP address on all machines. For instance, if a machine’s
host names resolves to 127.0.0.1 due to the default /etc/hosts on some Linux distributions it leads to
incorrect behavior of the library.

Examples of running programs using mpirun rsh:

$ mpirun rsh -np 4 n0 n0 n1 n1 ./cpi

This command launches cpi on nodes n0 and n1, two processes per node. By default ssh is used.

$ mpirun rsh -rsh -np 4 n0 n0 n1 n1 ./cpi

This command launches cpi on nodes n0 and n1, two processes per each node using rsh instead of
ssh.

http://mvapich.cse.ohio-state.edu/ 26

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

MPIRUN RSH Hostfile:

$ mpirun rsh -np 4 -hostfile hosts ./cpi

A list of target nodes must be provided in the file hosts one per line. MPI ranks are assigned in order
of the hosts listed in the hosts file or in the order they are passed to mpirun rsh. i.e., if the nodes are listed
as n0 n1 n0 n1, then n0 will have two processes, rank 0 and rank 2; whereas n1 will have rank 1 and 3. This
rank distribution is known as “cyclic”. If the nodes are listed as n0 n0 n1 n1, then n0 will have ranks 0 and
1; whereas n1 will have ranks 2 and 3. This rank distribution is known as “block”.

Hostfile Format
The mpirun rsh hostfile format allows for users to specify hostnames, one per line, optionally with a

multiplier, and HCA specification.

The multiplier allows you to save typing by allowing you to specify blocked distribution of MPI ranks
using one line per hostname. The HCA specification allows you to force an MPI rank to use a particular
HCA.

The optional components are delimited by a ‘:’. Comments and empty lines are also allowed. Comments
start with ‘#’ and continue to the next newline.

Sample hostfile

$ cat hosts
sample hostfile for mpirun_rsh
host1 # rank 0 will be placed on host1
host2:2 # rank 1 and 2 will be placed on host 2
host3:hca1 # rank 3 will be on host3 and will use hca1
host4:4:hca2 # ranks 4 through 7 will be on host4 and use hca2

if the number of processes specified for this job is greater than 8
then the additional ranks will be assigned to the hosts in a cyclic
fashion. For example, rank 8 will be on host1 and ranks 9 and 10 will
be on host2.

Specifying Environmental Variables
Many parameters of the MPI library can be configured at run-time using environmental variables. In order

to pass any environment variable to the application, simply put the variable names and values just before the
executable name, like in the following example:

$ mpirun rsh -np 4 -hostfile hosts ENV1=value ENV2=value ./cpi

Note that the environmental variables should be put immediately before the executable.

Alternatively, you may also place environmental variables in your shell environment (e.g. .bashrc).
These will be automatically picked up when the application starts executing.

http://mvapich.cse.ohio-state.edu/ 27

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

Note that mpirun rsh is sensitive to the ordering of the command-line arguments.

There are many different parameters which could be used to improve the performance of applications de-
pending upon their requirements from the MPI library. For a discussion on how to identify such parameters,
see Section 8.

Job Launch using MPMD
The mpirun rsh framework also supports job launching using MPMD mode. It permits the use of hetero-

geneous jobs using multiple executables and command line arguments. The following format needs to be
used:

$ mpirun rsh -config configfile -hostfile hosts

A list of different group of executables must be provided to the job launcher in the file configfile,
one per line. The configfile can contain comments. Lines beginning with “#” are considered comments.

For example:

#Config file example

#Launch 4 copies of exe1 with arguments arg1 and arg2

-n 4 : exe1 arg1 arg2

#Launch 2 copies of exe2

-n 2 : exe2

A list of target nodes must be provided in the file hosts one per line and the allocation policy previously
described is used.

Please note that this section only gives general information on how to run applications using mpirun rsh.
Please refer to the following sections for more information on how to run the application over various inter-
faces such as iWARP and RoCE.

Other Options
Other options of mpirun rsh can be obtained using

$ mpirun rsh --help

5.2.2 Run using Hydra (mpiexec)

Hydra is the default process manager for MPICH. MVAPICH2 also distributes Hydra along with with
mpirun rsh. Hydra can be used either by using mpiexec or mpiexec.hydra. All interfaces of MVA-
PICH2 will work using Hydra. The following is an example of running a program using it:

$ mpiexec -f hosts -n 2 ./cpi

The Hydra process manager can be used to launch MPMD jobs. For example the following command:

http://mvapich.cse.ohio-state.edu/ 28

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

$ mpiexec -genv FOO=1 -env BAR=1 -n 2 ./exec1 : -env BAR=2 -n 2
./exec2

The environment variable FOO=1 passed to “-genv” is applied the environment to all executables (i.e.
exec1 and exec2). The values BAR=1 applies to exec1 and BAR=2 applies to only exec2.

This process manager has many features. Please refer to the following web page for more details.

http://wiki.mcs.anl.gov/mpich2/index.php/Using the Hydra Process Manager

5.2.3 Run using SLURM

SLURM is an open-source resource manager designed by Lawrence Livermore National Laboratory and
maintained by SchedMD. SLURM software package and its related documents can be downloaded from: http://www.schedmd.com/

Once SLURM is installed and the daemons are started, applications compiled with MVAPICH2 can be
launched by SLURM, e.g.

$ srun -n 2 ./a.out

The use of SLURM enables many good features such as explicit CPU and memory binding. For example,
if you have two processes and want to bind the first process to CPU 0 and Memory 0, and the second process
to CPU 4 and Memory 1, then it can be achieved by:

$ srun --cpu bind=v,map cpu:0,4 --mem bind=v,map mem:0,1 -n2
--mpi=none ./a.out

To use PMI-2 with SLURM, please use:

$ srun --mpi=pmi2 -n 2 ./a.out

If PMI-2 is selected and the installed version of SLURM supports PMI extensions, MVAPICH2 will
automatically use the extensions.

For more information about SLURM and its features please visit http://www.schedmd.com/

5.2.4 Run on PBS/Torque Clusters

Both mpirun rsh and mpiexec can take information from the PBS/Torque environment to launch jobs (i.e.
launch on nodes found in PBS NODEFILE).

You can also use MVAPICH2 in a tightly integrated manner with PBS. To do this you can install mva-
pich2 by adding the –with-pbs option to mvapich2. Below is a snippet from ./configure –help of the hydra
process manager (mpiexec) that you will use with PBS/Torque.

–with-pbs=PATH specify path where pbs include directory and lib directory can be found –with-pbs-
include=PATH specify path where pbs include directory can be found –with-pbs-lib=PATH specify path
where pbs lib directory can be found

For more information on using hydra, please visit the following URL: http://wiki.mpich.org/
mpich/index.php/Using_the_Hydra_Process_Manager

http://mvapich.cse.ohio-state.edu/ 29

http://wiki.mcs.anl.gov/mpich2/index.php/Using_the_Hydra_Process_Manager
http://www.schedmd.com/
http://www.schedmd.com/
http://wiki.mpich.org/mpich/index.php/Using_the_Hydra_Process_Manager
http://wiki.mpich.org/mpich/index.php/Using_the_Hydra_Process_Manager

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

5.2.5 Run with Dynamic Process Management support

MVAPICH2 (OFA-IB-CH3 interface) provides MPI-2 dynamic process management. This feature allows
MPI applications to spawn new MPI processes according to MPI-2 semantics. The following commands
provide an example of how to run your application.

• To run your application using mpirun rsh
$ mpirun rsh -np 2 -hostfile hosts MV2 SUPPORT DPM=1 ./spawn1
Note: It is necessary to provide the hostfile when running dynamic process management applications
using mpirun rsh.

• To run your application using mpiexec (Hydra)
$ mpiexec -n 2 -f hosts -env MV2 SUPPORT DPM 1 ./spawn1

Please refer to Section 11.72 for information about the MV2 SUPPORT DPM environment variable.

5.2.6 Run with mpirun rsh using OFA-iWARP Interface

The MVAPICH2 library can automatically detect iWARP cards and use them with the appropriate settings
at run time. This feature deprecates the use of the environment variable MV2 USE IWARP MODE which was
being used earlier to enable the use of iWARP devices at run time.

All the systems to be used need the following one time setup for enabling RDMA CM usage.

• Setup the RDMA CM interface: RDMA CM interface needs to be setup, configured with an IP ad-
dress and connected to the network.

• Setup the Local Address File: Create the file (/etc/mv2.conf) with the local IP address to be
used by RDMA CM. (Multiple IP addresses can be listed (one per line) for multi-rail configurations).
$ echo 10.1.1.1 >> /etc/mv2.conf

Programs can be executed as follows:

$ mpirun rsh -np 2 n0 n1 prog

The iWARP interface also provides TotalView debugging and shared library support. Please refer to
Section 4.4.

5.2.7 Run with mpirun rsh using OFA-RoCE Interface

RDMA over Converged Ethernet (RoCE) is supported with the use of the run time environment variable
MV2 USE RoCE.

Programs can be executed as follows:

http://mvapich.cse.ohio-state.edu/ 30

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

$ mpirun rsh -np 2 MV2 USE RoCE=1 prog

RoCE requires loss-less Ethernet fabric. This requires to configure Ethernet switch to treat RoCE traffic
as loss-less. A separate VLAN interface needs to be created on RoCE NIC on all compute nodes and assign
a private IP address

In loss-less fabric setup, MVAPICH2 can be run in RoCE mode in following two ways

• Put private VLAN IP addresses in /etc/mv2.conf and run in RDMA CM mode
$ mpirun rsh -np 2 MV2 USE RoCE=1 MV2 USE RDMA CM=1 prog

• All VLAN interfaces will appear as additional GID indexes (starting from 1) on the InfiniBand HCA
side of the RoCE adapter. User can select non-default GID index using run-time parameter
MV2 DEFAULT GID INDEX(11.83) and RoCE priority service level using MV2 DEFAULT SERVICE LEVEL.
$ mpirun rsh -np 2 MV2 USE RoCE=1 MV2 DEFAULT GID INDEX=1
MV2 DEFAULT SERVICE LEVEL=<RoCE Service Level> prog

5.2.8 Run using IPoIB with mpirun rsh or mpiexec

You would like to run an MPI job using IPoIB but your IB card is not the default interface for IP traffic.
Assume that you have a cluster setup as the following:

#hostname Eth Addr IPoIB Addr
compute1 192.168.0.1 192.168.1.1
compute2 192.168.0.2 192.168.1.2
compute3 192.168.0.3 192.168.1.3
compute4 192.168.0.4 192.168.1.4

The Ethernet addresses are assigned to eth0 and the IPoIB addresses are assigned to the ib0 interface.
The host names resolve to the 192.168.0.* addresses.

The most direct way to use the IPoIB network is to populate your hosts file with the IP addresses of the
ib0 interfaces.

Example:

$ cat - > hosts
192.168.1.1
192.168.1.2
192.168.1.3
192.168.1.4

$ mpirun rsh -hostfile hosts -n 4 ./app1

or

$ mpiexec -f hosts -n 4 ./app1

http://mvapich.cse.ohio-state.edu/ 31

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

Another way to achieve this is to use the -iface option of hydra. This allows you to have your hosts file
to use the host names even though they resolve to the eth0 interface.

Example:

$ cat - > hosts
compute1
compute2
compute3
compute4

$ mpiexec -f hosts -iface ib0 -n 4 ./app1

More information can be found at the following link.

5.2.9 Run using ADIO driver for Lustre

MVAPICH2 contains optimized Lustre ADIO support for the OFA-IB-CH3 interface. The Lustre directory
should be mounted on all nodes on which MVAPICH2 processes will be running. Compile MVAPICH2 with
ADIO support for Lustre as described in Section 4. If your Lustre mount is /mnt/datafs on nodes n0 and n1,
on node n0, you can compile and run your program as follows:

$ mpicc -o perf romio/test/perf.c
$ mpirun rsh -np 2 n0 n1 <path to perf>/perf -fname
/mnt/datafs/testfile

If you have enabled support for multiple file systems, append the prefix “lustre:” to the name of the file.
For example:

$ mpicc -o perf romio/test/perf.c
$ mpirun rsh -np 2 n0 n1 ./perf -fname lustre:/mnt/datafs/testfile

5.2.10 Run using TotalView Debugger Support

MVAPICH2 provides TotalView support. The following commands provide an example of how to build
and run your application with TotalView support. Note: running TotalView requires correct setup in your
environment, if you encounter any problem with your setup, please check with your system administrator for
help.

• Compile your mpi application with debug symbols. . .
$ mpicc -g -o prog prog.c

• Define the correct path to TotalView as the TOTALVIEW variable. . .
$ export TOTALVIEW=<path to TotalView>

• Run your program. . .
$ mpirun rsh -tv -np 2 n0 n1 prog

http://mvapich.cse.ohio-state.edu/ 32

http://wiki.mcs.anl.gov/mpich2/index.php/Using_the_Hydra_Process_Manager#Hydra_with_Non-Ethernet_Networks

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

• Troubleshooting:

– X authentication errors: check if you have enabled X Forwarding
$ echo "ForwardX11 yes" >> $HOME/.ssh/config

– ssh authentication error: ssh to the computer node with its long form hostname
$ ssh i0.domain.osu.edu

5.2.11 Run using a profiling library

All MPI2-functions of MVAPICH2 support the MPI profiling interface. This allows MVAPICH2 to be used
by a variety of profiling libraries for MPI applications.

Two use of profiling libraries will be describe below, mpiP and Scalasca;

• To use mpiP, you should link your program with the required libraries as describe with the following
command:
$ mpicc -g prg.o -o prg -L${mpiP root}/lib -lmpiP -lm -lbfd
-liberty -lunwind

MpiP has many features. Please refer to the mpiP web page for more details.

• To use Scalasca, you should configure Scalasca by supplying the ‘--mpi=mpich2’ option like shows
below:
$./configure --mpi=mpich2

Once the installation is done, you will be able to use Scalasca with MVAPICH2.

For more information about Scalasca and its features please visit Scalasca website.

http://mvapich.cse.ohio-state.edu/ 33

http://mpip.sourceforge.net
http://mpip.sourceforge.net
http://www.scalasca.org
http://www.scalasca.org

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

6 Advanced Usage Instructions

In this section, we present the usage instructions for advanced features provided by MVAPICH2.

6.1 Running on Customized Environments

In MVAPICH2 2.2, run-time variables are used to switch various optimization schemes on and off. Following
is a list of optimizations schemes and the control environmental variables, for a full list please refer to the
section 11:

• Extended Reliable Connection: Use the XRC InfiniBand transport available with Mellanox Con-
nectX adapters. Default: off; to enable:
$ mpirun rsh -np 2 n0 n1 MV2 USE XRC=1 prog
or
$ mpiexec -n 2 -hosts n0,n1 -env MV2 USE XRC 1 prog

• Enable use of multiple communication channels: Indicates the number of queue pairs per port to be
used for communication on an end node. Default: 1; to change default value:
$ mpirun rsh -np 2 n0 n1 MV2 NUM QP PER PORT=2 prog
or
$ mpiexec -n 2 -hosts n0,n1 -env MV2 NUM QP PER PORT 2 prog

• Adaptive RDMA fast path: using RDMA write to enhance performance for short messages. Default:
on; to disable:
$ mpirun rsh -np 2 n0 n1 MV2 USE RDMA FAST PATH=0 prog
or
$ mpiexec -n 2 -hosts n0,n1 -env MV2 USE RDMA FAST PATH 0 prog

6.2 Export Environment

Traditionally with mpirun rsh you have to specify all environment variables that you want visible to the re-
mote MPI processes on the command line. With the –export option of mpirun rsh this is no longer necessary.

6.2.1 Sample Use

Traditional Method

$ mpirun_rsh -n 2 compute1 compute2 FOO=1 BAR=baz ./osu_latency

http://mvapich.cse.ohio-state.edu/ 34

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

With export option

$ export FOO=1 BAR=baz
$ mpirun_rsh -export -n 2 compute1 compute2 ./osu_latency

Please note that the -export option does not overwrite variables that are normally already set when you
first ssh into the remote node. If you want to export all variables including the ones that are already set you
can use the -export-all option.

With export-all option

$ export PATH=$PATH:/some/special/path
$ mpirun_rsh -export-all -n 2 compute1 compute2 ./osu_latency

6.3 Configuration File Processing

MVAPICH2 supports the use of configuration values to ease the burden of users when they would like to set
and repeatedly use many different environment variables. These can be stored in a configuration file with
statements of the form “VARIABLE = VALUE”. Full line comments are supported and begin with the “#”
character.

The system configuration file can be placed at /etc/mvapich2.conf while user configuration files are
located at “˜/.mvapich2.conf” by default. The user configuration file can be specified at runtime by
MV2 USER CONFIG if the user would like to have mvapich2 read from a different location.

The processing of these files can be disabled by the use of the MV2 IGNORE SYSTEM CONFIG and
MV2 IGNORE USER CONFIG.

6.3.1 Sample Use

Run with blocking mode enabled

$ cat ˜/.mvapich2.conf
Enable blocking mode
MV2_USE_BLOCKING = 1
$ mpirun_rsh -n 2 compute1 compute2 ./osu_latency

Do not use user configuration file

$ mpirun_rsh -n 2 compute1 compute2 MV2_IGNORE_USER_CONFIG=1 ./osu_latency

http://mvapich.cse.ohio-state.edu/ 35

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

6.4 Suspend/Resume Support

MVAPICH2 can be suspended and resumed when using a process launcher that catches and forwards the
appropriate signals.

For example, when using mpirun rsh you can type Ctrl-Z (or send the SIGTSTP signal) at the terminal
and the job will suspend. You can then later send the SIGCONT signal to the job and it will continue.

6.5 Running with Efficient CPU (Core) Mapping

MVAPICH2-CH3 interfaces support architecture specific CPU mapping through the Portable Hardware Lo-
cality (hwloc) software package. By default, the HWLOC sources are compiled and built while the MVA-
PICH2 library is being installed. Users can choose the “–disable-hwloc” parameter while configuring the
library if they do not wish to have the HWLOC library installed. However, in such cases, the MVAPICH2
library will not be able to perform any affinity related operations.

There are two major schemes as indicated below. To take advantage of any of these schemes, the jobs
need to run with CPU affinity (MV2 ENABLE AFFINITY) and shared memory
(MV2 USE SHARED MEM) turned on (default). If users choose to set these run-time parameters to 0, then
the kernel takes care of mapping processes to cores and none of these schemes will be enabled.

To report the process mapping, users can set the environment variable MV2 SHOW CPU BINDING to
1 (Section 11.16).

6.5.1 Using HWLOC for CPU Mapping

Under this scheme, the HWLOC tool will be used at job-launch time to detect the processor’s micro-
architecture, and then generate a suitable cpu mapping string based. Two policies are currently implemented:
“bunch” and “scatter”. By default, we choose to use the “bunch” mapping. However, we also allow users to
choose a binding policy through the run-time variable, MV2 CPU BINDING POLICY. (Section 11.14)

For example, if you want to run 4 processes per node and utilize “bunch” policy on each node, you can
specify:

$ mpirun rsh -np 4 -hostfile hosts MV2 CPU BINDING POLICY=bunch
./a.out

The CPU binding will be set as shown in Figure 2.

If you want to run 4 processes per node and utilize “scatter” policy on each node, you can specify:

$ mpirun rsh -np 4 -hostfile hosts MV2 CPU BINDING POLICY=scatter
./a.out

The CPU binding will be set as shown in Figure 3.

If two applications with four processes each need to share a given node (with eight cores) at the same
time with “bunch” policy, you can specify:

$ mpirun rsh -np 4 -hostfile hosts MV2 CPU BINDING POLICY=bunch
./a.out

http://mvapich.cse.ohio-state.edu/ 36

http://www.open-mpi.org/projects/hwloc
http://www.open-mpi.org/projects/hwloc

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

Figure 2: Process placement with “bunch” CPU binding policy

Figure 3: Process placement with “Scatter” CPU binding policy

$ mpirun rsh -np 4 -hostfile hosts MV2 CPU BINDING POLICY=bunch
./b.out

The CPU binding will be set as shown in Figure 4.

Figure 4: Process placement with two applications using the “bunch” CPU binding policy

If two applications with four processes each need to share a given node (with eight cores) at the same
time with “scatter” policy, you can specify:

$ mpirun rsh -np 4 -hostfile hosts MV2 CPU BINDING POLICY=scatter
./a.out

$ mpirun rsh -np 4 -hostfile hosts MV2 CPU BINDING POLICY=scatter
./b.out

The CPU binding will be set as shown in Figure 5.

The aforementioned binding is based on the core level, meaning each MPI process will be bound to a
specific core. Actually, we provide different process binding level. There are three binding levels: “core”,

http://mvapich.cse.ohio-state.edu/ 37

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

Figure 5: Process placement with two applications using the “scatter” CPU binding policy

“socket”, and “numanode” (which is designed for some multicore processor with NUMA node unit). We use
the “core” as the default binding level, and we also allow users to choose a binding level through the run-time
variable, MV2 CPU BINDING LEVEL. (Section 11.15) For example, if you want to run 4 processes per
node and utilize “socket” as the binding level on each node, you can specify:

$ mpirun rsh -np 4 -hostfile hosts MV2 CPU BINDING LEVEL=socket
./a.out

The CPU binding will be set as shown in Figure 6. Note: because we use “bunch” as the default binding
policy, all four processes will be bound to the first socket and each of them can use all four cores in this
socket. When the binding policy is “bunch” and the binding level is “socket”, processes will be bound to the
same socket until the process number is larger than the core number in the socket.

Figure 6: Process placement with the “bunch” CPU binding policy and “socket” binding level

If you want to run 4 processes per node, utilize “socket” as the binding level and “scatter” as the binding
policy, you can specify:

$ mpirun rsh -np 4 -hostfile hosts MV2 CPU BINDING LEVEL=socket
MV2 CPU BINDING POLICY=scatter ./a.out

The CPU binding will be set as shown in Figure 7.

6.5.2 User defined CPU Mapping

Under the second scheme, users can also use their own mapping to bind processes to CPU’s on modern multi-
core systems. The feature is especially useful on multi-core systems, where performance may be different if

http://mvapich.cse.ohio-state.edu/ 38

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

Figure 7: Process placement with the “scatter” CPU binding policy and “socket” binding level

processes are mapped to different cores. The mapping can be specified by setting the environment variable
MV2 CPU MAPPING (Section 11.13).

For example, if you want to run 4 processes per node and utilize cores 0, 1, 4, 5 on each node, you can
specify:

$ mpirun rsh -np 64 -hostfile hosts MV2 CPU MAPPING=0:1:4:5
./a.out
or

$ mpiexec -n 64 -f hosts -env MV2 CPU MAPPING 0:1:4:5 ./a.out

In this way, process 0 on each node will be mapped to core 0, process 1 will be mapped to core 1,
process 2 will be mapped to core 4, and process 3 will be mapped to core 5. For each process, the mapping
is separated by a single “:”.

MVAPICH2 supports binding one process to multiple cores in the same node with “,” or “-”. For exam-
ple:

$ mpirun rsh -np 64 -hostfile hosts MV2 CPU MAPPING=0,2,3,4:1:5:6
./a.out
or
$ mpirun rsh -np 64 -hostfile hosts MV2 CPU MAPPING=0,2-4:1:5:6
./a.out

In this way, process 0 on each node will be mapped to core 0, core 2, core 3, and core 4; process 1 will be
mapped to core 1, process 2 will be mapped to core 5, and process 3 will be mapped to core 6. This feature
is designed to support the case that one rank process will spawn multiple threads and set thread binding in
the program.

6.5.3 Performance Impact of CPU Mapping

Here we provide a table with latency performance of 0 byte and 8KB messages using different CPU map-
ping schemes. The results show how process binding can affect the benchmark performance. We strongly
suggest the consideration of best CPU mapping on multi-core platforms when carrying out benchmarking
and performance evaluation with MVAPICH2.

http://mvapich.cse.ohio-state.edu/ 39

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

The following measurements were taken on the machine with the dual quad-core 2.53GHz Intel Xeon
processors with 12MB L3 shared cache (among cores in one socket). MVAPICH2-2.2 was built with gcc-
4.4.6 and default configure arguments:

Message Latency
Core Pair 0-byte 8k-byte Notes
1,2 0.17 us 1.83 us same socket, shared L3 cache, best performance
0,1 0.17 us 1.87 us same socket, shared L3 cache, but core 0 handles interrupts
1,5 0.41 us 3.16 us different sockets
0,4 0.42 us 3.17 us different sockets, but core 0 handles interrupts

6.6 Running with LiMIC2

MVAPICH2 CH3-based interfaces support LiMIC2 for intra-node communication for medium and large
messages to get higher performance. LiMIC2 is also used to optimize intra-node one-sided communication in
OFA-IB-CH3 and OFA-iWARP-CH3 interfaces. It is disabled by default because it depends on the LiMIC2
package to be previously installed. As a convenience we have distributed the latest LiMIC2 package (as of
this release) with our sources.

To install this package, please take the following steps.

• Navigate to the LiMIC2 to source
$ cd limic2-0.5.6

• Configure and build the source
limic2-0.5.6$./configure --enable-module --prefix=/usr
--sysconfdir=/etc && make

• Install
limic2-0.5.6$ sudo make install

Before using LiMIC2 you’ll need to load the kernel module. If you followed the instructions above you
can do this using the following command (LSB init script).

• $ /etc/init.d/limic start

Please note that supplying ‘--sysconfdir=/etc’ in the configure line above told the package to in-
stall the init script and an udev rule in the standard location for system packages. Supplying ‘--prefix=/usr’
will also install the headers and libraries in the system path. These are optional but recommended.

Now you can use LiMIC2 with MVAPICH2 by simply supplying the ‘--with-limic2’ option when
configuring MVAPICH2. You can run your applications as normal and LiMIC2 will be used by default. To
disable it at run time, use the env variable:

$ mpirun rsh -np 64 -hostfile hosts MV2 SMP USE LIMIC2=0 ./a.out

http://mvapich.cse.ohio-state.edu/ 40

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

6.7 Running with Shared Memory Collectives

In MVAPICH2, support for shared memory based collectives has been enabled for MPI applications run-
ning over OFA-IB-CH3, OFA-iWARP-CH3, TrueScale (PSM-CH3) and Omni-Path (PSM2-CH3) interfaces.
Currently, this support is available for the following collective operations:

• MPI Allreduce

• MPI Reduce

• MPI Barrier

• MPI Bcast

Optionally, these feature can be turned off at run time by using the following parameters:

• MV2 USE SHMEM COLL (section 11.93)

• MV2 USE SHMEM ALLREDUCE (section 11.90)

• MV2 USE SHMEM REDUCE (section 11.94)

• MV2 USE SHMEM BARRIER (section 11.91)

• MV2 USE SHMEM BCAST (section 11.92)

Please refer to Section 11 for further details.

6.8 Running Collectives with Hardware based Multicast support

In MVAPICH2, support for multicast based collectives has been enabled for MPI applications running over
OFA-IB-CH3 interface. Currently, this support is available for the following collective operations:

• MPI Bcast

• MPI Allreduce

• MPI Scatter

This feature is disabled by default. This can be turned on at runtime by using parameter MV2 USE MCAST
(11.119). This feature is effective when the MPI job is running on more than the threshold
MV2 MCAST NUM NODES THRESHOLD (11.120) number of nodes.

This feature requires the cluster to be installed with libibumad and libibmad libraries. If there are not
installed, this feature can be disabled with –disable-mcast configure flag.

This feature requires to have read/write permission for users on /dev/infiniband/umad0

$ ls -l /dev/infiniband/umad0
crw-rw-rw- 1 root root 231, 0 Jul 8 19:47 /dev/infiniband/umad0

http://mvapich.cse.ohio-state.edu/ 41

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

6.9 Running MPI Gather collective with intra-node Zero-Copy designs (using LiMIC2)

In MVAPICH2, we offer new intra-node Zero-Copy designs (using LiMIC2) for the MPI Gather collective
operation based on the LiMIC2 feature. This feature can be used, when the library has been configured to
use LiMIC2(6.6). This feature is disabled by default and can be turned on at runtime by using the parameter
MV2 USE LIMIC GATHER (11.118).

6.10 Running with scalable UD transport

MVAPICH2 has scalable design with InfiniBand connection less transport Unreliable Datagram (UD). Ap-
plications can use UD only transport by simply configuring MVAPICH2 with the –enable-hybrid and setting
the environment variable MV2 USE ONLY UD(11.116). In this mode, library not uses any reliable RC con-
nections. This feature eliminates all the overheads associated with RC connections and reduces the memory
footprint at large scale.

6.11 Running with Integrated Hybrid UD-RC/XRC design

MVAPICH2 has integrated hybrid transport support for OFA-IB-CH3. This provides the capability to use
Unreliable Datagram (UD), Reliable Connection (RC) and eXtended Reliable Connection (XRC) transports
of InfiniBand. This hybrid transport design is targeted at emerging clusters with multi-thousand core clusters
to deliver best possible performance and scalability with constant memory footprint.

Applications can use Hybrid transport by simply configuring MVAPICH2 with the –enable-hybrid op-
tion. In this configuration, MVAPICH2 seamlessly uses UD and RC/XRC connections by default. The use of
UD transport can be disabled at run time by setting the environment variable MV2 USE UD HYBRID(11.115)
to Zero.

MV2 HYBRID ENABLE THRESHOLD (11.110) defines the threshold for enabling the hybrid trans-
port. Hybrid mode will be used when the size of the job is greater than or equal to the threshold. Otherwise,
it uses default RC/XRC connections.

For a full list of Hybrid environment variables, please refer Section 11.

6.12 Running with Multiple-Rail Configurations

MVAPICH2 has integrated multi-rail support for OFA-IB-CH3 and OFA-iWARP-CH3 interfaces. Run-
time variables are used to specify the control parameters of the multi-rail support; number of adapters with
MV2 NUM HCAS (section 11.32), number of ports per adapter with MV2 NUM PORTS (section 11.34),
and number of queue pairs per port with MV2 NUM QP PER PORT (section 11.36). Those variables are
default to 1 if you do not specify them.

Large messages are striped across all HCAs. The threshold for striping is set according to the following
formula:
(MV2 VBUF TOTAL SIZE×MV2 NUM PORTS×MV2 NUM QP PER PORT×MV2 NUM HCAS).

http://mvapich.cse.ohio-state.edu/ 42

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

In addition, there is another parameter MV2 STRIPING THRESHOLD (section 11.71) which users can
utilize to set the striping threshold directly.

MVAPICH2 also gives the flexibility to balance short message traffic over multiple HCAs in a multi-
rail configuration. The run-time variable MV2 SM SCHEDULING can be used to choose between the
various load balancing options available. It can be set to USE FIRST (Default) or ROUND ROBIN. In the
USE FIRST scheme, the HCA in slot 0 is always used to transmit the short messages. If ROUND ROBIN
is chosen, messages are sent across all HCAs alternately.

In the following example, we can use multi-rail support with two adapters, using one port per adapter
and one queue pair per port:

$ mpirun rsh -np 2 n0 n1 MV2 NUM HCAS=2 MV2 NUM PORTS=1
MV2 NUM QP PER PORT=1 prog

Using the Hydra process manager, the same can be accomplished by:

$ mpiexec -n 2 -hosts n0,n1 -env MV2 NUM HCAS 2 -env MV2 NUM PORTS
1 -env MV2 NUM QP PER PORT 1 prog

Note that the default values of MV2 NUM PORTS and MV2 NUM QP PER PORT are 1, so they can be
omitted.

$ mpirun rsh -np 2 n0 n1 MV2 NUM HCAS=2 prog

Using the Hydra process launcher, the following command can be used:

$ mpiexec -n 2 -hosts n0,n1 -env MV2 NUM HCAS 2 prog

The user can also select the particular network card(s) that should be used by using the MV2 IBA HCA
environment variable specified in section 11.24. The following is an example of how to run MVAPICH2 in
this mode. (In the example “mlx4 0” is the name of the InfiniBand card as displayed by the output of the
“ibstat” command).

$ mpirun rsh -np 2 n0 n1 MV2 IBA HCA=mlx4 0 prog

If there are multiple HCAs in the system, the user can also selectively use some or all of these HCAs
for network operations by using the MV2 IBA HCA environment variable. Different HCAs are delimited
by colons “:”. An example is shown below. In the example “mlx4 0” and “mlx4 1” are the names of the
InfiniBand card as displayed by the output of the “ibstat” command. There can be other HCAs in the system
as well.

$ mpirun rsh -np 2 n0 n1 MV2 IBA HCA=mlx4 0:mlx4 1 prog

http://mvapich.cse.ohio-state.edu/ 43

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

6.13 Enhanced design for Multiple-Rail Configurations

MVAPICH2 now features an enhanced design for multiple rail configurations for OFA-IB-CH3 and OFA-
iWARP-CH3 interfaces. It can broadly be explained by the figure given below. In addition to the earlier
design where the rails were shared among processes at run time (as depicted under the Rail Sharing banner
in the figure below), MVAPICH2 now features a new RAIL BINDING policy which will dedicate a particular
rail to a particular process.

Figure 8: Multi-rail Scheduling policies

The scheduling policies are broadly classified into 2 basic types. Rail Binding and Rail Sharing.

• The Rail Sharing policy has been kept the same as in earlier versions and can be set using the
MV2 RAIL SHARING POLICY (section 11.37) (previously MV2 SM SCHEDULING) parameter.
It can take the values USE FIRST or ROUND ROBIN. However as opposed to the earlier versions,
the number of HCAs of the same type on a system get detected automatically and used. The user can
still make use of the MV2 NUM HCAS parameter and set the number to a custom number of rails if
required. If this parameter is not set the maximum number gets used.

• In the Rail Binding policy only that HCAs is made available to the process which has been assigned to
it using some scheme. The default policy used is ’Rail Binding in a round-robin manner’: If the param-
eter MV2 RAIL SHARING POLICY is not specified, MVAPICH2 assigns HCAs to the processes in
a round-robin manner. The Rail Binding policy can either be default as described above or user defined.
For the user defined mode the following parameter MV2 RAIL SHARING POLICY=FIXED MAPPING
should be set.

The user defined policies can be set in the following manner by giving appropriate values to the pa-
rameter MV2 PROCESS TO RAIL MAPPING (section 11.39)

– MV2 PROCESS TO RAIL MAPPING=BUNCH : The HCAs are assigned in a block manner.
e.g. For 4 rails and 16 processes the mapping will be 0:0:0:0:1:1:1:1:2:2:2:2:3:3:3:3

http://mvapich.cse.ohio-state.edu/ 44

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

– MV2 PROCESS TO RAIL MAPPING=SCATTER : The HCAs are assigned in a cyclic manner.
e.g. For 4 rails and 16 processes the mapping will be 0:1:2:3:0:1:2:3:0:1:2:3:0:1:2:3

– The third option is a custom list which can be passed as a string to
MV2 PROCESS TO RAIL MAPPING separated by a colon(:) as shown above.

• In addition to these parameters the other ENVS that can be set are MV2 VBUF TOTAL SIZE,
MV2 NUM QP PER PORT, MV2 RAIL SHARING LARGE MSG THRESHOLD
(previously MV2 STRIPING THRESHOLD), MV2 IBA HCA. Please refer to the usage described
for these parameters as well as the ones described above in (section 11).

6.14 Running with Fault-Tolerance Support

6.14.1 System-Level Checkpoint/Restart

MVAPICH2 provides system-level rollback-recovery capability based on a coordinated Checkpoint-Restart
protocol involving all the application processes.

The following section (6.14.1) provides instructions for basic checkpoint/restart operations with MVA-
PICH2. These require the Berkeley Lab Checkpoint/Restart (BLCR) library in order perform checkpoints
of local processes. Then, advanced features are presented. Section 6.14.1 details the usage of the fast-
checkpointing scheme based on aggregation. Section 6.14.1 present the support of the new standardized
Fault Tolerance Backplane (FTB).

Basic Checkpoint/Restart Scheme: BLCR is a library that allows to take checkpoint of individual pro-
cesses. Its usage is mandatory to take advantage of the checkpoint/restart functionality in MVAPICH2. Here
are the steps that allows the usage of BLCR with MVAPICH2.

• Download and install the BLCR (Berkeley Lab’s Checkpoint/Restart) package. The packages can be
downloaded from this web page.

• Make sure the BLCR packages are installed on every node and the LD LIBRARY PATH must contain
the path to the shared library of BLCR, usually $BLCR HOME/lib.

• MVAPICH2 needs to be compiled with checkpoint/restart support, see section 4.4.

• BLCR kernel modules must be loaded on all the compute nodes.

• Make sure the PATH contains the path to the executables of BLCR, usually $BLCR HOME/bin.

Users are strongly encouraged to read the Administrators guide of BLCR, and test the BLCR on the
target platform, before using the checkpointing feature of MVAPICH2.

Checkpointing operation

Now, your system is set up to use the Checkpoint/Restart features of MVAPICH2. Several parameters
are provided by MVAPICH2 for flexibility in configuration and using the Checkpoint / Restart features. If

http://mvapich.cse.ohio-state.edu/ 45

http://crd.lbl.gov/groups-depts/ftg/projects/current-projects/BLCR/berkeley-lab-checkpoint-restart-for-linux-blcr-downloads/
http://upc-bugs.lbl.gov/blcr/doc/html/BLCR_Admin_Guide.html

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

mpiexec is used as the job start up mechanism, these parameters need to be set in the user’s environment
through the BASH shell’s export command, or the equivalent command for other shells. If mpirun rsh is
used as the job start up mechanism, these parameters need to be passed to mpirun rsh through the command
line.

• MV2 CKPT FILE: This parameter specifies the path and the base file name for checkpoint files of MPI
processes. Please note that File System performance is critical to the performance of checkpointing.
This parameter controls which file system will be used to store the checkpoint files. For example, if
your PVFS2 is mounted at
/mnt/pvfs2, using MV2 CKPT FILE=/mnt/pvfs2/ckptfile will let the checkpoint files
being stored in pvfs2 file system. See Section 11.4 for details.

• MV2 CKPT INTERVAL: This parameter (in minutes) can be used to enable automatic checkpointing.
See Section 11.5 for details.

• MV2 CKPT MAX SAVE CKPTS: This parameter is used to limit the number of checkpoints saved
on file system. See Section 11.6 for details.

• MV2 CKPT NO SYNC: This parameter is used to control whether the program forces the checkpoint
files being synced to disk or not before it continues execution. See Section 11.7 for details.

In order to provide maximum flexibility to end users who wish to use the checkpoint/restart features
of MVAPICH2, we have provided three different methods that can be used to take checkpoints during the
execution of the MPI application. These methods are described as follows:

• Manual Checkpointing: In this mode, the user simply launches an MPI application and chooses when
to checkpoint the application. This mode can be primarily used for experimentation during deploy-
ment stages. In order to use this mode, the MPI application is launched normally using mpiexec or
mpirun rsh. When the user decides to take a checkpoint, the users can issue a BLCR command
namely “cr checkpoint” in the following manner:

cr_checkpoint -p <PID>

where PID is the process id of the mpiexec or mpirun rsh process. In order to simplify the
process, the script mv2 checkpoint can be used. This script is available in the same directory as
mpiexec and mpirun rsh.

• Automated Checkpointing: In this mode, the user can launch the MPI application normally using
mpiexec or mpirun rsh. However, instead of manually issuing checkpoints as described in the
above bullet, a parameter (MV2 CKPT INTERVAL) can be set to automatically take checkpoints and
user-defined intervals. Please refer to Section 11.5 for a complete usage description of this variable.
This mode can be used to take checkpoints of a long running application, for example every 1 hour, 2
hours etc. based on user’s choice.

• Application Initiated Synchronous Checkpointing: In this mode, the MPI application which is running
can itself request for a checkpoint. Application can request a whole program checkpoint synchronously

http://mvapich.cse.ohio-state.edu/ 46

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

by calling MVAPICH2 Sync Checkpoint. Note that it is a collective operation, and this function
must be called from all processes to take the checkpoint. This mode is expected to be used by ap-
plications that can be modified and have well defined synchronization points. These points can be
effectively used to take checkpoints. An example of how this mode can be activated is given below.

#include "mpi.h"
#include <unistd.h>
#include <stdio.h>

int main(int argc,char *argv[])
{

MPI_Init(&argc,&argv);
printf("Computation\n");
sleep(5);
MPI_Barrier(MPI_COMM_WORLD);
MVAPICH2_Sync_Checkpoint();
MPI_Barrier(MPI_COMM_WORLD);
printf("Computation\n");
sleep(5);
MPI_Finalize();
return 0;

}

Restart operation

To restart a job from a manual checkpoint, users need to issue another command of BLCR, “cr restart”
with the checkpoint file name of the MPI job console as the parameter. Usually, this file is named
context.<pid>. The checkpoint file name of the MPI job console can be specified when issuing the
checkpoint (see the “cr checkpoint --help” for more information). Please note that the names of
checkpoint files of the MPI processes will be assigned according to the environment variable MV2 CKPT FILE,
($MV2 CKPT FILE.<number of checkpoint>.<process rank>).

To restart a job from an automatic checkpoint, use cr restart $MV2 CKPT FILE.<number of
checkpoint>.auto.

If the user wishes to restart the MPI job on a different set of nodes, the host file that was specified along
with the “-hostfile” option during job launch phase should be modified accordingly before trying to
restart a job with “cr restart”. This modified “hostfile” must be at the same location and with the
same file name as the original hostfile. The mpirun rsh framework parses the host file again when trying to
restart from a checkpoint, and launches the job on the corresponding nodes. This is possible as long as the
nodes in which the user is trying to restart has the exact same environment as the one in which the checkpoint
was taken (including shared NFS mounts, kernel versions, and user libraries).

For this to function correctly, the user should disable pre-linking on both the source and the destination
node. See the FAQ Section of the BLCR userguide for more information.

Please refer to the Section 9.6 for troubleshooting with Checkpoint/Restart.

http://mvapich.cse.ohio-state.edu/ 47

https://upc-bugs.lbl.gov//blcr/doc/html/FAQ.html#prelink

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

Write-Aggregation based Fast Checkpointing Scheme: MVAPICH2 provides an enhanced technique
that allows fast checkpoint and restart. This scheme, named Aggregation, relies on the Filesystem in
Userspace (FUSE) library.

Although Aggregation is optional, its usage is recommended to achieve best performances during check-
point and restart operations. That is why, if the FUSE library is detected during configuration step, it will be
automatically enabled (see section 4.4). Once enabled at configuration step, aggregation scheme can be dis-
abled at run time by setting the environment variable MV2 CKPT USE AGGREGATION=0 (see section 11.8
for details).

The following steps need to be done to use FUSE library for aggregation scheme.

• Download and install the Filesystem in Userspace (FUSE) library package. The packages can be
downloaded from this web page. To get the best performance, users are encouraged to upgrade to
kernel version ≥ 2.6.26 and use FUSE library ≥ 2.8.

• Make sure the FUSE packages are installed on every node and the LD LIBRARY PATH must contain
the path to the shared library of FUSE, usually $FUSE HOME/lib.

• MVAPICH2 needs to be compiled with checkpoint/restart support, see section 4.4.

• FUSE kernel modules must be loaded on all the compute nodes.

• Make sure the PATH contains the path to the executables of FUSE, usually $FUSE HOME/bin.

If write aggregation has been enabled at configuration time, MVAPICH2 will check the FUSE configu-
ration of each node during startup (FUSE module loaded and fusermount command in the PATH). If one
node is not properly configured, then MVAPICH2 will abort. In this case, you need to fix the FUSE config-
uration of the nodes, or disable aggregation using MV2 CKPT USE AGGREGATION=0 to run MVAPICH2.

Fault Tolerance Backplane (FTB) support: MVAPICH2 supports the new standardized Fault Tolerance
Backplane (FTB). FTB can be used for Checkpoint-Restart and Job Pause-Migration-Restart Frameworks.
Activating FTB support is optional to perform checkpoint/restart operations, but it will allow MVAPICH2 to
automatically publish and listen to standardized events through the Fault Tolerance Backplane.

FTB has been developed and standardized by the CIFTS project. It enables faults to be handled in a
coordinated and holistic manner in the entire system, providing for an infrastructure which can be used by
different software systems to exchange fault-related information.

If using the FTB framework for checkpoint/restart, the following steps need to be done in addition to the
above nodes.

• Download and install the FTB (Fault Tolerance Backplane) package. The packages can be downloaded
from here.

• Make sure the FTB packages are installed on every node and the LD LIBRARY PATH must contain
the path to the shared library of FTB, usually $FTB HOME/lib.

http://mvapich.cse.ohio-state.edu/ 48

http://fuse.sourceforge.net/
http://www.mcs.anl.gov/research/cifts/
http://www.mcs.anl.gov/research/cifts/software/index.php

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

• MVAPICH2 needs to be compiled with checkpoint/restart as well as FTB support, see section 4.4.

• Start FTB Database server ($FTB HOME/sbin/ftb database server) on one of the nodes,
this node will act as server node for all the FTB agents.

• Start FTB agents ($FTB HOME/sbin/ftb agent) on all the compute nodes.

Checkpoint/Restart support for the OFA-IB-Nemesis Interface: MVAPICH2 also provides Checkpoint-
Restart capabilities for the OFA-IB-Nemesis interface. Currently, this feature can only be used in conjunc-
tion with the Hydra process manager. More details on using Hydra to checkpoint an MPI application can be
found here.

6.14.2 Multi-Level Checkpointing with Scalable Checkpoint-Restart (SCR)

The Scalable Checkpoint-Restart (SCR) library developed at the Lawrence Livermore National Labora-
tory (LLNL) enables MPI applications to utilize distributed storage on Linux clusters to attain high file I/O
bandwidth for checkpointing and restarting large-scale jobs. With SCR, jobs run more efficiently, lose less
work upon a failure, and reduce load on critical shared resources such as the parallel file system and the
network infrastructure.

In the current SCR implementation, application checkpoint files are cached in storage local to the com-
pute nodes, and a redundancy scheme is applied such that the cached files can be recovered even after a
failure disables part of the system. SCR supports the use of spare nodes such that it is possible to restart a job
directly from its cached checkpoint, provided the redundancy scheme holds and provided there are sufficient
spares.

The SCR library implements three redundancy schemes which trade of performance, storage space, and
reliability:

• Local: Each checkpoint file is written to storage on the local node

• Partner: Each checkpoint file is written to storage on the local node, and a full copy of each file is
written to storage on a partner node

• XOR: Each checkpoint file is written to storage on the local node, XOR parity data are computed
using checkpoint files from a set of nodes, and the parity data are stored among the set

SCR is integrated into MVAPICH2 to provide Multi-Level checkpointing capabilities to MPI applica-
tions in two modes: application-aware mode and transparent mode. The following sub-sections illustrate the
steps needed to checkpoint an application using these two schemes.

Application-Aware Multi-Level Checkpointing: In this case, it is assumed that the application knows
what data to checkpoint and how to read data from a checkpoint during a restart. It is also assumed that each
process writes its checkpoint data in a unique file. For an application to actually write a checkpoint using
SCR, the following steps need to be followed.

http://mvapich.cse.ohio-state.edu/ 49

http://wiki.mcs.anl.gov/mpich2/index.php/Using_the_Hydra_Process_Manager#Checkpoint.2FRestart_Support
https://computation-rnd.llnl.gov/scr/

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

• The application must call SCR Start checkpoint to define the start boundary of a new check-
point. It must do this before it opens any file it writes as part of the checkpoint.

• The application must call SCR Route file for each file it writes as part of the checkpoint to register
each file and to determine the full path and file name to use to open each file.

• After the application has registered, written, and closed each of its files for the checkpoint, it must call
SCR Complete checkpoint to define the end boundary of the checkpoint. If a process does not
write any files during a checkpoint, it must still call SCR Start checkpoint and
SCR Complete checkpoint as these functions are collective. All files registered through a call to
SCR Route file between a given SCR Start checkpoint and SCR Complete checkpoint
pair are considered to be part of the same checkpoint file set.

• The initialization and finalization of SCR (SCR Init and SCR Finalize functions) will be implic-
itly handled by MVAPICH2.

The following code snippet describes the checkpointing function of a sample MPI application that writes
checkpoints using SCR:

/* Determine whether we need to checkpoint */
int flag;
SCR_Need_checkpoint(&flag);
if (flag) {

/* Tell SCR that a new checkpoint is starting */
SCR_Start_checkpoint();

/* Define the checkpoint file name for this process */
int rank;
char name[256];
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
sprintf (name, "rank_%d.ckpt", rank);

/* Register our file, and get the full path to open it */
char file[SCR MAX FILENAME];
SCR_Route_file name , file);

/* Open, write, and close the file */
int valid = 0;
FILE *fs = open(file, "w") ;
if (fs != NULL) {

valid = 1;
size_t n = fwrite(checkpoint_data, 1, sizeof(checkpoint_data), fs);
if (n != sizeof(checkpoint data)) {

valid = 0;
}
if (fclose(fs) != 0) {

http://mvapich.cse.ohio-state.edu/ 50

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

valid = 0;
}

}

/* Tell SCR that this process is done writing its checkpoint files */
SCR_Complete_checkpoint(valid) ;

}

The following code snippet describes the SCR-assisted restart mechanism for a sample MPI application:

/* Define the checkpoint filename for this process */
int rank;
char name[256];
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
sprintf(name, "rank_%d.ckpt", rank);
/* Get the full path to open our file */
char file[SCR_MAX_FILENAME];
if (SCR_Route_file(name, file) == SCR SUCCESS) {

/* Open, read, and close the file */
FILE *fs = open(file, "r");
size_t n = fread(checkpoint_data, 1, sizeof(checkpoint_data), fs);
fclose(fs);

} else {
/* There is no existing file to restart from */

}

For more instructions on integrating the SCR APIs into an MPI application, and for information about
the various runtime parameters that can be set by the user, please refer to the SCR Userguide.

Transparent Multi-Level Checkpointing :

The benefits of SCR can also be leveraged by applications that do not employ their own Checkpoint-
Restart mechanism. The SCR-MVAPICH2 integration makes this possible by using SCR to manage the
checkpoints generated by BLCR the basic system-level Checkpointing scheme described in Section 6.14.1.
Once MVAPICH2 has been configured with SCR, the steps required to checkpoint and restart a job trans-
parently using BLCR and SCR are the same as what is described in Section 6.14.1. MVAPICH2 uses SCR’s
APIs internally to transparently manage checkpoint storage efficiently.

For information about the various SCR-specific runtime parameters that can be set by the user, and for
detailed information about the redundancy schemes employed by SCR, please refer to the SCR Userguide.

http://mvapich.cse.ohio-state.edu/ 51

http://sourceforge.net/p/scalablecr/code/ci/b26dc6ec2310a694e3b7a0a4f85a9e2e26ee21fb/tree/doc/scr_users_manual.pdf?format=raw
http://sourceforge.net/p/scalablecr/code/ci/b26dc6ec2310a694e3b7a0a4f85a9e2e26ee21fb/tree/doc/scr_users_manual.pdf?format=raw

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

6.14.3 Job Pause-Migration-Restart Support

MVAPICH2 provides a node-level Job Pause-Migration-Restart mechanism for the OFA-IB-CH3 interface,
which can be used to migrate MPI processes on a given failing node to a healthy node, selected from a pool
of spare hosts provided by the user during job-launch.

This Job Migration framework relies on BLCR and FTB libraries. See subsections in 6.14.1 to set up
these libraries. The source and target nodes are required to have these libraries installed in the same path.

The Job Migration framework makes use of BLCR to take a checkpoint of all MPI processes running
on the failing node in question. Users are strongly recommended to either disable “prelinking” feature, or
execute the following command:

$ prelink --undo --all

on all nodes before starting a job that will later be migrated. Please refer to this BLCR web page for
complete information: BLCR FAQ.

During job-launch, the list of spare hosts can be provided as input to mpirun rsh using the -sparehosts
option which takes a hostfile as argument.

The following example illustrates a sample MPI job being launched to run with job migration support:

$ mpirun rsh -np 4 -hostfile ./hosts -sparehosts
./spare hosts ./prog

where spare hosts is a file which contains a list of healthy spare hosts that is needed by the job
migration framework.

An actual migration of MPI processes from a failing source node to a target spare node can be triggered
using one of two methods - using signals or using the mv2 trigger utility.

For the signal-triggered method, users can manually initiate the migration protocol by issuing a SIGUSR2
signal to the mpispawn processes running on the source node. This can be done using the following com-
mand:

$ pkill -SIGUSR2 mpispawn

The migration protocol can also be triggered using the simple utility provided with MVAPICH2:

$ $PREFIX/bin/mv2 trigger src

where src is the hostname of the health-deteriorating node from which all MPI processes need to be
migrated.

http://mvapich.cse.ohio-state.edu/ 52

https://upc-bugs.lbl.gov//blcr/doc/html/FAQ.html#prelink

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

Please note, that the ftb agent daemon will have to be launched on all the compute nodes and the
spare nodes before launching the MPI application, in order to successfully migrate MPI processes. See
section 6.14.1 for information about setting up the FTB infrastructure.

6.14.4 Run-Through Stabilization

MVAPICH2 provides support for run-through stabilization wherein communication failures are not treated
as fatal errors. On enabling this capability, MVAPICH2 returns the appropriate error code to a user-set
error handler in the event of a communication failure, instead of terminating the entire job. When a process
detects a failure when communicating with another process, it will consider the other process as having
failed and will no longer attempt to communicate with that process. The user can, however, continue making
communication calls to other processes. Any outstanding send or receive operations to a failed process, or
wild-card receives (i.e., with MPI ANY SOURCE) posted to communicators with a failed process, will be
immediately completed with an appropriate error code.

Currently, this support is available only for the OFA-IB-Nemesis and TCP/IP-Nemesis interfaces, when
the Hydra process manager is used.

It can be enabled at run-time by:

• Setting the environment variable MV2 RUN THROUGH STABILIZATION=1 (see section 12.26), and

• passing the --disable-auto-cleanup flag to Hydra launcher.

6.14.5 Network Fault Tolerance with Automatic Path Migration

MVAPICH2 supports network fault recovery by using InfiniBand Automatic Path Migration (APM) mecha-
nism for OFA-IB-CH3 interface. This support is available for MPI applications using OpenFabrics stack and
InfiniBand adapters.

To enable this functionality, a run-time variable, MV2 USE APM (Section 11.73) can be enabled, as
shown in the following example:
$ mpirun rsh -np 2 n0 n1 MV2 USE APM=1 ./cpi
or
$ mpiexec -n 2 -hosts n0,n1 -env MV2 USE APM 1 ./cpi

MVAPICH2 also supports testing Automatic Path Migration in the subnet in the absence of network
faults. This can be controlled by using a run-time variable MV2 USE APM TEST (Section 11.74). This
should be combined with MV2 USE APM as follows:
$ mpirun rsh -np 2 n0 n1 MV2 USE APM=1 MV2 USE APM TEST=1 ./cpi
or
$ mpiexec -n 2 -hosts n0,n1 -env MV2 USE APM 1 -env
MV2 USE APM TEST 1 ./cpi

http://mvapich.cse.ohio-state.edu/ 53

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

6.15 Running with RDMA CM support

In MVAPICH2, for using RDMA CM the run time variable MV2 USE RDMA CM needs to be used as de-
scribed in 11. This applies to OFA-IB-CH3, OFA-iWARP-CH3 and OFA-RoCE-CH3 interfaces.

In addition to these flags, all the systems to be used need the following one time setup for enabling
RDMA CM usage.

• Setup the RDMA CM interface: RDMA CM interface needs to be setup, configured with an IP ad-
dress and connected to the network.

• Setup the Local Address File: Create mv2.conf file in a standard location (/etc/mv2.conf) or
user defined path specified using MV2 RDMA CM CONF FILE PATH (11.85) with the local IP
address to be used by RDMA CM. (Multiple IP addresses can be listed (one per line) for multi-rail
configurations).
$ echo 10.1.1.1 >> /etc/mv2.conf

Programs can be executed as follows:
$ mpirun rsh -np 2 n0 n1 MV2 USE RDMA CM=1 prog
or
$ mpiexec -n 2 -hosts n0,n1 -env MV2 USE RDMA CM 1 prog

6.16 Running MVAPICH2 in Multi-threaded Environments

MVAPICH2 binds processes to processor cores for optimal performance. Please refer to Section 6.5 for
more details. However, in multi-threaded environments, it might be desirable to have each thread compute
using a separate processor core. This is especially true for OpenMP+MPI programs.

In MVAPICH2, processor core mapping is turned off in the following way to enable the application in
MPI THREAD MULTIPLE threading level if user requested it in MPI Init thread. Otherwise, applications
will run in MPI THREAD SINGLE threading level.

$ mpirun rsh -np 2 n0 n1 MV2 ENABLE AFFINITY=0 ./openmp+mpi app

For QLogic PSM Interface,

$ mpirun rsh -np 2 n0 n1 MV2 ENABLE AFFINITY=0
IPATH NO CPUAFFINITY=1 ./openmp+mpi app

6.17 Compiler Specific Flags to enable OpenMP thread binding

Further, to get better performance for applications that use MPI + OpenMP, we recommend binding the
OpenMP threads to the processor cores. This can potentially avoid cache effects due to unwanted thread
migration. For example, if we consider a Quad-Core processor, with 1 MPI process and 4 OpenMP threads,

http://mvapich.cse.ohio-state.edu/ 54

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

we recommend binding OpenMP thread 0 to core 0, OpenMP thread 1 to core 1 and so on. This can be
achieved by setting the kernel affinity via the following compiler-specific environment variables:

Intel Compilers: On Intel processors, we recommend using the KMP AFFINITY run-time flag in the
following manner:

$ mpirun rsh -hostfile hostfile -np 1 MV2 ENABLE AFFINITY=0
OMP NUM THREADS=4
KMP AFFINITY=warnings,compact ./a.out

For more information, please refer to: (http://software.intel.com/sites/products/documentation/studio/
composer/en-us/2011Update/compiler c/optaps/common/optaps openmp thread affinity.htm)

GNU compilers: On both Intel and AMD processors, we recommend using the GOMP CPU AFFINITY
run-time flag, in the following manner:

$ mpirun rsh -hostfile hostfile -np 1 MV2 ENABLE AFFINITY=0
OMP NUM THREADS=4 GOMP CPU AFFINITY="0,1,2,3" ./a.out

For more information, please refer to:
(http://gcc.gnu.org/onlinedocs/libgomp/GOMP 005fCPU 005fAFFINITY.html)

6.18 Optimizations Specific to Intel Knight’s Landing (KNL) Processors

For Intel Knight’s Landing (KNL) processors, we recommend setting KMP AFFINITY=none and using
MV2 CPU MAPPING to allocate appropriate number of cores to each process. The number of cores allo-
cated to each process should be same or greater than the number of OpenMP threads per process.

Example with 4 MPI processes and 4 OpenMP threads per process:

$ mpirun rsh -hostfile hostfile -np 4 OMP NUM THREADS=4
MV2 CPU MAPPING=0-3:4-7:8-11:12-15 KMP AFFINITY=none ./a.out

Knight’s Landing + Omni-Path Architecture: For systems with Knight’s Landing and Omni-Path/PSM2
architecture, we recommend setting the following environment variable: PSM2 KASSIST MODE=none in
addition.

Example with 4 MPI processes and 4 OpenMP threads per process:

$ mpirun rsh -hostfile hostfile -np 4 OMP NUM THREADS=4
MV2 CPU MAPPING=0-3:4-7:8-11:12-15 KMP AFFINITY=none
PSM2 KASSIST MODE=none ./a.out

6.19 Running with Hot-Spot and Congestion Avoidance

MVAPICH2 supports hot-spot and congestion avoidance using InfiniBand multi-pathing mechanism. This
support is available for MPI applications using OFA-IB-CH3 interface.

To enable this functionality, a run-time variable, MV2 USE HSAM (Section 11.79) can be enabled, as
shown in the following example:

http://mvapich.cse.ohio-state.edu/ 55

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

$ mpirun rsh -np 2 n0 n1 MV2 USE HSAM=1 ./cpi
or
$ mpiexec -n 2 -hosts n0,n1 -env MV2 USE HSAM 1 ./cpi

This functionality automatically defines the number of paths for hot-spot avoidance. Alternatively, the
maximum number of paths to be used between a pair of processes can be defined by using a run-time variable
MV2 NUM QP PER PORT (Section 11.36).

We expect this functionality to show benefits in the presence of at least partially non-overlapping paths in
the network. OpenSM, the subnet manager distributed with OpenFabrics supports LMC mechanism, which
can be used to create multiple paths:

$ opensm -l4

will start the subnet manager with LMC value to four, creating sixteen paths between every pair of nodes.

6.20 Running on Clusters with NVIDIA GPU Accelerators

MVAPICH2 CH3-based interface supports MPI communication using NVIDIA GPU device memory with
CUDA versions 4.0 or later. This feature removes the need for the application developer to explicitly move
the data from device memory to host memory before using MPI for communication. The new support allows
direct MPI communication from device memory to device memory, device memory to host memory and host
memory to device memory. It also supports point-to-point and collective communication using contiguous
and non-contiguous MPI datatypes. It takes advantage of CUDA IPC for intra-node GPU-GPU communica-
tion (with CUDA 4.1).

For example, without CUDA support in the MPI library, a typical user might be using the following se-
quence of commands to move data from a device memory to another device memory.

. . .
cudaMemcpy(host buf, device buf, size, cudaMemcpyDeviceToDevice);
MPI Isend(host buf, size, MPI CHAR, 1, 100, MPI COMM WORLD, req);
. . .

With the support provided in MVAPICH2 and support of CUDA 4.0 (and later), the user can achieve the
same data movement operation by explicitly specifying MPI calls on device memory.
. . .
MPI Isend(device buf, size, MPI CHAR, 1, 100, MPI COMM WORLD, req);
. . .

This support can be enabled by configuring MVAPICH2 with --enable-cuda and setting the envi-
ronment variable MV2 USE CUDA (11.121) to 1 during runtime.

To minimize communication overhead, MVAPICH2 divides copies between device and host into chunks.
This can be better tuned for internode transfers with a runtime environment variable MV2 CUDA BLOCK SIZE

http://mvapich.cse.ohio-state.edu/ 56

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

(11.122). The default chunk size is 64K (65536). However, higher values of this parameter, such as 256K
(262144) and 512K (524288), might deliver better performance if the MPI application uses large messages.
The optimal value for this parameter depends on several other factors such as InfiniBand network/adapter
speed, GPU adapter characteristics, platform characteristics (processor and memory speed) and amount of
memory to be dedicated to the MPI library with GPU support. For different platforms and MPI applications,
the users are encouraged to try out different values for this parameter to get best performance.

MVAPICH2 takes advantage of tunable two-dimensional CUDA kernel for packing/unpacking data when
MPI vector datatype is used in communication involving GPU memory. The CUDA thread block size and
dimensions are automatically tuned based on the dimensions of the vector. Users can also control the number
of CUDA threads per block using the runtime parameter: MV2 CUDA KERNEL VECTOR TIDBLK SIZE
(default value is 1024) (11.123). They can adjust the number of threads operating on each data block of the
vector using MV2 CUDA KERNEL VECTOR YSIZE (tuned based on vector size) (11.124).

GPU Affinity: When multiple GPUs are present on a node, users might want to set the MPI process
affinity to a particular GPU using cuda calls like cudaSetDevice(). This can be done after MPI Init based on
MPI rank of the process or before MPI Init using the local rank of a process obtained from an environment
variable MV2 COMM WORLD LOCAL RANK.

6.21 MPIRUN RSH compatibility with MPIEXEC

There is now a front end to mpirun rsh that aims for compatibility with mpiexec usage as recommended by
the MPI standard. This front end is can be used by calling mpiexec.mpirun rsh.

The main differences between this and mpirun rsh is that this front end doesn’t require you to specify
hosts or environment variables on the command line. Also, the host file options is -f as opposed to -hostfile.

Run 4 instances of CPI on localhost:

$ mpiexec.mpirun rsh -n 4 ./cpi

Run 4 instances of CPI on the nodes specified by hostfile:

$ mpiexec.mpirun rsh -n 4 -f hostfile ./cpi

6.21.1 Interaction with SLURM

If the hostfile isn’t given and mpiexec.mpirun rsh finds the appropriate slurm environment variables set,
mpiexec will use these to determine which nodes the applications should be launched on.

Please note that processes are assigned in a block fashion by slurm so all the processes will run on the
same node if possible.

Run 4 instances of CPI on up to 4 different nodes (but maybe only 1) allocated by “salloc”:

$ salloc -N 4
$ mpiexec.mpirun rsh -n 4 ./cpi

Same thing as above but only allocating the minimum number of nodes needed to run 4 tasks:

http://mvapich.cse.ohio-state.edu/ 57

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

$ salloc -n 4
$ mpiexec.mpirun rsh ./cpi

Run 4 instances of CPI on 4 different nodes allocated by “salloc”:

$ salloc -N 4 --ntasks-per-node=1
$ mpiexec.mpirun rsh -n 4 ./cpi

6.21.2 Interaction with PBS

If the hostfile isn’t given and mpiexec.mpirun rsh finds the PBS NODEFILE environment variable set,
mpiexec will use this to locate the host file.

6.22 Running with Intel Trace Analyzer and Collector

MVAPICH2 supports compiling and running MPI applications with Intel Trace Analyzer and Collector
(ITAC), so that the MPI calls in an execution can be traced, and the logs can be used for functionality or
performance analysis. The following steps need to be done to make an MPI application work with ITAC.

• Export the environment variables of ITAC. You can either export the entire set of ITAC variables for
your architecture by script:

$ source /opt/intel/itac/8.1.4/intel64/bin/itacvars.sh

or simply export the only variable of VTune root that needed by MVAPICH2:

$ export VT ROOT=/opt/intel/itac/8.1.4

• Compile your application using mpicc, mpifort or other compiling commands with the “-itac”
option. For example:

$ mpicc -itac -o cpi cpi.c

If configure/Makefile or other building scripts are employed, you should append “-itac” to the
compiling and linking options such as “CFLAGS”. For example:

$./configure CC=mpicc CFLAGS=-itac && make

• Run the created binary with an MPI launcher in the normal way. After execution, the ITAC prompt
information will be printed on stderr, and some trace files will be created in current directory.

• Launch the GUI tool of ITAC on a desktop environment or through X11 forwarding from the server,
load the trace file with the “.stf” suffix, and the MPI calls within that execution can be visualized
and analyzed.

The advanced usage of ITAC can be found at: https://software.intel.com/en-us/intel-trace-analyzer.

http://mvapich.cse.ohio-state.edu/ 58

https://software.intel.com/en-us/intel-trace-analyzer

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

6.23 Running with MCDRAM support on Intel Knight’s Landing (KNL) processor

This section describes the procedure to take advantage of the High Bandwidth Memory (MCDRAM) avail-
able with the Intel Knight’s Landing processor. The method discussed here is basic and does not require
modifications to the user application or MPI library.

Allocating Memory on MCDRAM

In order to do all the memory allocations including application buffers and/or internal buffers of MVAPICH2,
one can use the numactl system call. This is beneficial when KNL is configured in Flat/Hybrid mode where
MCDRAM can be viewed as separate NUMA node.

Step 1: Verify that KNL is configured in Flat/Hybrid mode. One can execute the numactl -H command to
verify this. A sample output is also given below. As can be seen from the sample output, when KNL is in
Flat-mode NUMA node 0 consists of all the processor cores and DDR memory (approximately 96GB in
size). NUMA node 1 consists of only the MCDRAM (approximately 16GB in size).

$ numactl -H

[hashmij@knl1 pt2pt]$ numactl -H
available: 2 nodes (0-1)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
258 259 260 261 262 263 264 265 266 267 268 269 270 271
node 0 size: 98200 MB
node 0 free: 94215 MB
node 1 cpus:
node 1 size: 16384 MB
node 1 free: 15929 MB
node distances:
node 0 1

0: 10 31
1: 31 10

Step 2: Executing applications to take advantage of MCDRAM.

All memory allocations made by the application as well as MVAPICH2 can be redirected to MCDRAM

http://mvapich.cse.ohio-state.edu/ 59

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

by prepending numactl –membind ¡MCDRAM numa node¿ to the job invocation. An example of the same
is given below.

$ numactl --membind 1 mpirun rsh -np 2 -hostfile
hosts osu latency

Viewing MCDRAM Allocations

To verify that the allocations are indeed being done on the MCDRAM, the numastati -p ¡pid¿ command can
be used where “pid” refers to the process ID of one of the application processes. An example of the same is
given below.

Note that the pages are not allocated until the memory is actually “touched” by the application and/or the
MVAPICH2 MPI library. Thus, ‘numastat’ will only report a difference in the amount of memory after
the memory is touched.

$ numastat -p 21356

Per-node process memory usage (in MBs) for PID 95610 (osu_latency)
Node 0 Node 1 Total

--------------- --------------- ---------------
Huge 0.00 0.00 0.00
Heap 0.00 1.40 1.40
Stack 0.00 0.08 0.08
Private 3.11 73.89 77.00
---------------- --------------- --------------- ---------------
Total 3.11 75.37 78.48

http://mvapich.cse.ohio-state.edu/ 60

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

7 OSU Benchmarks

If you have arrived at this point, you have successfully installed MVAPICH2. Congratulations!! The OSU
benchmarks should already be built and installed along with MVAPICH2. Look for them under $pre-
fix/libexec/mvapich2. Sample performance numbers for these benchmarks on representative platforms with
InfiniBand, iWARP and RoCE adapters are also included on our projects’ web page. You are welcome to
compare your performance numbers with our numbers. If you see any big discrepancy, please let us know
by sending an email to mvapich-discuss@cse.ohio-state.edu.

The benchmarks provided are:

http://mvapich.cse.ohio-state.edu/ 61

mailto:mvapich-discuss@cse.ohio-state.edu

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

MPI-1, MPI-2 and MPI-3
osu bibw Bidirectional Bandwidth Test
osu bw Bandwidth Test
osu latency Latency Test
osu mbw mr Multiple Bandwidth / Message Rate Test
osu multi lat Multi-pair Latency Test
osu allgather MPI Allgather Latency Test
osu allgatherv MPI Allgatherv Latency Test
osu allreduce MPI Allreduce Latency Test
osu alltoall MPI Alltoall Latency Test
osu alltoallv MPI Alltoallv Latency Test
osu barrier MPI Barrier Latency Test
osu bcast MPI Bcast Latency Test
osu gather MPI Gather Latency Test
osu gatherv MPI Gatherv Latency Test
osu reduce MPI Reduce Latency Test
osu reduce scatter MPI Reduce scatter Latency Test
osu scatter MPI Scatter Latency Test
osu scatterv MPI Scatterv Latency Test

MPI-2 and MPI-3 only
osu acc latency Accumulate Latency Test with Active/Passive Synchronization
osu get bw One-Sided Get Bandwidth Test with Active/Passive Synchronization
osu get latency One-Sided Get Latency Test with Active/Passive Synchronization
osu latency mt Multi-threaded Latency Test
osu put bibw One-Sided Put Bidirectional Test with Active Synchronization
osu put bw One-Sided Put Bandwidth Test with Active/Passive Synchronization
osu put latency One-Sided Put Latency Test with Active/Passive Synchronization

MPI-3 only
osu cas latency One-Sided Compare and swap Latency Test with Active/Passive Synchronization
osu fop latency One-Sided Fetch and op Latency Test with Active/Passive Synchronization
osu get acc latency One-Sided Get accumulate Latency Test with Active/Passive Synchronization
osu iallgather MPI Iallgather Latency Test
osu ialltoall MPI Ialltoall Latency Test
osu ibarrier MPI Ibarrier Latency Test
osu ibcast MPI Ibcast Latency Test
osu igather MPI Igather Latency Test
osu iscatter MPI Iscatter Latency Test

More information about the benchmarks can be found at http://mvapich.cse.ohio-state.edu/benchmarks/. You
can also check this link for updates to the benchmarks.

http://mvapich.cse.ohio-state.edu/ 62

http://mvapich.cse.ohio-state.edu/benchmarks/

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

7.1 Download and Build Stand-alone OSU Benchmarks Package

The OSU Benchmarks can also be downloaded as a separate package from here. You can build the bench-
marks using the following steps if mpicc is in your PATH. For example:

$./configure --prefix=<path-to-install> && make && make install

If mpicc is not in your path or you would like to use another particular version you can explicitly tell configure
by setting CC. For example:

$./configure CC=/path/to/special/mpicc --prefix=<path-to-install>
&& make && make install

Configure will detect whether your library supports MPI-2, MPI-3 and compile the corresponding bench-
marks. The benchmarks will be installed under $prefix/libexec/osu-micro-benchmarks.

CUDA Extensions to OMB can be enabled by configuring the benchmark suite with –enable-cuda option as
shown below. Similarly, OpenACC Extensions can be enabled by specifying the –enable-openacc option.
The MPI library used should be able to support MPI communication from buffers in GPU Device memory.

$./configure CC=/path/to/mpicc
--enable-cuda
--with-cuda-include=/path/to/cuda/include
--with-cuda-lib=/path/to/cuda/lib

$ make
$ make install

7.2 Running

The OSU Benchmarks are run in the same manner as other MPI Applications. The following examples will
use mpirun rsh as the process manager. Please see section 5.2 for more information on running with other
process managers.

7.2.1 Running OSU Latency and Bandwidth

Inter-node latency and bandwidth: The following example will measure the latency and bandwidth of
communication between node1 and node2.

$ mpirun rsh -np 2 node1 node2 ./osu latency

$ mpirun rsh -np 2 node1 node2 ./osu bw

Intra-node latency and bandwidth: The following example will measure the latency and bandwidth of
communication inside node1 on different cores. This assumes that you have at least two cores (or processors)
in your node.

$ mpirun rsh -np 2 node1 node1 ./osu latency

$ mpirun rsh -np 2 node1 node1 ./osu bw

http://mvapich.cse.ohio-state.edu/ 63

http://mvapich.cse.ohio-state.edu/benchmarks/

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

7.2.2 Running OSU Message Rate Benchmark

The OSU message rate benchmark reports the rate at which messages can be sent between two nodes. It is
advised that it should be run in a configuration that utilizes multiple pairs of communicating processes on
two nodes. The following example measures the message rate on a system with two nodes, each with four
processor cores.

$ mpirun rsh -np 8 -hostfile mf ./osu mbw mr

Where hostfile “mf” has the following contains:

node1
node1
node1
node1
node2
node2
node2
node2

7.2.3 Running OSU Collective Benchmarks

By default, the OSU collective benchmarks report the average communication latencies for a given collective
operation, across various message lengths. Additionally, the benchmarks offer the following options:

1. ”-f” can be used to report additional statistics, such as min and max latencies and the number of
iterations.

2. ”-m” option can be used to set the maximum message length to be used in a benchmark. In the default
version, the benchmarks report the latencies for up to 1MB message lengths.

3. ”-i” can be used to set the number of iterations to run for each message length.

4. ”-h” can be used to list all the options and their descriptions.

5. ”-v” reports the benchmark version.

If a user wishes to measure the communication latency of a specific collective operation, say, MPI Alltoall,
with 16 processes, we recommend running the osu alltoall benchmark in the following manner:

$ mpirun rsh -np 16 -hostfile mf ./osu alltoall

Where hostfile “mf” has the following contains:

node1
node1
node1
node1

http://mvapich.cse.ohio-state.edu/ 64

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

node1
node1
node1
node1
node1
node2
node2
node2
node2
node2
node2
node2
node2

7.2.4 Running Benchmarks with CUDA/OpenACC Extensions

The following benchmarks have been extended to evaluate performance of MPI communication from and to
buffers on NVIDIA GPU devices.

osu bibw Bidirectional Bandwidth Test
osu bw Bandwidth Test
osu latency Latency Test
osu allgather MPI Allgather Latency Test
osu allgatherv MPI Allgatherv Latency Test
osu allreduce MPI Allreduce Latency Test
osu alltoall MPI Alltoall Latency Test
osu alltoallv MPI Alltoallv Latency Test
osu bcast MPI Bcast Latency Test
osu gather MPI Gather Latency Test
osu gatherv MPI Gatherv Latency Test
osu reduce MPI Reduce Latency Test
osu reduce scatter MPI Reduce scatter Latency Test
osu scatter MPI Scatter Latency Test
osu scatterv MPI Scatterv Latency Test

Each of the pt2pt benchmarks takes two input parameters. The first parameter indicates the location of the
buffers at rank 0 and the second parameter indicates the location of the buffers at rank 1. The value of each
of these parameters can be either ’H’ or ’D’ to indicate if the buffers are to be on the host or on the device,
respectively. When no parameters are specified, the buffers are allocated on the host.

The collective benchmarks will use buffers allocated on the device if the -d option is used otherwise the
buffers will be allocated on the host.

If both CUDA and OpenACC support is enabled, you can switch between using CUDA and OpenACC
to allocate your device buffers by specifying the ’-d cuda’ or ’-d openacc’ option to the benchmark. Please

http://mvapich.cse.ohio-state.edu/ 65

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

use the ’-h’ option for more info.

GPU affinity for processes is set before MPI Init is called. The process rank on a node is normally
used to do this and different MPI launchers expose this information through different environment variables.
The benchmarks use an environment variable called LOCAL RANK to get this information. The script like
get local rank provided alongside the benchmarks can be used to export this environment variable when
using mpirun rsh. This can be adapted to work with other MPI launchers and libraries.

Examples:
$ mpirun rsh -np 2 host0 host0 MV2 USE CUDA=1
get local rank ./osu latency D D

In this run, assuming host0 has two GPU devices, the latency test allocates buffers on GPU device 0 at rank
0 and on GPU device 1 at rank 1.

$ mpirun rsh -np 2 host0 host1 MV2 USE CUDA=1
get local rank ./osu bw D H

In this run, the bandwidth test allocates buffers on the GPU device at rank 0 (host0) and on the host at rank
1 (host1).

http://mvapich.cse.ohio-state.edu/ 66

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

8 Scalability features and Performance Tuning for Large Scale Clusters

MVAPICH2 provides many different parameters for tuning performance for a wide variety of platforms and
applications. This section deals with tuning CH3-based interfaces. These parameters can be either compile
time parameters or runtime parameters. Please refer to Section 8 for a complete description of all these
parameters. In this section we classify these parameters depending on what you are tuning for and provide
guidelines on how to use them.

8.1 Optimizations for homogeneous clusters

MVAPICH2 internally detects the heterogeneity of the cluster in terms of processor and network interface
type. Set parameter MV2 HOMOGENEOUS CLUSTER to 1 to skip this detection, if the user already
knows that cluster is homogeneous.

8.2 Improving Job startup performance

MVAPICH2 has several advanced features to speed up launching jobs on HPC clusters. There are several
launcher-agnostic and launcher-specific parameters that can be used to get the best job startup performance.
More details about these designs can be obtained from: http://mvapich.cse.ohio-state.edu/
performance/job-startup/

8.2.1 Configuration Options (Launcher-Agnostic)

• Disabling RDMA CM

– Default: Enabled

– Disable: --disable-rdma-cm

– Disabling RDMA CM will improve job-startup performance, particularly on nodes with large
number of cores.

8.2.2 Runtime Parameters (Launcher-Agnostic)

• MV2 HOMOGENEOUS CLUSTER

– Default: 0 (Disabled)

– Setting MV2 HOMOGENEOUS CLUSTER to 1 on homogeneous clusters will improve startup
performance.

• MV2 ON DEMAND THRESHOLD

– Default: 64 (OFA-IB-CH3), 16 (OFA-iWARP-CH3)

– Should be enabled for fast startup. See Section 11.42 for details.

http://mvapich.cse.ohio-state.edu/ 67

http://mvapich.cse.ohio-state.edu/performance/job-startup/
http://mvapich.cse.ohio-state.edu/performance/job-startup/

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

• MV2 ON DEMAND UD INFO EXCHANGE

– Default: 1 (Enabled)

– Setting MV2 ON DEMAND UD INFO EXCHANGE to 1 will enable on-demand Address Han-
dle creation for hybrid mode.

8.2.3 Enabling Optimizations Specific to mpirun rsh

• MV2 MT DEGREE: MVAPICH2 has a scalable job launcher – mpirun rsh which uses a tree based
mechanism to spawn processes. The degree of this tree is determined dynamically to keep the depth
low. For large clusters, it might be beneficial to further flatten the tree by specifying a higher degree.
The degree can be overridden with the environment variable MV2 MT DEGREE (see 13.8).

• MV2 FASTSSH THRESHOLD: MVAPICH2 can use a faster, hierarchical launching mechanism on
large clusters. This is enabled manually using MV2 FASTSSH THRESHOLD (see 13.5).

• MV2 NPROCS THRESHOLD: When the number of nodes involved is beyond 8k, the mpirun rsh
uses a file-based communication scheme to create the hierarchical tree. The default value can be
overridden with the environment variable MV2 NPROCS THRESHOLD (see 13.6).

8.2.4 Enabling Optimizations Specific to SLURM

• Using OSU optimized SLURM: For best performance with SLURM, the OSU-optimized PMI2 plu-
gin should be used. This requires applying the appropriate patch to SLURM. Please refer to Sec-
tion 4.3.3 for more details.

• Using Default SLURM: If the SLURM installation cannot be modified, the default PMI2 plugin
provided by SLURM should be used. Please see section 4.3.2 for more details.

8.3 Basic QP Resource Tuning

The following parameters affect memory requirements for each QP.

• MV2 DEFAULT MAX SEND WQE

• MV2 DEFAULT MAX RECV WQE

• MV2 MAX INLINE SIZE

MV2 DEFAULT MAX SEND WQE and MV2 DEFAULT MAX RECV WQE control the maximum
number of WQEs per QP and MV2 MAX INLINE SIZE controls the maximum inline size. Reducing the
values of these two parameters leads to less memory consumption. They are especially important for large
scale clusters with a large amount of connections and multiple rails.

These two parameters are run-time adjustable. Please refer to Sections 11.17 and 11.29 for details.

http://mvapich.cse.ohio-state.edu/ 68

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

8.4 RDMA Based Point-to-Point Tuning

The following parameters are important in tuning the memory requirements for adaptive rdma fast path
feature.

• MV2 RDMA FAST PATH BUF SIZE (11.40)

• MV2 NUM RDMA BUFFER (11.41)

MV2 RDMA FAST PATH BUF SIZE is the size of each buffer used in RDMA fast path communica-
tion.

MV2 NUM RDMA BUFFER is number of buffers used for the RDMA fast path communication.

On the other hand, the product of MV2 RDMA FAST PATH BUF SIZE and
MV2 NUM RDMA BUFFER generally is a measure of the amount of memory registered for eager message
passing. These buffers are not shared across connections.

8.5 Shared Receive Queue (SRQ) Tuning

The main environmental parameters controlling the behavior of the Shared Receive Queue design are:

• MV2 SRQ MAX SIZE (11.69)

• MV2 SRQ SIZE (11.70)

• MV2 SRQ LIMIT (11.68)

MV2 SRQ MAX SIZE is the maximum size of the Shared Receive Queue (default 4096). You may
increase this to value 8192 if the application requires very large number of processors. The application will
start by only using MV2 SRQ SIZE buffers (default 256) and will double this value on every SRQ limit
event(upto MV2 SRQ MAX SIZE). For long running applications this re-size should show little effect. If
needed, the MV2 SRQ SIZE can be increased to 1024 or higher as needed for applications.
MV2 SRQ LIMIT defines the low water-mark for the flow control handler. This can be reduced if your aim
is to reduce the number of interrupts.

8.6 eXtended Reliable Connection (XRC)

MVAPICH2 now supports the eXtended Reliable Connection (XRC) transport available in recent Mellanox
HCAs. This transport helps reduce the number of QPs needed on multi-core systems. Set MV2 USE XRC
(11.101) to use XRC with MVAPICH2.

http://mvapich.cse.ohio-state.edu/ 69

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

8.7 Shared Memory Tuning

MVAPICH2 uses shared memory communication channel to achieve high-performance message passing
among processes that are on the same physical node. The two main parameters which are used for tun-
ing shared memory performance for small messages are SMPI LENGTH QUEUE (Section 11.106), and
SMP EAGER SIZE (Section 11.105). The two main parameters which are used for tuning shared memory
performance for large messages are SMP SEND BUF SIZE (Section 11.108) and
SMP NUM SEND BUFFER (Section 11.107).

SMPI LENGTH QUEUE is the size of the shared memory buffer which is used to store outstanding
small and control messages. SMP EAGER SIZE defines the switch point from Eager protocol to Ren-
dezvous protocol.

Messages larger than SMP EAGER SIZE are packetized and sent out in a pipelined manner.
SMP SEND BUF SIZE is the packet size, i.e. the send buffer size. SMP NUM SEND BUFFER is the
number of send buffers.

8.8 On-demand Connection Management Tuning

MVAPICH2 uses on-demand connection management to reduce the memory usage of MPI library. There
are 4 parameters to tune connection manager: MV2 ON DEMAND THRESHOLD (Section 11.42),
MV2 CM RECV BUFFERS (Section 11.10), MV2 CM TIMEOUT (Section 11.12), and
MV2 CM SPIN COUNT (Section 11.11). The first one applies to OFA-IB-CH3 and OFA-iWARP-CH3
interfaces and the other three only apply to OFA-IB-CH3 interface.

MV2 ON DEMAND THRESHOLD defines threshold for enabling on-demand connection management
scheme. When the size of the job is larger than the threshold value, on-demand connection management will
be used.

MV2 CM RECV BUFFERS defines the number of buffers used by connection manager to establish new
connections. These buffers are quite small and are shared for all connections, so this value may be increased
to 8192 for large clusters to avoid retries in case of packet drops.

MV2 CM TIMEOUT is the timeout value associated with connection management messages via UD
channel. Decreasing this value may lead to faster retries but at the cost of generating duplicate messages.

MV2 CM SPIN COUNT is the number of the connection manager polls for new control messages from
UD channel for each interrupt. This may be increased to reduce the interrupt overhead when many incoming
control messages from UD channel at the same time.

8.9 Scalable Collectives Tuning

MVAPICH2 uses shared memory to optimize the performance for many collective operations: MPI Allreduce,
MPI Reduce, MPI Barrier, and MPI Bcast.

We use shared-memory based collective for most small and medium sized messages and fall back to the
default point-to-point based algorithms for very large messages. The upper-limits for shared-memory based

http://mvapich.cse.ohio-state.edu/ 70

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

collectives are tunable parameters that are specific to each collective operation. We have variables such as
MV2 SHMEM ALLREDUCE MSG (11.58), MV2 SHMEM REDUCE MSG (11.64) and
MV2 SHMEM BCAST MSG (11.60), for MPI Allreduce, MPI Reduce and MPI Bcast collective opera-
tions. The default values for these variables have been set through experimental analysis on some of our
clusters and a few large scale clusters, such as the TACC Ranger. Users can choose to set these variables at
job-launch time to tune the collective algorithms on different platforms.

8.9.1 Optimizations for MPI Bcast

MVAPICH2 supports a 2-level point-to-point tree-based “Knomial” algorithm for small messages for the
MPI Bcast operation. MVAPICH2 also offers improved designs that deliver better performance for medium
and large message lengths.

8.9.2 Optimizations for MPI Reduce and MPI Allreduce

In this release, we have introduced new 2-level algorithms for MPI Reduce and MPI Allreduce operations,
along the same lines as MPI Bcast. Pure Shared-memory based algorithms cannot be used for larger mes-
sages for reduction operations, because the node-leader processes become the bottleneck, as they have to
perform the reduction operation on the entire data block. We now rely on shared-memory algorithms for
MPI Reduce and MPI Allreduce for message sizes set by the thresholds MV2 SHMEM ALLREDUCE MSG
(11.58), MV2 SHMEM REDUCE MSG (11.64), the new 2-level algorithms for medium sized messages and
the default point-to-point based algorithms for large messages. We have introduced two new run-time vari-
ables MV2 ALLREDUCE 2LEVEL MSG (11.1) and MV2 REDUCE 2LEVEL MSG (11.54) to determine
when to fall back to the default point-to-point based algorithms.

8.9.3 Optimizations for MPI Gather and MPI Scatter

MVAPICH2 supports two new optimized algorithms for MPI Gather and MPI Scatter operations – the “Di-
rect” and the multi-core aware “2-level” algorithms. Both these algorithms perform significantly better
than the default binomial-tree pattern. The “Direct” algorithm is however inherently not very scalable
and can be used when the communicator size is less than 1K processes. We switch over to the 2-level
algorithms for larger system sizes. For MPI Gather, we use different algorithms depending of the sys-
tem size. For small system sizes (up to 386 cores), we use the “2-level” algorithm following by the
“Direct” algorithm. For medium system sizes (up to 1k), we use “Binomial” algorithm following by the
“Direct” algorithm. It’s possible to set the switching point between algorithms using the run-time pa-
rameter MV2 GATHER SWITCH PT (11.96). For MPI Scatter, when the system size is lower than 512
cores, we use the “Binomial” algorithm for small message sizes following by the “2-level” algorithm for
medium message sizes and the “Direct” algorithm for large message sizes. Users can define the threshold
for small and medium message sizes using the run-time parameters MV2 SCATTER SMALL MSG (11.97)
and MV2 SCATTER MEDIUM MSG (11.98). Users can also choose to use only one of these algorithms by
toggling the run-time parameters 11.77 and 11.99 for MPI Gather and 11.78 and 11.100 for MPI Scatter.

http://mvapich.cse.ohio-state.edu/ 71

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

8.10 Process Placement on Multi-core platforms

Process placement has a significant impact on performance of applications. Depending on your application
communication patterns, various process placements can result in performance gains. In Section 6.5, we
have described the usage of “bunch” and “scatter” placement modes provided by MVAPICH2. Using these
modes, one can control the placement of processes within a particular node. Placement of processes across
nodes can be controlled by adjusting the order of MPI ranks. For example, the following command launches
jobs in block fashion.

$ mpirun rsh -np 4 n0 n0 n1 n1 MV2 CPU BINDING POLICY=bunch
./a.out

The following command launches jobs in a cyclic fashion.

$ mpirun rsh -np 4 n0 n1 n0 n1 MV2 CPU BINDING POLICY=scatter
./a.out

We have noted that the HPL (High-Performance Linpack) benchmark performs better when using block
distribution.

8.11 HugePage Support

MVAPICH2 uses HugePages(2MB) by default for communication buffers if they are configured on the sys-
tem. The run-time variable, MV2 USE HUGEPAGES(11.109) can be used to control the behavior of this
feature.

In order to use HugePages, Make sure HugePages are configured on all nodes. The number of HugePages
can be configured by setting vm.nr hugepages kernel parameter to a suitable value. For example, to allocate
a 1GB HugePage pool, execute(as root):

$ echo 512 > /proc/sys/vm/nr hugepages
or
$ sysctl -w vm.nr hugepages = 512

http://mvapich.cse.ohio-state.edu/ 72

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

9 FAQ and Troubleshooting with MVAPICH2

Based on our experience and feedback we have received from our users, here we include some of the prob-
lems a user may experience and the steps to resolve them. If you are experiencing any other problem, please
feel free to contact us by sending an email to mvapich-discuss@cse.ohio-state.edu.

MVAPICH2 can be used over eight underlying interfaces, namely OFA-IB-CH3, OFA-IB-Nemesis,
OFA-IWARP-CH3, OFA-RoCE-CH3, TrueScale (PSM-CH3), Omni-Path (PSM2-CH3), TCP/IP-CH3 and
TCP/IP-Nemesis. Based on the underlying library being utilized, the troubleshooting steps may be different.
We have divided the troubleshooting tips into four sections: General troubleshooting and Troubleshooting
over any one of the five transport interfaces.

9.1 General Questions and Troubleshooting

9.1.1 Issues with MVAPICH2 and Python based MPI programs

Using an application written using Python with MVAPICH2 can potentially result in the memory registration
cache mechanism in MVAPICH2 being disabled at runtime due to an interaction between the Python memory
allocator and the memory registration cache mechanism in MVAPICH2. We are working towards resolving
this issue. In the mean time, we recommend that you try the following work arounds:

• Use the LD PRELOAD environment variable to export the path of the MVAPICH2 shared library
object (libmpich.so or libmpi.so). eg: export LD PRELOAD=/path/to/libmpi.so

• Increase the size of the internal communication buffer being used by MVAPICH2 and the switch point
between eager and rendezvous protocol in MVAPICH2 to a larger value. Please refer to Section 9.1.3
for more details.

9.1.2 Issues with MVAPICH2 and Google TCMalloc

Using an application that utilizes the Google TCMalloc library with MVAPICH2 can potentially result in
issues at compile time and/or runtime due to an interaction between the Google TCMalloc library and the
memory registration cache mechanism in MVAPICH2. We are working towards resolving this issue. In
the mean time, we recommend that you disable the memory registration cache mechanism in MVAPICH2
to work-around this issue. MVAPICH2 has the capability to memory disable registration cache support at
configure / build time and also at runtime.

If the issue you are facing is at compile time, then you need to re-configure the MVAPICH2 library to
disable memory registration cache at configure time using the “–disable-registration-cache” option. Please
refer to Section 4.4 of the MVAPICH2 userguide for more details on how to disable registration cache at
build time.

If the issue you are facing is at run time, then please re-run your application after setting
“MV2 USE LAZY MEM UNREGISTER=0”. Please refer to Section 11.81 of the MVAPICH2 userguide
for more details on how to disable registration cache at run time.

http://mvapich.cse.ohio-state.edu/ 73

mailto:mvapich-discuss@cse.ohio-state.edu

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

Please refer to Section 9.1.3 for more details on the impact of disabling memory registration cache on
application performance.

9.1.3 Impact of disabling memory registration cache on application performance

Whether disabling registration cache will have a negative effect on application performance depends entirely
on the communication pattern of the application. If the application uses mostly small to medium sized
messages (approximately less than 16 KB), then disabling registration cache will mostly have no impact on
the performance of the application.

However, if the application uses messages of larger size, then there might be an impact depending on
the frequency of communication. If this is the case, then it might be useful to increase the size of the
internal communication buffer being used by MVAPICH2 (using the “MV2 VBUF TOTAL SIZE” envi-
ronment variable) and the switch point between eager and rendezvous protocol in MVAPICH2 (using the
“MV2 IBA EAGER THRESHOLD”) to a larger value. In this scenario, we recommend that you set both
to the same value (possibly slightly greater than the median message size being used by your application).
Please refer to Sections 11.23 and 11.104 of the userguide for more information about these two parameters.

9.1.4 MVAPICH2 failed to register memory with InfiniBand HCA

OFED provides network vendor specific kernel module parameters to control the size of Memory translation
table(MTT) used to map virtual to physical address. This will limit the amount of physical memory can
be registered with InfiniBand device. The following two parameters are provided to control the size of this
table.

1. log num mtt

2. log mtts per seg

The amount of memory that can be registered is calculated by

max reg mem = (2log num mtt) * (2log mtts per seg) * PAGE SIZE

It is recommended to adjust log num mtt to allow at least twice the amount of physical memory on your
machine. For example, if a node has 64 GB of memory and a 4 KB page size, log num mtt should be set to
24 and (assuming log mtts per seg is set to 1)

These parameters are set on the mlx4 core module in /etc/modprobe.conf
options mlx4 core log num mtt=24

9.1.5 Invalid Communicators Error

This is a problem which typically occurs due to the presence of multiple installations of MVAPICH2 on
the same set of nodes. The problem is due to the presence of mpi.h other than the one, which is used for
executing the program. This problem can be resolved by making sure that the mpi.h from other installation
is not included.

http://mvapich.cse.ohio-state.edu/ 74

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

9.1.6 Are fork() and system() supported?

fork() and system() is supported for the OpenFabrics device as long as the kernel is being used is
Linux 2.6.16 or newer. Additionally, the version of OFED used should be 1.2 or higher. The environment
variable IBV FORK SAFE=1 must also be set to enable fork support.

9.1.7 MPI+OpenMP shows bad performance

MVAPICH2 uses CPU affinity to have better performance for single-threaded programs. For multi-threaded
programs, e.g. MPI+OpenMP, it may schedule all the threads of a process to run on the same CPU. CPU
affinity should be disabled in this case to solve the problem, i.e. set MV2 ENABLE AFFINITY to 0. In ad-
dition, please read Section 6.16 on using MVAPICH2 in multi-threaded environments. We also recommend
using the compiler/platform specific run-time options to bind the OpenMP threads to processors. Please refer
to Section (6.17) for more information.

9.1.8 Error message “No such file or directory” when using Lustre file system

If you are using ADIO support for Lustre, please make sure of the following:
– Check your Lustre setup
– You are able to create, read to and write from files in the Lustre mounted directory
– The directory is mounted on all nodes on which the job is executed
– The path to the file is correctly specified
– The permissions for the file or directory are correctly specified

9.1.9 Program segfaults with “File locking failed in ADIOI Set lock”

If you are using ADIO support for Lustre, the recent Lustre releases require an additional mount option
to have correct file locks. Please include the following option with your Lustre mount command: “-o lo-
calflock”.

$ mount -o localflock -t lustre xxxx@o2ib:/datafs /mnt/datafs

9.1.10 Running MPI programs built with gfortran

MPI programs built with gfortran might not appear to run correctly due to the default output buffering used
by gfortran. If it seems there is an issue with program output, the GFORTRAN UNBUFFERED ALL variable
can be set to “y” and exported into the environment before using the mpiexec or mpirun rsh command
to launch the program, as below:

$ export GFORTRAN UNBUFFERED ALL=y

Or, if using mpirun rsh, export the environment variable as in the example:

http://mvapich.cse.ohio-state.edu/ 75

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

$ mpirun rsh -np 2 n1 n2 GFORTRAN UNBUFFERED ALL=y ./a.out

9.1.11 How do I obtain MVAPICH2 version and configuration information?

The mpiname application is provided with MVAPICH2 to assist with determining the MPI library version
and related information. The usage of mpiname is as follows:

$ mpiname [OPTION]

Print MPI library information. With no OPTION, the output is the same as -v.

-a print all information

-c print compilers

-d print device

-h display this help and exit

-n print the MPI name

-o print configuration options

-r print release date

-v print library version

9.1.12 How do I compile my MPI application with static libraries, and not use shared libraries?

MVAPICH2 is configured to be built with shared-libraries by default. To link your application to the static
version of the library, use the command below when compiling your application:

$ mpicc -noshlib -o cpi cpi.c

9.1.13 Does MVAPICH2 work across AMD and Intel systems?

Yes, as long as you compile MVAPICH2 and your programs on one of the systems, either AMD or Intel,
and run the same binary across the systems. MVAPICH2 has platform specific parameters for performance
optimizations and it may not work if you compile MVAPICH2 and your programs on different systems and
try to run the binaries together.

9.1.14 I want to enable debugging for my build. How do I do this?

We recommend that you enable debugging when you intend to take a look at back traces of processes in GDB
(or other debuggers). You can use the following configure options to enable debugging: --enable-g=dbg
--disable-fast.

Additionally:

http://mvapich.cse.ohio-state.edu/ 76

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

• See parameter MV2 DEBUG CORESIZE (section 10.4) to enable core dumps.

• See parameter MV2 DEBUG SHOW BACKTRACE (section 10.5) to show a basic backtrace in case of
error.

9.1.15 How can I run my application with a different group ID?

You can specify a different group id for your MPI application using the -sg group option to mpirun rsh.
The following example executes a.out on host1 and host2 using secondarygroup as their group id.

$ mpirun rsh -sg secondarygroup -np 2 host1 host2 ./a.out

9.2 Issues and Failures with Job launchers

9.2.1 /usr/bin/env: mpispawn: No such file or directory

If mpirun rsh fails with this error message, it was unable to locate a necessary utility. This can be fixed
by ensuring that all MVAPICH2 executables are in the PATH on all nodes. If PATHs cannot be setup as
mentioned, then invoke mpirun rsh with a path prefix. For example:

$ /path/to/mpirun rsh -np 2 node1 node2 ./mpi proc

9.2.2 TotalView complains that “The MPI library contains no suitable type definition for struct
MPIR PROCDESC”

Ensure that the MVAPICH2 job launcher mpirun rsh is compiled with debug symbols. Details are available
in Section 5.2.10.

9.3 Problems Building MVAPICH2

9.3.1 Unable to convert MPI SIZEOF AINT to a hex string

configure: error: Unable to convert MPI SIZEOF AINT to a hex string.
This is either because we are building on a very strange platform or there
is a bug somewhere in configure.

This error can be misleading. The problem is often not that you’re building on a strange platform, but
that there was some problem running an executable that made configure have trouble determining the size
of a datatype. The true problem is often that you’re trying to link against a library that is not found in your
system’s default path for linking at runtime. Please check that you’ve properly set LD LIBRARY PATH or
used the correct rpath settings in LDFLAGS.

http://mvapich.cse.ohio-state.edu/ 77

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

9.3.2 Cannot Build with the PathScale Compiler

There is a known bug with the PathScale compiler (before version 2.5) when building MVAPICH2. This
problem will be solved in the next major release of the PathScale compiler. To work around this bug, use the
the “-LNO:simd=0” C compiler option. This can be set in the build script similarly to:

export CC="pathcc -LNO:simd=0"

Please note the use of double quotes. If you are building MVAPICH2 using the PathScale compiler
(version below 2.5), then you should add “-g” to your CFLAGS, in order to get around a compiler bug.

9.3.3 nvlink fatal : Unsupported file type ’../lib/.libs/libmpich.so’

There have been recent reports of this issue when using the PGI compiler. This may be able to be solved
by adding “-ta=tesla:nordc” to your CFLAGS. The following example shows MVAPICH2 being configured
with the proper CPPFLAGS and CFLAGS to get around this issue (Note: –enable-cuda=basic is optional).

Example: ./configure --enable-cuda=basic CPPFLAGS="-D x86 64
-D align \(n\)= attribute \(\(aligned\(n\)\)\)
-D location \(a\)= annotate \(a\)
-DCUDARTAPI="
CFLAGS="-ta=tesla:nordc"

9.3.4 Libtool has a problem linking with non-GNU compiler (like PGI)

If you are using a compiler that is not recognized by autoconf as a GNU compiler, Libtool uses an default
library search path to look for shared objects which is ”/lib /usr/lib /usr/local/lib”. Then, if your libraries are
not in one of these paths, MVAPICH2 may fail to link properly.

You can work around this issue by adding the following configure flags:

./configure \
lt_cv_sys_lib_search_path_spec="/lib64 /usr/lib64 /usr/local/lib64" \
lt_cv_sys_lib_dlsearch_path_spec="/lib64 /usr/lib64 /usr/local/lib64" \
... ...

The above example considers that the correct library search path for your system is ”/lib64 /usr/lib64
/usr/local/lib64”.

9.4 With OFA-IB-CH3 Interface

9.4.1 Cannot Open HCA

The above error reports that the InfiniBand Adapter is not ready for communication. Make sure that the
drivers are up. This can be done by executing the following command which gives the path at which drivers

http://mvapich.cse.ohio-state.edu/ 78

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

are setup.

$ locate libibverbs

9.4.2 Checking state of IB Link

In order to check the status of the IB link, one of the OFED utilities can be used: ibstatus, ibv devinfo.

9.4.3 Creation of CQ or QP failure

A possible reason could be inability to pin the memory required. Make sure the following steps are taken.

1. In /etc/security/limits.conf add the following

* soft memlock phys_mem_in_KB

2. After this, add the following to /etc/init.d/sshd

ulimit -l phys_mem_in_KB

3. Restart sshd

With some distros, we’ve found that adding the ulimit -l line to the sshd init script is no longer necessary.
For instance, the following steps work for our RHEL5 systems.

1. Add the following lines to /etc/security/limits.conf

* soft memlock unlimited

* hard memlock unlimited

2. Restart sshd

9.4.4 Hang with the HSAM Functionality

HSAM functionality uses multi-pathing mechanism with LMC functionality. However, some versions of
OpenFabrics Drivers (including OpenFabrics Enterprise Distribution (OFED) 1.1) and using the Up*/Down*
routing engine do not configure the routes correctly using the LMC mechanism. We strongly suggest to
upgrade to OFED 1.2, which supports Up*/Down* routing engine and LMC mechanism correctly.

9.4.5 Failure with Automatic Path Migration

MVAPICH2 (OFA-IB-CH3) provides network fault tolerance with Automatic Path Migration (APM). How-
ever, APM is supported only with OFED 1.2 onwards. With OFED 1.1 and prior versions of OpenFabrics
drivers, APM functionality is not completely supported. Please refer to Section 11.73 and section 11.74

http://mvapich.cse.ohio-state.edu/ 79

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

9.4.6 Error opening file

If you configure MVAPICH2 with RDMA CM and see this error, you need to verify if you have setup up the
local IP address to be used by RDMA CM in the file /etc/mv2.conf. Further, you need to make sure
that this file has the appropriate file read permissions. Please follow Section 6.15 for more details on this.

9.4.7 RDMA CM Address error

If you get this error, please verify that the IP address specified /etc/mv2.conf is correctly specified with
the IP address of the device you plan to use RDMA CM with.

9.4.8 RDMA CM Route error

If see this error, you need to check whether the specified network is working or not.

9.5 With OFA-iWARP-CH3 Interface

9.5.1 Error opening file

If you configure MVAPICH2 with RDMA CM and see this error, you need to verify if you have setup up the
local IP address to be used by RDMA CM in the file /etc/mv2.conf. Further, you need to make sure
that this file has the appropriate file read permissions. Please follow Section 5.2.6 for more details on this.

9.5.2 RDMA CM Address error

If you get this error, please verify that the IP address specified /etc/mv2.conf is correctly specified with
the IP address of the device you plan to use RDMA CM with.

9.5.3 RDMA CM Route error

If see this error, you need to check whether the specified network is working or not.

9.6 Checkpoint/Restart

9.6.1 Failure during Restart

Please make sure the following things for a successful restart:

• The BLCR modules must be loaded on all the compute nodes and the console node before a restart

• The checkpoint file of MPI job console must be accessible from the console node.

http://mvapich.cse.ohio-state.edu/ 80

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

• The corresponding checkpoint files of the MPI processes must be accessible from the compute nodes
using the same path as when checkpoint was taken.

The following things can cause a restart to fail:

• The job which was checkpointed is not terminated or the some processes in that job are not cleaned
properly. Usually they will be cleaned automatically, otherwise, since the pid can’t be used by BLCR
to restart, it will fail.

• The processes in the job have opened temporary files and these temporary files are removed or not
accessible from the nodes where the processes are restarted on.

• If the processes are restarted on different nodes, then all the nodes must have the exact same libraries
installed. In particular, you may be required to disable any “prelinking”. Please look at https:
//upc-bugs.lbl.gov//blcr/doc/html/FAQ.html#prelink for further details.

FAQ regarding Berkeley Lab Checkpoint/Restart (BLCR) can be found at:
http://upc-bugs.lbl.gov/blcr/doc/html/FAQ.html And the user guide for BLCR can be found at http://upc-
bugs.lbl.gov/blcr/doc/html/BLCR Users Guide.html

If you encounter any problem with the Checkpoint/Restart support, please feel free to contact us at
mvapich-discuss@cse.ohio-state.edu.

http://mvapich.cse.ohio-state.edu/ 81

https://upc-bugs.lbl.gov//blcr/doc/html/FAQ.html#prelink
https://upc-bugs.lbl.gov//blcr/doc/html/FAQ.html#prelink
http://upc-bugs.lbl.gov/blcr/doc/html/FAQ.html
http://upc-bugs.lbl.gov/blcr/doc/html/BLCR_Users_Guide.html
http://upc-bugs.lbl.gov/blcr/doc/html/BLCR_Users_Guide.html
mailto:mvapich-discuss@cse.ohio-state.edu

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

10 MVAPICH2 General Parameters

10.1 MV2 IGNORE SYSTEM CONFIG

• Class: Run time

• Default: 0

If set, the system configuration file is not processed.

10.2 MV2 IGNORE USER CONFIG

• Class: Run time

• Default: 0

If set, the user configuration file is not processed.

10.3 MV2 USER CONFIG

• Class: Run time

• Default: Unset

Specify the path of a user configuration file for mvapich2. If this is not set the default path of “ /.mva-
pich2.conf” is used.

10.4 MV2 DEBUG CORESIZE

• Class: Run time

• Default: Unset

• Possible values: Positive integer or ”unlimited”

Set the limit for the core size resource. It allows to specify the maximum size for a core dump to be
generated. It only set the soft limit and it has the respect the hard value set on the nodes.

It is similar to the ulimit -c <coresize> that can be run in the shell, but this will only apply to
the MVAPICH2 processes (MPI processes, mpirun rsh, mpispawn).

Examples:

• ’MV2 DEBUG CORESIZE=0’ will disable core dumps for MVAPICH2 processes.

• ’MV2 DEBUG CORESIZE=unlimited’ will enable core dumps for MVAPICH2 processes.

http://mvapich.cse.ohio-state.edu/ 82

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

10.5 MV2 DEBUG SHOW BACKTRACE

• Class: Run time

• Default: 0 (disabled)

• Possible values: 1 to enable, 0 to disable

Show a backtrace when a process fails on errors like ”Segmentation faults”, ”Bus error”, ”Illegal Instruc-
tion”, ”Abort” or ”Floating point exception”.

If your application uses the static version of the MVAPICH2 library, you have to link your application
with the -rdynamic flag in order to see the function names in the backtrace. For more information, see the
backtrace manpage.

10.6 MV2 SHOW ENV INFO

• Class: Run time

• Default: 0 (disabled)

• Possible values: 1 (short list), 2(full list)

Show the values assigned to the run time environment parameters

10.7 MV2 SHOW CPU BINDING

• Class: Run time

• Default: 0

if set, it shows the current cpu mapping of all processes on node where rank 0 exist

http://mvapich.cse.ohio-state.edu/ 83

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

11 MVAPICH2 Parameters (CH3-Based Interfaces)

11.1 MV2 ALLREDUCE 2LEVEL MSG

• Class: Run Time

• Default: 256K Bytes

• Applicable interface(s): OFA-IB-CH3 and OFA-iWARP-CH3

This parameter can be used to determine the threshold for the 2-level Allreduce algorithm. We now use the
shared-memory-based algorithm for messages smaller than the MV2 SHMEM ALLREDUCE MSG thresh-
old (11.58), the 2-level algorithm for medium sized messages up to the threshold defined by this parameter.
We use the default point-to-point algorithms messages larger than this threshold.

11.2 MV2 CKPT AGGREGATION BUFPOOL SIZE

• Class: Run Time

• Default: 8M

• Applicable interface(s): OFA-IB-CH3

This parameter determines the size of the buffer pool reserved for use in checkpoint aggregation. Note that
this variable can be set with suffixes such as ‘K’/‘k’, ‘M’/‘m’ or ‘G’/‘g’ to denote Kilobyte, Megabyte or
Gigabyte respectively.

11.3 MV2 CKPT AGGREGATION CHUNK SIZE

• Class: Run Time

• Default: 1M

• Applicable interface(s): OFA-IB-CH3

The checkpoint data that has been coalesced into the buffer pool, is written to the back-end file system, with
the value of this parameter as the chunk size. Note that this variable can be set with suffixes such as ‘K’/‘k’,
‘M’/‘m’ or ‘G’/‘g’ to denote Kilobyte, Megabyte or Gigabyte respectively.

11.4 MV2 CKPT FILE

• Class: Run Time

• Default: /tmp/ckpt

http://mvapich.cse.ohio-state.edu/ 84

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

• Applicable interface(s): OFA-IB-CH3

This parameter specifies the path and the base file name for checkpoint files of MPI processes. The check-
point files will be named as $MV2 CKPT FILE.<number of checkpoint>.<process rank>, for example,
/tmp/ckpt.1.0 is the checkpoint file for process 0’s first checkpoint. To checkpoint on network-based file
systems, user just need to specify the path to it, such as /mnt/pvfs2/my ckpt file.

11.5 MV2 CKPT INTERVAL

• Class: Run Time

• Default: 0

• Unit: minutes

• Applicable interface(s): OFA-IB-CH3

This parameter can be used to enable automatic checkpointing. To let MPI job console automatically take
checkpoints, this value needs to be set to the desired checkpointing interval. A zero will disable automatic
checkpointing. Using automatic checkpointing, the checkpoint file for the MPI job console will be named as
$MV2 CKPT FILE.<number of checkpoint>.auto. Users need to use this file for restart.

11.6 MV2 CKPT MAX SAVE CKPTS

• Class: Run Time

• Default: 0

• Applicable interface(s): OFA-IB-CH3

This parameter is used to limit the number of checkpoints saved on file system to save the file system space.
When set to a positive value N, only the last N checkpoints will be saved.

11.7 MV2 CKPT NO SYNC

• Class: Run Time

• Applicable interface(s): OFA-IB-CH3

When this parameter is set to any value, the checkpoints will not be required to sync to disk. It can reduce
the checkpointing delay in many cases. But if users are using local file system, or any parallel file system
with local cache, to store the checkpoints, it is recommended not to set this parameter because otherwise the
checkpoint files will be cached in local memory and will likely be lost upon failure.

http://mvapich.cse.ohio-state.edu/ 85

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

11.8 MV2 CKPT USE AGGREGATION

• Class: Run Time

• Default: 1 (if configured with Checkpoint Aggregation support)

• Applicable interface(s): OFA-IB-CH3

This parameter enables/disables Checkpoint aggregation scheme at run time. It is set to ’1’(enabled) by
default, when the user enables Checkpoint/Restart functionality at configure time, or when the user explicitly
configures MVAPICH2 with aggregation support. Please note that, to use aggregation support, each node
needs to be properly configured with FUSE library (cf section 6.14.1).

11.9 MV2 DEBUG FT VERBOSE

• Class: Run Time

• Type: Null or positive integer

• Default: 0 (disabled)

This parameter enables/disables the debug output for Fault Tolerance features (Checkpoint/Restart and
Migration).

Note: All debug output is disabled when MVAPICH2 is configured with the --enable-fast=ndebug
option.

11.10 MV2 CM RECV BUFFERS

• Class: Run Time

• Default: 1024

• Applicable interface(s): OFA-IB-CH3

This defines the number of buffers used by connection manager to establish new connections. These buffers
are quite small and are shared for all connections, so this value may be increased to 8192 for large clusters
to avoid retries in case of packet drops.

11.11 MV2 CM SPIN COUNT

• Class: Run Time

• Default: 5000

• Applicable interface(s): OFA-IB-CH3

http://mvapich.cse.ohio-state.edu/ 86

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

This is the number of the connection manager polls for new control messages from UD channel for each
interrupt. This may be increased to reduce the interrupt overhead when many incoming control messages
from UD channel at the same time.

11.12 MV2 CM TIMEOUT

• Class: Run Time

• Default: 500

• Unit: milliseconds

• Applicable interface(s): OFA-IB-CH3

This is the timeout value associated with connection management messages via UD channel. Decreasing this
value may lead to faster retries but at the cost of generating duplicate messages.

11.13 MV2 CPU MAPPING

• Class: Run Time

• Default: NA

• Applicable interface(s): OFA-IB-CH3 and OFA-iWARP-CH3

This allows users to specify process to CPU (core) mapping. The detailed usage of this parameter
is described in Section 6.5.2. This parameter will not take effect if either MV2 ENABLE AFFINITY or
MV2 USE SHARED MEM run-time parameters are set to 0, or if the library was configured with the “–
disable-hwloc” option. MV2 CPU MAPPING is currently not supported on Solaris.

11.14 MV2 CPU BINDING POLICY

• Class: Run Time

• Default: Bunch

• Applicable interface(s): OFA-IB-CH3 and OFA-iWARP-CH3

This allows users to specify process to CPU (core) mapping with the CPU binding policy. The detailed
usage of this parameter is described in Section 6.5.1. This parameter will not take effect: if
MV2 ENABLE AFFINITY or MV2 USE SHARED MEM run-time parameters are set to 0; or
MV2 ENABLE AFFINITY is set to 1 and MV2 CPU MAPPING is set, or if the library was configured with
the “–disable-hwloc” option. The value of MV2 CPU BINDING POLICY can be “bunch” or “scatter”.
When this parameter takes effect and its value isn’t set, “bunch” will be used as the default policy.

http://mvapich.cse.ohio-state.edu/ 87

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

11.15 MV2 CPU BINDING LEVEL

• Class: Run Time

• Default: Core

• Applicable interface(s): OFA-IB-CH3 and OFA-iWARP-CH3

This allows users to specify process to CPU (core) mapping at different binding level. The detailed usage
of this parameter is described in Section 6.5.1. This parameter will not take effect: if MV2 ENABLE AFFINITY
or MV2 USE SHARED MEM run-time parameters are set to 0; or MV2 ENABLE AFFINITY is set to 1 and
MV2 CPU MAPPING is set, or if the library was configured with the “–disable-hwloc” option. The value of
MV2 CPU BINDING LEVEL can be “core”, “socket”, or “numanode”. When this parameter takes effect
and its value isn’t set, “core” will be used as the default binding level.

11.16 MV2 SHOW CPU BINDING

• Class: Run Time

• Default: 0

• Applicable interface(s): OFA-IB-CH3 and OFA-iWARP-CH3

This shows the current process to CPU (core) bindings of all processes on a node which contains the mpi
rank 0 process.

11.17 MV2 DEFAULT MAX SEND WQE

• Class: Run time

• Default: 64

• Applicable interface(s): OFA-IB-CH3 and OFA-iWARP-CH3

This specifies the maximum number of send WQEs on each QP. Please note that for OFA-IB-CH3 and
OFA-iWARP-CH3, the default value of this parameter will be 16 if the number of processes is larger than
256 for better memory scalability.

11.18 MV2 DEFAULT MAX RECV WQE

• Class: Run time

• Default: 128

• Applicable interface(s): OFA-IB-CH3 and OFA-iWARP-CH3

http://mvapich.cse.ohio-state.edu/ 88

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

This specifies the maximum number of receive WQEs on each QP (maximum number of receives that
can be posted on a single QP).

11.19 MV2 DEFAULT MTU

• Class: Run time

• Default: OFA-IB-CH3: IBV MTU 1024 for IB SDR cards and IBV MTU 2048 for IB DDR and
QDR cards.

• Applicable interface(s): OFA-IB-CH3

The internal MTU size. For OFA-IB-CH3, this parameter should be a string instead of an integer. Valid
values are: IBV MTU 256, IBV MTU 512, IBV MTU 1024, IBV MTU 2048, IBV MTU 4096.

11.20 MV2 DEFAULT PKEY

• Class: Run Time

• Applicable Interface(s): OFA-IB-CH3

Select the partition to be used for the job.

11.21 MV2 ENABLE AFFINITY

• Class: Run time

• Default: 1

• Applicable interface(s): OFA-IB-CH3 and OFA-iWARP-CH3

Enable CPU affinity by setting MV2 ENABLE AFFINITY to 1 or disable it by setting
MV2 ENABLE AFFINITY to 0. MV2 ENABLE AFFINITY is currently not supported on Solaris. CPU
affinity is also not supported if MV2 USE SHARED MEM is set to 0.

11.22 MV2 GET FALLBACK THRESHOLD

• Class: Run time

• This threshold value needs to be set in bytes.

• This option is effective if we define ONE SIDED flag.

• Applicable interface(s): OFA-IB-CH3 and OFA-iWARP-CH3

This defines the threshold beyond which the MPI Get implementation is based on direct one sided RDMA
operations.

http://mvapich.cse.ohio-state.edu/ 89

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

11.23 MV2 IBA EAGER THRESHOLD

• Class: Run time

• Default: Host Channel Adapter (HCA) dependent (12 KB for ConnectX HCA’s)

• Applicable interface(s): OFA-IB-CH3 and OFA-iWARP-CH3

This specifies the switch point between eager and rendezvous protocol in MVAPICH2. For better perfor-
mance, the value of MV2 IBA EAGER THRESHOLD should be set the same as MV2 VBUF TOTAL SIZE.

11.24 MV2 IBA HCA

• Class: Run time

• Default: Unset

• Applicable interface(s): OFA-IB-CH3 and OFA-iWARP-CH3

This specifies the HCA’s to be used for performing network operations.

11.25 MV2 INITIAL PREPOST DEPTH

• Class: Run time

• Default: 10

• Applicable interface(s): OFA-IB-CH3 and OFA-iWARP-CH3

This defines the initial number of pre-posted receive buffers for each connection. If communication
happen for a particular connection, the number of buffers will be increased to
RDMA PREPOST DEPTH.

11.26 MV2 IWARP MULTIPLE CQ THRESHOLD

• Class: Run time

• Default: 32

• Applicable interface(s): OFA-iWARP-CH3

This defines the process size beyond which we use multiple completion queues for iWARP interface.

http://mvapich.cse.ohio-state.edu/ 90

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

11.27 MV2 KNOMIAL INTRA NODE FACTOR

• Class: Run time

• Default: 4

• Applicable interface(s): OFA-IB-CH3 and OFA-iWARP-CH3

This defines the degree of the knomial operation during the intra-node knomial broadcast phase.

11.28 MV2 KNOMIAL INTER NODE FACTOR

• Class: Run time

• Default: 4

• Applicable interface(s): OFA-IB-CH3 and OFA-iWARP-CH3

This defines the degree of the knomial operation during the inter-node knomial broadcast phase.

11.29 MV2 MAX INLINE SIZE

• Class: Run time

• Default: Network card dependent (128 for most networks including InfiniBand)

• Applicable interface(s): OFA-IB-CH3, OFA-iWARP-CH3

This defines the maximum inline size for data transfer. Please note that the default value of this parameter
will be 0 when the number of processes is larger than 256 to improve memory usage scalability.

11.30 MV2 MAX NUM WIN

• Class: Run time

• Default: 64

• Applicable interface(s): OFA-IB-CH3

Maximum number of RMA windows that can be created and active concurrently. Typically this value is
sufficient for most applications. Increase this value to the number of windows your application uses

http://mvapich.cse.ohio-state.edu/ 91

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

11.31 MV2 NDREG ENTRIES

• Class: Run time

• Default: 1000

• Applicable interface(s): OFA-IB-CH3 and OFA-iWARP-CH3

This defines the total number of buffers that can be stored in the registration cache. It has no effect
if MV2 USE LAZY MEM UNREGISTER is not set. A larger value will lead to less frequent lazy de-
registration.

11.32 MV2 NUM HCAS

• Class: Run time

• Default: 1

• Applicable interface(s): OFA-IB-CH3, OFA-iWARP-CH3

This parameter indicates number of InfiniBand adapters to be used for communication on an end node.

11.33 MV2 NUM PORTS

• Class: Run time

• Default: 1

• Applicable interface(s): OFA-IB-CH3, OFA-iWARP-CH3

This parameter indicates number of ports per InfiniBand adapter to be used for communication per adapter
on an end node.

11.34 MV2 DEFAULT PORT

• Class: Run time

• Default: none

• Applicable interface(s): OFA-IB-CH3, OFA-iWARP-CH3

This parameter is to select the specific HCA port on a active multi port InfiniBand adapter

http://mvapich.cse.ohio-state.edu/ 92

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

11.35 MV2 NUM SA QUERY RETRIES

• Class: Run time

• Default: 20

• Applicable Interface(s): OFA-IB-CH3, OFA-iWARP-CH3

Number of times the MPI library will attempt to query the subnet to obtain the path record information before
giving up.

11.36 MV2 NUM QP PER PORT

• Class: Run time

• Default: 1

• Applicable interface(s): OFA-IB-CH3, OFA-iWARP-CH3

This parameter indicates number of queue pairs per port to be used for communication on an end node. This
is useful in the presence of multiple send/recv engines available per port for data transfer.

11.37 MV2 RAIL SHARING POLICY

• Class: Run time

• Default: Rail Binding in round-robin

• Value Domain: USE FIRST, ROUND ROBIN, FIXED MAPPING

• Applicable interface(s): OFA-IB-CH3, OFA-iWARP-CH3

This specifies the policy that will be used to assign HCAs to each of the processes. In the previous versions
of MVAPICH2 it was known as MV2 SM SCHEDULING.

11.38 MV2 RAIL SHARING LARGE MSG THRESHOLD

• Class: Run time

• Default: 16K

• Applicable interface(s): OFA-IB-CH3, OFA-iWARP-CH3

This specifies the threshold for the message size beyond which striping will take place. In the previous
versions of MVAPICH2 it was known as MV2 STRIPING THRESHOLD

http://mvapich.cse.ohio-state.edu/ 93

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

11.39 MV2 PROCESS TO RAIL MAPPING

• Class: Run time

• Default: NONE

• Value Domain: BUNCH, SCATTER, <CUSTOM LIST>

• Applicable interface(s): OFA-IB-CH3, OFA-iWARP-CH3

When MV2 RAIL SHARING POLICY is set to the value “FIXED MAPPING” this variable decides the
manner in which the HCAs will be mapped to the rails. The <CUSTOM LIST> is colon(:) separated list
with the HCA ranks specified. e.g. 0:1:1:0. This list must map equally to the number of local processes on
the nodes failing which, the default policy will be used. Similarly the number of processes on each node
must be the same.

11.40 MV2 RDMA FAST PATH BUF SIZE

• Class: Run time

• Default: Architecture dependent

• Applicable interface(s): OFA-IB-CH3 and OFA-iWARP-CH3

The size of the buffer used in RDMA fast path communication. This value will be ineffective if
MV2 USE RDMA FAST PATH is not set

11.41 MV2 NUM RDMA BUFFER

• Class: Run time

• Default: Architecture dependent (32 for EM64T)

• Applicable interface(s): OFA-IB-CH3 and OFA-iWARP-CH3

The number of RDMA buffers used for the RDMA fast path. This fast path is used to reduce latency and
overhead of small data and control messages. This value will be ineffective if MV2 USE RDMA FAST PATH
is not set.

11.42 MV2 ON DEMAND THRESHOLD

• Class: Run Time

• Default: 64 (OFA-IB-CH3), 16 (OFA-iWARP-CH3)

• Applicable interface(s): OFA-IB-CH3 and OFA-iWARP-CH3

http://mvapich.cse.ohio-state.edu/ 94

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

This defines threshold for enabling on-demand connection management scheme. When the size of the job is
larger than the threshold value, on-demand connection management will be used.

11.43 MV2 HOMOGENEOUS CLUSTER

• Class: Run Time

• Default: 0

• Applicable interface(s): OFA-IB-CH3 and OFA-iWARP-CH3

Set this parameter to 1 on homogeneous clusters to optimize the job start-up

11.44 MV2 PREPOST DEPTH

• Class: Run time

• Default: 64

• Applicable interface(s): OFA-IB-CH3 and OFA-iWARP-CH3

This defines the number of buffers pre-posted for each connection to handle send/receive operations.

11.45 MV2 PROCESS TO RAIL MAPPING

• Class: Run Time

• Default: SCATTER (Options: BUNCH, User Defined)

• Applicable interface(s): OFA-IB-CH3 and OFA-iWARP-CH3

This allows users to specify HCAs to be used by processes. The detailed usage of this parameter is
described in Section 6.12.

11.46 MV2 PSM DEBUG

• Class: Run time (Debug)

• Default: 0

• Applicable interface: PSM

This parameter enables the dumping of run-time debug counters from the MVAPICH2-PSM progress
engine. Counters are dumped every PSM DUMP FREQUENCY seconds.

http://mvapich.cse.ohio-state.edu/ 95

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

11.47 MV2 PSM DUMP FREQUENCY

• Class: Run time (Debug)

• Default: 10 seconds

• Applicable interface: PSM

This parameters sets the frequency for dumping MVAPICH2-PSM debug counters. Value takes effect
only in PSM DEBUG is enabled.

11.48 MV2 PUT FALLBACK THRESHOLD

• Class: Run time

• This threshold value needs to be set in bytes.

• This option is effective if we define ONE SIDED flag.

• Applicable interface(s): OFA-IB-CH3 and OFA-iWARP-CH3

This defines the threshold beyond which the MPI Put implementation is based on direct one sided RDMA
operations.

11.49 MV2 RAIL SHARING LARGE MSG THRESHOLD

• Class: Run Time

• Default: 16 KB

• Applicable interface(s): OFA-IB-CH3, OFA-iWARP-CH3

This parameter specifies the message size above which we begin the stripe the message across multiple rails
(if present).

11.50 MV2 RAIL SHARING POLICY

• Class: Run Time

• Default: PROCESS BINDING (Options: USE FIRST, ROUND ROBIN, FIXED MAPPING)

• Applicable interface(s): OFA-IB-CH3, OFA-iWARP-CH3

This parameter specifies the rail sharing policy for all message sizes if multiple rails are present.

http://mvapich.cse.ohio-state.edu/ 96

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

11.51 MV2 RDMA CM ARP TIMEOUT

• Class: Run Time

• Default: 2000 ms

• Applicable interface(s): OFA-IB-CH3, OFA-iWARP-CH3, OFA-RoCE-CH3

This parameter specifies the ARP timeout to be used by RDMA CM module.

11.52 MV2 RDMA CM MAX PORT

• Class: Run Time

• Default: Unset

• Applicable interface(s): OFA-IB-CH3, OFA-iWARP-CH3, OFA-RoCE-CH3

This parameter specifies the upper limit of the port range to be used by the RDMA CM module when
choosing the port on which it listens for connections.

11.53 MV2 RDMA CM MIN PORT

• Class: Run Time

• Default: Unset

• Applicable interface(s): OFA-IB-CH3, OFA-iWARP-CH3, OFA-RoCE-CH3

This parameter specifies the lower limit of the port range to be used by the RDMA CM module when
choosing the port on which it listens for connections.

11.54 MV2 REDUCE 2LEVEL MSG

• Class: Run Time

• Default: 32K Bytes.

• Applicable interface(s): OFA-IB-CH3 and OFA-iWARP-CH3

This parameter can be used to determine the threshold for the 2-level reduce algorithm. We now use the
shared-memory-based algorithm for messages smaller than the MV2 SHMEM REDUCE MSG (11.64), the
2-level algorithm for medium sized messages up to the threshold defined by this parameter. We use the
default point-to-point algorithms messages larger than this threshold.

http://mvapich.cse.ohio-state.edu/ 97

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

11.55 MV2 RNDV PROTOCOL

• Class: Run time

• Default: RPUT

• Applicable interface(s): OFA-IB-CH3, OFA-iWARP-CH3

The value of this variable can be set to choose different Rendezvous protocols. RPUT (default RDMA-Write)
RGET (RDMA Read based), R3 (send/recv based).

11.56 MV2 R3 THRESHOLD

• Class: Run time

• Default: MV2 IBA EAGER THRESHOLD

• Applicable interface(s): OFA-IB-CH3, OFA-iWARP-CH3

The value of this variable controls what message sizes go over the R3 rendezvous protocol. Messages
above this message size use MV2 RNDV PROTOCOL.

11.57 MV2 R3 NOCACHE THRESHOLD

• Class: Run time

• Default: 32768

• Applicable interface(s): OFA-IB-CH3, OFA-iWARP-CH3

The value of this variable controls what message sizes go over the R3 rendezvous protocol when the
registration cache is disabled (MV2 USE LAZY MEM UNREGISTER=0). Messages above this message
size use MV2 RNDV PROTOCOL.

11.58 MV2 SHMEM ALLREDUCE MSG

• Class: Run Time

• Default: 1� 15

• Applicable interface(s): OFA-IB-CH3, OFA-iWARP-CH3

The SHMEM AllReduce is used for messages less than this threshold.

http://mvapich.cse.ohio-state.edu/ 98

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

11.59 MV2 SHMEM BCAST LEADERS

• Class: Run time

• Default: 4096

The number of leader processes that will take part in the SHMEM broadcast operation. Must be greater
than the number of nodes in the job.

11.60 MV2 SHMEM BCAST MSG

• Class: Run Time

• Default: 1� 20

• Applicable interface(s): OFA-IB-CH3, OFA-iWARP-CH3

The SHMEM bcast is used for messages less than this threshold.

11.61 MV2 SHMEM COLL MAX MSG SIZE

• Class: Run Time

• Applicable interface(s): OFA-IB-CH3, OFA-iWARP-CH3

This parameter can be used to select the max buffer size of message for shared memory collectives.

11.62 MV2 SHMEM COLL NUM COMM

• Class: Run Time

• Applicable interface(s): OFA-IB-CH3, OFA-iWARP-CH3

This parameter can be used to select the number of communicators using shared memory collectives.

11.63 MV2 SHMEM DIR

• Class: Run Time

• Applicable interface(s): OFA-IB-CH3 and OFA-iWARP-CH3

• Default: /dev/shm for Linux and /tmp for Solaris

This parameter can be used to specify the path to the shared memory files for intra-node communication.

http://mvapich.cse.ohio-state.edu/ 99

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

11.64 MV2 SHMEM REDUCE MSG

• Class: Run Time

• Default: 1� 13

• Applicable interface(s): OFA-IB-CH3, OFA-iWARP-CH3

The SHMEM reduce is used for messages less than this threshold.

11.65 MV2 SM SCHEDULING

• Class: Run Time

• Default: USE FIRST (Options: ROUND ROBIN)

• Applicable interface(s): OFA-IB-CH3, OFA-iWARP-CH3

11.66 MV2 SMP USE LIMIC2

• Class: Run Time

• Default: On if configured with –with-limic2

• Applicable interface(s): OFA-IB-CH3 and OFA-iWARP-CH3

This parameter enables/disables LiMIC2 at run time. It does not take effect if MVAPICH2 is not config-
ured with –with-limic2.

11.67 MV2 SMP USE CMA

• Class: Run Time

• Default: On unless configured with –without-cma

• Applicable interface(s): OFA-IB-CH3 and OFA-iWARP-CH3

This parameter enables/disables CMA based intra-node communication at run time. It does not take
effect if MVAPICH2 is configured with –without-cma. When –with-limic2 is included in the configure flags,
LiMIC2 is used in preference over CMA. Please set MV2 SMP USE LIMIC2 to 0 in order to choose CMA
if MVAPICH2 is configured with –with-limic2.

http://mvapich.cse.ohio-state.edu/ 100

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

11.68 MV2 SRQ LIMIT

• Class: Run Time

• Default: 30

• Applicable interface(s): OFA-IB-CH3, OFA-iWARP-CH3

This is the low water-mark limit for the Shared Receive Queue. If the number of available work entries
on the SRQ drops below this limit, the flow control will be activated.

11.69 MV2 SRQ MAX SIZE

• Class: Run Time

• Default: 4096

• Applicable interface(s): OFA-IB-CH3, OFA-iWARP-CH3

This is the maximum number of work requests allowed on the Shared Receive Queue. Upon receiving
a SRQ limit event, the current value of MV2 SRQ SIZE will be doubled or moved to the maximum of
MV2 SRQ MAX SIZE, whichever is smaller

11.70 MV2 SRQ SIZE

• Class: Run Time

• Default: 256

• Applicable interface(s): OFA-IB-CH3, OFA-iWARP-CH3

This is the initial number of work requests posted to the Shared Receive Queue.

11.71 MV2 STRIPING THRESHOLD

• Class: Run Time

• Default: 8192

• Applicable interface(s): OFA-IB-CH3, OFA-iWARP-CH3

This parameter specifies the message size above which we begin the stripe the message across multiple
rails (if present).

http://mvapich.cse.ohio-state.edu/ 101

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

11.72 MV2 SUPPORT DPM

• Class: Run time

• Default: 0 (disabled)

• Applicable interface: OFA-IB-CH3

This option enables the dynamic process management interface and on-demand connection management.

11.73 MV2 USE APM

• Class: Run Time

• Applicable interface(s): OFA-IB-CH3

This parameter is used for recovery from network faults using Automatic Path Migration. This func-
tionality is beneficial in the presence of multiple paths in the network, which can be enabled by using lmc
mechanism.

11.74 MV2 USE APM TEST

• Class: Run Time

• Applicable interface(s): OFA-IB-CH3

This parameter is used for testing the Automatic Path Migration functionality. It periodically moves the
alternate path as the primary path of communication and re-loads another alternate path.

11.75 MV2 USE BLOCKING

• Class: Run time

• Default: 0

• Applicable interface(s): OFA-IB-CH3

Setting this parameter enables MVAPICH2 to use blocking mode progress. MPI applications do not take up
any CPU when they are waiting for incoming messages.

http://mvapich.cse.ohio-state.edu/ 102

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

11.76 MV2 USE COALESCE

• Class: Run time

• Default: set

• Applicable interface(s): OFA-IB-CH3, OFA-iWARP-CH3

Setting this parameter enables message coalescing to increase small message throughput

11.77 MV2 USE DIRECT GATHER

• Class: Run time

• Default: set

• Applicable interface(s): OFA-IB-CH3 and OFA-iWARP-CH3

Use the “Direct” algorithm for the MPI Gather operation. If this parameter is set to 0 at run-time, the
“Direct” algorithm will not be invoked.

11.78 MV2 USE DIRECT SCATTER

• Class: Run time

• Default: set

• Applicable interface(s): OFA-IB-CH3 and OFA-iWARP-CH3

Use the “Direct” algorithm for the MPI Scatter operation. If this parameter is set to 0 at run-time, the
“Direct” algorithm will not be invoked.

11.79 MV2 USE HSAM

• Class: Run Time

• Applicable interface(s): OFA-IB-CH3

This parameter is used for utilizing hot-spot avoidance with InfiniBand clusters. To leverage this func-
tionality, the subnet should be configured with lmc greater than zero. Please refer to section 6.19 for detailed
information.

http://mvapich.cse.ohio-state.edu/ 103

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

11.80 MV2 USE IWARP MODE

• Class: Run Time

• Default: unset

• Applicable interface(s): OFA-IB-CH3, OFA-iWARP-CH3

This parameter enables the library to run in iWARP mode.

11.81 MV2 USE LAZY MEM UNREGISTER

• Class: Run time

• Default: set

• Applicable interface(s): OFA-IB-CH3 and OFA-iWARP-CH3

Setting this parameter enables MVAPICH2 to use memory registration cache.

11.82 MV2 USE RoCE

• Class: Run Time

• Default: Un Set

• Applicable interface(s): OFA-IB-CH3

This parameter enables the use of RDMA over Ethernet for MPI communication. The underlying HCA and
network must support this feature.

11.83 MV2 DEFAULT GID INDEX

• Class: Run Time

• Default: 0

• Applicable interface(s): OFA-IB-CH3

In RoCE mode, this parameter allows to choose non-default GID index in loss-less ethernet setup using
VLANs

http://mvapich.cse.ohio-state.edu/ 104

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

11.84 MV2 USE RDMA CM

• Class: Run Time

• Default: Network Dependent (set for OFA-iWARP-CH3 and unset for OFA-IB-CH3/OFA-RoCE-
CH3)

• Applicable interface(s): OFA-IB-CH3, OFA-iWARP-CH3, OFA-RoCE-CH3

This parameter enables the use of RDMA CM for establishing the connections.

11.85 MV2 RDMA CM CONF FILE PATH

• Class: Run Time

• Default: Network Dependent (set for OFA-iWARP-CH3 and unset for OFA-IB-CH3/OFA-RoCE-
CH3)

• Applicable interface(s): OFA-IB-CH3, OFA-iWARP-CH3, OFA-RoCE-CH3

This parameter is to specify the path to mv2.conf file. If this is not given, then it searches in the default
location /etc/mv2.conf

11.86 MV2 USE RDMA FAST PATH

• Class: Run time

• Default: set

• Applicable interface(s): OFA-IB-CH3 and OFA-iWARP-CH3

Setting this parameter enables MVAPICH2 to use adaptive RDMA fast path features for OFA-IB-CH3 inter-
face.

11.87 MV2 USE RDMA ONE SIDED

• Class: Run time

• Default: set

• Applicable interface(s): OFA-IB-CH3 and OFA-iWARP-CH3

Setting this parameter allows MVAPICH2 to use optimized one sided implementation based RDMA opera-
tions.

http://mvapich.cse.ohio-state.edu/ 105

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

11.88 MV2 USE RING STARTUP

• Class: Run time

• Default: set

• Applicable interface(s): OFA-IB-CH3

Setting this parameter enables MVAPICH2 to use ring based start up.

11.89 MV2 USE SHARED MEM

• Class: Run time

• Default: set

• Applicable interface(s): OFA-IB-CH3 and OFA-iWARP-CH3

Use shared memory for intra-node communication.

11.90 MV2 USE SHMEM ALLREDUCE

• Class: Run Time

• Applicable interface(s): OFA-IB-CH3 and OFA-iWARP-CH3

This parameter can be used to turn off shared memory based MPI Allreduce for OFA-IB-CH3 over IBA by
setting this to 0.

11.91 MV2 USE SHMEM BARRIER

• Class: Run Time

• Applicable interface(s): OFA-IB-CH3 and OFA-iWARP-CH3

This parameter can be used to turn off shared memory based MPI Barrier for OFA-IB-CH3 over IBA by
setting this to 0.

11.92 MV2 USE SHMEM BCAST

• Class: Run Time

• Applicable interface(s): OFA-IB-CH3 and OFA-iWARP-CH3

This parameter can be used to turn off shared memory based MPI Bcast for OFA-IB-CH3 over IBA by
setting this to 0.

http://mvapich.cse.ohio-state.edu/ 106

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

11.93 MV2 USE SHMEM COLL

• Class: Run time

• Default: set

• Applicable interface(s): OFA-IB-CH3 and OFA-iWARP-CH3

Use shared memory for collective communication. Set this to 0 for disabling shared memory collectives.

11.94 MV2 USE SHMEM REDUCE

• Class: Run Time

• Applicable interface(s): OFA-IB-CH3 and OFA-iWARP-CH3

This parameter can be used to turn off shared memory based MPI Reduce for OFA-IB-CH3 over IBA by
setting this to 0.

11.95 MV2 USE SRQ

• Class: Run time

• Default: set

• Applicable interface(s): OFA-IB-CH3, OFA-iWARP-CH3

Setting this parameter enables MVAPICH2 to use shared receive queue.

11.96 MV2 GATHER SWITCH PT

• Class: Run time

• Default: set

• Applicable interface(s): OFA-IB-CH3 and OFA-iWARP-CH3

We use different algorithms depending on the system size. For small system sizes (up to 386 cores), we
use the “2-level” algorithm following by the “Direct” algorithm. For medium system sizes (up to 1k), we
use “Binomial” algorithm following by the “Direct” algorithm. Users can set the switching point between
algorithms using the run-time parameter MV2 GATHER SWITCH PT.

http://mvapich.cse.ohio-state.edu/ 107

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

11.97 MV2 SCATTER SMALL MSG

• Class: Run time

• Default: set

• Applicable interface(s): OFA-IB-CH3 and OFA-iWARP-CH3

When the system size is lower than 512 cores, we use the “Binomial” algorithm for small message sizes.
MV2 SCATTER SMALL MSG allows the users to set the threshold for small messages.

11.98 MV2 SCATTER MEDIUM MSG

• Class: Run time

• Default: set

• Applicable interface(s): OFA-IB-CH3 and OFA-iWARP-CH3

When the system size is lower than 512 cores, we use the “2-level” algorithm for medium message sizes.
MV2 SCATTER MEDIUM MSG allows the users to set the threshold for medium messages.

11.99 MV2 USE TWO LEVEL GATHER

• Class: Run time

• Default: set

• Applicable interface(s): OFA-IB-CH3 and OFA-iWARP-CH3

Use the two-level multi-core-aware algorithm for the MPI Gather operation. If this parameter is set to 0 at
run-time, the two-level algorithm will not be invoked.

11.100 MV2 USE TWO LEVEL SCATTER

• Class: Run time

• Default: set

• Applicable interface(s): OFA-IB-CH3 and OFA-iWARP-CH3

Use the two-level multi-core-aware algorithm for the MPI Scatter operation. If this parameter is set to 0 at
run-time, the two-level algorithm will not be invoked.

http://mvapich.cse.ohio-state.edu/ 108

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

11.101 MV2 USE XRC

• Class: Run time

• Default: 0

• Applicable Interface(s): OFA-IB-CH3

Use the XRC InfiniBand transport available since Mellanox ConnectX adapters. This features requires
OFED version later than 1.3. It also automatically enables SRQ and ON-DEMAND connection management.
Note that the MVAPICH2 library needs to have been configured with –enable-xrc=yes to use this feature.

11.102 MV2 VBUF POOL SIZE

• Class: Run time

• Default: 512

• Applicable interface(s): OFA-IB-CH3, OFA-iWARP-CH3

The number of vbufs in the initial pool. This pool is shared among all the connections.

11.103 MV2 VBUF SECONDARY POOL SIZE

• Class: Run time

• Default: 256

• Applicable interface(s): OFA-IB-CH3, OFA-iWARP-CH3

The number of vbufs allocated each time when the global pool is running out in the initial pool. This is
also shared among all the connections.

11.104 MV2 VBUF TOTAL SIZE

• Class: Run time

• Default: Host Channel Adapter (HCA) dependent (12 KB for ConnectX HCA’s)

• Applicable interface(s): OFA-IB-CH3, OFA-iWARP-CH3

The size of each vbuf, the basic communication buffer of MVAPICH2. For better performance, the
value of MV2 IBA EAGER THRESHOLD should be set the same as MV2 VBUF TOTAL SIZE.

http://mvapich.cse.ohio-state.edu/ 109

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

11.105 MV2 SMP EAGERSIZE

• Class: Run time

• Default: Architecture dependent

• Applicable interface(s): OFA-IB-CH3 and OFA-iWARP-CH3

This parameter defines the switch point from Eager protocol to Rendezvous protocol for intra-node
communication. Note that this variable can be set with suffixes such as ‘K’/‘k’, ‘M’/‘m’ or ‘G’/‘g’ to denote
Kilobyte, Megabyte or Gigabyte respectively.

11.106 MV2 SMPI LENGTH QUEUE

• Class: Run time

• Default: Architecture dependent

• Applicable interface(s): OFA-IB-CH3 and OFA-iWARP-CH3

This parameter defines the size of shared buffer between every two processes on the same node for
transferring messages smaller than or equal to MV2 SMP EAGERSIZE. Note that this variable can be set
with suffixes such as ‘K’/‘k’, ‘M’/‘m’ or ‘G’/‘g’ to denote Kilobyte, Megabyte or Gigabyte respectively.

11.107 MV2 SMP NUM SEND BUFFER

• Class: Run time

• Default: Architecture dependent

• Applicable interface(s): OFA-IB-CH3 and OFA-iWARP-CH3

This parameter defines the number of internal send buffers for sending intra-node messages larger than
MV2 SMP EAGERSIZE.

11.108 MV2 SMP SEND BUF SIZE

• Class: Run time

• Default: Architecture dependent

• Applicable interface(s): OFA-IB-CH3 and OFA-iWARP-CH3

This parameter defines the packet size when sending intra-node messages larger than MV2 SMP EAGERSIZE.

http://mvapich.cse.ohio-state.edu/ 110

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

11.109 MV2 USE HUGEPAGES

• Class: Run time

• Default: 1

• Applicable interface(s): OFA-IB-CH3

Set this to 0, to not use any HugePages.

11.110 MV2 HYBRID ENABLE THRESHOLD

• Class: Run time

• Default: 1024

• Applicable interface(s): OFA-IB-CH3

This defines the threshold for enabling Hybrid communication using UD and RC/XRC. When the size of the
job is greater than or equal to the threshold value, Hybrid mode will be enabled. Otherwise, it uses default
RC/XRC connections for communication.

11.111 MV2 HYBRID MAX RC CONN

• Class: Run time

• Default: 64

• Applicable interface(s): OFA-IB-CH3

Maximum number of RC or XRC connections created per process. This limits the amount of connection
memory and prevents HCA QP cache thrashing.

11.112 MV2 UD PROGRESS TIMEOUT

• Class: Run time

• Default: System size dependent.

• Applicable interface(s): OFA-IB-CH3

Time (usec) until ACK status is checked (and ACKs are sent if needed). To avoid unnecessary retries,
set this value less than MV2 UD RETRY TIMEOUT. It is recommended to set this to 1/10 of
MV2 UD RETRY TIMEOUT.

http://mvapich.cse.ohio-state.edu/ 111

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

11.113 MV2 UD RETRY TIMEOUT

• Class: Run time

• Default: System size dependent.

• Applicable interface(s): OFA-IB-CH3

Time (usec) after which an unacknowledged message will be retried

11.114 MV2 UD RETRY COUNT

• Class: Run time

• Default: System size dependent.

• Applicable interface(s): OFA-IB-CH3

Number of retries of a message before the job is aborted. This is needed in case of HCA fails.

11.115 MV2 USE UD HYBRID

• Class: Run time

• Default: 1

• Applicable interface(s): OFA-IB-CH3

Set this to Zero, to disable UD transport in hybrid configuration mode.

11.116 MV2 USE ONLY UD

• Class: Run time

• Default: 0

• Applicable interface(s): OFA-IB-CH3

Set this to 1, to enable only UD transport in hybrid configuration mode. It will not use any RC/XRC connec-
tions in this mode.

http://mvapich.cse.ohio-state.edu/ 112

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

11.117 MV2 USE UD ZCOPY

• Class: Run time

• Default: 1

• Applicable interface(s): OFA-IB-CH3

Whether or not to use the zero-copy transfer mechanism to transfer large messages on UD transport.

11.118 MV2 USE LIMIC GATHER

• Class: Run time

• Default: 0

• Applicable interface(s): OFA-IB-CH3, PSM

If this flag is set to 1, we will use intra-node Zero-Copy MPI Gather designs, when the library has been
configured to use LiMIC2.

11.119 MV2 USE MCAST

• Class: Run time

• Default: 0

• Applicable interface(s): OFA-IB-CH3

Set this to 1, to enable hardware multicast support in collective communication

11.120 MV2 MCAST NUM NODES THRESHOLD

• Class: Run time

• Default: 8

• Applicable interface(s): OFA-IB-CH3

This defines the threshold for enabling multicast support in collective communication. When MV2 USE MCAST
is set to 1 and the number of nodes in the job is greater than or equal to the threshold value, it uses multicast
support in collective communication

http://mvapich.cse.ohio-state.edu/ 113

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

11.121 MV2 USE CUDA

• Class: Run time

• Default: 0

• Applicable interface(s): OFA-IB-CH3

set this to One. to enable support for communication with GPU device buffers.

11.122 MV2 CUDA BLOCK SIZE

• Class: Run time

• Default: 262144

• Applicable interface(s): OFA-IB-CH3

The chunk size used in large message transfer from device memory to host memory. The other suggested
values for this parameter are 131072 and 524288.

11.123 MV2 CUDA KERNEL VECTOR TIDBLK SIZE

• Class: Run time

• Default: 1024

• Applicable interface(s): OFA-IB-CH3

This controls the number of CUDA threads per block in pack/unpack kernels for MPI vector datatype in
communication involving GPU device buffers.

11.124 MV2 CUDA KERNEL VECTOR YSIZE

• Class: Run time

• Default: tuned based on dimensions of the vector

• Applicable interface(s): OFA-IB-CH3

This controls the y-dimension of a thread block in pack/unpack kernels for MPI vector datatype in commu-
nication involving GPU device buffers. It controls the number of threads operating on each block of data in
a vector.

http://mvapich.cse.ohio-state.edu/ 114

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

11.125 MV2 CUDA NONBLOCKING STREAMS

• Class: Run time

• Default: 1 (Enabled)

• Applicable interface(s): OFA-IB-CH3

This controls the use of non-blocking streams for asynchronous CUDA memory copies in communication
involving GPU memory.

11.126 MV2 CUDA IPC

• Class: Run time

• Default: 1

• Applicable interface(s): OFA-IB-CH3

This enables intra-node GPU-GPU communication using IPC feature available from CUDA 4.1

11.127 MV2 CUDA SMP IPC

• Class: Run time

• Default: 0

• Applicable interface(s): OFA-IB-CH3

This enables an optimization for short message GPU device-to-device communication using IPC feature
available from CUDA 4.1

http://mvapich.cse.ohio-state.edu/ 115

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

12 MVAPICH2 Parameters (OFA-IB-Nemesis Interface)

12.1 MV2 DEFAULT MAX SEND WQE

• Class: Run time

• Default: 64

This specifies the maximum number of send WQEs on each QP. Please note that for Gen2 and Gen2-
iWARP, the default value of this parameter will be 16 if the number of processes is larger than 256 for better
memory scalability.

12.2 MV2 DEFAULT MAX RECV WQE

• Class: Run time

• Default: 128

This specifies the maximum number of receive WQEs on each QP (maximum number of receives that
can be posted on a single QP).

12.3 MV2 DEFAULT MTU

• Class: Run time

• Default: IBV MTU 1024 for IB SDR cards and IBV MTU 2048 for IB DDR and QDR cards.

The internal MTU size. For Gen2, this parameter should be a string instead of an integer. Valid values
are: IBV MTU 256, IBV MTU 512, IBV MTU 1024, IBV MTU 2048, IBV MTU 4096.

12.4 MV2 DEFAULT PKEY

• Class: Run Time

Select the partition to be used for the job.

12.5 MV2 IBA EAGER THRESHOLD

• Class: Run time

• Default: Architecture dependent (12KB for IA-32)

This specifies the switch point between eager and rendezvous protocol in MVAPICH2. For better perfor-
mance, the value of MV2 IBA EAGER THRESHOLD should be set the same as MV2 VBUF TOTAL SIZE.

http://mvapich.cse.ohio-state.edu/ 116

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

12.6 MV2 IBA HCA

• Class: Run time

• Default: Unset

This specifies the HCA to be used for performing network operations.

12.7 MV2 INITIAL PREPOST DEPTH

• Class: Run time

• Default: 10

This defines the initial number of pre-posted receive buffers for each connection. If communication
happen for a particular connection, the number of buffers will be increased to
RDMA PREPOST DEPTH.

12.8 MV2 MAX INLINE SIZE

• Class: Run time

• Default: Network card dependent (128 for most networks including InfiniBand)

This defines the maximum inline size for data transfer. Please note that the default value of this parameter
will be 0 when the number of processes is larger than 256 to improve memory usage scalability.

12.9 MV2 NDREG ENTRIES

• Class: Run time

• Default: 1000

This defines the total number of buffers that can be stored in the registration cache. It has no effect
if MV2 USE LAZY MEM UNREGISTER is not set. A larger value will lead to less frequent lazy de-
registration.

12.10 MV2 NUM RDMA BUFFER

• Class: Run time

• Default: Architecture dependent (32 for EM64T)

http://mvapich.cse.ohio-state.edu/ 117

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

The number of RDMA buffers used for the RDMA fast path. This fast path is used to reduce latency and
overhead of small data and control messages. This value will be ineffective if MV2 USE RDMA FAST PATH
is not set.

12.11 MV2 NUM SA QUERY RETRIES

• Class: Run time

• Default: 20

• Applicable Interface(s): OFA-IB-CH3, OFA-iWARP-CH3

Number of times the MPI library will attempt to query the subnet to obtain the path record information before
giving up.

12.12 MV2 PREPOST DEPTH

• Class: Run time

• Default: 64

This defines the number of buffers pre-posted for each connection to handle send/receive operations.

12.13 MV2 RNDV PROTOCOL

• Class: Run time

• Default: RPUT

The value of this variable can be set to choose different Rendezvous protocols. RPUT (default RDMA-Write)
RGET (RDMA Read based), R3 (send/recv based).

12.14 MV2 R3 THRESHOLD

• Class: Run time

• Default: 4096

The value of this variable controls what message sizes go over the R3 rendezvous protocol. Messages
above this message size use MV2 RNDV PROTOCOL.

http://mvapich.cse.ohio-state.edu/ 118

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

12.15 MV2 R3 NOCACHE THRESHOLD

• Class: Run time

• Default: 32768

The value of this variable controls what message sizes go over the R3 rendezvous protocol when the
registration cache is disabled (MV2 USE LAZY MEM UNREGISTER=0). Messages above this message
size use MV2 RNDV PROTOCOL.

12.16 MV2 SRQ LIMIT

• Class: Run Time

• Default: 30

This is the low water-mark limit for the Shared Receive Queue. If the number of available work entries
on the SRQ drops below this limit, the flow control will be activated.

12.17 MV2 SRQ SIZE

• Class: Run Time

• Default: 512

This is the maximum number of work requests allowed on the Shared Receive Queue.

12.18 MV2 STRIPING THRESHOLD

• Class: Run Time

• Default: 8192

This parameter specifies the message size above which we begin the stripe the message across multiple
rails (if present).

12.19 MV2 USE BLOCKING

• Class: Run time

• Default: 0

Setting this parameter enables mvapich2 to use blocking mode progress. MPI applications do not take up
any CPU when they are waiting for incoming messages.

http://mvapich.cse.ohio-state.edu/ 119

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

12.20 MV2 USE LAZY MEM UNREGISTER

• Class: Run time

• Default: set

Setting this parameter enables mvapich2 to use memory registration cache.

12.21 MV2 USE RDMA FAST PATH

• Class: Run time

• Default: set

Setting this parameter enables MVAPICH2 to use adaptive rdma fast path features for the Gen2 interface.

12.22 MV2 USE SRQ

• Class: Run time

• Default: set

Setting this parameter enables mvapich2 to use shared receive queue.

12.23 MV2 VBUF POOL SIZE

• Class: Run time

• Default: 512

The number of vbufs in the initial pool. This pool is shared among all the connections.

12.24 MV2 VBUF SECONDARY POOL SIZE

• Class: Run time

• Default: 128

The number of vbufs allocated each time when the global pool is running out in the initial pool. This is
also shared among all the connections.

http://mvapich.cse.ohio-state.edu/ 120

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

12.25 MV2 VBUF TOTAL SIZE

• Class: Run time

• Default: Architecture dependent (6 KB for EM64T)

The size of each vbuf, the basic communication buffer of MVAPICH2. For better performance, the
value of MV2 IBA EAGER THRESHOLD should be set the same as MV2 VBUF TOTAL SIZE.

12.26 MV2 RUN THROUGH STABILIZATION

• Class: Run Time

• Default: 0

This enables run through stabilization support to handle the process failures. This is valid only with Hydra
process manager with –disable-auto-cleanup flag.

http://mvapich.cse.ohio-state.edu/ 121

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

13 MPIRUN RSH Parameters

13.1 MV2 COMM WORLD LOCAL RANK

• Class: Run time

• Applicable Interface(s): All

The local rank of a process on a node within its job. The local rank ranges from 0,1 ... N-1 on a node with N
processes running on it.

13.2 MV2 COMM WORLD LOCAL SIZE

• Class: Run time

• Applicable Interface(s): All

The number of ranks from this job that are running on this node.

13.3 MV2 COMM WORLD RANK

• Class: Run time

• Applicable Interface(s): All

The MPI rank of this process in current MPI job

13.4 MV2 COMM WORLD SIZE

• Class: Run time

• Applicable Interface(s): All

The number of processes in this MPI job’s MPI Comm World.

13.5 MV2 FASTSSH THRESHOLD

• Class: Run time

• Default: 256

• Applicable Interface(s): All

http://mvapich.cse.ohio-state.edu/ 122

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

Number of nodes beyond which to use hierarchical ssh during start up. This parameter is only relevant
for mpirun rsh based start up. Note that unlike most other parameters described in this section, this is an
environment variable that has to be set in the run time environment (for e.g. through export in the bash shell).

13.6 MV2 NPROCS THRESHOLD

• Class: Run time

• Default: 8192

• Applicable Interface(s): All

Number of nodes beyond which to use file-based communication scheme in the hierarchical ssh during start
up. This parameter is only relevant for mpirun rsh based start up.

13.7 MV2 MPIRUN TIMEOUT

• Class: Run time

• Default: Dynamic - based on number of nodes

The number of seconds after which mpirun rsh aborts job launch. Note that unlike most other parameters
described in this section, this is an environment variable that has to be set in the run time environment (for
e.g. through export in the bash shell).

13.8 MV2 MT DEGREE

• Class: Run time

• Default: 32

The degree of the hierarchical tree used by mpirun rsh. Note that unlike most other parameters described in
this section, this is an environment variable that has to be set in the run time environment (for e.g. through
export in the bash shell).

13.9 MPIEXEC TIMEOUT

• Class: Run time

• Default: Unset

• Unit: Seconds

Set this to limit, in seconds, of the execution time of the mpi application. This overwrites the
MV2 MPIRUN TIMEOUT parameter.

http://mvapich.cse.ohio-state.edu/ 123

MVAPICH2 Network-Based Computing Laboratory, The Ohio State University

13.10 MV2 DEBUG FORK VERBOSE

• Class: Run time

• Type: Null or positive integer

• Default: 0 (disabled)

Set the verbosity level of the debug output for the process management operations (fork, waitpid, kill,
...) of mpirun rsh and mpispawn processes. The value 0 disables any debug output, a value of 1 enables a
basic debug output, and a value of 2 enables a more verbose debug output.

Note: All debug output is disabled when MVAPICH2 is configured with the --enable-fast=ndebug
option.

http://mvapich.cse.ohio-state.edu/ 124

	Overview of the MVAPICH Project
	How to use this User Guide?
	 MVAPICH2 2.2 Features
	Installation Instructions
	Building from a tarball
	Obtaining and Building the Source from SVN repository
	Selecting a Process Manager
	Customizing Commands Used by mpirun_rsh
	Using SLURM
	Using SLURM with support for PMI Extensions

	Configuring a build for OFA-IB-CH3/OFA-iWARP-CH3/OFA-RoCE-CH3
	Configuring a build for NVIDIA GPU with OFA-IB-CH3
	Configuring a build for Shared-Memory-CH3
	Configuring a build for OFA-IB-Nemesis
	Configuring a build for Intel TrueScale (PSM-CH3)
	Configuring a build for Intel Omni-Path (PSM2-CH3)
	Configuring a build for TCP/IP-Nemesis
	Configuring a build for TCP/IP-CH3
	Configuring a build for OFA-IB-Nemesis and TCP/IP Nemesis (unified binary)
	Configuring a build for Shared-Memory-Nemesis

	Basic Usage Instructions
	Compile Applications
	Run Applications
	Run using mpirun_rsh
	Run using Hydra (mpiexec)
	Run using SLURM
	Run on PBS/Torque Clusters
	Run with Dynamic Process Management support
	Run with mpirun_rsh using OFA-iWARP Interface
	Run with mpirun_rsh using OFA-RoCE Interface
	Run using IPoIB with mpirun_rsh or mpiexec
	Run using ADIO driver for Lustre
	Run using TotalView Debugger Support
	Run using a profiling library

	Advanced Usage Instructions
	Running on Customized Environments
	Export Environment
	Sample Use

	Configuration File Processing
	Sample Use

	Suspend/Resume Support
	Running with Efficient CPU (Core) Mapping
	Using HWLOC for CPU Mapping
	User defined CPU Mapping
	Performance Impact of CPU Mapping

	Running with LiMIC2
	Running with Shared Memory Collectives
	Running Collectives with Hardware based Multicast support
	Running MPI_Gather collective with intra-node Zero-Copy designs (using LiMIC2)
	Running with scalable UD transport
	Running with Integrated Hybrid UD-RC/XRC design
	Running with Multiple-Rail Configurations
	Enhanced design for Multiple-Rail Configurations
	Running with Fault-Tolerance Support
	System-Level Checkpoint/Restart
	Multi-Level Checkpointing with Scalable Checkpoint-Restart(SCR)
	Job Pause-Migration-Restart Support
	Run-Through Stabilization
	Network Fault Tolerance with Automatic Path Migration

	Running with RDMA CM support
	Running MVAPICH2 in Multi-threaded Environments
	Compiler Specific Flags to enable OpenMP thread binding
	Optimizations Specific to Intel Knight's Landing (KNL) Processors
	Running with Hot-Spot and Congestion Avoidance
	Running on Clusters with NVIDIA GPU Accelerators
	MPIRUN_RSH compatibility with MPIEXEC
	Interaction with SLURM
	Interaction with PBS

	Running with Intel Trace Analyzer and Collector
	Running with MCDRAM support on Intel Knight's Landing (KNL) processor

	OSU Benchmarks
	Download and Build Stand-alone OSU Benchmarks Package
	Running
	Running OSU Latency and Bandwidth
	Running OSU Message Rate Benchmark
	Running OSU Collective Benchmarks
	Running Benchmarks with CUDA/OpenACC Extensions

	Scalability features and Performance Tuning for Large Scale Clusters
	Optimizations for homogeneous clusters
	Improving Job startup performance
	Configuration Options (Launcher-Agnostic)
	Runtime Parameters (Launcher-Agnostic)
	Enabling Optimizations Specific to mpirun_rsh
	Enabling Optimizations Specific to SLURM

	Basic QP Resource Tuning
	RDMA Based Point-to-Point Tuning
	Shared Receive Queue (SRQ) Tuning
	eXtended Reliable Connection (XRC)
	Shared Memory Tuning
	On-demand Connection Management Tuning
	Scalable Collectives Tuning
	Optimizations for MPI_Bcast
	Optimizations for MPI_Reduce and MPI_Allreduce
	Optimizations for MPI_Gather and MPI_Scatter

	Process Placement on Multi-core platforms
	HugePage Support

	FAQ and Troubleshooting with MVAPICH2
	General Questions and Troubleshooting
	Issues with MVAPICH2 and Python based MPI programs
	Issues with MVAPICH2 and Google TCMalloc
	Impact of disabling memory registration cache on application performance
	MVAPICH2 failed to register memory with InfiniBand HCA
	Invalid Communicators Error
	Are fork() and system() supported?
	MPI+OpenMP shows bad performance
	Error message ``No such file or directory" when using Lustre file system
	Program segfaults with ``File locking failed in ADIOI_Set_lock''
	Running MPI programs built with gfortran
	How do I obtain MVAPICH2 version and configuration information?
	How do I compile my MPI application with static libraries, and not use shared libraries?
	Does MVAPICH2 work across AMD and Intel systems?
	I want to enable debugging for my build. How do I do this?
	How can I run my application with a different group ID?

	Issues and Failures with Job launchers
	/usr/bin/env: mpispawn: No such file or directory
	TotalView complains that ``The MPI library contains no suitable type definition for struct MPIR_PROCDESC''

	Problems Building MVAPICH2
	Unable to convert MPI_SIZEOF_AINT to a hex string
	Cannot Build with the PathScale Compiler
	nvlink fatal : Unsupported file type '../lib/.libs/libmpich.so'
	Libtool has a problem linking with non-GNU compiler (like PGI)

	With OFA-IB-CH3 Interface
	Cannot Open HCA
	Checking state of IB Link
	Creation of CQ or QP failure
	Hang with the HSAM Functionality
	Failure with Automatic Path Migration
	Error opening file
	RDMA CM Address error
	RDMA CM Route error

	With OFA-iWARP-CH3 Interface
	Error opening file
	RDMA CM Address error
	RDMA CM Route error

	Checkpoint/Restart
	Failure during Restart

	MVAPICH2 General Parameters
	MV2_IGNORE_SYSTEM_CONFIG
	MV2_IGNORE_USER_CONFIG
	MV2_USER_CONFIG
	MV2_DEBUG_CORESIZE
	MV2_DEBUG_SHOW_BACKTRACE
	MV2_SHOW_ENV_INFO
	MV2_SHOW_CPU_BINDING

	MVAPICH2 Parameters (CH3-Based Interfaces)
	MV2_ALLREDUCE_2LEVEL_MSG
	MV2_CKPT_AGGREGATION_BUFPOOL_SIZE
	MV2_CKPT_AGGREGATION_CHUNK_SIZE
	MV2_CKPT_FILE
	MV2_CKPT_INTERVAL
	MV2_CKPT_MAX_SAVE_CKPTS
	MV2_CKPT_NO_SYNC
	MV2_CKPT_USE_AGGREGATION
	MV2_DEBUG_FT_VERBOSE
	MV2_CM_RECV_BUFFERS
	MV2_CM_SPIN_COUNT
	MV2_CM_TIMEOUT
	MV2_CPU_MAPPING
	MV2_CPU_BINDING_POLICY
	MV2_CPU_BINDING_LEVEL
	MV2_SHOW_CPU_BINDING
	MV2_DEFAULT_MAX_SEND_WQE
	MV2_DEFAULT_MAX_RECV_WQE
	MV2_DEFAULT_MTU
	MV2_DEFAULT_PKEY
	MV2_ENABLE_AFFINITY
	MV2_GET_FALLBACK_THRESHOLD
	MV2_IBA_EAGER_THRESHOLD
	MV2_IBA_HCA
	MV2_INITIAL_PREPOST_DEPTH
	MV2_IWARP_MULTIPLE_CQ_THRESHOLD
	MV2_KNOMIAL_INTRA_NODE_FACTOR
	MV2_KNOMIAL_INTER_NODE_FACTOR
	MV2_MAX_INLINE_SIZE
	MV2_MAX_NUM_WIN
	MV2_NDREG_ENTRIES
	MV2_NUM_HCAS
	MV2_NUM_PORTS
	MV2_DEFAULT_PORT
	MV2_NUM_SA_QUERY_RETRIES
	MV2_NUM_QP_PER_PORT
	MV2_RAIL_SHARING_POLICY
	MV2_RAIL_SHARING_LARGE_MSG_THRESHOLD
	MV2_PROCESS_TO_RAIL_MAPPING
	MV2_RDMA_FAST_PATH_BUF_SIZE
	MV2_NUM_RDMA_BUFFER
	MV2_ON_DEMAND_THRESHOLD
	MV2_HOMOGENEOUS_CLUSTER
	MV2_PREPOST_DEPTH
	MV2_PROCESS_TO_RAIL_MAPPING
	MV2_PSM_DEBUG
	MV2_PSM_DUMP_FREQUENCY
	MV2_PUT_FALLBACK_THRESHOLD
	MV2_RAIL_SHARING_LARGE_MSG_THRESHOLD
	MV2_RAIL_SHARING_POLICY
	MV2_RDMA_CM_ARP_TIMEOUT
	MV2_RDMA_CM_MAX_PORT
	MV2_RDMA_CM_MIN_PORT
	MV2_REDUCE_2LEVEL_MSG
	MV2_RNDV_PROTOCOL
	MV2_R3_THRESHOLD
	MV2_R3_NOCACHE_THRESHOLD
	MV2_SHMEM_ALLREDUCE_MSG
	MV2_SHMEM_BCAST_LEADERS
	MV2_SHMEM_BCAST_MSG
	MV2_SHMEM_COLL_MAX_MSG_SIZE
	MV2_SHMEM_COLL_NUM_COMM
	MV2_SHMEM_DIR
	MV2_SHMEM_REDUCE_MSG
	MV2_SM_SCHEDULING
	MV2_SMP_USE_LIMIC2
	MV2_SMP_USE_CMA
	MV2_SRQ_LIMIT
	MV2_SRQ_MAX_SIZE
	MV2_SRQ_SIZE
	MV2_STRIPING_THRESHOLD
	MV2_SUPPORT_DPM
	MV2_USE_APM
	MV2_USE_APM_TEST
	MV2_USE_BLOCKING
	MV2_USE_COALESCE
	MV2_USE_DIRECT_GATHER
	MV2_USE_DIRECT_SCATTER
	MV2_USE_HSAM
	MV2_USE_IWARP_MODE
	MV2_USE_LAZY_MEM_UNREGISTER
	MV2_USE_RoCE
	MV2_DEFAULT_GID_INDEX
	MV2_USE_RDMA_CM
	MV2_RDMA_CM_CONF_FILE_PATH
	MV2_USE_RDMA_FAST_PATH
	MV2_USE_RDMA_ONE_SIDED
	MV2_USE_RING_STARTUP
	MV2_USE_SHARED_MEM
	MV2_USE_SHMEM_ALLREDUCE
	MV2_USE_SHMEM_BARRIER
	MV2_USE_SHMEM_BCAST
	MV2_USE_SHMEM_COLL
	MV2_USE_SHMEM_REDUCE
	MV2_USE_SRQ
	MV2_GATHER_SWITCH_PT
	MV2_SCATTER_SMALL_MSG
	MV2_SCATTER_MEDIUM_MSG
	MV2_USE_TWO_LEVEL_GATHER
	MV2_USE_TWO_LEVEL_SCATTER
	MV2_USE_XRC
	MV2_VBUF_POOL_SIZE
	MV2_VBUF_SECONDARY_POOL_SIZE
	MV2_VBUF_TOTAL_SIZE
	MV2_SMP_EAGERSIZE
	MV2_SMPI_LENGTH_QUEUE
	MV2_SMP_NUM_SEND_BUFFER
	MV2_SMP_SEND_BUF_SIZE
	MV2_USE_HUGEPAGES
	MV2_HYBRID_ENABLE_THRESHOLD
	MV2_HYBRID_MAX_RC_CONN
	MV2_UD_PROGRESS_TIMEOUT
	MV2_UD_RETRY_TIMEOUT
	MV2_UD_RETRY_COUNT
	MV2_USE_UD_HYBRID
	MV2_USE_ONLY_UD
	MV2_USE_UD_ZCOPY
	MV2_USE_LIMIC_GATHER
	MV2_USE_MCAST
	MV2_MCAST_NUM_NODES_THRESHOLD
	MV2_USE_CUDA
	MV2_CUDA_BLOCK_SIZE
	MV2_CUDA_KERNEL_VECTOR_TIDBLK_SIZE
	MV2_CUDA_KERNEL_VECTOR_YSIZE
	MV2_CUDA_NONBLOCKING_STREAMS
	MV2_CUDA_IPC
	MV2_CUDA_SMP_IPC

	MVAPICH2 Parameters (OFA-IB-Nemesis Interface)
	MV2_DEFAULT_MAX_SEND_WQE
	MV2_DEFAULT_MAX_RECV_WQE
	MV2_DEFAULT_MTU
	MV2_DEFAULT_PKEY
	MV2_IBA_EAGER_THRESHOLD
	MV2_IBA_HCA
	MV2_INITIAL_PREPOST_DEPTH
	MV2_MAX_INLINE_SIZE
	MV2_NDREG_ENTRIES
	MV2_NUM_RDMA_BUFFER
	MV2_NUM_SA_QUERY_RETRIES
	MV2_PREPOST_DEPTH
	MV2_RNDV_PROTOCOL
	MV2_R3_THRESHOLD
	MV2_R3_NOCACHE_THRESHOLD
	MV2_SRQ_LIMIT
	MV2_SRQ_SIZE
	MV2_STRIPING_THRESHOLD
	MV2_USE_BLOCKING
	MV2_USE_LAZY_MEM_UNREGISTER
	MV2_USE_RDMA_FAST_PATH
	MV2_USE_SRQ
	MV2_VBUF_POOL_SIZE
	MV2_VBUF_SECONDARY_POOL_SIZE
	MV2_VBUF_TOTAL_SIZE
	MV2_RUN_THROUGH_STABILIZATION

	MPIRUN_RSH Parameters
	MV2_COMM_WORLD_LOCAL_RANK
	MV2_COMM_WORLD_LOCAL_SIZE
	MV2_COMM_WORLD_RANK
	MV2_COMM_WORLD_SIZE
	MV2_FASTSSH_THRESHOLD
	MV2_NPROCS_THRESHOLD
	MV2_MPIRUN_TIMEOUT
	MV2_MT_DEGREE
	MPIEXEC_TIMEOUT
	MV2_DEBUG_FORK_VERBOSE

